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Vector-valued modular functions for the modular
group and the hypergeometric equation

Peter Bantay and Terry Gannon

A general theory of vector-valued modular functions, holomorphic
in the upper half-plane, is presented for finite-dimensional repre-
sentations of the modular group. This also provides a description
of vector-valued modular forms of arbitrary half-integer weight. It
is shown that the space of these modular functions is spanned, as
a module over the polynomials in J , by the columns of a matrix
that satisfies an abstract hypergeometric equation, providing a
simple solution of the Riemann–Hilbert problem for representa-
tions of the modular group. Restrictions on the coefficients of this
differential equation implied by analyticity are discussed, and an
inversion formula is presented that allows the determination of an
arbitrary vector-valued modular function from its singular behav-
ior. Questions of rationality and positivity of expansion coefficients
are addressed. Closed expressions for the number of vector-valued
modular forms of half-integer weight are given, and the general
theory is illustrated on simple examples.

1. Introduction

The notions of modular functions and forms — and their generalizations —
are among the most fruitful in all of mathematics, and with the arrival of
string theory they have become standard fare in mathematical physics as
well. Vector-valued modular functions X(τ) for SL2(Z) appear, for instance,
as characters of vertex operator algebras [17] and conformal field theories [6],
and in the Norton series of Generalized Moonshine [14]; moreover, in ratio-
nal conformal field theory (RCFT), vector-valued modular forms of arbitrary
rational weight appear as conformal blocks on a once-punctured torus. In
spite of its importance, there has been little attempt at a systematic treat-
ment of this theory ([11, 7] are exceptions).

In these contexts, singularities of the component functions Xη(τ) appear
at the cusps Q ∪ {∞}, but not in the upper half-plane H, and we will restrict
our attention to such functions. In a previous paper [4], we explained
(with examples) how to obtain all such vector-valued modular functions,

651



652 Peter Bantay & Terry Gannon

given the corresponding multiplier ρ, a finite-dimensional representation of
(P) SL2(Z). In this paper, we focus on the underlying structure of these
spaces of vector-valued modular functions. They are generated by the
SL2(Z)-Hauptmodul J(τ), together with the columns of a certain funda-
mental matrix Ξ(τ). We explain how everything is conveniently recovered
from the exponents Λ at infinity and a numerical matrix X (essentially, the
first non-trivial q-coefficients of Ξ(τ)). The other q-coefficients of Ξ(τ) can
be obtained from a differential equation, the monodromy of which is deter-
mined by ρ. Our results extend directly to vector-valued modular forms
of half-integer weight: for instance, we obtain an explicit formula for the
dimension of the spaces of such forms.

In Section 2, we review the framework of [4], and discuss a subtlety: the
choice of integer part of the exponent matrix Λ. Section 3 explains how
the differential equation satisfied by the fundamental matrix may be recast
into an abstract hypergeometric equation, and the consequences this has
on the various quantities involved. Section 4 gives some concrete examples,
illustrating the effectiveness of our results. Section 5 provides an inversion
formula, which allows the explicit computation of any vector-valued modular
function from its singular part, provided the fundamental matrix is known.
In the motivating examples, the q-expansions have non-negative integer coef-
ficients. Section 6 explains how the existence of such q-expansions constrains
ρ. The appendix describes what happens when — as is typical in vertex oper-
ator algebras or conformal field theory — ρ is a representation of SL2(Z)
rather than of PSL2(Z).

2. The fundamental matrix

Consider a matrix representation ρ : SL2(Z)→GLd(C) whose kernel contains( −1 0

0 −1

)
, and for which T = ρ

(
1 1

0 1

)
is a diagonal matrix of finite order.

We associate to ρ the set M(ρ) of all those maps X : H→C
d which are

holomorphic in the upper half-plane H = {τ | Im τ > 0}, transform according
to ρ, that is1

(2.1) X

(
aτ + b

cτ + d

)
= ρ

(
a b
c d

)
X (τ)

1Here and in what follows we view X (τ) as a column vector.
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for all
(

a b

c d

)
∈ SL2(Z) and τ ∈ H, and have only finite order poles at the

cusps [4]. This last condition means the following: since ρ
(

1 1

0 1

)
is diago-

nal of finite order, there exists a diagonal matrix Λ (the exponent matrix )
such that

(2.2) ρ

(
1 1
0 1

)
= exp(2πiΛ),

the diagonal elements of Λ being rational numbers. Because of Equation
(2.1), the map exp(−2πiτΛ) X (τ) is periodic in τ (with period 1): conse-
quently, it may be expanded into a Fourier series2

(2.3) q−Λ
X (τ) =

∑
n∈Z

X [n] qn,

where q = exp(2πiτ). We define the principal part PX of X as the sum of
the terms with negative powers of q on the RHS of Equation (2.3), i.e.,

(2.4) PX (q) =
∑
n<0

X [n] qn.

With this definition, X has finite order poles at the cusps if and only if its
principal part PX is a finite sum.

Clearly, the space M(ρ) is an infinite-dimensional linear space over C, a
basis being provided by the maps X

(ξ;n) ∈ M(ρ) which have a pole of order
n > 0 at the ξth position, i.e.,

(2.5)
[
PX

(ξ;n) (q)
]
η

= q−nδξη.

We call these X
(ξ;n) the canonical basis vectors; they are clearly linearly

independent, and that they exist and therefore span M(ρ) was explained in
[4] (an independent proof is provided at the end of Section 3).

2In all what follows, we shall alternate freely between the notations f (τ) and
f (q) for one and the same quantity f : in general, the notation f (τ) is meant to
emphasize that we consider f as a (holomorphic) function on the upper half-plane
H, while f (q) refers to its expansion as a power series in q = exp(2πiτ).
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Let

(2.6) J(τ) = q−1 +
∞∑

n=1

c (n) qn = q−1 + 196884q + · · ·

denote the Hauptmodul of SL2(Z), i.e., the (suitably normalized) generator
of the field of modular functions for SL2(Z) (for this and other aspects of the
classical theory of modular functions and forms, see e.g., [1]). Multiplication
by J takes the space M(ρ) to itself, in other words M(ρ) is a C [J ]-module.
The important point is that this is a (free) C [J ]-module of finite rank,
because the canonical basis vectors satisfy the recursion relations [4]

(2.7) X
(ξ;m+1) = J(τ) X

(ξ;m) −
m−1∑
n=1

c (n) X
(ξ;m−n) −

∑
η

X (ξ;m)
η X

(η;1),

where

(2.8) X (ξ;m)
η = X

(ξ;m) [0]η = lim
q→0

([
q−Λ

X
(ξ;m) (q)

]
η

− q−mδξη

)

denotes the “constant part” of X
(ξ;m). These recursion relations allow to

express each canonical basis vector X
(ξ;m) in terms of the X

(ξ;1)s, proving that
the latter generate the C [J ]-module M(ρ). Later on, we will give an explicit
expression — Equation (5.2) — for the X

(ξ;m)s. We will see shortly that the
X

(ξ;1) are linearly independent over the field C (J) of modular functions, and
thus the C [J ]-module M(ρ) has rank d.

