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On solutions to Walcher’s extended holomorphic
anomaly equation

Yukiko Konishi and Satoshi Minabe

We give a generalization of Yamaguchi–Yau’s result to Walcher’s
extended holomorphic anomaly equation.

1. Introduction

Let X be a non-singular quintic hypersurface in CP
4. The case of the X and

its mirror is the most well-studied example of the mirror symmetry. After
the construction of the mirror family of Calabi–Yau 3-folds [10], the genus 0
Gromov–Witten (GW) potential of X were computed via the Yukawa cou-
pling of the mirror family [4]. The predicted mirror formula was proved first
by Givental [7].

For higher genera, Bershadsky–Cecotti–Ooguri–Vafa (BCOV) [2] has
predicted that the GW potential at genus g is obtained as a certain limit
of the B-model closed topological string amplitude F (g) of genus g.1 They
have also proposed a partial differential equation (PDE) for F (g), called the
BCOV holomorphic anomaly equation, which determines F (g) up to a holo-
morphic function. The prediction of BCOV for the genus 1 GW potential
was proved by Zinger [21].

Recently the open string analogue of the mirror symmetry has been
developed by Walcher [18] for the pair (X, L) of the quintic 3-fold X defined
over R (called a real quintic) and the set of real points L = X(R) which is a
Lagrangian submanifold of X. Open mirror symmetry gave the prediction
for the generating function for the disk GW invariants of X with bound-
ary in L and it was proved by Pandharipande–Solomon–Walcher [16]. Then,
Walcher [19] further proposed the open string analogue of BCOV, the extend-
ed holomorphic anomaly equation, which is a PDE for the B-model topologi-
cal string amplitude F (g,h) for world-sheets with g handles and h boundaries.2

1For genus g = 0, the third covariant derivative of F (0) is the Yukawa coupling,
and for g = 1, it is recently proved that F (1) is the Quillen’s norm function [6]. For
genus g ≥ 2, the mathematical definition of F (g) is yet to be known.

2There is also a proposal by Bonelli–Tanzini [3].
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At present there are two ways to solve the BCOV holomorphic anomaly
equation. The one is to repeatedly use the identity called the special geom-
etry relation, or equivalently to draw Feynman diagrams associated to the
perturbative expansion of a certain path integral [2]. The other is to solve
the system of PDE’s due to Yamaguchi–Yau [20]. They showed that F (g)

multiplied by (g − 1)th powers of the Yukawa coupling, is a polynomial in
finite number of generators and rewrite the holomorphic anomaly equation
as PDE’s with respect to these generators. This result were then reformu-
lated into a more useful form by Hosono–Konishi [12, § 3.4].

It is a natural problem to generalize these methods to Walcher’s extended
holomorphic anomaly equation. The generalization of the Feynman rule
method can be obtained from the result of Cook–Ooguri–Yang [5]. The
objective of this article is to generalize Yamaguchi–Yau’s and Hosono–
Konishi’s results to the extended holomorphic anomaly equation. It gives a
more tractable method in computations than the one given by the Feynman
rule.

The organization of the paper is as follows. In Section 2, we recall the
special Kähler geometry of the B-model complex moduli space and Walcher’s
extended holomorphic anomaly equation. We also describe the Feynman
rule. In Section 3, we rewrite the holomorphic anomaly equation as PDE’s
(Theorem 3.8). Section 4 is devoted to discussion on holomorphic ambigui-
ties. We tried to fix them with certain ad hoc assumptions in several cases.
In appendices, we include the Feynman diagrams and the solution of the
PDE’s for (g, h) = (0, 4).

After we finished writing this paper, we were informed that Alim–Länge
[1] also obtained a generalization of Yamaguchi–Yau’s result.

2. Walcher’s extended holomorphic anomaly equation

2.1. Special Kähler geometry

Recall the mirror family of the quintic hypersurface X ⊂ P
4 constructed in

[10]. Let Wψ be the hypersurface in P
4 defined by

4∑

i=0

x5
i − 5ψ

4∏

i=0

xi = 0.

After taking the quotient by (Z/5Z)3 and a crepant resolution Yψ of
Wψ/(Z/5Z)3, we obtain a one-parameter family of Calabi–Yau 3-folds



Solutions to Walcher’s extended holomorphic anomaly equation 581

π : Y → Mcpl := P
1 \ {0, 1

55 , ∞}, where a local coordinate z of Mcpl is given
by z = (5ψ)−5.

Consider the variation of Hodge structure of weight 3 on the middle coho-
mology groups H3(Yz, C). Let 0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = R3π∗C ⊗ OMcpl

be the Hodge filtration and ∇ be the Gauss–Manin connection. The holo-
morphic line bundle L := F 3 over Mcpl is called the vacuum line bundle (the
fiber of L at z is H3,0(Yz)). Let Ω(z) be a local holomorphic section trivi-
alizing L, i.e., a nowhere vanishing (3, 0)-form on Yz. The Yukawa coupling
Czzz is define by

Czzz :=
∫

Xz

Ω(z) ∧ (∇∂z
)3Ω(z),

which is a holomorphic section of Sym3(T ∗
Mcpl

) ⊗ (L∗)2, where T ∗
Mcpl

denotes
the holomorphic cotangent bundle of Mcpl. A suitable choice of Ω(z) gives
(see [4])

Czzz =
5

(1 − 55z)z3 .

It also gives the following Picard–Fuchs operator D which governs the peri-
ods of Ω(z):

D = θ4
z − 5z(5θz + 1)(5θz + 2)(5θz + 3)(5θz + 4),

where θz = z d
dz .

