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Moment zeta functions for toric Calabi–Yau
hypersurfaces

Antonio Rojas-Leon and Daqing Wan

Moment zeta functions provide a diophantine formulation for the
distribution of rational points on a family of algebraic varieties over
finite fields. They also form algebraic approximations to Dwork’s
p-adic unit root zeta functions. In this paper, we use l-adic coho-
mology to calculate all the higher moment zeta functions for the
mirror family of the Calabi-Yau family of smooth projective hyper-
surfaces over finite fields. Our main result is a complete determi-
nation of the purity decomposition and the trivial factors for the
moment zeta functions.

1. Introduction

Let n ≥ 2 be a positive integer. We consider the following family

Xλ : x1 + · · · + xn +
1

x1 · · ·xn
= λ

of (n − 1)-dimensional toric Calabi–Yau hypersurfaces in G
n
m parameterized

by λ ∈ A
1. Let PΔ be the projective toric variety associated to the Newton

polytope of the above Laurent polynomial. The projective closure Yλ of Xλ

in PΔ is simply the quotient by G = (Z/(n + 1)Z)n−1 of the following Dwork
family of projective Calabi–Yau hypersurfaces in P

n:

Wλ : xn+1
0 + · · · + xn+1

n = λx0 · · ·xn.

The crepant resolution of the family Yλ is the mirror family of Wλ.
Let Fq be a finite field of q elements with characteristic p. In this paper,

we are interested in the moment zeta function [29] which measures the arith-
metic variation of the zeta function of Xλ over Fq as λ varies in Fq. The
moment zeta function grew out of the second author’s study [26, 27, 28] of
Dwork’s unit root conjecture. Its general properties were studied in Fu–Wan
[9] and Wan [24, 29]. Note that the zeta function of Yλ differs from the zeta
function of Xλ by some trivial factors, see Section 7 in [32].
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The zeta function of the Dwork family Wλ over finite fields had been
studied extensively in the literature, first by Dwork [7] and Katz [15], and
more recently in connection with arithmetic mirror symmetry by Candelas
et al. [2, 3], and by Wan [31, 32] and Fu–Wan [12]. By the congruence mirror
theorem in [31, 32], the zeta function of Xλ is the most primitive piece of
the zeta function of Wλ. Thus, we shall restrict ourself to the family Xλ.
The Hasse-Weil zeta function (but not its higher moment zeta function which
would seem to be too hard at the moment) in a similar number field example
is studied in a recent paper by Harris et al. [14].

More precisely, for a positive integer d, let Nd(k) denote the number of
points on the family Xλ such that xi ∈ Fqdk for all 1 ≤ i ≤ n and λ ∈ Fqk .
The dth moment zeta function of the morphism Xλ → λ ∈ A

1 is defined to be

Zd(A1, Xλ) = exp

( ∞∑
k=1

Nd(k)
k

T k

)
∈ 1 + TZ[[T ]].

This sequence Zd(A1, Xλ) (d = 1, 2, . . .) of power series gives a simple dio-
phantine reformulation on the arithmetic variation of the zeta function of
the family Xλ. It is a rational function in T for each d. In the special
case n = 2, Xλ is a family of elliptic curves and the moment zeta function
Zd(A1, Xλ) is closely related to arithmetic of modular forms [25]. In general,
Dwork’s unit root zeta functions [8] attached to this family are the p-adic
limits of this sequence of moment zeta functions. They are thus infinite
p-adic moment zeta functions in some sense. Our aim of this paper is to
give a precise study of this sequence Zd(A1, Xλ). One main consequence of
our results is a determination of the purity decomposition and the trivial
factors for the moment zeta function Zd(A1, Xλ) for all d, all n such that
(n + 1) divides (q − 1). This provides the first higher dimensional example
for which all higher moment zeta functions are determined. Let

Sd(T ) =
[(n−2)/2]∏

k=0

1 − qdkT

1 − qdk+1T

n−1∏
i=0

(1 − qdi+1T )(−1)i+1( n

i+1).

Theorem 1.1. Assume that (n + 1) divides (q − 1). Then, the dth moment
zeta function has the following factorization

Zd(A1, Xλ)(−1)n−1
= Pd(T )

(
Qd(T )
P (d, T )

)n+1

Rd(T )Sd(T ).
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We now explain each of the above factors. First, Pd(T ) is the non-trivial
factor which has the form

Pd(T ) =
∏

a+b=d,0≤b≤n

Pa,b(T )(−1)b−1(b−1),

and each Pa,b(T ) is a polynomial in 1 + TZ[T ], pure of weight d(n − 1) + 1,
whose degree r is given explicitly in Theorem 3.11 and which satisfies the
functional equation

Pd(T ) = ±T rq(d(n−1)+1)r/2Pd

(
1

qd(n−1)+1T

)
.

Second, P (d, T ) ∈ 1 + TZ[T ] is the dth Adams operation (see Definition 3.2)
of the “non-trivial” factor in the zeta function of a singular fibre Xt, where
t = (n + 1)ζn+1 and ζn+1 = 1. It is a polynomial of degree (n − 1) whose
weights are completely determined. Third, the quasi-trivial factor Qd(T )
coming from a finite singularity has the form

Qd(T ) =
∏

a+b=d,0≤b≤n

Qa,b(T )(−1)b−1(b−1),

where Qa,b(T ) is a polynomial whose degree Dn,a,b and the weights of its
roots are given in Corollaries 3.7 and 3.8. Finally, the trivial factor Rd(T )
is given by

Rd(T ) = (1 − qd(n−1)/2T )(1 − q(d(n−1)/2)+1T )(1 − q(d(n−2)/2)+1T )

if n and d are even,

Rd(T ) = (1 − q(d(n−2)/2)+1T )

if n is even and d is odd,

Rd(T ) = (1 − q(d(n−1)/2)T )

if n and d are odd,

Rd(T ) = (1 − q(d(n−1)/2)+1T )−1

if n is odd and d is even.
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Corollary 1.2. Assume that p does not divide n + 1. Let Nd(k) denote the
number of points on the family Xλ such that xi ∈ Fqdk for all 1 ≤ i ≤ n and
λ ∈ Fqk . Then for every positive integer k, we have the estimate

∣∣∣∣Nd(k) −
(

(qkd − 1)n

qk(d−1) +
1
2
(1 + (−1)d)qk((d(n−1)/2)+1)

)∣∣∣∣
≤ (D + 2)qk((d(n−1)+1)/2),

where D is the total degree of Pd(T )(Qd(T )/P (d, T ))n+1.

Since the first Hodge number h0,n−1(Xλ) = 1, the zeta function of each
fibre Xλ has at most one non-trivial p-adic unit root. One deduces the p-adic
continuity result: If nm + 1 ≤ d1 ≤ d2 are positive integers such that

d1 ≡ d2 (mod (p − 1)pm),

then

Zd1(A
1, Xλ) ≡ Zd2(A

1, Xλ) (mod pm+1).

For a p-adic integer s ∈ Zp and a residue class r ∈ Z/(p − 1)Z, let {di}∞
i=1

be a sequence of positive integers in the residue class r mod(p − 1), going to
infinity as complex numbers but approaching to s as p-adic numbers, then
the limit

ζr,s(A1, Xλ) = lim
i→∞

Zdi
(A1, Xλ) ∈ 1 + TZp[[T ]]

exists as a formal p-adic power series. This limit depends only on s and
r, not on the particular chosen sequence {di}∞

i=1. The limit ζr,s(A1, Xλ) is
precisely Dwork’s unit root zeta function attached to the family Xλ. It is
a p-adic meromorphic function in T for every s ∈ Zp and r ∈ Z/(p − 1)Z,
as conjectured by Dwork [8] and proven by Wan [28]. It should be viewed
as a two variable p-adic zeta function in (s, T ). The results of the present
paper can be combined with the p-adic methods in [28] to obtain some new
information on these unit root zeta functions. These applications will be
spelled out in another paper.

We now briefly explain the ideas in proving the above theorem. For a
prime � �= p, let K ∈ Db

c(A
1
k, Q̄�) be the complex obtained by taking direct

image with compact support with respect to the morphism Xλ → λ of the
trivial �-adic sheaf Q̄� on X. The cohomology sheaves Hj(K) are the rel-
ative �-adic cohomology with compact support of the family Xλ. Then,
Zd(A1, Xλ) can be expressed in terms of the L-function over A

1 of the dth
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Adams operation of the sheaf Hj(K):

Zd(A1, Xλ) =
2(n−1)∏

j=0

L(A1, [Hj(K)]d)(−1)j

.

The L-function of the dth power Adams operation is defined to be

L(A1, [Hj(K)]d) =
∏

x∈|A1|

1
det(I − F d

x T deg(x)|Hj(K)Ix)
,

where |A1| denotes the set of closed points on A
1, Ix denotes the inertia

group at x and Fx denotes the Frobenius element at x. The dth moment
zeta function Zd(A1, Xλ) is thus a rational function in T for each positive
integer d.

Fix a prime number � different from p. Let F be the non-trivial part
of the relative �-adic cohomology with compact support of the family Xλ

parameterized by λ ∈ A
1. Then F is the non-trivial part of the middle

dimensional relative cohomology Hn−1(K). It is a geometrically irreducible
smooth sheaf on the dense open set

U = A
1
k − {(n + 1)ζ : ζn+1 = 1},

of rank n and punctually pure of weight n − 1. The dth moment zeta func-
tion is then given up to trivial factors, by the dth moment L-function:

Zd(A1, Xλ) ∼ L(A1, [F ]d)(−1)n−1
,

where [F ]d denotes the dth Adams operation of the sheaf F on A
1. As

a virtual sheaf on U , one can write (Lemma 4.2 in [26]) the dth Adams
operation as

[F ]d =
∑

a+b=d

(−1)b−1(b − 1)[SymaF ⊗ ∧bF ],

where a and b are non-negative integers.
Let

Ga,b := SymaF ⊗ ∧bF ,

which is an �-adic sheaf on A
1, smooth on U , vanishing if b > n. Thus,

we shall assume that 0 ≤ b ≤ n from now on. The generic rank of Ga,b is(
n+a−1

a

)(
n
b

)
, which goes to infinity as a goes to infinity. On the smooth part
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U , the dth moment L-function is then given by the formula

L(U, [F ]d) =
n∏

b=0

L(U,Gd−b,b)(−1)b−1(b−1).

