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Frobenius action on �-adic Chen–Ruan cohomology
Michael A. Rose

We extend the definition of the Chen–Ruan cohomology ring to
smooth, proper, tame, Deligne–Mumford stacks over fields of
positive characteristic and prove that a modified version of the
Frobenius action preserves the product.

1. Introduction

The Weil conjectures describe a strong relationship between the arithmetic
and topological properties of a smooth projective scheme X over Spec(Z).
In [19], Weil himself observed that the conjectures would follow from an
appropriate cohomology theory for abstract schemes (analogous to singular
cohomology for complex varieties), and in the 1960’s a great amount of work
was done by Artin, Deligne, Grothendieck and others to develop �-adic coho-
mology for this purpose. In particular, by considering a smooth reduction
XFq

and applying the Lefschetz trace theorem to the geometric Frobenius
morphism F on X := X ×Fq

Fq, one obtains the fundamental equation

(1.1) det(1 − F ∗t | H∗(X ét, Ql)) = exp
∞∑

r=1

|X(Fqr)| t
r

r

where det denotes a graded determinant, and l is coprime to q.
Now we replace X with a smooth Deligne–Mumford stack X over

Spec(Z) (further hypothesis to be considered below), and one is naturally
led to consider the Weil conjectures on X . Again, one focuses on finding
an appropriate cohomology theory. On one hand, there is already a nat-
ural notion of �-adic cohomology in this setting, and several of the prop-
erties crucial to proving an analog of the Weil conjectures for stacks have
been established: Poincaré duality appeared in [11, 12] while a Lefschetz
trace theorem was established in [4]. On the other hand, while motivated
by string theory, Chen and Ruan [8] constructed a ring now bearing their
names: the Chen–Ruan cohomology ring, H∗

CR(XC). (The authors actually
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defined the ring for an almost complex orbifold; the theory was developed
for Deligne–Mumford stacks in [1, 2, 3].)

The aim of this article is to study the relationship between the Chen–
Ruan cohomology ring and the arithmetic properties of X . If X is now
a smooth, tame, Deligne–Mumford Fq-stack with projective coarse moduli
scheme and X := X ×Fq

Fq, then we define the �-adic Chen–Ruan cohomol-
ogy ring of X denoted H∗

CR(X ét, Ql). Most of the technical requirements
for this construction already appeared in [1]. Furthermore, we construct
an action of the arithmetic Frobenius on H∗

CR(X ét, Ql). (We use the arith-
metic Frobenius as opposed to the geometric Frobenius merely to simplify
the proofs. In the context of Artin stacks, however, this distinction is crucial
for convergence issues, see [4].)

This latter result deserves comment. In general, H∗
CR is not functorial.

Let F : X → X denote the arithmetic Frobenius on X . While F naturally
induces a linear map Iμ(F )∗ : H∗

CR(X ét, Ql) → H∗
CR(X ét, Ql) (see Section 2

for a detailed definition), Iμ(F )∗ is not a ring homomorphism. However, the
main proposition of this article shows that a slight modification of Iμ(F )∗

indeed preserves the product structure.

Proposition 1.1. The orbifold Frobenius morphism Forb given by

Forb : H∗
CR(X ét, Ql) −→ H∗

CR(X ét, Ql)

α �−→ q−age(α) · Iμ(FX )∗(α)

is an isomorphism of graded rings.

Here, age : H∗
CR(X ét, Ql) → Q is a function appearing also in the grading

on H∗
CR(X ét, Ql) described in Section 3.

We study the arithmetic information contained by this Galois represen-
tation in Section 6 below. In particular, we include the analoges of equa-
tion (1.1) with H∗ (resp. F ∗) replaced by H∗

CR (resp. F ∗
CR), and we list

a consequence of Yasuda’s proof [20] of an additive version of the crepant
resolution conjecture.

