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On Landau–Ginzburg models for Fano varieties
Victor Przyjalkowski

We observe a method for finding weak Landau–Ginzburg models
for Fano varieties and find them for smooth Fano threefolds of
genera 9, 10, and 12.

In the late 1980s, physicists discovered a phenomenon of mirror symmetry.
They found that given a Calabi–Yau variety one can construct the so-called
superconformal field theory. This can be done in two ways: “algebro-
geometric” and “symplectic”. Based on this, they suggested that for each
Calabi–Yau X there is another one Y (not necessary uniquely determined),
whose algebro-geometric properties “correspond” to symplectic ones of
X and symplectic ones “corresponds” to algebro-geometric ones of X. In
particular, the Hodge diamond of Y is a reflection (a mirror image) of the
Hodge diamond of X about a 45◦ line. That is why X and Y are called a
mirror pair.

Later, in order to formalize this empiric approach, mathematicians for-
mulated a series of mirror symmetry conjectures. They generalize the corre-
spondence to Fano varieties (Batyrev, Givental, Hori, Vafa, etc.). The pair
for a Fano variety X is conjecturally a Landau–Ginzburg model, that is, a
(non-compact) manifold M with complex-valued function f on it.

The dual model M has a series of properties that correspond to the prop-
erties of X. Homological mirror symmetry conjecture (Kontsevich [18]), for
instance, states that the derived category of coherent sheaves on X is iso-
morphic to the category of Lagrangian vanishing cycles on M . This gives
the correspondence between singular fibers of f and the exceptional collec-
tion of X. One of the main problems in the mirror symmetry is to find a
Landau–Ginzburg model for a Fano variety. We use the mirror symmetry
conjecture of Hodge structure variations to find a candidate for it. This
conjecture states the following. Given genus 0 two-pointed Gromov–Witten
invariants of X (the expected numbers of rational curves of given degree
that intersect two general representatives of homological classes on X), one
may define a (small) quantum cohomology ring, i.e., the deformation of the
cohomology of X with Gromov–Witten invariants as structural constants.
The quantum multiplication in this ring gives the quantum D-module. The
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conjecture is that the regularization of this D-module is isomorphic to a
Picard–Fuchs D-module of M . The advantage of this conjecture is that we
can effectively check it in some cases. In the paper, we check it in the cases
of some threefolds and discuss some approaches to finding candidates to
Landau–Ginzburg models. More about homological mirror symmetry and
mirror symmetry of Hodge structure variations for the varieties we consider
in the paper and for the other examples see in [15].

Consider a smooth Fano threefold V with Picard group Z. We may
associate a differential operator LV of type D3 with it (see [12, Definition
2.10]). The differential equation associated with this operator has a unique
analytical solution of type 1 + a1t + a2t

2 + · · · (the fundamental term of the
regularized I-series; see [22] for the detailed description of the solutions of
equations of type DN). It is easy to calculate the coefficients of the funda-
mental term using the recursive procedure.

Consider a Laurent polynomial f ∈ C[x, x−1, y, y−1, z, z−1]. Let bi be
the constant term of f i.

Definition. The polynomial f is called a very weak Landau–Ginzburg
model for V , if ai = bi for all i ≥ 0. The polynomial f is called a weak
Landau–Ginzburg model for V , if f is a very weak Landau–Ginzburg model
for V and a general element of the pencil T = {1 − tf = 0, t ∈ C} is bira-
tional to a K3 surface.

The similar definition may be formulated for the varieties of an arbitrary
dimension (see Definition 2.2).

The motivation of this definition is the following. The series 1 + b1t +
b2t

2 + · · · is the solution of the Picard–Fuchs equation for T (see Proposi-
tion 2.3). The mirror symmetry conjecture of Hodge structure variations
states that the regularized quantum operator a variety (which is of type
D3 in the 3-fold case) coincides with the Picard–Fuchs operator of its mir-
ror dual Landau–Ginzburg model. The general mirror symmetry philoso-
phy says that the general fiber of the Landau–Ginzburg model is a smooth
Calabi–Yau variety.

Finding weak Landau–Ginzburg models reduces to a computational prob-
lem. That is, given ais, one should find f with free terms bis coinciding
with ais. The K3-condition usually follows from the degree reasons and
the Bertini Theorem (see below). The difficulty is computational. In this
paper, we discuss some approaches to solving this problem. In particular, we
discuss conjectures related with toric degenerations of Fano varieties. Using
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these approaches we find weak Landau–Ginzburg models of Fano threefolds
V16 (of genus 9), V18 (of genus 10), and V22 (of genus 12).