Thus, to a large extent, the moment zeta functions are reduced to the study
of the L-function L(U,Ga,b) of the sheaf Ga,b for all non-negative integers a
and b. To understand the purity decomposition and the trivial factors of this
last L-function, the key is to determine the local and global monodromy of
the sheaf F . This is accomplished in Section 2. As a consequence, we obtain

Theorem 1.3. Assume that (n + 1) divides (q − 1). Let a and b be non-
negative integers with 0 ≤ b ≤ n. Then, we have the formula

L(U,Ga,b) =
Pa,b(T )Qa,b(T )n+1 ∏[(a+b)(n−1)/2]

k=0 (1 − qkT )αa,b(k)

(1 − q(a+b)(n−1)/2T )δa,b(1 − q(a+b)(n−1)/2+1T )δa,b
,

where Pa,b(T ), Qa,b(T ) ∈ 1 + TZ[T ] are polynomials whose degrees are explic-
itly given, Pa,b(T ) is pure of weight (a + b)(n − 1) + 1, Qa,b(T ) is mixed
of weights ≤(a + b)(n − 1) + 1 (the precise weights of its roots are given in
Corollaries 3.7 and 3.8), δa,b = 0 or 1 is explicitly given by Proposition 3.10,
αa,b(k) is the coefficient of xkzb in the power series{

(1 − xn) · · · (1 − xa+n−1)
(1 − x2) · · · (1 − xa)

}
(1 + z)(1 + xz) · · · (1 + xn−1z),

where the quantity in the bracket is understood to be 1 − xn if a = 1, and
1 − x if a = 0.

The paper is organized as follows. In Section 2, we determine both the
local and the global monodromy of the sheaf F . These results are then
used in Section 3 to calculate the L-function of the sheaf Ga,b and its local
factors at bad points. In Section 4, we treat the degenerate case when
p divides n + 1.

2. The monodromy via Fourier transform

Let k = Fq be a finite field of characteristic p, n ≥ 2 an integer, X ⊂ A
n+1
k

the hypersurface defined by x1 · · ·xn+1 = 1, and σ : X → A
1
k the restric-

tion of the sum map (x1, . . . , xn+1) → x1 + · · · + xn+1 to X. Fix a prime
� �= p. We want to study the local monodromy of the non-trivial part of
the object K := Rσ!Q̄� ∈ Db

c(A
1
k, Q̄�), which parameterizes the cohomology

of the family described in Section 1. Let η be a generic point of A
1
k. The

main results are summarized in the following theorem:
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Theorem 2.1. The cohomology sheaves Hj(K) = Rjσ!Q̄� vanish for j <
n − 1 and j > 2n − 2. We have isomorphisms

Hj(K) ∼= Q̄
( n

j−n+2)
� (n − 1 − j),

for n ≤ j ≤ 2n − 2, and an exact sequence

0 → Q̄
n
� → Hn−1(K) → F → 0,

where F is the extension by direct image of a geometrically irreducible smooth
sheaf on the dense open set U = A

1
k − {(n + 1)ζ : ζn+1 = 1}, of rank n and

punctually pure of weight n − 1. It is endowed with a non-degenerate pairing
Φ : F × F → Q̄�(1 − n), which is symmetric if n is odd and skew-symmetric
if n is even. As a representation of the inertia group at infinity, F is unipo-
tent with a single Jordan block.

If p does not divide n + 1, F is everywhere tamely ramified. The iner-
tia group at each of the n + 1 singular points x = (n + 1)ζ acts on Fη̄ with
invariant subspace of codimension 1. On the quotient Fη̄/FIx

η̄ , Ix acts triv-
ially if n is even, and through its unique character of order 2 if n is odd.

If p divides n + 1, let n + 1 = pam, with m prime to p. Then F is
smooth on Gm, and the inertia group at 0 acts with invariant subspace of
dimension m − 1. The action of I0 on the quotient Fη̄/FI0

η̄ is totally wild,
with a single break 1/(pa − 1) with multiplicity m(pa − 1) = n − m + 1. In
particular, the Swan conductor at 0 is m.

The determinant of F is the geometrically constant sheaf Q̄�(−n(n −
1)/2) if n is even or p divides n + 1, and the pulled back Kummer sheaf

Lχ(λn+1−(n+1)n+1)

(
−n(n − 1)

2

)
,

if n is odd and (p, n + 1) = 1, where χ is the unique character of order 2 of
the inertia group I0.

The geometric monodromy group of F is given by

Sp(n, Φ) if n is even
O(n, Φ) if n is odd and (p, n + 1) = 1
SO(n, Φ) if n is odd, p|n + 1

and (p, n) �= (2, 5) or (2, 7)
G2 in its standard
7-dimensional representation if p = 2, n = 7

SL(2) in sym4 of its
standard representation if p = 2, n = 5

.
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We will deduce most of the properties of the object K from the properties
of its Fourier transform L ∈ Db

c(A
1
k, Q̄�) with respect to a fixed non-trivial

additive character ψ : k → C
� ∼→ Q̄

�
� . The Fourier transform L is closely

related to the Kloosterman sheaf. This connection of the Dwork family
with Kloosterman sums was first discovered by Katz [16] (Section 5.5) who
uses the properties of the family to get information on certain Kloosterman
sums. We will use this connection the other way around and apply Katz’s
fundamental results for the Kloosterman sheaf.

Recall (cf. [20]) that the Fourier transform is defined by

FTψ(K) = Rπ2!(π�
1(K) ⊗ μ�Lψ)[1],

where π1, π2 : A
2
k → A

1
k are the projections, μ : A

2
k → A

1
k is the product map

and Lψ is the Artin–Schreier sheaf on A
1
k associated to the character ψ. It

is an auto-equivalence of the triangulated category Db
c(A

1
k, Q̄�), and has the

following involution property:

FTψ̄FTψ(K) = K(−1).

One of the main advantages of this equivalence is that, following Laumon
(cf. [22]), the local properties of the object K can be read from those of its
Fourier transform. This is the method that we will use to deduce most of
the results about K.

Let us first determine what the Fourier transform of K is explicitly.
Using proper base change on the cartesian diagram

X
π̃1←−−−− X × A

1
k

σ

⏐⏐� ⏐⏐�σ̃

A
1
k

π1←−−−− A
2
k

,

we get

π�
1(K) = π�

1(Rσ!Q̄�) = Rσ̃!π̃
�
1Q̄� = Rσ̃!Q̄�.

By the projection formula, we have then

L = Rπ2!((Rσ̃!Q̄�) ⊗ μ�Lψ)[1] = Rπ2!(Rσ̃!(σ̃�μ�Lψ))[1] = Rπ̃2!(μ̃�Lψ)[1]

where π̃1 and π̃2 are the projections of X × A
1
k onto its factors and

μ̃ : X × A
1
k → A

1
k is the map ((x1, . . . , xn+1), t) 
→ t(x1 + · · · + xn+1).
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Extend the canonical map L → j�j
�L to a distinguished triangle

(2.1) M → L → j�j
�L →

in Db
c(A

1
k, Q̄�), where j : A

1
k − {0} ↪→ A

1
k is the open immersion. The object

M is punctual supported at 0, since L → j�j
�L is an isomorphism away

from 0.
At 0, the object L is just RΓc(X ⊗ k̄, Q̄�)[1] by proper base change. Since

X is just the product of n copies of Gm, we have

L0 =
n⊗

i=1

RΓc(Gm,k̄, Q̄�)[1].

From H1
c(Gm,k̄, Q̄�) = Q̄�, H2

c(Gm,k̄, Q̄�) = Q̄�(−1) and Hi
c(Gm,k̄, Q̄�) = 0 for

i �= 1, 2, we conclude

Hi−1(L)0 = Q̄
( n

i−n)
� (n − i),

for n ≤ i ≤ 2n, and 0 otherwise. Thus, we get a quasi-isomorphism

L0 ∼=
2n⊕
i=n

Q̄
( n

i−n)
� (n − i)[1 − i].

Away from 0, we have L = Rπ̃2!(μ̃�Lψ)[1], where we now regard π̃2! as
the projection X × Gm → Gm. Consider the automorphism φ of A

n+1
k × Gm

given by φ((x1, . . . , xn+1), t) = ((tx1, . . . , txn+1), t). The image of X × Gm

under φ is the variety Y defined by the equation x1 · · ·xn+1 = tn+1, and
μ̃ = σ̃ ◦ φ. Since φ is an automorphism, φ� = Rφ� = Rφ!, and we get

j�L = Rπ̃2!(μ̃�Lψ)[1] = Rπ̃2!(φ�σ̃�Lψ)[1]
= R(π̃2φ)!(σ̃�Lψ)[1] = Rπ̃2!(σ̃�Lψ)[1].

The stalk of j�L at a geometric point t ∈ Gm,k̄ is then

RΓc({x1 · · ·xn+1 = tn+1},Lψ(
∑

xi))[1].

By [5, Théorème 7.4], we deduce that Hi(j�L) = 0 for i �= n − 1, and Hn−1

(j�L) is the pull-back by the (n + 1)th power map of the Kloosterman sheaf
given in [5, Théorème 7.8], and, more generally, in [17, 4.1.1]. Therefore, we
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have a quasi-isomorphism

j�L ∼= [n + 1]�Kln+1(ψ)[1 − n].

Denote by L the sheaf [n + 1]�Kln+1(ψ) on Gm. It is geometrically irre-
ducible, because it is already irreducible as a representation of the inertia
group at 0: by [5, Théorème 7.8], the action of a topological generator is
unipotent with a single Jordan block. In particular, the invariant subspace
for the inertia action at 0 has dimension 1, so the stalk of j�j

�L at 0 is
quasi-isomorphic to Q̄�[1 − n].

Taking stalks at 0 in the distinguished triangle (2.1), we get

M0 →
2n⊕
i=n

Q̄
( n

i−n)
� (n − i)[1 − i] → Q̄�[1 − n] →

and consequently a quasi-isomorphism

M0 �
2n⊕

i=n+1

Q̄
( n

i−n)
� (n − i)[1 − i] =

n⊕
i=1

Q̄
(n

i)
� (−i)[1 − n − i].

Then since M is punctual supported at 0, the distinguished triangle (1)
reads

n⊕
i=1

Q̄
(n

i)
� (−i)[1 − n − i]0 → L → j�L[1 − n] → .