Consider the pairing

(φ, ψ) :=
√

−1
∫

Yz

φ ∧ ψ, φ, ψ ∈ H3(Yz, C).

Then ( , ) induces a Hermitian metric on L. Let K(z, z̄) := − log(Ω(z),
Ω(z)). This defines a Kähler metric (the Weil–Peterson metric) Gzz̄ :=
∂z∂z̄K on Mcpl. There is a unique holomorphic Hermitian connection D
on (TMcpl)m ⊗ Ln whose (1, 0)-part Dz is given by

Dz = ∂z + mΓz
zz + n(−∂zK),

where Γz
zz = Gzz̄∂zGzz̄. An important property of Gzz̄ is the following iden-

tity called the special geometry relation [17]

(2.1) ∂z̄Γz
zz = 2Gzz̄ − CzzzCz̄z̄z̄e

2KGzz̄Gzz̄,

where Cz̄z̄z̄ := Czzz.
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Now we introduce the open disk amplitude with two insertions �zz,
which is the open sector analogue of the Yukawa coupling. Let T be a
holomorphic section of L∗ locally given by

(2.2) T = 60 τ(z), τ(z) =
∞∑

n=0

(7/2)5n

(3/2)n
5 zn+ 1

2 .

Here (α)n is the Pochhammer symbol: (α)n := α(α + 1) · · · (α + n − 1) for
n > 0 and (α)0 := 1. T is a solution to

(2.3) DT =
60
24

√
z.

Following [19], we define a C∞-section �zz of Sym2(T ∗
Mcpl

) ⊗ L∗ by

(2.4) �zz = DzDzT − eKCzzz

Gzz̄
Dz̄T ,

where Dz̄ = ∂z̄ + ∂z̄K denotes the (0, 1)-part of D. By (2.1), it follows that
�zz satisfies the equation

(2.5) ∂z̄�zz = −Czzze
KGzz̄�z̄z̄,

where �z̄z̄ := �zz.

Remark 2.1. In [19], it is argued that T and �zz should be written as

T (z) =
∫

Yz

Ω(z) ∧ ν̃(z), �zz =
∫

Yz

Ω(z) ∧ (∇∂z
)2ν̃(z),

where ν̃ is a C∞-section of the Hodge bundle F 0 which is the “real hori-
zontal lift” of a certain Griffiths normal function ν associated to a family of
homologically trivial 2-cycles.3 The normal function ν should be determined
from the Lagrangian submanifold L ⊂ X under the mirror symmetry with
D-branes.

3By definition, ν is a holomorphic and horizontal section of the intermediate
Jacobian fibration J 3 → Mcpl of Y → Mcpl. See, e.g., [9, 11].
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2.2. Extended holomorphic anomaly equation

Let F (g,h) be the B-model topological string amplitude of genus g with h
boundaries, and let

F (g,h)
0 := F (g,h), F (g,h)

n := DzF (g,h)
n−1 (n ≥ 1).

F (g,h)
n is a C∞-section of the line bundle (T ∗

Mcpl
)n ⊗ L2g−2+h. For (g, h) =

(0, 0), (0, 1),

(2.6) F (0,0)
3 = Czzz, F (0,1)

2 = �zz.

For (g, h) = (1, 0), (0, 2),4

F (1,0)
1 =

1
2
∂z log

(
e(4− χ

12)KGzz̄
−1(1 − 55z)− 1

6 z−1− c2.H

12

)
,

F (0,2)
1 = −�zz�z − 1

2
Czzz�z�z +

N

2
∂zK + f (0,2), f (0,2) =

75
2(1 − 55z)

,

(2.7)

where χ = −200, c2 · H = 50, N = 1 and �z = − �zz

Czzz
(cf. § 2.3).

As in [19], define

Czz
z̄ = Cz̄z̄z̄e

2KGzz̄
−2, �z

z̄ = �z̄z̄e
KGzz̄

−1.

Then Walcher’s extended holomorphic anomaly equation for (g, h) �= (0, 0),
(1, 0), (0, 1), (0, 2) is as follows.

∂z̄F (g,h) =
1
2
Czz

z̄

⎛

⎝
∑

g1,g2,h1,h2

F (g1,h1)
1 F (g2,h2)

1 + F (g−1,h)
2

⎞

⎠ − �z
z̄F

(g,h−1)
1 .

(2.8)

In the RHS, the summation is over g1, h1, g2, h2 ≥ 0 satisfying g1 + g2 = g,
h1 + h2 = h and (g1, h1), (g2, h2) �= (0, 0), (0, 1). The second and the third
terms in the RHS should be set to zero if g = 0 and h = 0, respectively.

4F (1,0)
1 and F (0,2)

1 are solutions to the following (extended) holomorphic anomaly
equations [2, 19].

∂z̄F (1,0)
1 =

1
2
CzzzC

zz
z̄ −

( χ

24
− 1

)
Gzz̄, ∂z̄F (0,2)

1 = −�zz�z
z̄ +

N

2
Gzz̄.
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2.3. Propagators and terminators

We introduce the propagators Szz, Sz, S and the terminators �z, � [2, 19].
By definition, they are solutions to

∂z̄S
zz = Czz

z̄ , ∂z̄S
z = SzzGzz̄, ∂z̄S = SzGzz̄,

∂z̄�z = �z
z̄, ∂z̄� = �zGzz̄.