Besides the recursion relations Equation (2.7), there is a second set
of relations — the differential relations [4] — between the canonical basis
vectors. They follow from the fact that the differential operator

(2.9) ∇ =
E(τ)
2πi

d

dτ

maps M(ρ) to itself, where

(2.10) E(τ) =
E10 (τ)
Δ (τ)

=
∞∑

n=−1

Enqn = q−1 − 240 − 141444q − · · ·

is the quotient of the (normalized) Eisenstein series of weight 10 by the
discriminant form Δ (τ) = q

∏∞
n=1 (1 − qn)24 of weight 12. Looking at the
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action of ∇ on the canonical basis vectors, one gets the differential relations

(2.11) ∇X
(ξ;m) = (Λξξ − m)

m−1∑
n=−1

EnX
(ξ;m−n) +

∑
η

ΛηηX (ξ;m)
η X

(η;1).

The compatibility of the recursion and differential relations requires that3

∇X
(ξ;1) = (J − 240) (Λξξ − 1) X

(ξ;1) +
∑

η

(1 + Ληη − Λξξ) X (ξ;1)
η X

(η;1),

(2.12)

which is a first-order ordinary differential equation — the compatibility equa-
tion — for the X

(ξ;1)s.
One may recast the compatibility equation, Equation (2.12), in a more

suggestive form by introducing the fundamental matrix

(2.13) Ξ(τ)ξη =
[
X

(η;1) (τ)
]
ξ
,

whose columns span over C [J ] the module M(ρ). Then Equation (2.12)
takes the form

(2.14)
1

2πi

dΞ(τ)
dτ

= Ξ(τ) D(τ),

where

(2.15) D(τ) =
1

E(τ)
{(J(τ) − 240) (Λ − 1) + X + [Λ,X ]}

and Xξη = X (η;1)
ξ is the so-called characteristic matrix (as usual, [X ,Λ] =

XΛ − ΛX denotes the commutator of matrices). Note that Equation (2.14)
has singular points at the poles of D(τ), i.e., at the SL2(Z)-orbits of the cusp
τ = i∞ and elliptic points τ = i and τ = exp(2πi/3). Taking into account
the boundary condition

(2.16) q1−ΛξξΞ(q)ξη = δξη + O (q) as q → 0,

which follows from Equation (2.5), one can solve Equation (2.14), provided
one knows the exponent matrix Λ and the characteristic matrix X , deter-
mining then from Equation (2.7) the canonical basis vectors X

(ξ;m). The

3We show, at the end of Section 5, that this is not only a necessary, but also a
sufficient condition for the compatibility of the recursion and differential relations.
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theory of ordinary differential equations guarantees Equation (2.14) to have
series solutions that converge in suitably small neighborhoods of H avoiding
the elliptic points, but the holomorphicity of Ξ(τ) implies that those series
actually converge throughout H.

Equation (2.16) tells us that the determinant detΞ(τ) has leading term
qTr(Λ−1) as q → 0, and so is not identically 0. Thus, its columns X

(ξ;1)

are indeed linearly independent over C (J). This invertibility of Ξ(τ) legit-
imates its appellation, since it is now seen as a fundamental solution of
Equation (2.14).

Actually, the results so far enable us already to discuss vector-valued
modular forms of half-integer weight for SL2(Z). By a modular form of
weight k ∈ 1/2Z for the (possibly projective) PSL2(Z)-representation � we
will mean a map X : H → C

d that is holomorphic everywhere in H, trans-
forms according to

(2.17) X

(
aτ + b

cτ + d

)
= (cτ + d)k �

(
a b
c d

)
X (τ),

and which tends to a finite limit as τ → i∞. Such an X is a cusp form if
it vanishes at τ = i∞. As before, we require �

(
1 1

0 1

)
to be diagonal and of

finite order. We will denote by Mk(�) and Sk(�) the space of vector-valued
modular forms (resp. cusp forms) of weight k for the representation �:
clearly, the latter is a subspace of the former. When k �∈ Z, � will be a true
(as opposed to merely projective) representation of the metaplectic group
Mp2(Z), a double-cover of SL2(Z); when k is odd, � will be a true represen-
tation of SL2(Z), sending

( −1 0

0 −1

)
to minus the identity; when k is even, �

is a true representation of PSL2(Z). Note that when � is the trivial repre-
sentation, we recover the classical theory of modular forms of even weight.

Let η(τ) = q1/24 ∏∞
n=1 (1 − qn) be the Dedekind eta function, and let μ

denote its multiplier (see, e.g., [10, Chapter 4] for a formula for μ). Then,
for any k ∈ 1/2Z we have a natural injective map

(2.18)
φ : Mk(�) → M

(
� ⊗ μ−2k

)
,

X 	→ η−2k
X,

which allows to embed the space Mk(�) of modular forms of weight k into
the module M

(
� ⊗ μ−2k

)
. It is easy to verify that the space Mk(�) will be

trivial unless ρ = � ⊗ μ−2k is a true representation of PSL2(Z), in which
case M(ρ) is covered by the analysis of this paper. Non-singularity of
X ∈ Mk(�) as τ → i∞ bounds the order of the pole of the singular part of
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η−2k
X; as a result, the spaces Mk(�) (hence Sk(�) too) are finite-dimensional,

and explicit bases can be found. As for their dimension, one obtains the
result

(2.19)

dim Mk(�) = max
(

0, Tr
[
Λ +

k

12

])
,

dim Sk(�) = max
(

0,−Tr
[
1 − k

12
− Λ

])
,

where Λ denotes the exponent matrix of ρ = � ⊗ μ−2k and [x] denotes
the integer part of x (x can be a matrix): note that Λ varies with the
weight k.

When � is the trivial representation, Equation (2.19) reduces to classical
results for the dimensions of modular and cusp forms for SL2(Z). Those
equations also lead to the following expressions for the trace of the integer
part of Λ (for a true PSL2(Z) representation �):

(2.20) Tr [1 − Λ] = dimM2(�)

and

(2.21) Tr [Λ] = dimM0(�) − dim S2(�),

where � denotes the contragredient representation of �. We leave the deriva-
tion of these results — which amount to careful book-keeping — to a future
publication. Equation (2.19) recovers and generalizes the dimension formula
in [7], which was proved using the Eichler–Selberg trace formula.

At this point we should make an important proviso: Equation (2.2)
only determines the fractional part of the diagonal elements of the exponent
matrix, not their integer part. This is important, since the values of these
integer parts enter the definition Equation (2.4) of the principal part map
P, and hence of the canonical basis vectors X

(ξ;n). Another choice of these
integer parts leads to a different set of canonical basis vectors, hence different
characteristic and fundamental matrices, while M(ρ) remains unchanged.
Even more important is the observation that for an arbitrary choice of the
integer part of Λ, the principal part map P may not be injective (i.e., the
terms singular with respect to Λ may not determine the functions) and may
not be surjective (i.e., not all canonical basis vectors may exist). As we are
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going to explain, one can choose the integer part of the exponent matrix at
will, provided that the relation4

(2.22) Tr(Λ) =
5d

12
+

1
4
Tr(S) +

2
3
√

3
Re

(
e−πi/6Tr(U)

)

holds, where d is the dimension of ρ, and we use the notations

S = ρ

(
0 −1
1 0

)
and U = ρ

(
0 −1
1 −1

)
.