Taking Fourier transform with respect to the complex conjugate charac-
ter ψ̄ and using the facts that FTψ̄FTψ(K) = K(−1) and that the Fourier
transform of the punctual sheaf (Q̄�)0 is the shifted constant sheaf Q̄�[1], we
get the distinguished triangle

n⊕
i=1

Q̄
(n

i)
� (−i)[2 − n − i] → K(−1) → FTψ̄(j�L)[1 − n] → .

Since L is a geometrically irreducible sheaf of rank ≥2, its direct image j�L
is a Fourier sheaf in the sense of [17, 8.2] (cf. [17, Lemma 8.3.1]). Then
its Fourier transform is a sheaf of the same kind, by [17, Theorem 8.2.5].
Namely, it is the extension by direct image to A

1 of a geometrically irre-
ducible sheaf on a dense open set U ⊂ A

1, and we get a distinguished
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triangle
n⊕

i=1

Q̄
(n

i)
� (1 − i)[2 − n − i] → K → F [1 − n] →,

where F = FTψ̄(j�L) (1). Taking the associated long exact sequence of
cohomology sheaves and using the fact that F has no punctual sections, we
get an exact sequence

(2.2) 0 → Q̄
n
� → Hn−1(K) → F → 0

and isomorphisms

(2.3) Hj(K) ∼→ Q̄
( n

j−n+2)
� (n − 1 − j) for n ≤ j ≤ 2n − 2

and
Hj(K) = 0 for j �∈ {n − 1, . . . , 2n − 2}.

Thus the cohomology of our family has a “constant part”, which has
dimension

(
n

j−n+2

)
and is pure of weight 2(j − n + 1) on degree j for every

j = n − 1, . . . , 2n − 2, and a non-constant geometrically irreducible part on
degree n − 1 given by the sheaf F . If n + 1 is prime to p, this sheaf is the
pull-back by the (n + 1)th power map of a hypergeometric sheaf, as defined
by Katz in [18] (Section 8). Namely, using the same notation as in the
reference, it is [n + 1]�Hyp(n+1)n+1(!, ψ,all non-trivial characters χ of order
dividing n + 1; n times the trivial character) (cf. [18, Theorem 9.3.2]). We
will not make use of this fact in what follows.

Proposition 2.2. The sheaf F is smooth of rank n and punctually pure of
weight n − 1 on U = A

1
k̄

− {(n + 1)ζ : ζn+1 = 1}.

Proof. If n + 1 is prime to p, by [10, lemma 1.4], the wild inertia group of A
1
k̄

at infinity acts on L as
⊕

ζn+1=1 Lψ(n+1)ζ
, where ψ(n+1)ζ(t) = ψ((n + 1)ζt).

By [18, Lemma 7.3.9], F is smooth at t ∈ A
1
k̄

if and only if all breaks of
L ⊗ Lψ̄t

at infinity are ≥1. But, as a representation of P∞,

L ⊗ Lψ̄t
=

⊕
ζn+1=1

Lψ(n+1)ζ−t

has all its breaks equal to 1 unless t = (n + 1)ζ for some ζ ∈ μn+1(k̄). This
proves that F is smooth on U . If p divides n + 1, all breaks of L at infinity
are <1, so F is smooth on U = Gm,k̄ by [17, 8.5.8].
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Since L is pure of weight n, so is its direct image j�L[0] as a derived
category object. The Fourier transform preserves purity and shifts weights
by 1, so F(−1)[0] is pure of weight n + 1 as a derived category object. In
particular, on the open set where F is smooth, it is punctually pure of weight
(n + 1) − 2 = n − 1. To compute the rank, we use the formula in [18, 7.3.9],
which gives

rank(F) = drop0(L) = (n + 1) − 1 = n. �

Proposition 2.3. There is a non-degenerate pairing Φ : FU × FU → Q̄�

(1 − n) which is symmetric for n odd and skew-symmetric for n even.

Proof. According to [17, 4.1.3], the dual of the sheaf Kln+1(ψ) on Gm,k is
Kln+1(ψ̄)(n − 1). Therefore, the dual of the object j�L[0] ∈ Db

c(A
1
k, Q̄�) is

j�L̄[0](n − 1), where L̄ = [n + 1]�Kln+1(ψ̄).
By [20, Théorème 2.1.5], the dual of the Fourier transform with respect

to ψ of an object is the Fourier transform with respect to ψ̄ of the dual
object. Therefore, the dual of FTψ̄(j�L[0]) = F [0] is FTψ(j�L̄[0](n − 1)) =
F [0](n − 1). In particular, we have a non-degenerate pairing on the open set
U , where F is smooth: FU × FU → Q̄�(1 − n). Since FU is irreducible, the
pairing is unique up to a scalar and either symmetric of skew-symmetric.
The actual sign is given by the usual cup product sign, since F is a subsheaf
of Rn−1σ!(Q̄�). �

Proposition 2.4. The sheaf F is tamely ramified at infinity. The tame
inertia group at infinity Itame

∞ acts unipotently on Fη̄ with a single Jordan
block.

Proof. Since L is tamely ramified at 0 and the inertia group acts unipo-
tently with a single Jordan block, the same is true for F at ∞ by [18,
Theorem 7.5.4]. �

Proposition 2.5. Suppose that n + 1 is prime to p. Then F is everywhere
tamely ramified, and for every (n + 1)th root of unity ζ in k̄, the action of
the inertia group at (n + 1)ζ on Fη̄ has invariant subspace of codimension 1.

Proof. Let ζ be a (n + 1)th root of unity in k̄. Then

ζ : (x1, . . . , xn+1) → (ζx1, . . . , ζxn+1)

is an automorphism of X. Therefore,

K := Rσ!Q̄� = R(σ ◦ ζ)!Q̄� = R(ζ̃ ◦ σ)!Q̄� = [ζ̃]�Rσ!Q̄� = [ζ̃]�K,
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where [ζ̃] : A
1
k → A

1
k is multiplied by ζ. So the sheaf F is invariant under

multiplication by (n + 1)th roots of unity on A
1
k. In particular, the local

monodromies at (n + 1)ζ are isomorphic for all ζ ∈ μn+1(k̄).
By the Euler–Poincaré formula,

χc(F) = rank(F) −
∑

t∈(n+1)μn+1(k̄)

(dropt F + swant F),

since F is tamely ramified at infinity and smooth on U . We can compute
this Euler characteristic directly:

χc(K) = χc(Rσ!Q̄�) = χc(X, Q̄�) = 0,

since X is a product of copies of Gm. Therefore,

0 = χc(K) =
2n−2∑

j=n−1

(−1)jχc(Hj(K))

= (−1)n−1χc(F) + (−1)n−1n +
2n−2∑
j=n

(−1)j

(
n

j − n + 2

)

= (−1)n−1χc(F) +
n∑

j=1

(−1)j+n

(
n

j

)
= (−1)n−1χc(F) − (−1)n,

so χc(F) = −1. We conclude that∑
t∈(n+1)μn+1(k̄)

(dropt F + swant F) = n + 1

and therefore the only possibility is dropt F = 1 and swant F = 0 for every
t ∈ (n + 1)μn+1(k̄). In particular, F is everywhere tamely ramified. �

Proposition 2.6. Suppose that n + 1 is prime to p, and let t ∈ (n + 1)μn+1
(k̄). If n is even, the inertia group It acts trivially on the 1-dimensional space
Fη̄/FIt

η̄ . That is, the action of It on Fη̄ is unipotent with a Jordan block
of size 2 and all other blocks of size 1. If t ∈ Fq, the action of a geometric
Frobenius element at t on FIt

η̄ has one of ±q(n−2)/2 as an eigenvalue, and
all other eigenvalues of absolute value q(n−1)/2.

If n is odd, It acts on the 1-dimensional space Fη̄/FIt

η̄ via its unique
character of order 2. In particular, the action of It on Fη̄ is semisimple.
If t ∈ Fq, the action of a geometric Frobenius element at t on FIt

η̄ has all
eigenvalues of absolute value q(n−1)/2.
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Proof. This can be proven using the Picard–Lefschetz formulas (cf. [6,
exposé XV]), since the fibres of σ : X → A

1 have only isolated ordinary
quadratic singularities. Alternatively, one may use the explicit description
of the monodromy at infinity of the Kloosterman sheaf and Laumon’s local
Fourier transform theory.

According to [10, Theorem 1.1], the action of the inertia group at infinity
on Kln+1(ψ) is given by [n + 1]�Lψn+1 if n is even and [n + 1]�(Lψn+1 ⊗
Lχ2) if n is odd. Therefore, the action on [n + 1]�Kln+1(ψ) is given by
⊕ζn+1 = 1Lψ(n+1)ζ

if n is even and ⊕ζn+1 = 1Lψ(n+1)ζ
⊗ Lχ2 if n is odd (cf. [10,

Lemma 1.4]). We conclude by [18, 7.4.1 and 7.5.4].
In particular, the Frobenius eigenvalues of FIt

η̄ all have weight n − 1 if
n is odd by [17, 7.0.8]. If n is even, there are n − 2 eigenvalues of weight
n − 1 and one of weight n − 2. Since the local L-function has integral coeffi-
cients, the non-real eigenvalues must appear in complex conjugate pairs, and
therefore the one with weight n − 2 must be real, necessarily ±q(n−2)/2. �

Proposition 2.7. Suppose that p divides n + 1, and write n + 1 = pam
with (p, m) = 1. Then the inertia group at 0 acts with invariant subspace of
dimension m − 1, and its action on the quotient Fη̄/FI0

η̄ is totally wild, with
a single break 1/(pa − 1) with multiplicity m(pa − 1) = n − m + 1.

Proof. In this case,

L = j�[n + 1]�Kln+1(ψ) = j�[m]�[pa]�Kln+1(ψ) = j�[m]�Kln+1(ψ′),

where ψ′ is the additive character given by ψ′(t) = ψ(tp
a

). We deduce by
[17, 1.13.1] that L is totally wild at ∞ with a single break m/(n + 1) < 1
with multiplicity n + 1. Therefore, by [18, 7.5.4], we conclude that F has
break m/(n − m + 1) at 0 with multiplicity n − m + 1. In particular, the
Swan conductor at 0 is m.

It remains to compute the tame part of the monodromy at 0. By the
Euler–Poincaré formula,

−1 = χc(F) = dim FI0
η̄ − swan0 F = dim FI0

η̄ − m.

Thus, dim FI0
η̄ = m − 1, which is precisely the codimension of the wild part.