1. Definitions and conventions

The variety is a reduced irreducible scheme of finite type. The variety X is
called Q-factorial if Cl(X) ⊗ Q ∼= Pic(X) ⊗ Q (where Cl(X) is the group of
Weil divisor classes on X). It is said to be Q-Gorenstein if mKX ∈ Pic(X)
for some m ∈ N. The Q-Gorenstein variety X is said to have canonical sin-
gularities if for each resolution f : X ′ → X the relative canonical Q-divisor
KX′ − f∗(KX) is effective.

The (local) deformation is a flat morphism X → S, where S = (S, s0) is
a germ of a smooth variety (usually the germ of a curve). The fiber over
the central point Xs0 is called the special fiber. The fiber over other point
is called the general fiber. We say that the general fiber degenerates to the
special fiber and X is a degeneration to Xs0 .

Let X be a smooth algebraic variety with Picard group Z. Let γ1, . . . ,
γm ∈ H∗(X, Z), k1, . . . , km ∈ Z≥0, and β ∈ H2(X, Z) be the class of algebraic
curves of anticanonical degree d ≥ 0. We denote genus 0 Gromov–Witten
invariant with descendants that correspond to this data (see [19, VI–2.1]) by

〈τk1γ1, . . . , τkm
γm〉β = 〈τk1γ1, . . . , τkm

γm〉d.

Everything is over C.

2. Weak Landau–Ginzburg models

2.1. Quantum side

Let X be a smooth Fano variety of dimension N with Picard group Z.
Consider a torus TNS∨ ∼= Spec B, B = C[t0, t−1

0 ], twice dual to the Neron–
Severi lattice. Let H∗

H(X) ⊂ H∗(X, Q) be the subspace generated by the
anticanonical class H = −KX . This subspace is tautologically closed with
respect to the multiplication, i.e., for any γ1, γ2 ∈ H∗

H(X) the product γ1 · γ2
lies in H∗

H(X). The multiplication structure on the cohomology ring may be
deformed. That is, one can consider a quantum cohomology ring QH∗(X) =
H∗(X) ⊗ C[t0] (see [19, Definition 0.0.2]) with quantum multiplication
� : QH∗(X) × QH∗(X) → QH∗(X), i.e. the bilinear map given by

γ1 � γ2 =
∑

γ,d

td0〈γ1, γ2, γ
∨〉dγ
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for all γ1, γ2, γ ∈ H∗(X), where γ∨ is the Poincaré dual class to γ (we
identify elements of γ ∈ H∗(X) and γ ⊗ 1 ∈ QH∗(X)). The constant term
of γ1 � γ2 (with respect to t0) is γ1 · γ2. The subspace QH∗

H(X) = H∗
H(X) ⊗

C[t0] is not closed with respect to � in general. The examples of vari-
eties V with non-closed subspaces H∗

H(X) are Grassmannians G(k, n), k,
n − k > 1 of dimension >4 (for instance, G(2, 5)) or their hyperplane sections
of dimension ≥4.

The variety is called quantum minimal if H∗
H(X) is closed with respect

to the quantum multiplication (see [22, Definition 1.2.1]). The examples of
such varieties are Fano complete intersections or Fano threefolds.

Let HQ be a trivial vector bundle over TNS∨ with fiber H∗
H(X). Let

S = H0(HQ) and � : S × S → S be the quantum multiplication (we may
consider the quantum multiplication as an operation on S ∼= QH∗

H(X) ⊗
C[t0, t−1

0 ]). Let D = B[t0(∂/∂t0)] and D = t0(∂/∂t0). Consider a (flat) con-
nection ∇ on HQ defined on the sections H i as

(
∇(H i), t0

∂

∂t0

)
= KV � H i

(the pairing is the natural pairing between differential forms and vector
fields). This connection provides the structure of D-module for S by
D(H i) = (∇(H i), D).