(2.9)

These equation can be solved by using (2.1) and (2.5). The solutions of the
propagators are [2, p. 391]:

Szz =
1

Czzz

(
2∂z log(eK |f |2) − ∂z log(vGzz̄)

)
,

Sz =
1

Czzz

(
(∂z log(eK |f |2)2 − v−1∂zv∂z log(eK |f |2)

)
,

S =
(

Sz − 1
2
DzS

zz − 1
2
(Szz)2Czzz

)
∂z log(eK |f |2) +

1
2
DzS

z

+
1
2
SzzSzCzzz.

(2.10)

Here f, v are holomorphic functions of z. We take f = z−1/5 and v = dz
dψ

(z = 1
55ψ5 ), so that Szz, Sz, S do not diverge at z = ∞.5 Solutions of the

terminators are [19, (3.12)]

(2.11) �z = − �zz

Czzz
, � = Dz�z.

2.4. Feynman Rule

We describe the Feynman rule which gives a solution to (2.8).

For non-negative integers g,h,m and n, we define C̃
(g,h)
n:m recursively as

follows.

C̃
(0,0)
0:m = C̃

(0,0)
1:m = C̃

(0,0)
2:m = 0,(2.12)

C̃
(0,1)
0:m = C̃

(0,1)
1:m = 0,(2.13)

C̃
(0,2)
0:1 = −N

2
,(2.14)

5If rewritten in the ψ-coordinate, (2.10) are the same as those used in [19, 3.11;
20, (2.21)].
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C̃
(1,0)
0:0 = 0, C̃

(1,0)
0:1 =

χ

24
− 1,(2.15)

C̃
(g,h)
n:0 = F (g,h)

n if 2g − 2 + h + n ≥ 1,(2.16)

C̃
(g,h)
n:m+1 = (2g − 2 + h + n + m)C̃(g,h)

n:m .(2.17)

Definition 2.2. A Feynman diagram G is a finite labeled graph

G = (V ;Ein
0 , Ein

1 , Ein
2 , Eout

0 , Eout
1 ; j),

which consists of the following data.

(i) Each vertex v ∈ V is labeled by a pair of non-negative integers (gv, hv).

(ii) There are three kinds of inner edges Ein = Ein
0  Ein

1  Ein
2 and two

kinds of outer edges Eout = Eout
0  Eout

1 . The end points of the edges
are specified by the collection of maps j = (jin

0 , jin
1 , jin

2 , jout
0 , jout

1 ):

jin
0 : Ein

0 → (V × V )/σ, jin
1 : Ein

1 → V × V, jin
2 : Ein

2 → (V × V )/σ,

jout
0 : Eout

0 → V, jout
1 : Eout

0 → V,

where σ : V × V → V × V is the involution interchanging the first and
the second factors.

In a more plain language, an edge of type Ein
i has both endpoints

attached to vertices, and an edge of type Eout
i has only one endpoint attached

to a vertex. We represent edges of types Ein
0 and Eout

0 by solid lines, edges of
types Ein

2 and Eout
1 by dashed lines and an edge of type Ein

1 by a half-solid,
half-dashed line. See figure 1.

For a vertex v ∈ V , we set

Li,v = {e ∈ Ein
i | jin

i (e) = {v, v}}, Li =
⊔

v∈V

Li,v, (i = 0, 2),

L1,v = {e ∈ Ein
1 | jin

1 (e) = (v, v)}.

In other words, Li,v is the set of self-loops attached to the vertex v whose
edges are of the type Ein

i . Define non-negative integers nin
v , nout

v , min
v and
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(i)

ev1 v2

= −2S

(ii)

ev1 v2

= −Sz

(iii)

ev1 v2

= −Szz

(iv)

ev
= Δ

(v)

ev
= Δz

Figure 1: Three types of inner edges and propagators: (i) e ∈ Ein
0 , jin

0 (e) =
{v1, v2}, (ii) e ∈ Ein

1 , jin
1 (e) = (v1, v2), (iii) e ∈ Ein

2 , jin
2 (e) = {v1, v2}. Two

types of outer edges and terminators: (iv) e ∈ Eout
0 , jout

0 (e) = v, (v) e ∈
Eout

1 , jout
1 (e) = v.

mout
v by

nin
v = #{e ∈ Ein

2 | v ∈ jin
2 (e)} + #{e ∈ Ein

1 | jin
1 (e) = (v, ∗)}

+ #L2,v,

min
v = #{e ∈ Ein

0 | v ∈ jin
0 (e)} + #{e ∈ Ein

1 | jin
1 (e) = (∗, v)}

+ #L0,v,

nout
v = #{e ∈ Eout

1 | v ∈ jout
1 (e)}, mout

v = #{e ∈ Eout
0 | v ∈ jout

0 (e)}.

The valence val(v) of v ∈ V is given by val(v) = nv + mv, where nv := nin
v +

nout
v (the number of solid lines attached to v), mv := min

v + mout
v (the number

of dashed lines attached to v). See figure 2.

v

nout
v lines

nin
v lines

min
v lines

mout
v lines

= C
(gv ↪hv)
nv:mv

Figure 2: A vertex v labeled by (gv, hv) to which nv = nin
v + nout

v solid lines
and mv = min

v + mout
v dashed lines are attached and its value.
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Definition 2.3. (i) For a Feynman diagram G, define
(2.18)
FG =

∏

v∈V

C̃(gv,hv)
nv:mv

·
∏

e∈Ein
0

(−2S) ·
∏

e∈Ein
1

(−Sz) ·
∏

e∈Ein
2

(−Szz) ·
∏

e∈Eout
0

Δ ·
∏

e∈Eout
1

Δz.