Therefore, the inertia group at 0 has dimension m − 1 invariant subspace,
and the action in Fη̄/FI0

η̄ is totally wild, with a single break m/(n − m +
1) = 1/(pa − 1) with multiplicity n − m + 1. �
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Proposition 2.8. The L-function of F on A
1
k is given by

L(A1,F , T ) = 1 − T.

The eigenvalues of a geometric Frobenius element F∞ at infinity acting on
F are 1, q, . . . , qn−1.

Proof. By (2.2) and (2.3), we have

L(A1, K, T ) =
2n−2∏

j=n−1

L(A1,Hj(K), T )(−1)j

=
2n−2∏

j=n−1

(1 − qj+2−nT )(−1)j+1( n

j+2−n) · L(A1,F , T )(−1)n−1

=
n∏

j=1

(1 − qjT )(−1)j+n−1(n

j) · L(A1,F , T )(−1)n−1
.

On the other hand, we have

L(A1, K, T ) = L(A1, Rσ!Q̄�, T ) = Z(X, T ).

Since X is a product of n copies of the torus Gm, we get

L(A1, K, T ) =
n∏

j=0

(1 − qjT )(−1)j+n−1(n

j).

Comparing both expressions, we conclude that L(A1,F , T ) = 1 − T .
Let j : U → P

1 be the inclusion. Since F is irreducible and not geomet-
rically constant, H0(P1, j�F) = H2(P1, j�F) = 0. On the other hand, the
Euler–Poincaré formula gives

χ(P1, j�F) = n + 1 −
∑

ζn+1=1

1 = 0,

if n + 1 is prime to p, and

χ(P1, j�F) = 1 + dim FI0 − Sw0F = 1 + (m − 1) − m = 0,

if p divides n + 1. In either case, H1(P1, j�F) = 0. Therefore, the L-function
of j�F on P

1 is trivial, and we deduce

L(A1,F , T ) = L(P1, j�F , T ) det(1 − TF∞|FI∞) = det(1 − TF∞|FI∞).
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In particular, the action of D∞/I∞ on the one-dimensional space FI∞ is
trivial, and the eigenvalues of a geometric Frobenius element acting on F
are 1, q, . . . , qn−1 by [17, 7.0.7]. �

Proposition 2.9. If n is even or p divides n + 1, the determinant of
F is the geometrically constant sheaf Q̄�(−n(n − 1)/2). If n is odd and
(p, n + 1) = 1,

det(F) = Lχ(tn+1−(n+1)n+1)(−n(n − 1)/2),

where χ is the unique character of order 2 of the inertia group of A
1 at 0

and Lχ(tn+1−(n+1)n+1) is the pull-back of the extension by zero to A
1 of the

corresponding Kummer sheaf on Gm under the map t 
→ tn+1 − (n + 1)n+1.

Proof. If n is even, there is a non-degenerate symplectic pairing F × F →
Q̄�(1 − n). In particular, F is geometrically symplectically self-dual, and
therefore its determinant is geometrically trivial.

If p divides n + 1, let n + 1 = pam as in Proposition 2.7. If ζ is a prim-
itive mth root of unity, exactly as in the proof of Proposition 2.5 we get
an isomorphism F ∼= [t → ζt]� · F . In particular, there is a sheaf G on Gm

such that F|Gm
= [m]�G, where [m] : Gm → Gm is the mth power map. By

[17, 1.13.1] and Proposition 2.7, as a representation of the wild inertia group
at 0, the sheaf G has a single positive break 1/m(pa − 1) = 1/(n + 1 − m)
with multiplicity n + 1 − m = m(pa − 1) > 1, and Swan conductor 1. At
infinity, the inertia group acts quasi-unipotently with a single Jordan block,
and after tensoring with a suitable Kummer sheaf we can assume that the
action is unipotent. Then detG is smooth of rank 1 on Gm, unramified at
infinity and its break at 0 ≤ 1/(n + 1 − m) < 1. Since this break (which is
the Swan conductor of detG at 0) is an integer, it has to be zero. Thus,
det G is tamely ramified at zero, and therefore geometrically trivial, and the
same is true for det F = [m]� det G.

So in both cases, there is some �-adic unit α such that detF ∼= αdeg,
where αdeg is the pull-back to π1(Gm,k) of the character of

π1(Gm,k)/π1(Gm,k̄) ∼= Gal(k̄/k)

that maps the canonical generator F to α. To find the value of α, we
need to compute the determinant of the action of an element of degree 1 of
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π1(Gm,k) on detF . But from Proposition 2.8, we know that the action of
the geometric Frobenius element at infinity (which has degree 1) on F has
eigenvalues 1, q, . . . , qn−1. Therefore, α = q1+2+···+(n−1) = qn(n−1)/2, and

det F ∼= (qn(n−1)/2)deg = Q̄�(−n(n − 1)/2).

If n is odd and (p, n + 1) = 1, from Propositions 2.4 and 2.6, we know
that detF is smooth on U = A

1
k̄

− {(n + 1)ζ : ζn+1 = 1}, unramified at infin-
ity and tamely ramified at the n + 1 singular points (n + 1)ζ, with the iner-
tia groups acting via their character χ of order two. Therefore, (detF) ⊗
Ľχ(tn+1−(n+1)n+1) is everywhere unramified, and thus geometrically trivial.
So there is some �-adic unit α such that det F ∼= αdeg ⊗ Lχ(tn+1−(n+1)n+1).
To find the exact value of α, we again evaluate the determinant at t = ∞ to
be qn(n−1)/2 using Proposition 2.8. On the other hand, using

Lχ(tn+1−(n+1)n+1) = Lχ(tn+1) ⊗ Lχ(1+((n+1)n+1/tn+1)) = Lχ(1+((n+1)n+1/tn+1)),

since χ has order 2 and n + 1 is even, we conclude that the Frobenius element
at infinity acts trivially on Lχ(tn+1−(n+1)n+1), and therefore α = qn(n−1)/2 and

det(F) = Lχ(tn+1−(n+1)n+1)

(
−n(n − 1)

2

)
.

�

Corollary 2.10. Suppose that n is odd and (p, n + 1) = 1, and let t ∈
Fq. Then the action of a geometric Frobenius element Ft at t on F has
χ(tn+1 − (n + 1)n+1)q(n−1)/2 as an eigenvalue (where χ : F

�
q → C

� is the
unique character of order 2) and the remaining eigenvalues appear in com-
plex conjugate pairs.

Proof. From the previous theorem, we know that the product of the eigenval-
ues is χ(tn+1 − (n + 1)n+1)qn(n−1)/2. They all have absolute value q(n−1)/2

and, given that F((n − 1)/2) is self-dual, they are permuted by the map
z 
→ qn−1/z. So the non-real eigenvalues show up in complex conjugate
pairs. There are an odd number of real eigenvalues, all of them necessarily
equal to q(n−1)/2 or −q(n−1)/2. Grouping them in pairs of identical eigen-
values, we are left with just one, whose sign must be χ(tn+1 − (n + 1)n+1)
(since the product of the other ones is positive). �
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Proposition 2.11. The geometric monodromy group G of F is given by

Sp(n, Φ) if n is even
O(n, Φ) if n is odd and (p, n + 1) = 1
SO(n, Φ) if n is odd, p|n + 1

and (p, n) �= (2, 5) or (2, 7)
G2 in its standard
7-dimensional representation if p = 2, n = 7

SL(2) in sym4 of its
standard representation if p = 2, n = 5.

Proof. The connected component G0 of G containing the identity is
semisimple by [4, 1.3.9]. Since G contains a unipotent element with a single
Jordan block, its Lie algebra g is simple and contains a nilpotent element
with a single Jordan block and the representation g → End(Fη̄) is faithful
and irreducible, by [17, 11.5.2.3]. By Proposition 2.3, we have an a priori
inclusion G ⊂ Sp(n, Φ) for n even and G ⊂ O(n, Φ) for n odd.

Suppose that n + 1 is prime to p. Then G contains pseudo-reflections
(i.e., elements with invariant subspace of codimension 1). Since any element
in G normalizes g, from [18, Theorem 1.5], we conclude that g = spn if n
is even and g = son if n is odd. Consequently, G = Sp(n, Φ) if n is even
and G = SO(n, Φ) or O(n, Φ) if n is odd. But the local monodromies at the
points t ∈ (n + 1)μn+1(k̄) contain elements of determinant −1, so G must
be the full orthogonal group.

When p divides n + 1, we will make use of the classification theorem in
[17, 11.6]. According to it, the possibilities for g are: sl2 in the (n − 1)th
symmetric power of its standard representation, spn if n is even, son if n is
odd and g2 in its standard 7-dimensional representation if n = 7.

Suppose that g = sl2, and let n + 1 = pam with m prime to p. As in
the proof of Proposition 2.9, we find a smooth sheaf G on Gm such that
F|Gm

= [m]�G. Since the geometric monodromy group of F has finite index
in that of G, their Lie algebras are the same.

Let G′ be the monodromy group of G. The proof of [17, 11.5.2.4] shows
that we have a faithful representation G′ ↪→ GL(2) if n is even and G′ ↪→
SO(3) × μn ⊂ GL(3) if n is odd. Let H be the corresponding sheaf. As a
representation of the wild inertia group P0 at 0, the breaks of G are 0 and
1/(n + 1 − m), so the breaks of H are at most 1/(n + 1 − m). In particular,
the Swan conductor of H as a representation of P0 is ≤2/(n + 1 − m) if n is
even (≤3/(n + 1 − m) if n is odd). If n + 1 − m > 3 (or >2 if n is even), this
automatically implies that H is tame at zero as a representation of π1(Gm,k̄)
(since the Swan conductor is an integer) and therefore if factors through the
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abelian tame fundamental group of Gm. In particular, the monodromy group
would be finite, which contradicts the assumption that g = sl2. This rules
out the possibility g = sl2 for all cases except (p, n) = (2, 3), (2, 5) or (3, 2).

Therefore, the classification theorem forces g = spn if n is even and g =
son if n is odd as long as (p, n) �= (2, 3), (2, 5), (2, 7) or (3, 2). So in that
case G = Sp(n, Φ) if n is even, and G = SO(n, Φ) if n is odd (since the
determinant of F is geometrically trivial by Proposition 2.9).