Let Q be this D-module. It is not regular in general. To obtain the reg-
ular D-module, we need “to regularize” it. Let Gm = Spec [t, t−1]. Let E =
DGm/DGm(t(∂/∂t) − t) be the exponential DGm-module. Consider the inclu-
sion Z(−KX) ↪→ Pic X. The natural isomorphism Pic(X) ∼= NS(X) (X is
Fano) and double dualization provide the morphism j : Gm → TNS∨ . Define
the regularization of Q as Qreg = j∗(μ∗(Q � j∗(E))), where μ : Gm × Gm →
Gm is the multiplication, and � is the external tensor product (i.e., Qreg

is a convolution with the anticanonical exponential D-module). It may be
represented as DGm/DGm(t(∂/∂t)LX). We denote t(d/dt) also by D. The
differential operator LX is called of type DN (see [12, 2.10]). This operator
is explicitly written in [12, Example 2.11] for N = 3 in terms of structural
constants of quantum multiplication by the anticanonical class (that is, two-
pointed Gromov–Witten invariants). Thus, there is an operator of type D3
associated with every smooth Fano threefold with Picard group Z. There are
17 families of such Fanos (the Iskovskikh list). For all of them the operators
of type D3 are known, see, for instance, [21, 4.4].
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Definition 2.1. (A unique) analytic solution of LXI = 0 of type

IX
H0

= 1 + a1t + a2t
2 + · · · ai ∈ C[[t]], ai ∈ C,

is called the fundamental term of the regularized I-series of X.

Let 1 be the class in H0(X, Z) dual to the fundamental class of X. Then
this series is of the form

IX
H0 = 1 +

∑

d≥2

〈τd−21〉d · td

(see [22, Corollary 2.2.6]).

2.2. Picard–Fuchs side

Consider a torus T = G
n
m =

∏n
i=1 Spec C[xi, x

−1
i ] and a function f on it. This

function is represented by Laurent polynomial: f = f(x1, x
−1
1 , . . . , xn, x−1

n ).
Let φf (i) be the constant term (i.e. the coefficient at x0

1 · . . . · x0
n) of f i. Put

Φf =
∞∑

i=0

φf (i) · ti ∈ C[[t]].

Definition 2.2. The series Φf =
∑∞

i=0 φf (i) · ti is called the constant terms
series of f .

Definition 2.3. Let X be a smooth n-dimensional quantum minimal Fano
variety and IX

H0 ∈ C[[t]] be its fundamental term of regularized I-series. The
Laurent polynomial f ∈ C[Zn] is called a very weak Landau–Ginzburg model
for X if

Φf (t) = IX
H0(t).

The Laurent polynomial f ∈ C[Zn] is called a weak Landau–Ginzburg model
for X if it is a very weak Landau–Ginzburg model for X and for almost all
t ∈ C the hypersurface (1 − tf = 0) is birational to a Calabi–Yau variety.

The meaning of the definition is the following (see [4, pp. 50–52] or
[23, 10]). Consider functions Ft = 1 − t · f ∈ C[x1, x

−1
1 , . . . , xn, x−1

n ][t]. They
provide a pencil T → B = P[u : v] \ (0 : 1) with fibers Yt = (Ft = 0), t ∈ B.

The following proposition is a sort of a mathematical folklore.
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Proposition 2.3. Let the Newton polytope of f ∈ C[Zn] contains 0 in the
interior. Let t ∈ B be the local coordinate around (0 : 1). Then there is a
fiberwise n − 1-form ωt ∈ Ωn−1

T/B
and (locally defined) fiberwise n − 1-cycle

Δt, such that

Φf (t) =
∫

Δt

ωt.

This means that Φf (t) is a solution of the Picard–Fuchs equation for the
pencil {Yt}.

Proof. The following argument is based on [13, § 3].
Let

Ts = {(x1, . . . , xn) ∈ T : |x1| = · · · = |xn| = s},

T = T1, and Rδ = ∪Ts, δ ≤ s ≤ 1 (we consider the natural metric on the
torus given by T ↪→ C

n). Let t be small enough such that Yt ∩ T = ∅, that is,
|f(T )| < |1/t|. Let δ be small enough, such that Yt ∩ Tδ = ∅ (f has terms of
negative degree). We may assume that Rδ and Yt intersect transversally. Let
Δt = Yt ∩ Rδ ∈ Yt. Let Y ε

t = {p ∈ T| ∃v ∈ Yt : |p − v| < ε}, where ε is small
enough. Then Δε

t = Rδ ∩ Y ε
t is a “tube” over Δt. Clearly ∂(Rδ \ Y ε

t ) =
T + Tδ − Δε

t , so T + Tδ and Δε
t are homologically equivalent.

Let

Ωt =
1

(2πi)n

1
Ft

n∏

i=1

dxi

xi
.