(ii) Let Aut(G) be the automorphism group of G. Define the group AG by

AG =
∏

e∈L0�L2

Z/2Z � Aut(G),

i.e., AG fits into the following exact sequence:

1 → (Z/2Z)#L0+#L2 → AG → Aut(G) → 1.

This means that each self-loop of type Ein
0 and Ein

2 contributes the factor 2
to #AG.

Definition 2.4. Let G(g, h) be the set of (isomorphism classes of) Feynman
diagrams G which satisfy the following conditions.

(i) G is connected.

(ii) For any v ∈ V , C̃
(gv,hv)
nv:mv �= 0.

(iii) G satisfies
∑

v∈V gv + #Ein − #V + 1 = g and
∑

v∈V hv + #Eout =
h.

(iv) For any v ∈ V , val(v) > 0.

Note that the set G(g, h) is a finite set. Note also that the graph whose
amplitude is F (g,h), i.e., the graph with only one vertex with label (g, h) and
without edges is not a member of G(g, h) by (iv).

Define

(2.19) F (g,h)
FD := −

∑

G∈G(g,h)

1
#AG

FG.

The next result follows from [5].

Proposition 2.5. ∂z̄F (g,h)
FD = the RHS of (2.8).
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Therefore, the general solution F (g,h) of Walcher’s holomorphic anomaly
equation is of the form

(2.20) F (g,h) = F (g,h)
FD + f (g,h),

where f (g,h) is the holomorphic ambiguity which cannot be determined from
the equation (2.8).

2.5. Holomorphic ambiguity

Recall that the holomorphic ambiguity f (g,0) (g ≥ 2) for the closed sector
h = 0 is of the form [2; 20, (2.30)]

f (g,0) =
a0 + a1z + · · · + a2g−1z

2g−1

(1 − 55z)2g−2 +
� 2g−2

5
�∑

i=0

zj .

Huang–Klemm–Quackenbush [13] determined f (g,0) up to g ≤ 51 by using
the vanishing of the BPS numbers ng

d (cf. footnote 7), the gap condition at
the conifold point z = 1

55 and the regularity condition at the orbifold point
z = ∞.

For h > 0, we assume that F (g,h) has poles of order at most 2g − 2 + h
at z = 1

55 and also that the asymptotic behavior at z = ∞ is F (g,h) ∼ z
2g−2+h

2

[19, § 3.3]. Therefore we put the following ansatz for f (g,h):

f (g,h) =
a0 + a1z + · · · + a3g−3+ 3h

2
z3g−3+ 3h

2

(1 − 55z)2g−2+h
(h even),

f (g,h) =

√
z

(
a0 + a1z + · · · + a3g−3+ 3h−1

2
z3g−3+ 3h−1

2

)

(1 − 55z)2g−2+h
(h odd).

(2.21)

3. Polynomiality and PDE’s for F (g,h)

In this section, we consider extending Yamaguchi–Yau’s and Hosono–
Konishi’s results [20, 12] to F (g,h).
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3.1. The generators of polynomial ring

Let θz = z ∂
∂z . We define

Ap =
(θz)pGzz̄

Gzz̄
, Bp =

(θz)pe−K

e−K
(p = 1, 2, . . .),

Qp = z1/2(θz)pT (p = 0, 1, 2, . . .),

R1 = z5/2 eKCzzz

Gzz̄
Dz̄T , R2 = z7/2eKCzzzT .

(3.1)

The generators Ap’s and Bp’s were defined in [20]. The new ingredients
are Qp’s, R1 and R2 which are necessary for incorporating �zz.

Consider the polynomial ring

(3.2) I = C(z)[A1, B1, B2, B3, Q0, Q1, Q2, Q3, R1, R2]

with coefficients in the field of rational functions C(z).

Lemma 3.1. 1. Ap ∈ I (p ≥ 2), Bp ∈ I (p ≥ 4), Qp ∈ I (p ≥ 4).
2. θzI ⊆ I

Proof. First, notice that the logarithmic derivation θz acts as follows:

θzAp = Ap+1 − ApA1, θzBp = Bp+1 − BpB1,

θzQp =
1
2
Qp + Qp+1,

θzR1 =
(5

2
− A1 − B1 +

θzCzzz

Czzz

)
R1 + R2,

θzR2 =
(7

2
− B1 +

θzCzzz

Czzz

)
R2.

(3.3)

Next we show A2, B4, Q4 ∈ I. By the special geometry relation (2.1), we
have
(3.4)

A2 = −2A1B1 + 2B2
1 + 2B1 − 4B2 +

θz(zCzzz)
zCzzz

(1 + A1 + 2B1) + h(z).

Here h(z) is determined by comparing the behavior of the RHS and the LHS
at z = 0:

h(z) =
1 − 3 · 54z

1 − 55z
.
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Let us write the Picard–Fuchs operator as D =
∑4

p=0 Hp(z)θz
p, where Hp(z)

∈ C[z]. Since De−K = 0, B4 satisfies

(3.5) B4 = −
3∑

p=1

Hp(z)
H4(z)

Bp − H0(z)
H4(z)

= 0.

Moreover, since T satisfies (2.3),

(3.6) Q4 = −
3∑

p=0

Hp(z)
H4(z)

Qp +
60
24 z.