If (p, n) = (2, 3), (2, 7) or (3, 2), n + 1 is a power of p, so F is totally wild
at 0 with Swan conductor 1. By [17, Theorem 8.7.1], applied to the sheaf
ι�F (where ι : Gm → Gm is the inversion map), ι�F is just a translation of a
Kloosterman sheaf on Gm, so it has the same geometric monodromy group.
Using [17, Theorem 11.1], we conclude that G = Sp(n, Φ) if (p, n) = (3, 2),
G = SO(n, Φ) if (p, n) = (2, 3) and G = G2 if (p, n) = (2, 7).

For the remaining case p = 2, n = 5, we have two possibilities, g = so5
or g = sl2 in the fourth symmetric power of its standard representation. In
the first case, G would be SO(5), since the determinant is trivial. We will
rule out this possibility by computing the third moment of F over F216 .
Suppose that G = SO(5), and let V be the stalk of F at the generic point
of A

1, viewed as a representation of SO(5). The alternating square of ∧2V
of V is irreducible, and the symmetric square sym2 V contains the trivial
representation and another irreducible factor W . So V ⊗ V decomposes
as ∧2V ⊕ 1 ⊕ W . None of these irreducible factors is isomorphic to V , so
V ⊗ V ⊗ V ∼= HomG(V ⊗ V, V ) (since V is self-dual) does not contain the
trivial representation. Therefore H2

c(Gm,k̄,F⊗3) vanishes, being the dual
of (V ⊗ V ⊗ V )G = 0. Since F⊗3 does not have punctual sections, its H0

c

vanishes too, and then the trace formula gives∣∣∣∣∣
∑
t∈k�

Tr(Ft|Ft)3
∣∣∣∣∣ = |Tr(F |H1

c(Gm,k̄,F⊗3))| ≤ dim H1
c(Gm,k̄,F⊗3)q6+(1/2)

since F⊗3 is pure of weight 12. Now F⊗3 has rank 125, it is smooth on Gm,
tamely ramified at infinity and all its breaks at 0 are ≤1 (since the only
breaks of F at 0 are 0 and 1). Therefore, its Swan conductor at 0 is at most
125, and then the Euler–Poincaré formula gives

dim H1
c (Gm,k̄,F⊗3) = −χ(Gm,k̄,F⊗3) = Sw0(F⊗3) ≤ 125

so ∣∣∣∣∣
∑
t∈k�

Tr(Ft|Ft)3
∣∣∣∣∣ ≤ 125 · q6+(1/2).
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Now using the explicit formula given in Proposition 4.1, we find for
k = F216 that

∑
t∈k�

Tr(Ft|Ft)3 � 5.48857 · 1033 > 2.5353 · 1033 � 125 · 216(6+(1/2))

in contradiction with the inequality above. So g = sl2 in sym4 of its standard
representation, and therefore G0 = SL(2) in sym4 of its standard represen-
tation. G0 is normal in G, being its identity component. For every g ∈ G,
conjugation by g gives an automorphism of G0. But every automorphism of
S = L(2) is inner, so there is an element g0 ∈ G0 such that gg−1

0 is in the
centralizer of G0. Now the centralizer of G0 in GL(5) is the set of scalar
matrices (a matrix commuting with all matrices of the form

sym4
(

1 a
0 1

)
and sym4

(
1 0
a 1

)

must already be a scalar). But G ⊂ SO(5), and the only scalar matrix in
SO(5) is the identity. Therefore, g = g0 ∈ G0, and G = G0 = SL(2) in sym4

of its standard representation. �

3. L-functions of symmetric and alternating powers of F

Throughout this section, we will assume that n + 1 is prime to p. We will
describe the L-function of the smooth sheaf SymaF ⊗ ∧bF on the set U =
A

1
k − {(n + 1)ζ : ζn+1 = 1}.

Proposition 3.1. The L-function of F on U is given by

L(U,F , T ) = (1 − T )P (T )n+1,

where P (T ) ∈ 1 + TZ[T ] is a polynomial of degree n − 1. If n is odd, all
reciprocal roots of P (T ) have absolute value q(n−1)/2. If n is even, P (T ) =
(1 ± q(n−2)/2T )P1(T ), where all reciprocal roots of P1(T ) have absolute value
q(n−1)/2.

Proof. Since F is smooth, geometrically irreducible and not geometrically
constant on U ,

L(U,F , T ) = det(1 − F · T |H1
c(U ⊗ k̄,F)).
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If j : U → P
1 is the inclusion, the Euler–Poincaré formula gives

χ(P1
k̄, j�F) = 1 + n − (n + 1) = 0.

Therefore, Hi(P1
k̄
, j�F) = 0 for all i, and we get an isomorphism

H1
c

(
U ⊗ k̄,F

) ∼=

⎛
⎝ ⊕

ζn+1=1

FI(n+1)ζ

⎞
⎠ ⊕ FI∞ .

A similar argument gives

FI∞ ∼= H1
c(A

1
k̄,F).

By Proposition 2.8, we have then

L(U,F , T ) = (1 − T )
∏

ζn+1=1

det(1 − F · T |FI(n+1)ζ).

But the isomorphism F ∼= [ζ]�F implies that

P (T ) = det(1 − F · T |FI(n+1)ζ)

is independent of ζ. The absolute values of the reciprocal roots of the
polynomial P (T ) are given by Proposition 2.6. �

Definition 3.2. Let P (T ) be the polynomial of degree n − 1 in the above
proposition. Write

P (T ) =
n−1∏
i=1

(1 − αiT ).

For a positive integer d, the dth Adams operation of P (T ) is defined to be

P (d, T ) =
n−1∏
i=1

(1 − αd
i T ).

We now turn to the study of the L-function of the sheaf Ga,b := syma F ⊗
∧bF , which is smooth of rank

(
n+a−1

a

)(
n
b

)
and pure of weight (a + b)(n − 1)

on U . Let us find the bad factor of the L-function at infinity first. The
local monodromy of Ga,b it infinity is clearly unipotent, since that of F
is. By Proposition 3.1, the eigenvalues of the geometric Frobenius element
at infinity acting on Ga,b are qi1+···+ia+j1+···+jb for all possible choices of
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integers 0 ≤ i1 ≤ i2 ≤ · · · ≤ ia ≤ n − 1 and 0 ≤ j1 < j2 < · · · < jb ≤ n − 1.
Let Nn,a,b,k be the number of such possible choices with i1 + · · · + ia + j1 +
· · · + jb = k, that is,

Nn,a,b,k = #{(i1, . . . , ia, j1, . . . , jb) : 0 ≤ i1 ≤ i2 ≤ · · · ≤ ia ≤ n − 1,

0 ≤ j1 < j2 < · · · < jb ≤ n − 1, i1 + · · · + ia + j1 + · · · + jb = k}.

It is clear that Nn,a,b,k = Nn,a,b,(a+b)(n−1)−k (just change il 
→ n − 1 − ia+1−l

and jl 
→ n − 1 − jb+1−l) and Nn,a,b,k = 0 for k < b(b − 1)/2 and k > (a +
b)(n − 1) − b(b − 1)/2.

Proposition 3.3. The dimension of the invariant subspace GI∞
a,b is Nn,a,b,c

where c = �(a + b)(n − 1)/2�. If (a + b)(n + 1) is even, all Jordan blocks
for the action of I∞ on Ga,b have odd size, and the number of blocks of size
2k + 1 is Nn,a,b,c−k − Nn,a,b,c−k−1 for all k ≥ 0. If (a + b)(n + 1) is odd, all
Jordan blocks for the action of I∞ on Ga,b have even size, and the number
of blocks of size 2k + 2 is Nn,a,b,c−k − Nn,a,b,c−k−1 for all k ≥ 0.

Proof. This is just a translation of [4, 1.8.4] and [17, 7.0.7] to this particu-
lar situation, considering that Ga,b is pure of weight (a + b)(n − 1) and all
Frobenius eigenvalues of Ga,b at infinity are integral powers of q (that is, they
have even weight). In fact, the multiplicity Nn,a,b,0 of the minimun Froebnius
eigenvalue q0 is equal to the number of Jordan blocks with length (a + b)(n −
1) + 1. Removing these blocks, then the multiplicity Nn,a,b,1 − Nn,a,b,0 of the
minimun remaining Frobenius eigenvalue q is equal to the number of blocks
with length (a + b)(n − 1) − 1. By induction, for 0 < k ≤ c, one deduces
that Nn,a,b,k − Nn,a,b,k−1 is equal to the number of blocks with length (a +
b)(n − 1) − 2k + 1 and with minimun Frobenius eigenvalue qk. The dimen-
sion of the invariant subspace GI∞

a,b is simply the total number of Jordan
blocks:

c∑
k=0

(Nn,a,b,k − Nn,a,b,k−1) = Nn,a,b,c.
�

Corollary 3.4. The local L-function of j�Ga,b at infinity has degree Nn,a,b,c

and is given by

det(1 − F∞ · T |GI∞
a,b ) =

c∏
k=0

(1 − qkT )αa,b(k),
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where αa,b(k) = Nn,a,b,k − Nn,a,b,k−1 is the coefficient of xkzb in the expan-
sion of

{
(1 − xn) · · · (1 − xa+n−1)

(1 − x2) · · · (1 − xa)

}
(1 + z)(1 + xz) · · · (1 + xn−1z).

Proof. We construct a generating function for α(k) in the following way. Let
Cn,a,k = # {(i1, . . . , ia) : 0 ≤ i1 ≤ i2 ≤ · · · ≤ ia ≤ n − 1, i1 + · · · + ia = k} =
#{(h0, . . . , hn−1) : 0 ≤ hi, h0 + · · · + hn−1 = a, h1 + 2h2 + · · · + (n − 1)
hn−1 = k} (to check that both numbers agree, just let hj be the number
of l = 1, . . . , a such that il = j). By [11, Section 3], we have

∑
k≥0

(Cn,a,k − Cn,a,k−1)xk =
{

(1 − xn) · · · (1 − xn+a−1)
(1 − x2) · · · (1 − xa)

}
,

where the quantity in the bracket is understood to be 1 − xn if a = 1, and
1 − x if a = 0. Let

Bn,b,j = #{(j1, . . . , jb) : 0 ≤ j1 < · · · < jb ≤ n − 1, j1 + · · · + jb = j}.

It is the coefficient of xjzb in the expansion of (1 + z)(1 + xz) · · · (1 + xn−1z).
Then

Nn,a,b,k =
k∑

j=0

Cn,a,k−jBn,b,j ,

and thus

αa,b(k) = Nn,a,b,k − Nn,a,b,k−1 =
k−1∑
j=0

(Cn,a,k−j − Cn,a,k−j−1)Bn,b,j + Bn,b,k.