Surjectivity fails if Tr(Λ) is greater than the RHS of Equation (2.22); injec-
tivity fails if it is less.

To see how this comes about, first note that P is invertible iff both Ξ
exists and its columns span M(ρ) over C[J ], iff those of Ξ do. Suppose that
X12 �= 0, and consider the matrix

(2.23) M (τ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −X12 0 · · · 0
1

X12
J(τ) − C −X13

X12
· · · −X1d

X12
0 −X32 1 0 0
...

... 0
. . . 0

0 −Xd2 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where C is a suitable constant. All matrix elements of M belong to C [J ], and
the same holds for the inverse matrix M−1, since det M = 1 irrespectively
of the value of the constant C. Consequently, the columns of the matrix
Ξ′(τ) = Ξ(τ) M (τ) span M(ρ) over C[J ], iff those of Ξ do. By a suitable
choice of the constant C one can achieve that Ξ′(τ) satisfies the boundary
condition Equation (2.16) with

(2.24) Λ′ = Λ +

⎛
⎜⎜⎜⎜⎜⎝

1
−1

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎠

.

4Here we assume that the matrix representation ρ is indecomposable, i.e., cannot
be written as the direct sum of two matrix representations (this holds for any
representation coming from, e.g., RCFT, as every entry of the vacuum column of S
will necessarily be non-zero): otherwise, one should apply these considerations to
each direct summand separately. Note that these statements are basis-dependent:
we are certainly not claiming that the representation ρ is irreducible.



Vector-valued modular functions 659

This means that Ξ′(τ) is also a fundamental matrix for M(ρ), corresponding
to the exponent matrix Λ′.

By applying a suitable sequence of transformations of the above type, we
see that one can add to Λ any integral diagonal matrix whose trace vanishes.
But can we alter the trace of Λ as well? The answer is no, for we will see
in Section 3 (when we will have all the necessary tools at our disposal) that
the invertibility of P implies Equation (2.22).

In summary, the structure of the C [J ]-module M(ρ) is completely deter-
mined by the fundamental matrix Ξ(τ), once an exponent matrix Λ satis-
fying Equations (2.2) and (2.22) has been chosen. The fundamental matrix
is itself completely determined by the pair (Λ,X ) of exponent and char-
acteristic matrices, namely as the solution of the compatibility equation
Equation (2.14) satisfying the boundary condition Equation (2.16). For this
reason, we consider the pair (Λ,X ) as the basic data characterizing the
representation ρ.

For example, the representation ρ may be recovered from the compati-
bility equation. Indeed, Equation (2.14) is invariant under modular trans-
formations

τ 	→ aτ + b

cτ + d

for
(

a b

c d

)
∈SL2(Z), which means that such a transformation takes a solu-

tion to another solution. Since the equation is linear, this new solution
is of the form MΞ(τ) for some matrix M ∈GLd(C). Comparing this with
Equations (2.1) and (2.13), and using the aforementioned invertibility of
Ξ(τ), we see that M = ρ

(
a b

c d

)
, the matrix representing the given modular

transformation, i.e.,

(2.25) Ξ
(

aτ + b

cτ + d

)
= ρ

(
a b
c d

)
Ξ(τ) .

But this argument works for any pair (Λ,X ), i.e., any such pair determines
a finite-dimensional representation ρ via Equation (2.25). This seems to
suggest that the pair (Λ,X ) could be chosen at will, but this is not the case:
the analyticity of the fundamental matrix Ξ(τ) — namely, that it is single
valued and holomorphic throughout the whole upper half-plane H, including
the elliptic points τ = i and τ = exp(2πi/3) — puts severe restrictions on the
pair (Λ,X ). To understand these, it turns out to be convenient to transform
the compatibility equation to an equivalent form, which is the subject of the
next section.
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3. The hypergeometric form of the compatibility equation

Consider the function

(3.1) z(τ) =
984 − J(τ)

1728
,

which maps the upper half-plane H onto the complex plane C. Note that
z(i) = 0 and z

(
e2πi/3

)
= 1. As usual, we extend the definition of z so that

it maps τ = i∞ to ∞ (since z has a first order pole at the cusp τ = i∞). z

is clearly modular invariant, i.e., it maps points on the same SL2(Z) orbit
to the same point of C, and can thus be viewed as a map from H/SL2(Z)
to C. Viewed this way, it is one-to-one, and at the elliptic points τ = i
and τ = exp(2πi/3) it has valence 2 (respectively 3) — this smooths the
conical singularities of the modular curve H/SL2(Z). Finally, z(τ) satisfies
the differential equation

(3.2) ∇z = 1728 z (z − 1).

The simplest way to see that Equation (3.2) holds is to note that ∇z is
modular invariant, holomorphic in H, and has a pole of order 2 at τ = i∞,
and hence it is a quadratic polynomial in z; moreover, it vanishes at the
elliptic points because E10 vanishes there. Equation (3.2) then follows by
comparing the coefficients of q−2.

Let us consider the fundamental matrix as a (multivalued) function of z.
Then, by applying the chain rule and Equation (3.2), one arrives at the
following form of the compatibility equation:

(3.3)
dΞ(z)

dz
= Ξ(z)

(
A

2z
+

B

3 (z − 1)

)
,

with

A =
31
36

(1 − Λ) − 1
864

(X + [Λ,X ]),(3.4a)

B =
41
24

(1 − Λ) +
1

576
(X + [Λ,X ]).(3.4b)

The important observation is that Equation (3.3) is an abstract hyper-
geometric equation, since it has three regular singular points (at z = 0, 1
and ∞), and much is known about the analytic properties of the solutions
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of Equation (3.3) (background for the following material is provided in, e.g.,
[8, Chapter 6]). As a function of z the fundamental matrix is not single
valued — its multivaluedness, i.e., the monodromy of Equation (3.3), is
described by the representation ρ. In particular, the monodromies around
z = 0, z = 1, z = ∞ are given by

S = ρ

(
0 −1
1 0

)
, U = ρ

(
0 −1
1 −1

)
, T = ρ

(
1 1
0 1

)
,

respectively. Because the residues of Equation (3.3) at these points are
A/2, B/3 and Λ − 1, the matrices S and U are conjugate to exp(πiA)
and exp(2πiB/3), respectively, and one has SU = T−1 = exp(−2πiΛ). We
find that the monodromy group of the abstract hypergeometric equation
Equation (3.3) is precisely the image of ρ.

Let us concentrate on the singular points z = 0 and z = 1 of Equa-
tion (3.3). The denominators 2 and 3 of the residues A/2 and B/3 match the
valence of the corresponding elliptic points. Since the fundamental matrix
is by definition holomorphic in the whole upper half-plane, in particular at
the elliptic points, it follows that

(1) the matrices A and B are simple (i.e., diagonalizable), since otherwise
Ξ(τ) would have logarithmic singularities;

(2) the eigenvalues of A and B are non-negative to avoid poles;

(3) the eigenvalues of A and B are integers, otherwise Ξ(τ) would have
(algebraic or transcendental) branch points;

(4) no two eigenvalues of A/2 and B/3 may differ by non-zero integers,
otherwise one would get logarithmic branch points.