Consider the integral

Φ(t) =
∫

T+Tδ

Ωt.

It is easy to see that
∫
Tδ

Ωt tends to zero under δ → 0. Since it is con-
stant, it equals zero. Therefore, integrating step by step, we have Φ(t) =∫
T Ωt = Φf (t).

On the other hand, by Poincaré residue theorem

Φ(t) =
∫

Δε
t

Ωt =
∫

Δt

ResYt
Ωt =

∫

Δt

ωt.
�

Let PFf = PFf (t, ∂/∂t) be a Picard–Fuchs operator of {Yt}. Let m
be the order of PFf and r be the degree with respect to t. Let Y be a
semistable compactification of {Yt} (so we have the map f̃ : Y → P

1; denote
it for the simplicity by f). Let mf be the dimension of transcendental part
of Rn−1f! ZY (the algorithm for computing it see in [9]). Let rf be the
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number of singularities of f (counted with multiplicities). Then, m ≤ mf

and r ≤ rf . Thus, the first few coefficients of the expansion of the solution of
the Picard–Fuchs equation determine the other ones. This means that if the
first few coefficients of the expansion the solution of LΦ = 0, L ∈ C[t, ∂/∂t],
coincide with the first few coefficients of the expansion of Φf , then L = PFf .

3. Main theorem

Theorem 3.1. Weak Landau–Ginzburg models

(1) The Laurent polynomial

f16 =
1

xyz
+ 2

(
1
xy

+
1
xz

+
1
yz

)
+ 3

(
1
x

+
1
y

+
1
z

)

+
(

x

y
+

x

z
+

y

x
+

y

z
+

z

x
+

z

y

)
+ 4 + (x + y + z)

is a weak Landau–Ginzburg model for Fano variety V16.

(2) The Laurent polynomial

f18 = 2
(

1
x

+
1
y

+
1
z

)
+

(
x

yz
+

y

xz
+

z

xy

)

+
(

x

y
+

x

z
+

y

x
+

y

z
+

z

x
+

z

y

)
+ 3 + (x + y + z)

is a weak Landau–Ginzburg model for Fano variety V18.

(3) The Laurent polynomial

f22 =
xy

z
+

y

z
+

x

z
+ x + y +

1
z

+ 4 +
1
x

+
1
y

+ z +
1
xy

+
z

x
+

z

y
+

z

xy

is a weak Landau–Ginzburg model for Fano variety V22.

Proof. The operators of type D3 are

D3 − 4t(2D + 1)(3D2 + 3D + 1) + 16t2(D + 1)3

for V16,

D3 − 3t(2D + 1)(3D2 + 3D + 1) − 27t2(D + 1)3
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for V18, and

D3 − 2
5
t(2D + 1)(17D2 + 17D + 16) − 56

25
t2(D + 1)(11D2 + 22D + 12)

− 126
125

t3(D + 1)(D + 2)(2D + 3) − 1504
625

t4(D + 1)(D + 2)(D + 3)

for V22 (see [12]). The degrees of Picard–Fuchs operators for pencils that are
given by f16, f18, and f22 are bounded by 3 with respect to D and 4 with
respect to t. One may check that the first few coefficients of the expansion of
the constant terms series and the fundamental term of regularized I-series
coincide (see last paragraph in Section 2.2). Thus, these polynomials are
very weak Landau–Ginzburg models.

Compactify the torus to P
3 in the standard way. Then the elements

of the pencils that are given by f16, f18, and f22 are quartics in P
3, and so

have trivial canonical class. By Bertini’s theorem, the general element of the
pencil may have only base points as singularities. It is easy tho check that
all base points of any pencil are Du Val, so the canonical class of minimal
model of the general fiber of it is trivial. By [5, Theorem 5.1], the general
fiber is birational to a K3 surface. �

Remark 3.2. The definition of weak Landau–Ginzburg model is numerical.
So, it is natural that the polynomials from Theorem 3.1 are not unique. For
instance, polynomials obtained from them by some coordinate changes or
resizing x → αx, y → βy, z → γz are also weak Landau–Ginzburg models.