Therefore αa,b(k) is the coefficient of xkzb in the expansion of

{
(1 − xn) · · · (1 − xa+n−1)

(1 − x2) · · · (1 − xa)

}
(1 + z)(1 + xz) · · · (1 + xn−1z).

In particular, the number Nn,a,b,c is the coefficient of xczb in the expansion
of the power series

(1 − xn) · · · (1 − xa+n−1)
(1 − x) · · · (1 − xa)

(1 + z)(1 + xz) · · · (1 + xn−1z).
�



562 Antonio Rojas-Leon & Daqing Wan

We now look for the bad factors of the L-function at the finite singu-
lar points t = (n + 1)ζ with ζn+1 = 1 and ζ ∈ Fq. Suppose that n is even.
Then the local monodromy at t is unipotent, with a Jordan block of size
2 and all other blocks of size 1. The Frobenius eigenvalues on FIt are
εq(n−2)/2, with ε = 1 or −1, and (n − 2)/2 pairs of conjugate complex num-
bers α1, . . . , α(n−1)/2, ᾱ1, . . . , ᾱ(n−1)/2 of absolute value q(n−1)/2. That is, as
a representation of It, F ∼= U2 ⊕ 1n−2, where Um denotes the unique (up to
isomorphism) non-trivial unipotent tame representation of It of dimension
m with a single Jordan block. Therefore, we get isomorphisms

Syma F ∼=
a⊕

i=0

Symi U2 ⊗ Syma−i 1n−2 =
a⊕

i=0

U
(n−3+a−i

n−3 )
i+1

∧bF ∼= ∧b1n−2 ⊕ (U2 ⊗ ∧b−11n−2) ⊕ ∧b−21n−2 ∼= 1(n−2
b−2)+(n−2

b ) ⊕ U
(n−2

b−1)
2 .

Lemma 3.5. Let V and W be vector spaces of dimensions n ≥ 2 and 2,
respectively, over an algebraically closed field k of characteristic 0, and let T :
V → V and U : W → W be unipotent endomorphisms with a single Jordan
block. Then T ⊗ U : V ⊗ W → V ⊗ W is unipotent with two Jordan blocks
of sizes n + 1 and n − 1.

Proof. Let {x,y} be a basis for W such that U(x) = x and U(y) = x + y.
We claim that the invariant subspace of T ⊗ U is the subspace of elements
that can be written as v ⊗ x + (v − T (v)) ⊗ y for v ∈ Ker((T − IV )2),
which has dimension 2 by hypothesis:

(T ⊗ U)(v ⊗ x + (v − T (v)) ⊗ y) = T (v) ⊗ x + T (v − T (v)) ⊗ (x + y)
= T (v) ⊗ x + (v − T (v)) ⊗ (x + y) = v ⊗ x + (v − T (v)) ⊗ y.

Conversely, if (T ⊗ U)(v ⊗ x + w ⊗ y) = v ⊗ x + w ⊗ y, we get T (w) = w
and T (v) + T (w) = v, so w = T (w) = v − T (v) = and (T − IV )2(v) = 0.
This shows that T ⊗ U has precisely two Jordan blocks. From

T ⊗ U − I ⊗ I = (T − I) ⊗ (U − I) + I ⊗ (U − I) + (T − I) ⊗ I

we get that (T ⊗ U − I ⊗ I)n+1 is a sum of terms (T − I)α ⊗ (U − I)β with
α + β ≥ n + 1 and therefore equal to 0, since (T − I)n = (U − I)2 = 0. So
the Jordan blocks of T ⊗ U have size ≤n + 1. Finally, if v ∈ V is a vec-
tor such that w := (T − I)n−1(v) �= 0 and x,y ∈ W are as above, the same
expression shows that (T ⊗ U − I ⊗ I)n(v ⊗ y) = (n − 1)(T − I)n−1(v)⊗
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(U − I)(y) = (n − 1)w ⊗ x �= 0, so v ⊗ y generates a Jordan block of size
n + 1, and the other block must have size 2n − (n + 1) = n − 1. �

Corollary 3.6. Suppose that n is even. As a representation of It, Ga,b =
Syma F ⊗ ∧bF is isomorphic to

a⊕
i=0

U
(n−3+a−i

n−3 )[(n−2
b−2)+(n−2

b )]
i+1 ⊕ U

(n−3+a−i

n−3 )(n−2
b−1)

i ⊕ U
(n−3+a−i

n−3 )(n−2
b−1)

i+2 =
a+2⊕
i=0

U
d(i)
i ,

where

d(0) =
(

n − 3 + a

n − 3

)(
n − 2
b − 1

)
,

d(1) =
(

n − 4 + a

n − 3

)(
n − 2
b − 1

)
+

(
n − 3 + a

n − 3

) [(
n − 2
b − 2

)
+

(
n − 2

b

)]
,

and for 2 ≤ i ≤ a + 2,

d(i) =
[(

n − 3 + a − i

n − 3

)
+

(
n − 1 + a − i

n − 3

)] (
n − 2
b − 1

)
+

(
n − 2 + a − i

n − 3

) [(
n − 2
b − 2

)
+

(
n − 2

b

)]
.

Corollary 3.7. Suppose that n is even. The local L-function of j�Ga,b at
t, det(1 − Ft · T |GIt

a,b) has degree

Dn,a,b :=
a+2∑
i=0

d(i) =
(

n − 2 + a

n − 2

)(
n

b

)
.

For every i = 1, . . . , a + 2, it has d(i) roots which are pure of weight (a + b)
(n − 1) − (i − 1).

For n odd, the situation is much simpler. In that case, as a representation
of It, F ∼= χ2 ⊕ 1n−1, where χ2 : It → Q̄

�
� is the unique character of order 2.

Therefore, we get isomorphisms

Syma F ∼=
a⊕

i=0

Symi χ2 ⊗ Syma−i 1n−1 ∼=
a⊕

i=0
i, even

1(n−2+a−i

n−2 ) ⊕
a⊕

i=0
i, odd

χ
(n−2+a−i

n−2 )
2
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∧bF ∼= ∧b1n−1 ⊕ (χ2 ⊗ ∧b−11n−1) ∼= 1(n−1
b ) ⊕ χ

(n−1
b−1)

2 .

Syma F ⊗ ∧bF ∼= 1α(n−1
b )+β(n−1

b−1) ⊕ χ
α(n−1

b−1)+β(n−1
b )

2

where

α =
a∑

i=0
i, even

(
n − 2 + a − i

n − 2

)
, β =

a∑
i=0

i, odd

(
n − 2 + a − i

n − 2

)

Corollary 3.8. Suppose that n is odd. The local L-function of j�Ga,b at t,
det(1 − Ft · T |GIt

a,b) has degree

Dn,a,b :=
(

n − 1
b

) a∑
i=0

i, even

(
n − 2 + a − i

n − 2

)
+

(
n − 1
b − 1

) a∑
i=0

i, odd

(
n − 2 + a − i

n − 2

)
.

All its roots are pure of weight (a + b)(n − 1).

Consider the sheaf j�Ga,b on P
1. Since F̌ ∼= F(n − 1), we get an

isomorphism Ǧa,b
∼= Ga,b((n − 1)(a + b)). By Poincaré duality, we conclude

that there is a perfect pairing of Gal(k̄/k)-modules

H i(P1
k̄, j�Ga,b) × H2−i(P1

k̄, j�Ga,b) → Q̄�((a + b)(1 − n) − 1)

for i = 0, 1, 2. Since Ga,b is smooth on U , the zeroth cohomology group
H0(P1

k̄
, j�Ga,b) corresponds to the maximal geometrically constant subsheaf

of Ga,b. Since Ga,b is pure of weight (n − 1)(a + b) and all Frobenius eigen-
values of j�Ga,b at infinity are integral powers of q, such a subsheaf must be
a direct sum of copies of Q̄�((1 − n)(a + b)/2). Incidentally, this shows that
H0(P1

k̄
, j�Ga,b) = 0 if (n − 1)(a + b) is odd. Therefore, we have:

Proposition 3.9. The L-function of j�Ga,b on P
1 has the form

L(P1, j�Ga,b) =
Pa,b(T )

(1 − q(a+b)(n−1)/2T )δa,b(1 − q(a+b)(n−1)/2+1T )δa,b
,

where δa,b = dim H0(P1
k̄
, j�Ga,b), and Pa,b(T ) is a polynomial that satisfies

the functional equation

Pa,b(T ) = ±T rq((a+b)(n−1)+1)r/2Pa,b

(
1

q(a+b)(n−1)+1T

)
,

where r = deg(Pa,b).
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Proof. We have just seen that

H0(P1
k̄, j�Ga,b) = Q̄�

(
(1 − n)(a + b)

2

)δa,b

,

and Poincaré duality implies that

H2(P1
k̄, j�Ga,b) = Q̄�

(
(1 − n)(a + b)

2
− 1

)δa,b

.

This gives the denominator.
The numerator is Pa,b(T ) = (1 − α1T ) · · · (1 − αrT ), where α1, . . . , αr

are the Frobenius eigenvalues of H1(P1
k̄
, j�Ga,b). By Poincaré duality, these

eigenvalues are permuted by α 
→ q(a+b)(n−1)+1/α. In particular, (
∏

αi)2 =
q((a+b)(n−1)+1)r. We have

Pa,b

(
1

q(a+b)(n−1)+1T

)
=

(
1 − 1

α1T

)
· · ·

(
1 − 1

αrT

)

=
1

α1 · · ·αrT r
(α1T − 1) · · · (αrT − 1) =

(−1)r

±T rq((a+b)(n−1)+1)r/2 Pa,b(T )

and the functional equation follows. �
To find the dimension of H0(P1

k̄
, j�Ga,b), we will use the knowledge of

the global monodromy of F , as in [19]. Let V be the geometric generic fibre
of F , regarded as a representation of π1(U ⊗ k̄). We know that the Zariski
closure G of the image of π1(U ⊗ k̄) in GL(V ) is Sp(n) if n is even and O(n)
if n is odd. The dimension we are looking for is

dim(Syma(V ) ⊗ ∧b(V ))G = dim HomG(Syma(V ),∧b(V )),

since V is self-dual as a representation of G.
Suppose n = 2m is even. The representations of G = Sp(n) are in one-

to-one correspondence with the representations of the Lie algebra g = spn.
If L1, . . . , Lm are generators of the weight lattice for g, then Symd V is the
irreducible representation with maximal weight dL1, and the kernel of the
natural contraction map ∧dV → ∧d−2V is the irreducible representation of
maximal weight L1 + · · · + Ld for 1 ≤ d ≤ m [13, ch.17]. Therefore, we have

∧bV ∼= W (L1 + · · · + Lb) ⊕ W (L1 + · · · + Lb−2) ⊕ · · · ⊕ V,

if b ≤ m is odd and

∧bV ∼= W (L1 + · · · + Lb) ⊕ W (L1 + · · · + Lb−2) ⊕ · · · ⊕ 1,
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if b ≤ m is even and ∧bV ∼= ∧n−bV for m ≤ b ≤ n. So Syma V ⊗ ∧bV con-
tains exactly one copy of the trivial representation if a = 0 and b ≤ n is even
or if a = 1 and b ≤ n is odd, and does not contain the trivial representation
otherwise.