These already restrict the matrices A and B to a great extent, but there is
one more restriction, namely that all eigenvalues of A/2 and B/3 should be
less than 1. This last condition is a completeness condition: would there
be an eigenvalue greater or equal to one, the columns of the solution of
Equation (3.3) would not span the full C [J ]-module M(ρ) (for the mon-
odromy representation ρ). More precisely, let P−1AP be a diagonal matrix
D, and suppose Dηη ≥ 2; then the ηth column of Ξ(z) P will be a multiple
of z. This column vector, as a function of τ , could be divided by J(τ) − 984
while remaining holomorphic; the quotient would still be in M(ρ), but not
in the C [J ]-span of the columns of Ξ(τ). The argument for B/3 is similar,
using J(τ) + 744 instead.
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This last completeness condition, together with the four analyticity
conditions, imply the following.

Spectral condition: The possible eigenvalues of A are 0 or 1, while
those of B are either 0, 1 or 2.

This is a basic result, which restricts considerably the possible coefficient
matrices. In particular, it implies that the characteristic polynomials of A

and B read

(3.5)
det(z − A) = zd−α (z − 1)α,

det(z − B) = zd−β1−β2 (z − 1)β1 (z − 2)β2 ,

where d denotes their dimension, while the multiplicities α, β1 and β2 are
given by

α = Tr(A),

β1 = 2Tr(B) − Tr
(
B2),(3.6)

β2 =
1
2

(
Tr

(
B2) − Tr(B)

)
.

The quadruple (d, α, β1, β2) of non-negative integers is a very important
discrete invariant of the representation ρ, which we will call its signature.
For example, the traces of the representation matrices

S = ρ

(
0 −1
1 0

)
and U = ρ

(
0 −1
1 −1

)

are completely determined by it5:

Tr(S) = d − 2α,(3.7)

Tr(U) = d − 3
2

(β1 + β2) + i

√
3

2
(β1 − β2).(3.8)

We also note that

Tr(X ) = 4 (62β1 + 124β2 − 123α),(3.9)

Tr(Λ) = d − α

2
− β1 + 2β2

3
.(3.10)

5Conversely, the traces of S and U — together with the dimension d — determine
the signature.
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In particular, the trace of the characteristic matrix X is always an integer
divisible by 4, which is congruent to 4α modulo 248.

As another application of the notion of signature, let us mention the
following formula for the determinant of the fundamental matrix:

(3.11) detΞ(τ) =

(
E4 (τ)

Δ (τ)1/3

)β1+2β2
(

E6 (τ)

Δ (τ)1/2

)α

,

where E4 and E6 denote the (normalized) Eisenstein series of weights 4 and
6. The proof of this result is simple: since Ξ(τ) satisfies Equation (2.14), its
determinant satisfies — according to a theorem of Liouville — the differential
equation

(3.12)
1

2πi

d (log detΞ(τ))
dτ

= Tr D(τ).

Moreover, it follows from Equation (2.16) that detΞ(q) behaves as qTr(Λ−1)

for q → 0. It is an easy matter to check that the RHS of Equation (3.11) sat-
isfies the differential equation Equation (3.12) with this particular boundary
condition, and by general theory such a solution is unique.

It follows in particular that the fundamental matrix is invertible every-
where except the elliptic points. That it can not be invertible at the elliptic
points, for typical representations, is obvious: for example, at τ = i one has
Ξ(i) = SΞ(i) because of Equation (2.25), and so Ξ(i) invertible would imply
S trivial.

Let us return to the spectral condition. It follows from Equation (3.5)
that the minimal polynomials of A and B divide z (z − 1), respectively,
z (z − 1) (z − 2). Since any matrix is a root of its minimal polynomial, the
spectral condition may be expressed as

(3.13) A (A − 1) = B (B − 1) (B − 2) = 0.

Of the four matrices Λ,X , A and B, any two determine the other two,6

e.g., Equations (3.4a) and (3.4b) imply that B = 3 (1 − Λ − A/2). Insert-
ing this expression into Equation (3.13), one gets the following system of

6This is trivial unless two eigenvalues of Λ differ by 1, but this can be always
avoided by the use of transformations as in Equation (2.23).
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algebraic equations:

A2 = A,

AΛA = −17
18

A − 2
(
AΛ2 + ΛAΛ + Λ2A

)
+ 3 (AΛ + ΛA) − 4Λ3

+ 8Λ2 − 44
9

Λ +
8
9
.

(3.14)

That is, for a given exponent matrix Λ, the matrix A has to satisfy Equation
(3.14): note that this is a simultaneous system of quadratic equations for
the matrix elements of A, and that the matrix Λ (which plays the role of a
parameter) is diagonal. Once a solution to Equation (3.14) is known, the cor-
responding characteristic matrix may be determined from Equation (3.4a).

What can be said about the solutions of Equation (3.14)? First of all,
if (Λ,X ) is a solution and M is a monomial matrix (i.e., the product of
a diagonal and a permutation matrix), then

(
M−1ΛM, M−1XM

)
is again

a solution: more generally, this holds for any matrix M , provided that
M−1ΛM is still diagonal. These transformations do not change the equiv-
alence class of the corresponding representation ρ, and may be used to put
the solution into some useful standard form.

More interesting is duality, the involutive transformation (Λ,X ) 	→
(Λ∨,X ∨) with7

Λ∨ =
5
6

− Λ,(3.15)

X ∨ = 4 − tX ,(3.16)

which sends A to A∨ = 1 − tA and B to B∨ = 2 − tB: clearly, A∨ and B∨

satisfy the spectral condition if A and B did. The fundamental matrix
corresponding to the dual pair (Λ∨,X ∨) is given by

(3.17) Ξ∨(τ) =
E14 (τ)
Δ7/6 (τ)

(
tΞ(τ)

)−1
.

The prefactor is needed to ensure holomorphicity, which can be proved using
Equation (3.11) and the spectral condition. The dual representation ρ∨ is
equivalent to the tensor product of the contragredient of ρ with the one-
dimensional representation κ appearing in the bottom row of table 1 below.

It is now time to establish the relation of invertibility of P to Equa-
tion (2.22), left pending in Section 2. If P is invertible, then a fundamental

7We denote by tM the transpose of a matrix M .
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Table 1: One-dimensional representations.

A B Λ X Ξ(τ) S T U Name

0 0 1 0 1 1 1 1 1

0 1 2/3 248
E4

Δ1/3 = (J + 744)1/3 1 ω4 ω2
κ

2

0 2 1/3 496
E8

Δ2/3 = (J + 744)2/3 1 ω2 ω4
κ

4

1 0 1/2 −492
E6

Δ1/2 = (J − 984)1/2 −1 −1 1 κ
3

1 1 1/6 −244
E10

Δ5/6 = (J + 744)1/3 (J − 984)1/2 −1 ω ω2
κ

1 2 −1/6 4
E14

Δ7/6 = (J + 744)2/3 (J − 984)1/2 −1 ω5 ω4
κ

matrix Ξ(τ) satisfying Equation (2.16) exists for which the whole the-
ory presented above holds. Comparing Equations (3.7),(3.8) and Equa-
tion (3.10), we arrive at Equation (2.22). In other words, while the integer
part of Λ is to a great extent arbitrary, its trace is completely determined
by the representation ρ.