Conventions. Unless specified otherwise, assume that all sheaves on a
Deligne–Mumford stack X are defined on the étale site of X . We fix an
isomorphism of the Tate twist Ql(1) ∼= Ql as sheaves on X , inducing an
isomorphism Ql(r) ∼= Ql for each r. Then for smooth X of dimension n,
the duality theorem in [12, Theorem 7.7] yields H i(X , Ql) ∼= H2n−i(X , Ql)∨.
This isomorphism is used implicitly throughout. We define homology groups
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Hi(X , Ql) := H2n−i(X , Ql). To improve the exposition proofs of several
lemmas appear only in the appendix. Also, no attempt is made to make
the statements as general as possible, and we work over explicit base fields
Fq and Fq.

2. Arithmetic Frobenius and inertia stacks

In this section, we review inertia stacks and the induced action of the arith-
metic Frobenius on them. The notion of inertia stack is essential to the
Gromov–Witten theory of stacks, and its �-adic cohomology will form the
underlying vector space for main object of study in this article: the �-adic
Chen–Ruan cohomology ring.

Let X be a Deligne–Mumford stack over Fq. Fix an algebraic closure
Fq ⊃ Fq and denote X := X ×Fq

Fq. Let Fq
φ−→ Fq denote the Frobenius mor-

phism given by λ → λq, and let FX ,q := 1X × Spec(φ) denote the arithmetic
Frobenius morphism on X . The subscripts will be dropped when no confu-
sion arises.

Let μr := Spec(Z[t]/〈tr − 1〉) denote the group scheme over Z of rth
roots of unity, and also denote by μr the base change to Fq when the context
is clear. Let Bμr := [Spec(Fq)/μr] denote the quotient stack corresponding
to the trivial action of μr on Spec(Fq).

Definition 2.1.

1. We denote by Iμr
(X ) ≡ Homrep

Fq
(Bμr,X ) the stack of representable

1-morphisms over Fq from Bμr to X .

2. The cyclotomic inertia stack is given by

Iμ(X ) :=
⊔

r

Iμr
(X ).

Iμ(X ) is a Deligne–Mumford stack and is smooth when X is tame and
smooth (this follows from [1, Section 3]).

Example 2.2. Let G → Spec(Fq) be a finite étale group scheme acting on
Fq-scheme X, and consider the corresponding stack [X/G]. Assume that the
action is tame or equivalently that the stack [X/G] is tame. For simplicity,
assume that Fq contains the rth roots of unity for each r dividing the order
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of G. We then have Iμ([X/G]) ∼= I([X/G]) the usual inertia stack, and thus

(2.1) Iμ([X/G]) =
⊔

(g)

[Xg/C(g)].

Here the union is over conjugacy classes of elements of G(Fq), C(g) denotes
the centralizer group scheme of g, and Xg denotes the fixed subscheme of g.

Let X and Y be Fq-stacks. Let f and g be 1-morphisms from X to Y,
and let φ : f ⇒ g be a 2-morphism. Then composition induces 1-morphisms
Iμ(f) and Iμ(g), and a 2-morphism Iμ(φ) making Iμ(−) into a
2-functor.

Definition 2.1 and the above remarks clearly also apply to Fq-stacks.
The map Fq

φ−→ Fq then induces two morphisms on Iμ(X ) which agree by
the following lemma.

Lemma 2.3.

1. There is an equivalence

Iμ(X ×Fq
Fq)

∼=−→ Iμ(X ) ×Fq
Fq.

2. We denote the latter simply by Iμ(X ). Under the identification above,
the following functors are 2-isomorphic:

Iμ(FX )
∼=
⇒ FIμ(X ).

Proof. The proof proceeds exactly as in the proof of Lemma 5.2 appearing
in the appendix. �

Remark 2.4. It is important to note that there are several variations of
the definition of inertia stack appearing in the literature. In particular, to
work in the most general setting one should consider the rigidified iner-
tia stack [1, 2]. However, since our aim is to study the Chen–Ruan coho-
mology (and hence only degree zero stable maps), Definition 2.1 above is
preferred.