3.1. Singularities

The philosophy of mirror symmetry says that for every smooth variety there
is a dual Landau–Ginzburg model, that is, the pencil of projective varieties,
whose symplectic properties correspond to algebro-geometric properties of
the variety and vice-versa. In particular, the sheaf of vanishing cycles on
the element of the pencil “lying over 0” corresponds to the horizontal Hodge
cohomologies of the variety and the elements with isolated singularities cor-
respond to the bounded derived category of coherent sheaves on the variety.
The fibers of weak Landau–Ginzburg models are non-compact. Consider a
toric variety that is given by a Newton polytope of a weak Landau–Ginzburg
model. Compactify these models (as lying in T ↪→ P

3) and resolve singular-
ities of the compactifications. Then the singularities of the fibers are1:

1Remind that the fiber of weak Landau–Ginzburg model f over infinity, which is
the fiber over 0 in the standard coordinates, is given by f = 0.
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f16: the (reducible) curve of genus 3 over the infinity and two conjugate
points defined over the quadratic extension of Q.

f18: the (reducible) curve of genus 2 over the infinity and two conjugate
points defined over the quadratic extension of Q.

f22: three conjugate points defined over the extension of Q of degree 3.

The fibers of the pencils over the infinity in these cases coincide with the
expectation. Namely, the genera of the schemes of singularities equal the
dimensions of the intermediate Jacobians of the corresponding varieties.
More about these models see in [15].

The images of singular points are the singular points of the differential
operators of type D3 for these varieties.

Remark 3.3. The aim of this paper is to describe Landau–Ginzburg mod-
els for smooth Fano threefolds with Picard group Z. For most of them (for
complete intersections in projective or weighted projective varieties) they
are known (see [14, 7.2]). The last cases that we have not found yet are V10,
V12, and V14.

4. Finding weak Landau–Ginzburg models

Unfortunately, finding weak Landau–Ginzburg models is a very complicated
computational problem. In this section we discuss some (empiric) ways of
simplifying it.

4.1. Canonical degenerations and numerical invariants

Theorem 4.1 (Kawamata [16]). Let X → S be a deformation (S is a germ
of a curve). Suppose that Xs0 has canonical singularities. Then X has
canonical singularities. In particular, for any s ∈ S the fiber Xs is canonical.

Corollary 4.2. The total space X is Q-Gorenstein. Thus, by adjunction,
for any s ∈ S we have −KXs

= −KX |Xs
. In particular, the anticanonical

degree (−Ks)dim Xs does not depend on s ∈ S.

Let F be a coherent sheaf on X which is flat over S. Then the Euler
characteristic χ(Xs,Fs) does not depend on s ∈ S (see, for instance, [8,
Proposition 3.8]). Let Xs be a canonical Fano variety for every s ∈ S, s �= s0
and Xs0 be a canonical almost Fano variety (that is, its anticanonical divisor
is nef and big). By Kawamata–Viehweg vanishing theorem ([17, Theorem



722 Victor Przyjalkowski

2.17]), χ(Xs,−Ks) = h0(Xs,−Ks). Thus, h0(Xs,−Ks) does not depend
on s ∈ S.

Proposition 4.3. Let π : X → S be a deformation such that the general
fiber is a Fano variety of Picard rank k and the special fiber Xs0 is irreducible,
projective, and normal almost Fano variety. Let all fibers have canonical
singularities. Let Pic(Xs0) = Z

m. Then m ≤ k.

Proof (the idea is due to Ivo Radloff). We use here the Picard groups and
cohomology groups with coefficients in Q. Let Δ = {t : |t − s0| < ε} ⊂ S
be a small enough neighborhood of s0 and X = π−1(Δ). Then H2(X) =
H2(Xs0), as Xs0 is a deformation retract of X. By Kawamata–Viehweg
vanishing theorem and an exponential exact sequence H2(X) ∼= Pic(X) and
H2(Xs0) ∼= Pic(Xs0) (X is a relative Fano variety). Thus, we need to show
that there is no linear sheaf L such that the restriction L|Xs

∼= OXs
for s �= s0

and positive for s = s0 (the numerical equivalence over Q is the same as the
linear equivalence).

Suppose it is. By semicontinuity (see, for example, [8, Theorem 3.6]),
there is a section of L|s0 . It is non-zero by assumption, so it is an effective
divisor. Denote the dimension of the fibers by n. (We apply an intersection
theory to sheaves as to the linear systems associated to them.) The special
fiber is projective, so there is a divisor D on X whose restriction on the
special fiber is ample. So, Dn−1 · L · Xs0 = (D|Xs0

)n−1 · L|s0 > 0. The inter-
section number does not depend on the fiber as all fibers are numerically
equivalent. The sheave L restricted to the general fiber is numerically trivial
by assumption. Contradiction. �

Corollary 4.4. Let X → S be a degeneration of Fano variety of Picard
rank 1 to the toric canonical variety Xs0. Then the anticanonical degree
(−KXs

)dim Xs, h0(−KXs
), and the Picard rank of Xs do not depend on s ∈ S.