More generally, given any C[J ]-submodule M of M(ρ) of full rank d,
linear algebra shows how to construct a matrix Ξ(τ) of form Equation (2.13),
for some choice of Λ, such that M is the C[J ]-span of the columns of Ξ(τ).
Moreover, Tr(Λ) will be bounded above by the RHS of Equation (2.22), with
strict inequality if M �= M(ρ) (to see this, use transformations like Equa-
tion (2.23) to make the Λs for M(ρ) and M agree in all but one spot). If
in addition the submodule is ∇-stable, then that matrix Ξ(τ) will satisfy
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Equation (3.3) for A, B defined by Equations (3.4a) and (3.4b), although
the eigenvalues of A and B can now be arbitrary non-negative integers.
However, this submodule can be ‘completed’ using the method outlined in
our proof of the spectral condition, by dividing the appropriate vectors by
J − 984 or J + 744 (at each stage, the submodule will be ∇-stable, owing to
Equations (3.2),(3.3)). The result will be matrices Ξ(τ),Λ, A, B satisfying
the spectral condition and Equation (2.22). To summarize, given a ∇-stable
rank d submodule M of M(ρ), with matrices Λ, A, B, we have: M = M(ρ)
iff Λ satisfies Equation (2.22), iff A, B satisfy the spectral condition.

Those remarks permit an elementary and constructive proof of the invert-
ibility of P. It suffices to show that the C[J ]-module M(ρ) has rank d.
That it cannot have rank greater than d follows quickly from the fact that
a non-constant function holomorphic on H/SL2(Z) must have poles at the
cusps. It is enough then to find d linearly independent vectors in M(ρ).
Introduce the following notation: given a q-series f(q) = q�

∑∞
n=0 anqn with

a0 �= 0, define o(f) to be 
, the order of the zero at q = 0 — e.g., o(η) =
1/24 and o(J) = −1. The paper [11] explicitly constructs some weight k
vector-valued modular forms for ρ, namely the Poincaré series P , where k
here can be, e.g., any sufficiently large multiple of 12. In particular, let
Y

(i)(τ) = P (τ ; ρ, k, 1,−2, i) in their notation, for 1 ≤ i ≤ d; then each Y
(i)

is a vector-valued modular form for ρ of weight k, holomorphic throughout
H, with o(Y(i)

i ) < 0 < o(Y(i)
j ) for all j �= i. Thus each X

(i) = Y
(i)/Δk/12 lies

in M(ρ); that they are all linearly independent over C(J) follows from the
usual determinant argument.

4. Low-dimensional examples

This section is included to illustrate the effectiveness of the theory on some
simple examples up to dimension 3. As we shall see, some of the non-trivial
aspects of the theory already arise in these cases. As usual,

S = ρ

(
0 −1
1 0

)
and T = ρ

(
1 1
0 1

)

will denote the matrices representing the standard generators of SL2(Z) and

U = ST−1 = ρ

(
0 −1
1 −1

)
.

The first comment is that it is enough to consider indecomposable repre-
sentations: indeed, if ρ1 and ρ2 are two representations of SL2(Z) satisfying
the criteria of Section 2, then their direct sum ρ1 ⊕ ρ2 also satisfies these
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criteria, and its exponent, characteristic and fundamental matrices are just
the direct sums of the corresponding matrices of its summands:

Λ(ρ1 ⊕ ρ2) = Λ(ρ1) ⊕ Λ(ρ2),
X (ρ1 ⊕ ρ2) = X (ρ1) ⊕ X (ρ2),(4.1)
Ξ(ρ1 ⊕ ρ2) = Ξ(ρ1) ⊕ Ξ(ρ2).

Thus, in order to determine the above quantities for an arbitrary represen-
tation ρ, one should first decompose ρ into a direct sum of indecomposable
representations, and determine the relevant quantities for all the indecom-
posable constituents separately.

The representations of SL2(Z) of dimension 1 that satisfy our criteria
are easy to classify: in this case the representation matrices are mere num-
bers, and we get a total of six inequivalent representations, each of which
is a tensor power of the representation κ defined in the last row of table 1.
Note that this is in complete accord with the spectral condition: there are
exactly six pairs of 1 × 1 matrices that satisfy it. The corresponding expo-
nent and characteristic matrices are easily determined, and this leads, via
the compatibility equation Equation (2.14), to the corresponding fundamen-
tal matrices.8 The results are gathered in table 1, where ω = exp(2πi/6) and
Ek stands for the Eisenstein series of weight k.

The most interesting comments about table 1 are related to the first
and last rows. In the first row we find the trivial representation, and one
would naively expect that the corresponding exponent matrix is 0. But this
choice does not satisfy Equation (2.22): we have to take Λ = 1 according
to our definitions. And indeed, this choice is consistent with the fact that
the constants belong to M(ρ) if ρ is trivial. The last row is even more
interesting: naively, one would take Λ = 5/6, but this would be again in
conflict with Equation (2.22); the correct value is Λ = −1/6. Indeed, if one
would have Λ = 5/6, then Δ1/6

X
(1;1) would be a weight 2 modular form for

the trivial representation, but no such form exists, by classical arguments [1].
Let us now turn to higher dimensions. The pairs of matrices

Λ =
1
24

(
17

11

)
, X =

(
133 1248
56 −377

)
,

Λ =
1
24

(
23

5

)
, X =

(
3 26752
2 −247

)
,

8There is no need to solve the differential equation in this case: the fundamental
matrices can be determined by purely function theoretic arguments, or even better,
from the determinantal formula Equation(3.11).
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both correspond to dimension 2 representations ρ with the same matrix

S =
1√
2

(
1 1
1 −1

)

(of course, T = exp(2πiΛ) by definition). The corresponding fundamental
matrices have q-expansions

qΛ
(
q−1 + 133 + 1673q + 11914q2 + · · · 1248 + 49504q + 806752q2 + · · ·

56 + 968q + 7504q2 + · · · q−1 − 377 − 22126q − 422123q2 − · · ·

)

and

qΛ
(

q−1 + 3 + 4q + 7q2 + · · · 26752 + 1734016q + 46091264q2 + · · ·
2 + 2q + 6q2 + · · · q−1 − 247 − 86241q − 4182736q2 − · · ·

)
.

They describe representations associated to the Wess–Zumino–Novikov–
Witten models [6] of level 1 based on the Lie algebras E7 and A1, respectively
(whose dimensions 133 and 3 appear as X11, and whose character vectors
are given by the first columns of the corresponding fundamental matrix).

More generally, the solution for an arbitrary two-dimensional SL2(Z)-
representation ρ can be obtained in closed form — for example, the funda-
mental matrices can be expressed as linear combinations of classical
hypergeometric series.

In dimension 3, the sequence

Λk =
1
48

⎛
⎝

47 − 2k
23 − 2k

2 + 4k

⎞
⎠,

Xk =

⎛
⎝

k (2k + 1) 1
3 (31 − 2k) (9 + 2k) (25 + 2k) 212−k (23 − 2k)

2k + 1 (11 − k) (25 + 2k) −212−k

2k −2k (25 + 2k) 2k − 23

⎞
⎠,

where k is an integer in the range 0 ≤ k < 12, corresponds to representations
that share the same matrix

S =
1
2

⎛
⎝

1 1
√

2
1 1 −

√
2√

2 −
√

2 0

⎞
⎠.