These together with (3.3) implies that I is closed with respect to the
logarithmic derivation θz. Moreover, by applying θz recursively, we can
show that Ap ∈ I (p ≥ 3), Bp ∈ I (p ≥ 5), Qp ∈ I (p ≥ 5). �

3.2. Polynomiality

For simplicity, we will use the notation

(3.7) V1 = A1 + 2B1 + 1, V2 = B2 − B1V1

from here on.
Since Dz acts on (TMcpl)m ⊗ Ln as

Dz =
1
z
(θz + mA1 + nB1),

we have the following

Lemma 3.2. Let f be a section of (TMcpl)m ⊗ Ln. Then Dzf ∈ I, if f ∈ I
and Dzf ∈

√
zI if f ∈

√
zI.

Lemma 3.3. F (g,h)
n ∈ zh/2 I.

Proof. We prove the lemma by induction on (g, h).
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For (g, h) = (0, 0), (1, 0), (0, 1), (0, 2), the lemma is true since

F (0,0)
3 = Czzz ∈ I,

F (1,0)
1 =

1
2z

[
− A1 − 62

3
B1 − 31

6
− 1

6
θz(1 − 55z)
(1 − 55z)

]
∈ I,

F (0,1)
2 = �zz = z−5/2[Q2 − V1Q1 − V2Q0 − R1] ∈

√
z I,

F (0,2)
1 =

1�zz

2Czzz
− B1

2z
+ f (0,2) ∈ I.

(3.8)

For (g, h) �= (0, 0), (1, 0), (0, 1), (0, 2), assume that F (g′,h′)
n ∈ zh′/2I holds

for every (g′, h′) �= (g, h) such that g′ ≤ g and h′ ≤ h. Consider the contribu-
tion FG from a Feynman diagram G ∈ G(g, h) to F (g,h)

FD (2.18). The assump-
tion of the induction implies that a vertex factor satisfies C̃

(gv,hv)
nv;mv ∈ zhv/2I.

As for edge factors, the followings hold. From (2.10),

Szz =
1

zCzzz

(
−A1 − 2B1 − 8

5

)
∈ I, Sz =

1
z2Czzz

(
B2 + 3B1 +

2
25

)
∈ I.

(3.9)

By Lemma 3.2, S also satisfies S ∈ I. Similarly by (3.8) the terminators
(2.11) satisfy

�z, � ∈
√

zI.

Therefore, by the condition (iii) in Definition 2.4, we have FG ∈ zh/2I and
thus F (g,h)

FD ∈ zh/2I. As to the holomorphic ambiguity f (g,h), it satisfies
f (g,h) ∈ zh/2

C(z) ⊂ zh/2 I by assumption (2.21). Therefore F (g,h) ∈ zh/2 I.
For n ≥ 1, F (g,h)

n ∈ zh/2 I by Lemma 3.2. �

Definition 3.4. Let g, h, n ≥ 0 be integers satisfying 2g − 2 + h + n > 0.
We define

(3.10) P (g,h)
n = (z3Czzz)g+h−1zh/2F (g,h)

n , P (g,h) := P
(g,n)
0 .

For other values of (g, h, n), we set P
(g,h)
n = 0.

Lemma 3.3 implies that

P (g,h)
n ∈ I.
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Remark 3.5. Let x = z3Czzz = 5
1−55z . Consider the graded ring

C[x, A1, B1, B2, B3, Q0, . . . , Q3, R1, R2],

where the grading is given by deg x = 1, deg A1 = 1, deg Bp = p (p = 1, 2, 3),
deg Qp = p (p = 0, 1, 2, 3), deg R1 = 2 and deg R2 = 3. Then P (g,h) belongs
to this ring and its degree is at most 3(g + h − 1).

3.3. Rewriting the extended holomorphic anomaly
equation (2.8)

There are relations among the ∂z̄-derivatives of the generators (3.1).

Lemma 3.6.

∂z̄B2 = V1∂z̄B1,

∂z̄B3 = (A2 + 2A1 + 3B1 + 3B2 + 3A1B1 + 1)∂z̄B1

=
(

− V2 +
θz(z3Czzz)

z3Czzz
V1 + h(z) − 1

)
∂z̄B1

∂z̄Qp = 0 (p = 0, 1, 2, . . .),
∂z̄R2 = −R1∂z̄B1.

(3.11)

Proof. The first and the second equations were obtained from (2.1) in [20].
The third is trivial, since Qp’s do not depend on z̄. The calculation of ∂z̄R2
is as follows.

∂z̄R2 = zα+1Czzz(∂z̄T̄ + ∂z̄K · T̄ ) = zGzz̄R1 = −R1∂z̄B1,

where we have used the identity Gzz̄ = ∂z∂z̄K(z, z̄) = −∂z̄B1/z. �

If one assumes that ∂z̄A1, ∂z̄B1, ∂z̄R1 are independent, then Walcher’s
extended holomorphic equation (2.8) is rewritten as follows.

Lemma 3.7. The equation (2.8) is equivalent to the system of PDE’s:

[
−R1

∂

∂R2
− 2

∂

∂A1
+

∂

∂B1
+ V1

∂

∂B2
(3.12)

+
(

−V2 +
θz(z3Czzz)

z3Czzz
V1 + h(z) − 1

)
∂

∂B3

]
P (g,h) = 0,
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∂P (g,h)

∂A1
= −1

2

⎛

⎜⎜⎝
∑

g1+g2=g,
h1+h2=h

P
(g1,h1)
1 P

(g2,h2)
1 + P

(g−1,h)
2

⎞

⎟⎟⎠(3.13)

+ (B1Q0 − Q1)P
(g,h−1)
1 ,

∂P (g,h)

∂R1
= −P

(g,h−1)
1 .(3.14)

Here the summation in (3.13) runs over (g1, h1), (g2, h2) such that (gi, hi) �=
(0, 0), (0, 1).