3. �-adic cohomology

Let l be coprime to q and denote by Zl (resp. Ql) the �-adic integers (resp.
numbers). Let X be a proper, smooth, tame, Deligne–Mumford Fq-stack
with projective coarse moduli scheme, and let X := X ×Fq

Fq.
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Definition 3.1. The orbifold �-adic cohomology of X is a graded
Ql-algebra. As a vector space, it is given by

H∗
CR(X , Ql) := H∗(Iμ(X ), Ql)

=
⊕

i

(
lim←−
n

H i(Iμ(X ), Z/lnZ)

)
⊗
Zl

Ql.

Any morphism g : X → Y induces Iμ(g) : Iμ(X ) → Iμ(Y). Since Z/lrZ
is a constant sheaf we have Iμ(g)∗(Z/lrZ) ∼= Z/lrZ. Passing to the limit, we
obtain a linear map on H∗(Iμ(X ), Ql). Corresponding push-forward maps
on homology groups are then induced by duality.

We now introduce the grading on H∗(Iμ(X ), Ql) using the notion of age.
We include the definition at this stage because the definition itself is fairly
direct. The motivation, however, arises later from the appearance of age in
the Riemann–Roch theorem on curves [1, Theorem 7.2.1] (and hence also
appears in the computation of the degree of the virtual fundamental class on
the moduli stack of stable maps into X ). Since one aim of this article is to
determine the effect of the Frobenius morphism on this virtual fundamental
class, we proceed without assuming our base field is algebraically closed.

For every r, fix an embedding μr ↪→ Gm. Then a group scheme morphism
ρ : μr → Gm over Fq is determined by an integer 0 ≤ k ≤ r − 1 with ρ(g) =
gk. Define

age(ρ) :=
k

r
∈ Q.

When (q, r) = 1, this function extends by linearity to a function on the
representation ring of the group scheme. For any object ((Bμr)S

f−→ X )
in Iμr

(X )(S), each fiber of f∗TX over S gives a representation of μr, and
we obtain a locally constant function on Iμr

(X ). We obtain a well-defined
locally constant function also denoted by age:

age : Iμ(X ) → Q.

Finally, we may pull this function back to a function on Iμ(X ), and this
induces a function age : H∗

CR(X , Ql) → Q. The various uses of this notation
will be clear from the context. The grading is then given by

(3.1) H∗
CR(X , Ql) =

⊕

i∈Q

H i
CR(X , Ql),
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where

(3.2) H i
CR(X , Ql) :=

⊕

a+2b=i

Ha(age−1(b), Ql).

Note that the choices of embeddings μr ↪→ Gm will change the age func-
tion on Iμ(X ).

Remark 3.2. Note that, in general, an automorphism of Iμ(X ) over X
will not preserve the age function. An essential example is the involution
i : Iμ(X ) → Iμ(X ) given by precomposing each (Bμr)S → X with the auto-
morphism (Bμr)S → (Bμr)S induced by g �→ g−1 : μr → μr. On the other
hand, any automorphism of Iμ(X ) induced by an automorphism of X does
preserve the age. An essential example is the arithmetic Frobenius on X .

Remark 3.3. In [20], Yasuda defines the additive Chen–Ruan cohomology
as in Definition 3.1 above with the following exceptions. If we define a
function on Iμ(X ) by sht := age ◦ i, where i is as in Remark 3.2, then Yasuda
replaces the right side of (3.2) with

⊕

a+2b=i

Ha(sht−1(b), Ql(−b)).

(Strictly speaking, Yasuda also works with the cohomology of coarse moduli
space.) The Tate twist Ql(−b) changes the weight as a Galois representation,
and one motivation for this arises from Yasuda’s proof ([20, Corollary 4.9])
of an additive version of the Crepant resolution conjecture [6, 16, 17]. In the
current paper, another motivation is found via the Galois action on the ring
structure of Chen–Ruan cohomology defined in the section.