For k = 0 one recovers the representation associated to the Ising model [6]:
in this case, the fundamental matrix may be expressed in terms of Weber
functions [4].
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What happens in these examples holds more generally: different PSL-
representations can have identical matrix S, but (in dimension ≤5 [16],
though not higher) an irreducible representation is completely determined by
T . (To see this, recall that [16] proves that, in dimension ≤5, an irreducible
braid group B3 representation is uniquely determined by the eigenvalues
of a matrix A and a parameter δ; but PSL is a quotient of B3, and its
representations correspond to δ = 1 and T = A.)

One striking feature of all the above examples is that their characteristic
matrices are all integral (in a suitable basis). This is far from being trivial,
since most solutions of Equation (3.14) have irrational X . Actually, the
reason for using the pair (Λ,X ) to characterize the representation ρ, instead
of e.g., the pair (A, B), comes from the observation that for representations
ρ which have a conformal field theory origin, there always seems to exist
a basis in which the characteristic matrix is integral. We will explore this
issue in Section 6.

5. The inversion formula

We have seen above that the knowledge of the fundamental matrix Ξ(τ)
allows the determination of all canonical basis vectors through solving the
recursion relations, and this in turn allows to determine the unique ele-
ment X ∈ M(ρ) with a given principal part PX. Actually, there exists an
explicit inversion formula which gives X in terms of PX and the fundamental
matrix.

Inversion formula: For X(q) ∈ M(ρ) with principal part PX, one has

(5.1) X(q) = Ξ(q)
1

2πi

∮
J ′(z)

J(q) − J(z)
Ξ(z)−1 zΛPX (z)dz,

where J ′(z) = −z−2 +
∑∞

n=1 nc (n) zn−1 is the derivative of J , and the inte-
gral is over a closed contour encircling the origin and contained in the circle
of radius |q|.

Proof. Since the principal part map P is linear, it is enough to prove
Equation (5.1) for the canonical basis vectors, in which case it reads

(5.2)
[
X

(ξ;n) (q)
]
η

=
1

2πi

∮
zΛξξ−nJ ′(z)
J(q) − J(z)

[
Ξ(q)Ξ(z)−1

]
ηξ

dz.
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To see that Equation (5.2) holds, let us introduce the matrix valued gener-
ating function

(5.3) Xξη (q, z) =
∞∑

n=1

[
X

(η;n) (q)
]
ξ
zn−1.

As we will see below, this series has a non-zero radius of convergence around
z = 0, and thus defines a holomorphic function of z in a small enough neigh-
borhood, for any fixed value of q. This means that z−nXξη (q, z) has a pole
at z = 0 whose residue is

(5.4)
[
X

(η;n) (q)
]
ξ

=
1

2πi

∮
z−n

Xξη (q, z) dz,

by the residue theorem.
Multiplying both sides of the recursion relation Equation (2.7) by zm,

and summing from m = 1, one gets

(5.5) Xξη (q, z) − Ξ(q)ξη = zJ(q) Xξη (q, z)

−
∞∑

m=1

m−1∑
n=1

c (n)
[
X

(η;m−n) (q)
]
ξ
zm −

∑
ρ

Xρη (z)Ξ(q)ξρ,

where

(5.6) Xξη (z) =
∞∑

m=1

X (η;m)
ξ zm.

The double sum on the RHS of Equation (5.5) may be rearranged as follows:

∞∑
m=1

m−1∑
n=1

c (n)
[
X

(η;m−n) (q)
]
ξ
zm =

∞∑
n=1

∞∑
m=n+1

c (n) zn
[
X

(η;m−n) (q)
]
ξ
zm−n

=
∞∑

n=1

∞∑
k=1

c (n) zn
[
X

(η;k) (q)
]
ξ
zk = z

(
J(z) − z−1)

Xξη (q, z),

so that finally Equation (5.5) reads

(5.7) z (J(q) − J(z)) X (q, z) = Ξ(q) (X (z) − 1).

We still have to determine the generating function X (z). To do this, let
us consider Equation (5.7) in the limit when q approaches z: on the RHS we



Vector-valued modular functions 671

get simply Ξ(z) (X (z) − 1), while on the LHS all terms vanish because of
the factor (J(q) − J(z)), except for those that are singular in q, which yield

lim
q→z

{
z (J(q) − J(z)) qΛ

∞∑
m=1

q−mzm−1

}
=

zΛ+1 lim
q→z

{
J(q) − J(z)

q − z

}
= zΛ+1J ′(z).

Note that the geometric sum is convergent for |z| < |q|. All in all, we get

(5.8) X (z) − 1 = J ′(z)Ξ(z)−1 z1+Λ.

Inserting this last expression into Equation (5.7), we arrive at

(5.9) X (q, z) =
J ′(z)

J(q) − J(z)
Ξ(q)Ξ(z)−1 zΛ,

and this — together with Equation (5.4) — leads to the inversion formula.
Since the fundamental matrix is invertible except for the elliptic points,
Equation (5.9) shows that the generating function Xξη (q, z) is indeed con-
vergent for small enough |z| < |q|. �

Let us stress that the above proof gives more than just the inversion
formula: it provides closed expressions for all the canonical basis vectors, as
well as for their generating function X (q, z). Incidentally, in the case of the
trivial representation Equation (5.9) is related to the “bivarial transforma-
tion” [13] of Monstrous Moonshine.

We can now substantiate our claim in footnote 3, namely that the
differential equation Equation (2.11) satisfied by the fundamental matrix
is enough to guarantee the compatibility of the recursion and differential
relations. Indeed, multiplying both sides of Equation (2.11) by zm−1 and
summing over m, we get on the RHS

(5.10)
∞∑

m=1

[
∇X

(η;m) (q)
]
ξ
zm−1 = qE(q)

∂

∂q
Xξη (q, z),
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while on the LHS one has

(5.11)
∞∑

m=1

∑
ρ

ΛρρX (η;m)
ρ Ξ(q)ξρ zm−1

+
∞∑

m=1

m−1∑
n=−1

(Ληη − m) En

[
X

(η;m−n) (q)
]
ξ
zm−1.

The first term in Equation (5.11) gives simply

z−1 [Ξ(q)ΛX (z)]ξη ,

while the double sum in the second term may be rearranged as follows

(5.12)
∞∑

n=−1

∞∑
m=n+1

En

[
X

(η;m−n) (q)
]
ξ
(Ληη − m) zm−1 − z−1Ληη

[
X

(η;1) (q)
]
ξ

=
∞∑

n=−1

∞∑
m=n+1

En

[
X

(η;m−n) (q)
]
ξ

(
Ληη

z
− ∂

∂z

)
zm − z−1Ληη

[
X

(η;1) (q)
]
ξ

=
(

Ληη

z
− ∂

∂z

)
{zE(z) Xξη (q, z)} − z−1ΛηηΞ(q)ξη.

All in all, we arrive at the conclusion that the differential relations
Equation (2.11) are equivalent to the following partial differential equation
for the generating function X (q, z):

qE(q)
∂

∂q
X (q, z) +

∂

∂z
{zE(z) X (q, z)} = E(z) X (q, z)Λ + Ξ(q)Λ

X (z) − 1
z

.