Proof. It follows from Corollary 4.2, and discussion after it and
Proposition 4.3. �

4.2. Toric varieties and Laurent polynomials

Consider a torus T = Spec C[M ] ∼= Spec (C∗)n, where M ∼= Z
n. Let x1, . . . , xn

be the coordinates on the one-dimensional tori. Put xm = xm1
1 · . . . · xmn

n for
m = (m1, . . . , mn). Then any function f on T can be uniquely represented
as f =

∑
m∈M amxm. Let Supp(f) = {m ∈ M, am �= 0}. The convex hull of

Supp(f) in MR = M ⊗ R is called the Newton polyhedra of f .
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Let X be a toric variety with an open subset T. Let N = Hom (M, Z)
be the dual to M lattice and 〈·, ·〉 be a natural pairing. It is well known
(see, for instance, [7]) that X is associated with the fan Σ ⊂ NR = N ⊗ R.
The variety X = XΣ is covered by affine toric varieties (maps) Xσ =
Spec C[σ∨ ∩ M ], where σ∨ = {m ∈ MR| 〈m, v〉 ≥ 0, v ∈ σ} are dual cones for
one-dimensional cones σ ∈ Σ.

In the following we assume that all fans are projective, that is, they
correspond to the projective varieties (this is equivalent to the existence of
strictly convex function on the fan which is linear on all cones from Σ). All
polytopes are supposed to be convex and to have the origin in the interior.

Let L ∼= Z
n be any lattice, LQ = L ⊗ Q, LR = L ⊗ R, and L∨ be its dual.

For any fan Σ ∈ L we associate the polytope PΣ ∈ LR which is defined to be
a convex hull of primitive vectors of its rays (that is, primitive vectors vi ∈ L
that generate one-dimensional cones of Σ). Otherwise, given any polytope
P ∈ LQ, we can construct a normal fan taking cones over its faces. Given a
polytope in LR, define its dual as

P∨ = {m ∈ L∨
R|〈m, n〉 ≥ −1 for all n ∈ P}.

Obviously, if P have vertices in LQ, then P∨ have vertices in L∨
Q
. Therefore,

given P we may construct a toric variety XP that is given by a normal
fan for P∨.2 The polytope P ⊂ LR with vertices in L is called reflexive if
P∨ have vertices in L∨. The toric variety that corresponds to a reflexive
polytope is a Gorenstein Fano with at most canonical singularities.

Let Σ ⊂ N be a fan, P = PΣ ⊂ NR be the corresponding polytope and
P∨ ⊂ MQ be its dual. The anticanonical divisor of XΣ is the sum of bound-
ary divisors D1, . . . , Dr corresponding to rays given by primitive vectors
n1, . . . , nr. The point m ∈ M is a rational function on XΣ. Its divisor is∑

〈m, ni〉Di. Let us consider Q-divisors in the following. The element of
MQ determines a Q-divisor by linearity. In particular, the Newton poly-
hedra Δ ∈ M of the function f lies in P∨ if and only if div(f) − KXΣ ∈
Pic(XΣ) ⊗ Q is effective (where div (f) is the divisor of f). Thus, functions
whose Newton polytope lie in P∨ are the sections of the anticanonical sheaf,
so L(P∨) is naturally isomorphic to | − KXΣ |, where L(P∨) is the space of
Laurent polynomials with support in P∨.

2In fact, the datum (P, ϕ), where P ∈ L is an integral polytope containing origin
and ϕ is a strictly convex integral piecewise linear function, is equivalent to the
fan in L∨. This function we consider is the function ϕ such that ϕ(n) = −1 for all
vertices of P (it is represented by the anticanonical class).
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Let P ⊂ NR
∼= Z

n ⊗ R be a polytope and X be the toric variety asso-
ciated with the normal fan of P . Then X has canonical singularities if
and only if P has the origin as the only integral point in the interior.
The the anticanonical degree of X (that is, (−KX)n) is a volume of the
dual polytope P∨ divided by n!. The dimension of the anticanonical linear
system equals the number of integral points inside P∨ and on the bound-
ary. The Picard number of X equals the dimension of the space of func-
tions on NR that are linear on every cone over the face of P modulo linear
functions.