Proof. By (2.8), we have

∂z̄P
(g,h) =

1
2
∂z̄(zCzzzS

zz) ·

⎛

⎜⎜⎝
∑

g1+g2=g,
h1+h2=h

P
(g1,h1)
1 P

(g2,h2)
1 + P

(g−1,h)
2

⎞

⎟⎟⎠

− ∂z̄(z5/2Czzz�z) · P
(g,h−1)
1 .

Note that, by (3.9) and (3.11),

∂z̄(zCzzzS
zz) = −(∂z̄A1 + 2∂z̄B1),

∂z̄(z
5
2 Czzz�z) = −(∂z̄A1 + 2∂z̄B1)(−Q1 + B1Q0) + ∂z̄R1.

On the other hand, by (3.11), ∂z̄ in the LHS is as follows:

∂z̄ = ∂z̄R1
∂

∂R1
+ ∂z̄A1

∂

∂A1
+ ∂z̄B1

[
−R1

∂

∂R2
+

∂

∂B1
+ V1

∂

∂B2

+
(

−V2 +
θz(z3Czzz)

z3Czzz
V1 + h(z) − 1

)
∂

∂B3

]
.

Inserting these and comparing the coefficients of ∂z̄A1, ∂z̄B1, ∂z̄R1, one
obtains Lemma 3.7. �

To write the equations in a more useful form, we change the generators.
We define

u = B1, v1 = V1 +
3
5
, v2 = V2 +

2
25

,

v3 = B3 − B1

(
−V2 +

θz(z3Czzz)
z3Czzz

V1 + h(z) − 1
)

+ s(z),
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m1 =
2
25

Q0 +
3
5
Q1 + Q2 − R1,(3.15)

m2 = Q0

(
s(z) − 2

25
θz(z3Czzz)

z3Czzz

)
+ Q1

(23
25

− h(z)
)

− Q2
θz(z3Czzz)

z3Czzz

+ Q3 − R2 − B1R1,

where

(3.16) s(z) =
12
25

− 1
5
h(z) +

3
25

θz(z3Czzz)
z3Czzz

.

Define the ring

J := C(z)[u, v1, v2, v3, Q0, Q1, Q2, Q3, m1, m2].

It is isomorphic to I since (3.15) is invertible. Notice that θz : J → J
increases the degree in u at most by 1.

Now we regard P (g,h) ∈ J . Then (3.12) implies P (g,h) is independent of
u. In turn, P

(g,h)
n ∈ J has degree at most n in u. Following [12, (3-4.c)], let

us define u-independent polynomials Y0, Y1, W0, W1, W2 ∈ J by

Y0 + u Y1 = P
(g,h−1)
1 ,

W0 + uW1 + u2W2 = (the RHS of (3.13)).
(3.17)

Then applying the change of generators (3.15) to the equations (3.12)–(3.14),
we obtain

Theorem 3.8. The equation (2.8) is equivalent to the following system of
PDE’s for P (g,h) ∈ J :

∂

∂u
P (g,h) = 0,

∂

∂m1
P (g,h) = Y0,

∂

∂m2
P (g,h) = Y1,

∂

∂v1
P (g,h) = W0,

∂

∂v2
P (g,h) = −W1 +

θz(z3Czzz)
z3Czzz

W2,

∂

∂v3
P (g,h) = −W2.

(3.18)
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Let us comment on the constant of integration. Decompose P (g,h) as

P (g,h) = P̂ (g,h) + P (g,h)|v1,v2,v3,m1,m2=0,

where P̂ (g,h) consists of terms of degree ≥1 with respect to at least one of
v1, v2, v3, m1, m2. The equations (3.18) can determine P̂ (g,h), but not the
second term. The latter is a priori a polynomial in Q0, Q1, Q2, Q3 with C(z)
coefficients. However, the choice of the new generators (3.15) is “good” (cf.
[12, (3-4.d)]) so that we have the following

Proposition 3.9.

P (g,h)|v1,v2,v3,m1,m2=0 = (z3Czzz)g+h−1zh/2f (g,h).

Proof. We have

Szz = − v1

zCzzz
, Sz =

uv1 + v2

z2Czzz
,

S =
1

z3C

[
−1

2
u2v1 −

(
u +

55z

2(1 − 55z)

)
v2 +

v3

2

]
,

�z =
1

z5/2Czzz
(−m1 + Q1v1 + Q0v2),

� =
1

z7/2Czzz

[
um1 − m2 − uQ0v1

−v2

(
uQ0 +

55z

1 − 55z
Q0 + Q1

)
+ Q0v3

]
.

Notice that every monomial term in the propagators Szz, Sz, S and the
terminators �z,� contains at least one of v1, v2, v3, m1, m2. Therefore the
Feynman diagram part F (g,h)

FD of F (g,h) has degree at least 1 with respect
to one of v1, v2, v3, m1, m2 by (2.18) and (2.19). This implies that the first
term in the RHS of

P (g,h) = (z3Czzz)g+h−1zh/2F (g,h)
FD + (z3Czzz)g+h−1zh/2f (g,h)

vanishes as v1, v2, v3, m1, m2 tends to zero. This proves the proposition. �
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4. Discussion

We discuss how to fix the holomorphic ambiguity f (g,h).
Let ω0(z), ω1(z), ω2(z), ω3(z) be the following solutions to the Picard–

Fuchs equation Dω = 0 about z = 0.

ωi(z) = ∂i
ρ

⎛

⎝
∑

n≥0

(5ρ + 1)5n

(ρ + 1)n
5 zn+ρ

⎞

⎠
∣∣∣∣∣
ρ=0

.