(5.13)

It is now straightforward to show, using the relation (cf. Equation (3.2))

(5.14) qE(q) J ′(q) = (J(q) + 744) (984 − J(q)),

that X (q, z) — as given by Equation (5.9) — satisfies Equation (5.13),
provided Ξ(q) satisfies the compatibility equation Equation (2.14).

6. Positivity and integrality

The representations ρ of most interest to us (coming from conformal field
theories and vertex operator algebras) have character vectors X ∈ M(ρ)



Vector-valued modular functions 673

which are dimensions of Z-graded vector spaces, and so their q-expansions
Equation (2.3) have non-negative integer coefficients X[n]. In this section,
we find conditions on ρ for the existence of such X. Incidentally, this is also
why we choose Λ and X for our fundamental data: in the cases of most
interest to us, X is integral.

Throughout this section, let ρ be an indecomposable matrix representa-
tion of PSL2(Z) such that T is diagonal and unitary. Call a non-zero vector
X non-negative (resp. integral) if all its q-coefficients are non-negative real
numbers (resp. integral). Recall the map o(

∑
n≥0 anqn+�) = 
 of Section 3.

First, we give some easy conditions for non-negativity.
Non-negativity test: Suppose ρ has a non-negative X ∈ M(ρ). Then

the matrix S must have a strictly positive eigenvector with eigenvalue 1.
Suppose in addition there is a unique component of X, call it X0(τ), with
a pole at q = 0 of maximal order: i.e., o(X0) < o(Xν) for all ν �= 0. Then
every entry in the 0th column of S must be a non-negative real number.

This uniqueness assumption holds, e.g., for any canonical basis vector;
it also holds for the character vector X coming from a (unitary) conformal
field theory, where it corresponds to the vacuum primary field.

The proof is easy. The eigenvector will be the vector X(τ) evaluated
at τ = i, i.e., q = e−2π: it is positive because q > 0, and it has eigenvalue
1 because τ 	→ −1/τ fixes i. Next, choose any η such that Sη0 �= 0; as
τ approaches 0 along the imaginary axis, the component Xη(τ) remains
manifestly positive. Applying τ 	→ −1/τ , this is equivalent to τ approach-
ing i∞ along the imaginary axis (i.e., q → 0), of

∑
μ SημXμ(τ). But by the

uniqueness hypothesis, this is dominated by the μ = 0 term. Hence positiv-
ity forces Sη0 ≥ 0 for that η.

Most ρ fail the first condition: e.g., measure-0 of two-dimensional and
four-dimensional representations, and 1/8th of three-dimensional ones, sat-
isfy it. The second condition is more powerful: e.g., it quickly shows that
any central charge c < 24 conformal field theories or vertex operator alge-
bras with modular representation identical to that of the Ising model, will
have character vectors identical to it. More generally, it implies that there
will be only finitely many possibilities for the character vectors of c < 24
theories, with fixed modular representation.

Now let us turn to integrality. As we will now explain, the existence of
integral X leads us directly to representations ρ whose kernel is a
congruence subgroup, i.e., ker ρ contains some principal congruence
group

(6.1) Γ(N) = {A ∈ SL2(Z) |A ≡ 1 (mod N)}.
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Each component Xη(τ) of X ∈ M(ρ) will be a modular function for the
kernel ker ρ, which we will require here to be of finite index in SL2(Z). Most
such subgroups are non-congruence. An example of a modular function for
a non-congruence subgroup is

(6.2)

√
η(τ)

η(13τ)
= q−1/4

(
1 − 1

2
q − 5

8
q2 − 5

16
q3 − 45

128
q4 + · · ·

)
.

Although its Fourier coefficients are all rational, they have unbounded
denominator. Indeed, the following observation is due originally to Atkin
and Swinnerton-Dyer [2]:

Integrality conjecture: Suppose f(τ) = qc
∑∞

n=0 anqn/b is a modular
function, holomorphic in H, for some subgroup G of SL2(Z) with finite index,
where c is rational and b is a positive integer. If all coefficients an are
algebraic integers, then G is a congruence subgroup.

Conversely, a modular function f for Γ(N) has a q-expansion of the form

(6.3) f(τ) =
∞∑

n=−∞
anqn/N ,

where an = 0 for all but finitely many n < 0; if f is holomorphic in H,
the denominators of its coefficients an (if rational) will be bounded. The
integrality conjecture implies that ρ can have integral X only if ker ρ is
congruence. That the kernel is a congruence subgroup for a representation
coming from rational conformal field theory was established in [3].

Suppose for the remainder of this section that the kernel of ρ contains
some Γ(N) — in that case N can be taken to be the order of T . This
implies that ρ can equivalently be interpreted as a representation of the finite
group SL2(ZN ), where ZN = Z/NZ. Incidentally, this congruence subgroup
hypothesis is straightforward to verify for any given ρ, using the presenta-
tions of SL2(Z[1/p]) in [9], but in practise a very convenient test is that if
ker ρ is a congruence subgroup, then for all integers 
 coprime to N , the
diagonal entries of T �2 and T are identical apart from order. To see this, let

(6.4) G� = ST 1/�ST �ST 1/� = ρ

(

 0
0 
−1

)
,

where 1/
 is the inverse of 
 mod N ; then G�TG−1
� = T �2 .

Now, any finite-dimensional representation of a finite group is equivalent
to one defined over some cyclotomic field QL = Q[ξL], where ξL is the root
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of unity e2πi/L. Replacing N if necessary by multiple, thus we can (and
will) assume that ρ is a representation of SL2(ZN ), and all entries of all
matrices ρ(γ) lie in QN . Call any such ρ “N -defined”. Call X rational
(resp. QN -rational) if all coefficients in the q-expansions of each component
Xη(τ) are rational numbers (resp. in QN ). It is known that if X is rational
and ker ρ is congruence, then some non-zero multiple nX will be integral.
The remainder of this section is devoted to stating and proving a necessary
and sufficient condition for rationality. Not surprisingly this involves the
language of Galois.

For any 
 coprime to N , let σ� ∈ Gal(QN/Q) be the Galois automor-
phism sending ξN to ξ�

N . Let σ� act on any matrix A ∈ Md×d(QN )
entry-wise.

Rationality test: Let ρ be N -defined, and X ∈ M(ρ) have components
Xη whose coefficients aη,n, n ≤ 0, in Equation (6.3) are all rational. Then
X is rational (hence a multiple is integral) iff for all 
 coprime to N,

(6.5) σ�(S) = G�S,

where G� is defined in Equation (6.4). In this case, G� is a Q-matrix and S
is real, and every column of Ξ(τ) is rational.

The starting point for proving this is the observation that any component
Xη(τ) of any vector X ∈ M(ρ) is among other things a modular function for
Γ(N). The theory of these functions is quite rich (see, e.g., [15, Chapter 6]
or [12, Chapter 6]).

Note that any X ∈ M(ρ) is QN -rational iff all coefficients in the principal
part are in QN . In particular, every canonical basis vector X

(η;m) is QN -
rational. The reason for this is that the space of modular forms for Γ(N)
of any weight k has a basis with integral q-expansions, so does the space
of modular functions for Γ(N), holomorphic in H and with bounded poles
at the cusps; we can express Xη(τ) in terms of these basis functions by
matching behaviors at the cusps, and because ρ is N -defined the coefficients
will never leave the field QN .