4. Ring structure

In this section, we gather the results in [1, 3, 5] needed to define the ring
structure. One subtlety is the cycle map from Chow groups to �-adic coho-
mology which requires the moduli stack to be smooth (see Remark 4.7).

4.1. Introduction

The ring structure we shall impose on H∗
CR(X , Ql) is motivated by quan-

tum cohomology, and so we give a brief description. For simplicity, consider
a smooth projective scheme Y over C. The quantum cohomology of Y
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is a deformation of H∗(Y, C). If H+
2 (Y, Z) ⊂ H2(Y, Z) denotes the classes

generated by effective curves in Y , then the parameter space of the defor-
mation is given by the semigroup algebra Q[H+

2 (Y, Z)]. The product in this
deformed ring requires integrals over the moduli stack of curve in Y (more
precisely over a compactification by stable maps due to Kontsevich [9]).
Finally, the original ring H∗(Y, C) is recovered by setting the deformation
parameters to zero (i.e., by only considering the moduli stack of constant
stable maps). However, when Y is replaced with a stack Y, this limit of
quantum cohomology does not agree with H∗(Y, C). The new ring obtained
is called the Chen–Ruan cohomology ring. In what follows we define the ring
structure directly using the complex case as motivation.

4.2. Stable maps

Let X be a proper, smooth, tame, Deligne–Mumford stack over Fq with
projective coarse moduli scheme X, and let X := X ×Fq

Fq. We define the
moduli stack of stable maps into X as constructed in [3].

Definition 4.1. A balanced twisted stable n-pointed map (C f−→ XS , {Σi})
is a commutative diagram of Fq-stacks

�n
i=1Σi

⊂ � C f � XS

C

π

� |f | � XS

�

where

1. C is a proper Deligne–Mumford stack with coarse moduli space C.

2. (C, {π(Σi)}) is an n-pointed nodal curve.

3. Over the node {xy = 0} of C, C has étale chart

[{xy = 0}/(μr)Fq
],

where the action is given by (x, y) �→ (ξu, ξ−1v).
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4. Over a marked point π(Σi) of C, C has étale chart

[A1/(μr)Fq
],

where the action is given by u �→ ξu and Σi is the substack defined by
u = 0.

5. π is an isomorphism away from the markings and nodes.

6. f is representable with |f | the induced map on coarse moduli spaces.

7. |f | is stable in the sense of Kontsevich [9].

We shall refer to the above merely as stable maps.
For any d, g ≥ 0, we say that (C f−→ X , {Σi}) has degree d and genus g

if |f | does. After appropriately defining such objects over an arbitrary Fq-
scheme, one obtains the stack Kg,n(X , d), a proper stack of finite type over
Fq with projective coarse moduli space [3, Theorem 1.4.1].

Our purposes only require the case when g = 0, d = 0, and n = 3. We
shall denote K0,3(X , 0) simply by K(X ), and we have the following additional
properties.

Lemma 4.2. K(X ) = K0,3(X , 0) is a smooth Deligne–Mumford stack
over Fq.

Proof. See the appendix. �

Lemma 4.3. There exist evaluation morphisms over Fq denoted ei for
i = 1, 2, 3 :

K(X ) ei−→ Iμ(X )

which applies to objects over Fq as

(
C f−→ X , {Σi}

)
�→

(
Σi

f |Σi−−→ X
)

.

Proof. The proof of [2, Lemma 6.2.1] carries over to this context without
change. �

Remark 4.4. The subtlety of this lemma lies in the definition of stable
maps over more general base schemes.
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4.3. Virtual classes

Finally, we consider integrating cohomology classes on this moduli space,
and for this purpose we need a fundamental class. However, even though
K(X ) is smooth, the natural vector spaces holding obstructions to deforming
stable maps may still be non-trivial. In [5], the authors define an obstruction
theory to describe this phenomenon. They proceed to construct a virtual
fundamental class in the Chow group of the moduli stack as a replacement
of the usual fundamental class. In the case of interest in this article, these
constructions have the following concrete description.