Suppose n = 2m + 1 is odd. The representations of SO(n), the con-
nected component of G containing the identity, are in one-to-one correspon-
dence with the representations of the Lie algebra g = son contained in the
tensor algebra of the standard representation. Each of them gives rise to
two different representations of O(n) (given one of them, the other one is
obtained by tensoring with the determinant). If L1, . . . , Lm are generators
of the weight lattice for g, then ∧dV is the irreducible representation with
maximal weight L1 + · · · + Ld for d ≤ m, ∧dV ∼= ∧n−dV for m + 1 ≤ d ≤ n,
and the kernel of the natural contraction map Symd V → Symd−2 V is the
irreducible representation of maximal weight dL1 (cf. [13, ch.19]). Therefore
we have

Syma V ∼= W (aL1) ⊕ W ((a − 2)L1) ⊕ · · · ⊕ V,

if a is odd and

Syma V ∼= W (aL1) ⊕ W ((a − 2)L1) ⊕ · · · ⊕ 1,

if a is even. So Syma V ⊗ ∧bV (as a representation of g) contains exactly
one copy of the trivial representation if a is even and b = 0 or n, or if a
is odd and b = 1 or n − 1, and does not contain the trivial representation
otherwise.

For G itself, since the determinant becomes trivial only in even tensor
powers of the standard representation, we get that Syma V ⊗ ∧bV contains
exactly one copy of the trivial representation and no copies of the deter-
minant representation if a is even and b = 0, or if a is odd and b = 1. It
contains exactly one copy of the determinant representation and no copies of
the trivial representation if a is even and b = n or if a is odd and b = n − 1.
It does not contain the trivial or the determinant representations otherwise.
Therefore we get

Proposition 3.10. The dimension δa,b = dimH0(P1
k̄
, j�Ga,b) is

if n is even

{
1 if a = 0 and b ≤ n is even or a = 1 and b ≤ n is odd

0 otherwise

if n is odd

{
1 if a is even and b = 0 or a is odd and b = 1
0 otherwise
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Putting everything together, we get the following expression for the
L-function of Ga,b, in the case where n + 1 divides q − 1 (which is always
true after a finite extension of the base field):

Theorem 3.11. Assume that (n + 1) divides (q − 1). The L-function of
Ga,b on U has degree n

(
n+a−1

a

)(
n
b

)
and is given by

L(U,Ga,b) =
Pa,b(T )Qa,b(T )n+1 ∏[(a+b)(n−1)/2]

k=0 (1 − qkT )αa,b(k)

(1 − q(a+b)(n−1)/2T )δa,b(1 − q(a+b)(n−1)/2+1T )δa,b

where δa,b = 0 or 1 is given by Proposition 3.10, αa,b(k) = Nn,a,b,k−
Nn,a,b,k−1, Qa,b(T ) is a polynomial whose degree Dn,a,b and the weights of
its roots are given in Corollaries 3.7 and 3.8 and Pa,b(T ) is a polynomial in
1 + TZ[T ] of degree

n

(
n + a − 1

a

)(
n

b

)
+ 2δa,b − Nn,a,b,c − (n + 1)Dn,a,b,

where c = [(a + b)(n − 1)/2]. Furthermore, Pa,b(T ) is pure of weight (a +
b)(n − 1) + 1 and it satisfies the functional equation

Pa,b(T ) = ±T rq((a+b)(n−1)+1)r/2Pa,b(1/q(a+b)(n−1)+1T ).

Proof. For t ∈ (n + 1)μn+1, the factor

Qa,b(T ) = det(1 − Ft · T |GIt

a,b)

is independent of t. Its degree Dn,a,b and the weights of its roots are given
in Corollaries 3.7 and 3.8.

The degree of the L-function is the negative Euler characteristic
−χ(U,Ga,b). Since Ga,b is everywhere tamely ramified, this Euler charac-
teristic is χ(U)rank(Ga,b) = −n

(
n+a−1

a

)(
n
b

)
. The stated formula is just the

decomposition

L(U,Ga,b) = L(P1, j�Ga,b) det(1 − F∞ · T |GI∞
a,b )

×
∏

t∈(n+1)μn+1

det(1 − Ft · T |GIt

a,b).

The shape of each of the factors has already been determined. �
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Corollary 3.12. The L-function of Ga,b on A
1 is given, with the same

notation as in the previous theorem, by

L(A1,Ga,b) =
Pa,b(T )Ea,b(T )n+1 ∏[(a+b)(n−1)/2]

k=0 (1 − qkT )αa,b(k)

(1 − q(a+b)(n−1)/2T )δa,b(1 − q(a+b)(n−1)/2+1T )δa,b

where the polynomial Ea,b(T ) is a factor of Qa,b(T ), whose degree is given by

(
n−2+a

n−2

)(
n−1
b−1

)
if n is even(

n−1
b

) a∑
i=2

i, even

(
n−2+a−i

n−2

)
+

(
n−1
b−1

) a∑
i=0

i, odd

(
n−2+a−i

n−2

)
if n is odd

Its reciprocal roots are pure of weight (a + b)(n − 1) if n is odd, and mixed
of weights ≤(a + b)(n − 1) if n is even.

Proof. Let j : U ↪→ A
1 be the inclusion. The isomorphism F ∼= j�j

�F gives
an injection of sheaves Ga,b = Syma F ⊗ ∧bF = Syma j�j

�F ⊗ ∧bj�j
�F ↪→

j�j
�(Syma F ⊗ ∧bF) = j�j

�Ga,b.
For t ∈ (n + 1)μn+1, let

Q′
a,b(T ) = det(1 − Ft · T |Syma Ft ⊗ ∧b Ft),

which does not depend on the choice of t. Since Ft has dimension n − 1,
Q′

a,b(T ) is a polynomial of degree
(
n−2+a

n−2

)(
n−1

b

)
and, by the previous injec-

tion, it divides the polynomial Qa,b(T ). The L-function of Ga,b on A
1 is then

given by

L(A1,Ga,b) =
L(U,Ga,b)
Q′

a,b(T )n+1

=
Pa,b(T )Ea,b(T )n+1 ∏[(a+b)(n−1)/2]

k=0 (1 − qkT )αa,b(k)

(1 − q(a+b)(n−1)/2T )δa,b(1 − q(a+b)(n−1)/2+1T )δa,b
,

where Ea,b(T ) = Qa,b(T )/Q′
a,b(T ) is a polynomial of degree Dn,a,b −

(
n−2+a

n−2

)(
n−1

b

)
. Replacing Dn,a,b by its explicit value gives the formulae stated. �

Theorem 3.13. Assume that (n + 1) divides (q − 1). Let

Pd(T ) =
n∏

b=0

Pd−b,b(T )(−1)b−1(b−1), Qd(T ) =
n∏

b=0

Qd−b,b(T )(−1)b−1(b−1).
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Then, the L-function of [F ]d on U is given by

L(U, [F ]d) = Pd(T )Qd(T )n+1Rd(T )
[(n−2)/2]∏

k=0

1 − qdkT

1 − qdk+1T
,

where Rd(T ) is given by

Rd(T ) = (1 − qd(n−1)/2T )(1 − q(d(n−1)/2)+1T )(1 − q(d(n−2)/2)+1T )

if n and d are even,

Rd(T ) = (1 − q(d(n−2)/2)+1T )

if n is even and d is odd,

Rd(T ) = (1 − q(d(n−1)/2)T )

if n and d are odd,

Rd(T ) = (1 − q(d(n−1)/2)+1T )−1

if n is odd and d is even.

Proof. From the L-function decomposition

L(U, [F ]d) =
n∏

b=0

L(U,Gd−b,b)(−1)b−1(b−1)

and Theorem 3.11, we get

L(U, [F ]d) = Pd(T )Qd(T )n+1
∏[d(n−1)/2]

k=0 (1 − qkT )
∑n

b=0(−1)b−1(b−1)αd−b,b(k)

(1 − qd(n−1)/2T )δd(1 − qd(n−1)/2+1T )δd

where

δd =
n∑

b=0

(−1)b−1(b − 1)δd−b,b.

Using Proposition 3.10, we find δd = −d + (d − 1) = −1 if n and d are even,
δd = 1 if n is odd and d is even and δd = 0 if d is odd. Let N(T ) denote the
numerator of the previous expression. It remains to compute N(T ).
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Let

H+ = ⊕n
b=0,b oddGb−1

d−b,b, H− = ⊕n
b=0,b evenGb−1

d−b,b.

These are “real” sheaves. Then,

N(T ) =
det(I − F∞T |HI∞

+ )

det(I − F∞T |HI∞
− )

.

We know that H+ and H− are pure of weight n − 1, the inertia group
I∞ acts unipotently on them and all their Frobenius eigenvalues at infinity
are integral powers of q. If μ(k) (resp. ν(k)) is the number of Frobenius
eigenvalues of H+ (resp. of H−) at infinity which are equal to qk, then by
[4, 1.8.4] and [17, 7.0.7], we deduce

det(I − F∞T |HI∞
+ ) =

[d(n−1)/2]∏
k=0

(1 − qkT )(μ(k)−μ(k−1)).

Similarly,

det(I − F∞T |HI∞
− ) =

[d(n−1)/2]∏
k=0

(1 − qkT )(ν(k)−ν(k−1)).