These Galois automorphisms σ� act on the data (Λ,X , A, B,Ξ(τ), ρ)
associated to any N -defined ρ, as follows. Note that the matrices in
Equations (3.4a,b) corresponding to Λ and σ�X will be σ�A and σ�B, and
thus the spectral condition will be satisfied — indeed the signature
(d, α, β1, β2) would not have changed. It is easy to verify that the differ-
ential equation Equation (3.3) will have solution σ�Ξ(τ), where we apply
σ� entry-by-entry, and its action on a QN -rational q-series Equation (6.3)
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is simply

(6.6) (σ�f)(τ) =
∞∑

n=−∞
σ�(an)qn/N .

By the above series, these q-series will be holomorphic throughout H. The
corresponding PSL2(Z)-representation ρ̃ can be found by the following
consideration.

Let HN be the modular functions f for Γ(N), holomorphic through-
out H, with coefficients an ∈ QN . The group GL2(ZN ) acts on HN on the
right, i.e., f |α◦β = (f |α)|β, as follows (see [12, Section 6.3] for more details).
GL2(ZN ) is generated by SL2(ZN ), together with all matrices of the form
M� =

(
1 0

0 �

)
where 
 is coprime to N . γ ∈ SL2(ZN ) acts on HN in the

obvious way: first lift to SL2(Z), then act on τ by that fractional linear
transformation. Moreover, f |M�

= σ�f , as given by Equation (6.6), recover-
ing the action on Ξ(τ) we obtained last paragraph. That σ�f is holomorphic
in H iff f follows from the previous paragraph (though this is presumably
also known classically). Then, writing A =

(
a b

c d

)
, we have the calculation

(σ�X)
(

aτ + b

cτ + d

)
= X|M�A(τ) = σ�(X|M�AM−1

�
)(τ)

= σ�

(
ρ

(
a 
−1b

c d

)
X(τ)

)
=

(
σ�ρ

(
a 
−1b

c d

))
σ�X(τ),

where 
−1 denotes the inverse of 
 mod N . Hence we obtain

(6.7) ρ̃

(
a b
c d

)
= σ�

(
ρ

(
a 
−1b

c d

))
.

More generally, if X ∈ M(ρ) is QN -rational, then the same argument shows
that σ�X lies in M(ρ̃).

To complete the proof of the rationality test, note that for all 
 coprime
to N , σ�X ∈ M(ρ) iff

(6.8) ρ

(
a b
c d

)
= σ�

(
ρ

(
a 
−1b

c d

))
.

Each component (σ�X)η will have the same coefficients an as Xη, for all
n ≤ 0, and will be holomorphic in H. Hence σ�X = X for all 
, i.e., X is
rational. Now, it suffices to test condition Equation (6.8) at the generators
S and T . One leads to Equation (6.5), and the other to T = σ�T

�−1
, which
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is automatically satisfied. That S is real follows from complex conjugation

 = −1 in Equation (6.5). That G� is rational follows from the calculation

G�′G�S = σ�′�S = (σ�′G�)G�′S = σ�′(G�G�′)S = σ�′(G�′G�)S.

The condition Equation (6.5) is automatic in conformal field theory —
in this case G� is in fact monomial.

7. Summary and outlook

This paper solves the Riemann–Hilbert problem for PSL2(Z): given a
representation ρ, we have a differential equation Equation (3.3) whose mon-
odromy is determined by ρ. The solution of this differential equation is
the fundamental matrix Ξ(τ) of Equation (2.13) — given it, any vector-
valued modular function X with multiplier ρ can be uniquely determined
from the inversion formula Equation (5.1). As an application of this theory,
explicit bases for — and dimensions of — spaces of vector-valued modular
forms of half-integer weight can be found. In practice, the most interest-
ing vector-valued modular functions have non-negative integer q-expansions;
the consequences for ρ of the existence of such vectors is worked out in
Section 6.

A number of future developments are suggested by the analysis of this
paper. It is tempting to guess that the theory developed here can be
extended to other genus-0 discrete subgroups of PSL2(R). There are 6486
such groups with the additional property that they contain some Γ(N) [5]:
roughly a third of these have only one cusp — these may be the ones most
accessible to our methods.

Vector-valued modular forms of arbitrary weight can be reduced to the
modular functions studied here, by dividing by an appropriate power of
η(τ). Such modular forms arise naturally in conformal field theory, and so
this extension should be pursued. Knopp and Mason [11] have addressed
questions like the asymptotic growth of Fourier coefficients of these modular
forms, with methods apparently more effective when the weight is higher.
Our results would complement theirs: we would obtain bases and dimensions
for any weight.

One could also speculate about the possibility of considering infinite-
dimensional representations of SL2(Z), which appear, for instance, in quasi-
rational conformal field theory. In this case an indirect approach could
prove fruitful: first, solve Equation (3.14) in an arbitrary Banach algebra,
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then consider the solutions of the corresponding differential equation Equa-
tion (3.3); of course, all relevant quantities that make sense will take their
value in the given Banach algebra. The technicalities involved are far from
being clear.

Integrality and positivity, already touched upon in Section 6, lead to
many deep questions. For example, not all choices of Λ compatible with the
trace formula Equation (2.22) are equally good: integrality, for instance,
can be gained or lost by transformations as in Equation (2.24), as Equa-
tion (2.23) shows. It would be interesting to understand better how to
choose the most suitable Λ in this respect.
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Appendix. The reduction of the modular representation

To any rational CFT is associated a finite-dimensional representation � of
SL2(Z), where in general �

( −1 0

0 −1

)
is not the identity, but a permutation

matrix (charge conjugation). Nevertheless, exploiting the fact that charac-
ters of charge conjugate primaries are equal, one can associate to such a � a
representation ρ for which ρ

( −1 0

0 −1

)
is the unit matrix, so that the results

of the paper may be applied. As far as conformal characters are concerned,
it is only ρ that matters.

The procedure is as follows: let

T = �

(
1 1
0 1

)
and S = �

(
0 −1
1 0

)

as usual. We know that S2 is a permutation matrix of order 2, representing
charge conjugation. An orbit η of charge conjugation has either length
|η| = 1 or length |η| = 2. For any such orbit η we select a representative
η∗ ∈ η.



Vector-valued modular functions 679

Define matrices T and S, whose rows and columns are indexed by these
orbits η, via the rule

Tξη = δξηTη∗η∗ ,

Sξη =
∑
p∈η

Sξ∗p.(A.1)

These matrices are well defined, i.e., independent of the choice of the rep-
resentatives ξ∗ ∈ ξ (since S2 commutes with both T and S), and they
determine a representation of SL2(Z) which is trivial on the center: this
is the reduced representation ρ. Note that all matrix elements of S are
real numbers.

Some important properties of the modular representation � carry over
to the reduced representation ρ (e.g., the diagonality of the Dehn-twist T ),
while others (like the symmetry and unitarity of S) do not. The representa-
tion ρ is equivalent to the largest subrepresentation of � trivial on

( −1 0

0 −1

)
.

We note that, while the reduction process results clearly in loss of infor-
mation, this loss is not as dramatic as one might expect: for example, it is
possible to reconstruct from the knowledge of ρ the charge conjugation and
the real part of S, as well as the full matrix T .
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