Let

(4.1)

U f � X

K(X )

π

�

be the universal curve and universal stable map to X . Then we have the
following lemma.

Lemma 4.5.

1. The natural map

(R•π∗f
∗TX )∨ φ−→ Ω1

K(X )/Mtw
0,3

is a perfect relative obstruction theory with virtual dimension (denoted
vdim) given by the locally constant function

vdim = dimX − age ◦ e1 − age ◦ e2 − age ◦ e3.

2. R1π∗f∗TX is locally free (denote the locally constant rank by r), and
the virtual fundamental class (denoted [K(X )]vir) in Avdim(K(X ))Q

induced by φ is

[K(X )]vir = cr(R1π∗f
∗TX ).

Proof. See the appendix. �
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Remark 4.6. The previous lemma will also hold if X is replaced by X .
However, the statement over the non-algebraically closed field is essential in
the proof of Proposition 1.1 (specifically Lemma 5.3) where we compute the
action of the Frobenius on [K(X )]vir in the Chow group.

Remark 4.7. Since K(X ) is smooth, one can construct the cycle map

A∗(K(X ))Q ⊗Q Ql
cl−→ H∗(K(X ), Ql) = H∗(K(X ), Ql)

by proceeding as in [14, VI. Section 9] using the Gysin sequence in [4, Corol-
lary 2.1.3] and a slight refinement of the long exact sequence in Section 2.1
of [ibid.]. We denote the image of [K(X )]vir under cl also by [K(X )]vir.

4.4. Ring structure

The ring structure can now be constructed formally on H∗
CR(X , Ql) just as

in the original formulation [8]. For α, β ∈ H∗
CR(X , Ql) define

α � β := i∗(e3)∗(e∗
1α ∪ e∗

2β ∩ [K(X )]vir),

where i : Iμ(X ) → Iμ(X ) is the morphism induced by the isomorphisms λ �→
λ−1 : μr → μr.

Proposition 4.8. The operation � makes H∗
CR(X , Ql) into a (graded)

commutative, associative ring with unity.

Proof. The description of the boundary strata of K0,4(X , 0), and the proofs
in [1, Sections 5 and 6] apply to this context as well. Note that, since we
are only concerned with degree zero maps, there is no need to decompose
K0,n(X ) via curve classes on the coarse moduli space of X . �

Example 4.9. Suppose b is coprime to q and Gm = Spec(Fq[t, 1/t]) acts
on A

2 with weights 1 and b. Assume for simplicity that b is prime and Fq

contains the bth roots of unity. The stack X := [(A2\{0})/Gm] has étale
neighborhoods

[A1/μb] → X
A

1 → X

whose induced map on coarse moduli spaces form a cover of P
1, the coarse

moduli scheme of X . Here the μb action is given by the character
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λ �→ λb : μb → Gm. We may then use Example 2.2 above to compute

Iμ(X ) = X
⊔

�b−1
i=1Bμb.

Let A denote the copy of Bμb ⊂ Iμ(X ) with age equal to 1
b . Denote also by

A a generator of H0(A, Ql) ⊂ H0(Iμ(X ), Ql). Then one has

H∗
CR(X , Ql) ∼= Ql[A]/〈Ab+1〉.

In particular, Ab generates H2(X , Ql) ⊂ H2(Iμ(X ), Ql) and has age
equal to 0.

5. Frobenius actions

Let X , X be as in the last section. The arithmetic Frobenius morphism FX
on X induces the morphism Iμ(FX ) = FIμ(X ) on Iμ(X ). Thus we have an
induced map on Chen–Ruan cohomology groups which we denote by

Iμ(FX )∗ : H∗
CR(X , Ql) → H∗

CR(X , Ql).