Thus,

N(T ) =
[d(n−1)/2]∏

k=0

(1 − qkT )(μ(k)−ν(k))−(μ(k−1)−ν(k−1)).

On the other hand, for every r ≥ 1 the trace of the action of the drth
power of the local Frobenius at infinity on [F ]d is

Trace(F dr
∞ |F) = 1 + qdr + · · · + qdr(n−1).

But

Trace(F dr
∞ |F) = Trace(F r

∞|[F ]d) =
∑
k≥0

(μ(k) − ν(k))qkr.
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Since this holds for every r ≥ 1, we conclude that μ(k) − ν(k) = 1 if
k = 0, d, . . . , (n − 1)d and 0 otherwise. Therefore,

N(T ) =
[d(n−1)/2]∏

k=0

(1 − qkT )(μ(k)−ν(k))−(μ(k−1)−ν(k−1))

= (1 − qd(n−1)/2T )
n−3/2∏
k=0

1 − qdkT

1 − qdk+1T

if n is odd, and

N(T ) =
[d(n−1)/2]∏

k=0

(1 − qkT )(μ(k)−ν(k))−(μ(k−1)−ν(k−1))

= (1 − q(d(n−2)/2)+1T )
(n/2)−1∏

k=0

1 − qdkT

1 − qdk+1T

if n is even. This combined with the explicit description of δd shows that

N(T )
(1 − qd(n−1)/2T )δd(1 − qd(n−1)/2+1T )δd

= Rd(T )
[(n−2)/2]∏

k=0

1 − qdkT

1 − qdk+1T
.

The theorem is proved. �

We can now finish the proof of Theorem 1.1. By Theorem 2.1, we deduce

L(A1, [Hn−1(K)]d) = L(A1, [F ]d)L(A1, Q̄n
� ) = L(A1, [F ]d)(1 − qT )−n

= L(U, [F ]d)P (d, T )−(n+1)(1 − qT )−n,

where P (d, T ) is the dth Adams operation of the polynomial P (T ) in
Definition 3.2. On the other hand, for n ≤ j ≤ 2(n − 1),

L(A1, [Hj(K)]d) = L(A1, Q̄�(d(n − 1 − j))(
n

j−n+2)

= (1 − qd(j−(n−1))+1T )−( n

j−n+2).

Also, by Theorem 2.1 and the Grothendieck trace formula,

Zd(A1, Xλ) =
2(n−1)∏
j=n−1

L(A1, [Hj(K)]d)(−1)j

.
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Substituting the above calculation, we obtain

Zd(A1, Xλ)(−1)n−1
= L(U, [F ]d)P (d, T )−(n+1)

n−1∏
i=0

(1 − qdi+1T )(−1)i+1( n

i+1).

This together with Corollary 3.11 gives Theorem 1.1. The proof is complete.

4. Zeta function in terms of Gauss sums

In this section, we give an elementary formula for the number Nq(λ) of Fq-
rational points in the fibre Xλ in terms of Gauss sums for every λ ∈ Fq.
This type of elementary formulas for a general equation can be found in
Koblitz [23]. We derive a more explicit formula in the special case of Xλ

and in particular deduce an explicit formula for the zeta function of X0.
This allows us to determine the rank of the sheaf F when p divides n + 1
and the local factor at 0 of the sheaf F .

Let ω : F
�
q → C

∗ be a primitive character of order q − 1. For every k ∈ Z,
define the Gauss sum Gq(k) by

Gq(k) = −
∑
a∈F�

q

ω(a)−kζ
TrFq/Fp (a)
p ,

where ζp = exp(2πi/p). It is clear that Gq(k) = 1 if (q − 1)|k, and |Gk(q)| =√
q otherwise. We have the inversion formula

(4.1) ζTr(a)
p =

q−2∑
k=0

Gq(k)
1 − q

ω(a)k,

for every a ∈ F
�
q . We find that

Nq(λ) =
1
q

∑
x0∈Fq

∑
x1, ... ,xn∈F�

q

ζTr(x0x1+···+x0xn+(x0/x1···xn)−x0λ)
p

=
(q − 1)n

q
+

1
q
Sq(λ),

where

Sq(λ) =
∑

x0,x1, ... ,xn∈F�
q

ζTr(x0x1+···+x0xn+(x0/x1···xn)−x0λ)
p .
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Using Equation 4.1, we deduce for λ �= 0:

Sq(λ) =
∑

x0,x1,...,xn∈F�
q

ζTr(x0x1)
p · · · ζTr(x0xn)

p ζTr(x0/x1···xn)
p ζTr(−x0λ)

p

=
q−2∑

k1,...,kn+2=0

Gq(k1) · · ·Gq(kn+2)
(1 − q)n+2

∑
yq−1

i =1

(y0y1)k1 · · · (y0yn)kn

(
y0

y1 · · · yn

)kn+1

(y0ω(−λ))kn+2

=
q−2∑

k1,...,kn+2=0

Gq(k1) · · ·Gq(kn+2)
(1 − q)n+2 ω(−λ)kn+2

×
∑

yq−1
i =1

y
k1+···+kn+2

0 y
k1−kn+1

1 · · · ykn−kn+1
n

= (−1)n
q−2∑
a,b=0

(n+1)a+b≡0(q−1)

Gq(a)n+1Gq(b)
q − 1

ω(−λ)b

= (−1)n

⎛
⎜⎝ 1

q − 1
+

∑
(n+1)a+b≡0(q−1)

(a,b)�=(0,0)

Gq(a)n+1Gq(b)
q − 1

ω(−λ)b

⎞
⎟⎠ .

Thus, we obtain

Proposition 4.1. If λ �= 0, the number of Fq-rational points in Xλ is
given by

Nq(λ) =
(q − 1)n − (−1)n

q
+

(−1)n

q − 1
+

(−1)n

q(q − 1)

×
∑

(n+1)a+b≡0(q−1)
(a,b)�=(0,0)

Gq(a)n+1Gq(b)ω(−λ)b

=
(q − 1)n − (−1)n

q
+

(−1)n

q − 1
+

(−1)n

q(q − 1)

×
q−2∑
k=1

Gq(k)n+1Gq(−(n + 1)k)ω(−λ)−(n+1)k.
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If λ = 0, then Equation 4.1 gives

Sq(0) =
∑

x0,x1,...,xn∈F�
q

ζTr(x0x1+···+x0xn+(x0/x1···xn))
p

=
∑

x0,x1,...,xn∈F�
q

ζTr(x0x1)
p · · · ζTr(x0xn)

p ζTr(x0/x1···xn)
p

=
q−2∑

k1,...,kn+1=0

Gq(k1) · · ·Gq(kn+1)
(1 − q)n+1

×
∑

yq−1
i =1

(y0y1)k1 · · · (y0yn)kn

(
y0

y1 · · · yn

)kn+1

=
q−2∑

k1,...,kn+1=0

Gq(k1) · · ·Gq(kn+1)
(1 − q)n+1

×
∑

yq−1
i =1

y
k1+···+kn+1

0 y
k1−kn+1

1 · · · ykn−kn+1
n

= (−1)n+1
q−2∑
k=0

(n+1)k≡0(q−1)

Gq(k)n+1

= (−1)n+1

⎛
⎜⎝1 +

q−2∑
k=1

(n+1)k≡0(q−1)

Gq(k)n+1

⎞
⎟⎠ .

And therefore

Nq(0) =
(q − 1)n − (−1)n

q
+

(−1)n+1

q

q−2∑
k=1

(n+1)k≡0(q−1)

Gq(k)n+1.

Writing (n + 1) = pam with (p, m) = 1, this is

(4.2) Nq(0) =
(q − 1)n − (−1)n

q
+

(−1)n+1

q

q−2∑
k=1

mk≡0(q−1)

Gq(k)n+1.

Let Sm = { 1
m , 2

m , . . . , m−1
m }. It is clear that multiplication by p induces

an action on Sm, called p-action:

r 
→ {pr},
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where {pr} denotes the fractional part of pr. For a given r ∈ Sm, let d(r)
denote the length of the p-orbit containing r, that is, the smallest positive
integer d such that (pd − 1)r ∈ Z. Let Sm,d denote the set of p-orbits of
length d in Sm.

Since Gpd(k) = Gpd(pk), it is clear that if r1 and r2 are in the same
p-orbit σ in Sm,d, Gpd(r1(pd − 1)) = Gpd(r2(pd − 1)). Let us denote this
common value by Gpd(σ(pd − 1)). Since the set of p-orbits of Sm is the
union of Sm,d for all d ≥ 1, we have (see [30] for more general such formula)

Theorem 4.2. The zeta function of X0 over Fp is given by

Z(X0, T )(−1)n

=
n−1∏
i=0

(1 − piT )(
n

i+1)(−1)i

×
∏
d≥1

∏
σ∈Sm,d

(
1 − T d

Gn+1
pd (σ(pd − 1))

pd

)
.

Proof. By Equation 4.2,

log Z(X0, T ) =
∑
k≥1

T k

k

(pk − 1)n − (−1)n

pk

+
∑
k≥1

T k

k

(−1)n+1

pk

pk−2∑
h=1

mh≡0(pk−1)

Gpk(h)n+1.

The second sum is
∑
k≥1

T k

k

(−1)n+1

pk

∑
r∈Sm

r(pk−1)∈Z

Gpk(r(pk − 1))n+1

= (−1)n+1
∑
d≥1

∑
σ∈Sm,d

∑
r∈σ

⎛
⎝∑

k≥1

T dk

dk

Gpdk(r(pdk − 1))n+1

pdk

⎞
⎠

= (−1)n+1
∑
d≥1

∑
σ∈Sm,d

⎛
⎝∑

k≥1

T dk

k

Gpdk(σ(pdk − 1))n+1

pdk

⎞
⎠ .

By the Hasse–Davenport relation, this sum becomes

= (−1)n+1
∑
d≥1

∑
σ∈Sm,d

⎛
⎝∑

k≥1

T dk

k

Gpd(σ(pd − 1))k(n+1)

pdk

⎞
⎠ ,

which gives the stated formula for the zeta function. �
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Corollary 4.3. 1. The rank of the sheaf F at 0 is m − 1.
2. The local L-function of the sheaf F at 0 is given by

∏
d≥1

∏
σ∈Sm,d

(
1 − T d

Gn+1
pd (σ(pd − 1))

pd

)
.

Proof. From the given formula for the L-function, we see that the degree of
the non-trivial part is given by |Sm| = m − 1. �
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