Let t = ω1(z)/ω0(z) be the mirror map and consider the inverse z = z(q),
where q = et. Explicitly, these are

ω0(z) = 1 + 120z + 113400z2 + · · ·,

ω1(z) = ω0(z) log z + 770z + 810225z2 + · · ·,

t = log z + 770z + 717825z2 +
3225308000

3
z3 + · · ·,

z = q − 770q2 + 171525q3 + · · ·.

Let

(4.1) F
(g,h)
A = lim

z̄→0
F (g,h)ω0(z)2g+h−2,

for (g, h) satisfying 2g + h − 2 > 0.6 The limit z̄ → 0 in the RHS means

Gzz̄ −→ dt

dz
, e−K −→ ω0(z), �zz −→ DzDzT .

6For (g, h) = (0, 0), (1, 0), (0, 1), (0, 2), one should consider

∂n
t F

(g,h)
A =

(
dz

dt

)n

lim
z̄→0

F (g,h)
n ω2g+h−2

0 ,

where n = 3, 1, 2, 1, respectively.
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Define n
(g,h)
d for h > 07 by the formula [14; 15; 19, (3.22)]:

the terms in positive powers in q of
∞∑

g=0

gs
2g+h−2F

(g,h)
A

=
∞∑

g=0

∑

d

∑

k

n
(g,h)
d

1
k

(
2 sin

kgs

2

)2g+h−2

qkd/2.

(4.2)

Here the summation of k is over positive odd integers and that of d is over
positive even (resp. odd) integers when h is even (resp. odd).

Remark 4.1. It is expected that F
(g,h)
A is the A-model topological string

amplitude of genus g with h boundaries for the real quintic 3-fold (X, L),
and that n

(g,h)
d be the BPS numbers in the class d ∈ H2(X, L; Z). See [7, 21]

for (g, h) = (0, 0), (1, 0) and [16, 18] for (g, h) = (0, 1). It is expected that
n

(g,h)
d are even8 integers for h > 0.

The holomorphic ambiguity could be fixed by assuming some conditions
on F

(g,h)
A and n

(g,h)
d . In [19], the following boundary conditions were pro-

posed.

(i) n
(g,h)
d = 0 if n2g+h−1

d = 0.

(ii) If h is even, the q-constant term in F
(g,h)
A vanishes except for (g, h) =

(0, 2).

However, these do not give enough equations to fix unknown parameters in
f (g,h) unless (g, h) = (0, 1), (0, 2), (0, 3), (1, 1) (these cases were done in [19];
see also commens in [1, Appendix B]). Without any other guiding principle,
we might assume the following ad hoc condition together with (ii):

(i’) n
(g,h)
d = 0 for d ≤ d0, where d0 is the smallest number necessary to

completely determine unknown parameters in f (g,h).

For example, d0 = 3 for (g, h) = (0, 3), (1, 1), d0 = 6 for (g, h) = (1, 2), (0, 4)
and d0 = 9 for (g, h) = (1, 3), (0, 5). When we fix holomorphic ambiguities

7For h = 0, the BPS number ng
d is defined by [2.8]

∞∑

g=0

gs
2g−2F

(g,0)
A =

∞∑

g=0

∑

d>0

∑

k>0

ng
d

1
k

(
2 sin

kgs

2

)2g−2
qkd + polynomial in log q.

8The authors thank a referee for pointing out this property.
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with these assumption, for (g, h) = (0, 4) we obtain

f (0,4) =
2 − 20125 z + 70618750 z2 − 86493078125 z3

10000 (1 − 3125 z)2
,

and n
(0,4)
8 = −307669500, n

(0,4)
10 = −1290543544800 and so on. In the cases

of (g, h) = (0, 4), (0, 5), (0, 6), (1, 1), (1, 2), (1, 3), (1, 4), we obtain integral
n

(g,h)
d for small d. For (g, h) = (0, 4), (0, 5), (0, 6), they are even, but for

(g, h) = (1, 1), (1, 2), some of them are odd. For (g, h) = (0, 7), (1, 5), (2, 1),
the holomorphic ambiguities determined by our assumptions do not give
integral n

(g,h)
d ’s. It will be interesting to investigate systematic ways to

fix holomorphic ambiguities so as to get the BPS numbers n
(g,h)
d with the

desired properties, as was done in the closed case [13].
As a final remark, let us comment on the expansion about the conifold

point z = 1
55 . If one imposes the gap condition to F (0,4) such as the one

found in [13, (1.2)] instead of n
(0,4)
6 = 0, then the integrality of n

(0,4)
d ’s does

not hold.

Appendix A. Examples of Feynman diagrams

Feynman diagrams for F (0,3)
FD and F (1,1)

FD have been given in equations (2.109)
and (2.108) of [19] respectively (#G(0, 3) = #G(1, 1) = 4). For (g, h) =
(0, 4), we have #G(0, 4) = 19. See figure 3. It is clear that the number
of Feynman diagrams grows rapidly as g and h increase. For example, one
can check that #G(0, 5) = 83, #G(1, 2) = 29, #G(2, 1) = 97.