Consider Example 4.9 above. Iμ(FX )∗ acts on the orbifold �-adic coho-
mology by fixing A1, . . . , Ab−1 and sending Ab to q−1Ab. Thus Iμ(FX )∗ does
not preserve the ring structure. However, by composing Iμ(FX )∗ with the
morphism sending Ai �→ q−age(Ai)Ai, we indeed obtain a homomorphism of
rings sending Ai �→ q−i/bAi. Proposition 1.1 from the introduction shows
that this phenomenon holds in general.

Proposition 1.1. The orbifold Frobenius morphism given by

FX ,q,orb : H∗
CR(X , Ql) −→ H∗

CR(X , Ql)

α �−→ q−age(α) · Iμ(FX ,q)
∗(α)

is a homomorphism of graded rings.

When no confusion arises, the subscripts X and q on F may be dropped.

Remark 5.2. Note that instead of twisting the natural map Iμ(FX )∗ to
obtain Forb, one could twist the coefficients of the Chen–Ruan cohomology.
For instance, if we redefined the Chen–Ruan cohomology groups by replacing
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the right side of (3.2) with

⊕

a+2b=i

Ha(age−1(b), Ql(−b)),

then the natural map action of Iμ(FX ) on these new groups would be a ring
isomorphism.

Before proving the proposition we make a few observations. First, we
consider the map on K(X ) induced by FX . For any Fq-scheme S, and any
object

�3
i=1Σi

⊂ � C fS � X

S
� π� Spec(Fq)

�

of K(X )(S), the commutative diagram

�3
i=1Σi

⊂ � C
FX ◦ fS � X

S
� F

Fq
◦ π

� Spec(Fq)
�

is clearly an object of K(X ) once we check the stability condition. However,
this is easy since fS has degree zero. The obvious map on morphisms then
determines a functor we denote by K(FX ). Note that K(FX ) covers the
Frobenius map on Spec(Fq).

The following lemma compares K(FX ) with the Frobenius morphism
FK(X ).

Lemma 5.3.

1. There is an equivalence

K(X ×Fq
Fq)

∼=−→ K(X ) ×Fq
Fq.
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2. We denote the latter simply by K(X ). Under the identification above,
the following functors are 2-isomorphic:

K(FX )
∼=
⇒ FK(X ).

Proof. See the appendix. �
These identifications allow us to determine the image of the virtual

fundamental class under K(FX ) in homology.

Lemma 5.4. K(FX )∗[K(X )]vir = q−vdim[K(X )]vir

Proof. See the appendix. �
Proof of Proposition 1.1. For simplicity, denote Forb := FX ,q,orb, I(−) :=
Iμ(−), and F := FX ,q. Let I(X ) =

⊔
j I(X )j be a decomposition into

connected components. Define aj := age(I(X )j) and âj := age(i(I(X )j)),
where i : Iμ(X ) → Iμ(X ) is the isomorphism appearing in the definition of
� above. To prove the proposition it suffices to check that

(5.1) Forb(α1) � Forb(α2) = Forb(α1 � α2)

for any αk ∈ H∗(I(X )j(αk), Ql) ⊂ H∗(I(X ), Ql) (k = 1, 2). Apply I(F )∗

I(F )∗ to the left side of (5.1), where Poincaré duality isomorphisms have
been suppressed. By the projection formula and since K(F ) and I(F )
commute, we then have

I(F )∗I(F )∗(Forb(α1) � Forb(α2))

= I(F )∗i∗(e3)∗K(F )∗(q−a1−a2K(F )∗e∗
1α1 ∪ K(F )∗e∗

2α2 ∩ [K(X )]vir)

= I(F )∗i∗(e3)∗(q−a1−a2e∗
1α1 ∪ e∗

2α2 ∩ K(F )∗[K(X )]vir)

= I(F )∗i∗(e3)∗(q−a1−a2−vdime∗
1α1 ∪ e∗

2α2 ∩ [K(X )]vir).