4.3. Strategy

So, the natural strategy for finding weak Landau–Ginzburg models of Fano
threefold is the following. Consider a smooth Fano threefold X with Picard
group Z. Find the fundamental term IX

H0
=

∑
art

r, ai ∈ Q, of its I-series
(these series are known for all 17 families of such Fanos; see, for instance,
[21, 4.4]). Suppose that X degenerates to a canonical Fano XΣ and suppose
that there exists a weak Landau–Ginzburg model f for X whose Newton
polyhedra lies in PΣ. Find it. For this find all integral polytopes with the
origin as a unique integral point in the interior, whose numerical data is the
same as the data of X. Consider any such polytope and the Laurent polyno-
mial f =

∑
bijkx

iyjzk ∈ C[x, x−1, y, y−1, z, z−1][bijk], whose Newton polyhe-
dra is our polytope. Let Φf =

∑
br(bijk)tr be its constant terms series. To

specify the coefficients bijk, solve the system of equations {br(bijk) = ar},
r = 1, . . . , N , where N ∈ N is big enough; to avoid resizing, normalize x, y,
and z such that b100, b010 and b001 are 0 or 1. Prove that Φf = IX

H0 for
f we found. For this check that for all coefficients of Φf holds the same
recurrence that holds for the coefficients of IX

H0 . Finally, to prove that the
general element of our pencil is birational to a Calabi–Yau variety it usually
suffices to compactify the torus to the projective space, compactify the fibers
therein, check the degree condition, use the Bertini theorem and check that
the general hypersurface admits a crepant resolution.

To “legalize” this empiric strategy, one should solve two following
problems.

Problem 4.5. Prove that any smooth Fano threefold with Picard group Z

admits a degeneration to a canonical toric variety. Find all such degenera-
tions. Characterize them. Generalize this to more general class of Fanos or
to toric varieties with worse singularities.
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This problem may be solved if the singularities of toric variety are termi-
nal Gorenstein (that is, ordinary double points) (see [11]). Unfortunately,
there are only five such varieties, that is, P

3, three-dimensional quadric,
complete intersection of two quadrics, and the varieties V5 and V22. It is
remarkable that we do not need the particular form of degeneration (but in
some cases, as for quadric or complete intersection of two quadrics we can
find them; see [1]). Unfortunately, we cannot expect that any smooth Fano
variety degenerates to a Gorenstein canonical toric Fano variety (that is,
associated with a reflexive polytope). The example is V2, the Fano variety
of degree 2: there is no reflexive polytopes of volume 1/3.

Problem 4.6. Let the smooth Fano variety X degenerate to the canonical
toric variety T . Prove that there is a weak Landau–Ginzburg model f for
X with Newton polytope Δ and there is a fan Σ of T such that PΣ = Δ∨.

Good references for this problem are [1, 2]. In the paper [10] the first
examples of weak Landau–Ginzburg mirrors for nontoric Fano varieties with
Picard number 1 (Grassmannians) were suggested. In the paper [3] their
relation to toric degenerations of Grassmannians was explained.

Unfortunately, this straightforward way is too complicated for computa-
tional reasons. Firstly, there are too many such polytopes. Secondly, there
are too many integral points in any three-dimensional polytope, so there are
too many variables in the system of equations. Thirdly, it is complicated to
solve the system of polynomial equations.

To fix these problems we put some restrictions.
To fix the first problem we consider not all such polytopes, but some

natural class of them (such as reflexive polytopes, polytopes with many
symmetries, or polytopes that are contained in the cube [−1, 1] × [−1, 1] ×
[−1, 1]) and hope that X degenerates to the toric variety associated with
such polytope. As the degree of Fano variety increases, the polytope of its
degeneration tends to become simpler.

To fix the second one we consider not all functions but functions of some
type. Namely, we may consider only Laurent polynomials f = f(x, y, z)
which are symmetric under all permutations of x, y, z. We may also consider
polynomials with coefficients 1 at the vertices of their Newton polytopes.
Polynomials we found are of these types.

Finally, we hope that the coefficients of polynomials are integral. So,
to solve the system of equations we solve it modulo some prime num-
bers, lift the solutions to Z, and check if we did this correctly. Actually,
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we consider all possibilities for bijk mod p and check if the equations hold
for them.
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