Appendix B. P (0,4)

P (0,4) = z2(z3Czzz)3f (0,4) − z(2 − 9500z + 16015625z2)m1
2

20(−1 + 3125z)3

+
(−9 + 12500z)m1

4

120(−1 + 3125z)
+

75z2(−1 + 3145z)m2

4(−1 + 3125z)3
+

m1
3m2

6

+
5zm2

2

4(−1 + 3125z)
+ m1

(
375z3(−3 + 3125z)

2(−1 + 3125z)4
+

375z2m2

2(−1 + 3125z)2

)

− Q1
4v1

5

8
+

(
(−3 + 25000z)Q0

4

40(−1 + 3125z)
− Q0

3Q1

6

)
v2

4

+ v1
4
(

m1Q1
3

2
+

(−9 + 12500z)Q1
4

120(−1 + 3125z)
− Q0Q1

3v2

2

)
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Figure 3: The elements G in G(0, 4) and the orders of AG. The vertices are
expressed as bordered Riemann surfaces to visualize the labeling.

+
(

25z2

8(−1 + 3125z)2
− 75z2(−1 + 3145z)Q0

4(−1 + 3125z)3
− 375z2m1Q0

2(−1 + 3125z)2

−m1
3Q0

6
− 5zm2Q0

2(−1 + 3125z)

)
v3 +

5zQ0
2v3

2

4(−1 + 3125z)

+ v2
2
(

z(−1 + 4750z + 119921875z2)Q0
2

10(−1 + 3125z)3

+ m1

(
−5zQ0

2(−1 + 3125z)
+

m2Q0
2

2

)
− 8000z2Q0Q1

(−1 + 3125z)2
+

5zQ1
2

4(−1 + 3125z)
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+m1
2
(

(−9 + 43750z)Q0
2

20(−1 + 3125z)
− Q0Q1

2

)
− m1Q0

3v3

2

)

+ v2
3
(

5zQ0
2

4(−1 + 3125z)
− m2Q0

3

6
+ m1

(
−((−9 + 59375z)Q0

3)
30(−1 + 3125z)

+
Q0

2Q1

2

)

+
Q0

4v3

6

)
+ v1

3
(

−375z2Q1
2

4(−1 + 3125z)2
− 3m1

2Q1
2

4
− (−9 + 12500z)m1Q1

3

30(−1 + 3125z)

− m2Q1
3

6
+

(
3m1Q0Q1

2

2
+

3Q0Q1
3

10
− Q1

4

6

)
v2

−3Q0
2Q1

2v2
2

4
+

Q0Q1
3v3

6

)
+ v2

(
81875z3

8(−1 + 3125z)3
− 236625z3Q0

4(−1 + 3125z)3

+ m1
2
(

5z

4(−1 + 3125z)
− m2Q0

2

)
+ m1

3
(

−3Q0

10
+

Q1

6

)

+
75z2(−1 + 3145z)Q1

4(−1 + 3125z)3
+ m1

(
z(−1 + 1625z)Q0

5(−1 + 3125z)2
+

375z2Q1

2(−1 + 3125z)2

)

+ m2

(
−8000z2Q0

(−1 + 3125z)2
+

5zQ1

2(−1 + 3125z)

)

+
(

8000z2Q0
2

(−1 + 3125z)2
+

m1
2Q0

2

2
− 5zQ0Q1

2(−1 + 3125z)

)
v3

)

+ v1

(
−140625z4

8(−1 + 3125z)4
− m1

4

8
− 375z3(−3 + 3125z)Q1

2(−1 + 3125z)4

+
z(2 − 9500z + 16015625z2)m1Q1

10(−1 + 3125z)3
− (−9 + 12500z)m1

3Q1

30(−1 + 3125z)

− 375z2m2Q1

2(−1 + 3125z)2
+ m1

2
(

−375z2

4(−1 + 3125z)2
− m2Q1

2

)

+
(

m1Q0
3

2
+

(−9 + 59375z)Q0
3Q1

30(−1 + 3125z)
− Q0

2Q1
2

2

)
v2

3 − Q0
4v2

4

8

+
(

375z2Q0Q1

2(−1 + 3125z)2
+

m1
2Q0Q1

2

)
v3

+ v2

(
m1

3Q0

2
− z(−1 + 1625z)Q0Q1

5(−1 + 3125z)2
− 375z2Q1

2

2(−1 + 3125z)2

+ m1

(
375z2Q0

2(−1 + 3125z)2
− 5zQ1

2(−1 + 3125z)
+ m2Q0Q1

)

+m1
2
(

9Q0Q1

10
− Q1

2

2

)
− m1Q0

2Q1v3

)
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+ v2
2
(

−375z2Q0
2

4(−1 + 3125z)2
− 3m1

2Q0
2

4
+

5zQ0Q1

2(−1 + 3125z)
− m2Q0

2Q1

2

+m1

(
−((−9 + 43750z)Q0

2Q1)
10(−1 + 3125z)

+ Q0Q1
2
)

+
Q0

3Q1v3

2

))

+ v1
2
(

m1
3Q1

2
− z(2 − 9500z + 16015625z2)Q1

2

20(−1 + 3125z)3

+
(−9 + 12500z)m1

2Q1
2

20(−1 + 3125z)
+ m1

(
375z2Q1

2(−1 + 3125z)2
+

m2Q1
2

2

)

+
(

3m1Q0
2Q1

2
+

(−9 + 43750z)Q0
2Q1

2

20(−1 + 3125z)
− Q0Q1

3

2

)
v2

2

− Q0
3Q1v2

3

2
− m1Q0Q1

2v3

2
+ v2

(
−375z2Q0Q1

2(−1 + 3125z)2
− 3m1

2Q0Q1

2

+
5zQ1

2

4(−1 + 3125z)
− m2Q0Q1

2

2
+ m1

(
−9Q0Q1

2

10
+

Q1
3

2

)
+

Q0
2Q1

2v3

2

))
.
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