(5.2)

Now note that the operator I(F )∗I(F )∗ decomposes according to the
following lemma whose proof is left to the reader.

Lemma 5.5. Let 1j denote both the fundamental class of I(X )j and the
operator given by taking cup product with 1j. Then

I(F )∗I(F )∗ =
∑

j

q−dim I(X )j1j .



526 Michael A. Rose

Thus (5.2) implies

Forb(α1) � Forb(α2) =
∑

j

1j qdim I(X )jI(F )∗i∗(e3)∗

× (q−a1−a2−vdime∗
1α1 ∪ e∗

2α2 ∩ [K(X )]vir)(5.3)

=
∑

j

1j Forbi∗(e3)∗(q−a1−a2−vdim+dim I(X )j+a3e∗
1α1

∪ e∗
2α2 ∩ [K(X )]vir).

Now for each j, the 1j in (5.3) restricts the class to I(X )j . This
contribution will not be changed if we replace [K(X )]vir by its restriction
to e−1

1 I(X )j1

⋂
e−1
2 I(X )j2

⋂
(i ◦ e3)−1I(X j), where j1 (resp. j2) is the

index of the component of I(X ) supporting α1 (resp. α2). On this locus of
K(X ), vdim is constant and equal to dim X − a1 − a2 − â3.

Since for each k,

ak + âk = dim X − dim I(X )j(ak),

the exponent of q in (5.3) is zero. Thus (5.3) implies

Forb(α1) � Forb(α2) =
∑

j

1j Forbi∗(e3)∗(e∗
1α1 ∪ e∗

2α2 ∩ [K(X )]vir)

= Forb(α1 � α2),

and the proposition is proved. �

6. Orbifold zeta functions

Let X , X be as in the last section. For simplicity assume in addition that
X is Gorenstein condition: X has generically trivial isotropy, and for any
geometric point ξ ∈ X (Fq), the representation

Aut(ξ) −→ GL(TX |ξ)

has determinant 1. The latter condition is equivalent to age : Iμ(X ) → Q

taking integer values. Thus H∗
CR(X , Ql) is Z-graded.
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For a linear map F : V → V on a Z-graded vector space we write V =
⊕Vi, F = ⊕Fi and we denote

det(F |V ) =
∏

i

det(Fi|Vi)(−1)i+1

Tr(F |V ) =
∑

i

(−1)iTr(Fi|Vi).

Definition 6.1. The orbifold cohomological zeta function is given by

ZH∗
CR

(X , t) := det(1 − Forbt|H∗
CR(X , Ql))

= exp

( ∞∑

r=1

Tr(F r
orb|H∗

CR(X , Ql))
tr

r

)
.

One obtains a trace formula for ZH∗
CR

(X , t) by applying the Lefschetz
trace theorem of [4] to Iμ(X ). For a Fq-scheme S, let [Iμ(X )(S)] denote the
set of isomorphism classes of the groupoid Iμ(X )(S). For ξ ∈ [Iμ(X )(S)], let
Aut(ξ) denote the automorphism group of any representative of ξ. Finally,
let Iμ(X ) =

⊔
i Iμ(X )i be a decomposition into connected components so

that age and dimension (dim) are constant on each Iμ(X )i. Then [4, Theorem
3.1.2] yields

Tr(Forb|H∗
CR(X , Ql)) =

∑

i

Tr(Forb|Iμ(X )i
|H∗(Iμ(X )i, Ql))

=
∑

i

q−age(Iμ(X )i)Tr(F ∗
Iμ(X )i

|H∗(Iμ(X )i, Ql))

=
∑

i

q−age(Iμ(X )i)
∑

ξ∈[Iμ(X )i(Fq)]

q−dim(ξ)

#Aut(ξ)

=
∑

ξ∈[Iμ(X )(Fq)]

q−age(ξ)−dim(ξ)

#Aut(ξ)
.(6.1)

Remark 6.2. One is led to claim that the trace of Forb counts objects of⋃
r Homrep

Fq
(Bμr,X )(Fq) counted with weights by the age and dimension.

It is natural to ask if the trace of Forb counts some natural objects on X
without weights.

Recall that Forb = Fq,orb depends on the base field. Since F r
q,orb = Fqr,orb,

equation (6.1) yields a formula for the trace of each iterate of Fq,orb. We
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then obtain the following analog of (1.1):

det(1 − Forbt|H∗
CR(X , Ql))

= exp
∞∑

r=1

⎛

⎝
∑

ξ∈[Iμ(X )(Fqr )]

(qr)−age(ξ)−dim(ξ)

#Aut(ξ)

⎞

⎠ tr

r
.(6.2)

We attempt to further interpret the arithmetic information contained by
ZH∗

CR
(X , t) motivated by the crepant resolution conjecture [6, 16, 17]. A the-

orem of Yasuda [20, Corollary 4.9] gives the following result. Two smooth,
proper stacks X1 and X2 are K-equivalent if there exists smooth, proper
stack Y and proper, tame and birational maps π1 and π2

Y

��
�

�
�

�
π1

�
�

�
�

�

π2

�
X1 X2

such that π∗
1KX1

∼= π∗
2KX2 , where KXi

is the canonical line bundle on Xi.

Theorem 6.3. If X1 and X2 are K-equivalent, proper, smooth, tame
Deligne–Mumford stacks (recall also the Gorenstein assumption made
throughout this section), then

ZH∗
CR

(X1, t) = ZH∗
CR

(X2, t).

Proof. We simply show that the orbifold zeta function defined above agrees
with the natural zeta function built from the Galois representation in [20,
Definition 4.6] for which the statement holds [20, Corollary 4.9]. Following
Remarks 3.3 and 5.1 above, it suffices to show

Tr

⎛

⎝I(F )∗|
⊕

a+2b=j

Ha(age−1(b), Ql(−b))

⎞

⎠

= Tr

⎛

⎝I(F )∗|
⊕

a+2b=j

Ha((age ◦ i)−1(b), Ql(−b))

⎞

⎠,

where i : I(X ) → I(X ) is the involution. However, this follows from i ◦
I(F ) = I(F ) ◦ i which one can easily show. �
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In particular, we see that the orbifold zeta function carries the arithmetic
information of any crepant resolution (when one exists) of the coarse moduli
scheme.

Corollary 6.4. Let X be a proper, smooth, tame Deligne–Mumford stack
satisfying the hard Lefschetz condition with trivial generic stabilizer. Suppose
Y → X is a crepant resolution of the coarse moduli scheme X of X , then

ZH∗
CR

(X , t) = Z(Y, t),

where Z(Y, t) is the classical zeta function.

Remark 6.5. Yasuda also proves an analog of [20, Corollary 4.9] over the
complex numbers, and this result was obtained independently by Lupercio
and Poddar [13].

Remark 6.6. It is natural to associate to an orbifold, the zeta function of
any crepant resolution (when one exists) of the coarse moduli space (see for
example [18, page 9]). The above corollary then shows that this definition
agrees with Definition 6.1 above in the special case when such a crepant
resolution exists.

Example 6.7. Suppose 2 is coprime to q, and suppose Gm = Spec(Fq[t, 1
t ])

acts on A
3 with weights 1, 1 and 2. The stack X := [A3\{0}/Gm] has étale

neighborhood [A2/μ2] → X , where the action of μ2 ∼= Z/2Z is given by the
direct sum of two copies of the non-trivial character of μ2. If

X π1−→ |X |

denotes the morphism to the coarse moduli scheme, then |X | is the projective
closure of A

2/μ2 ∼= Spec(Fq[x, y, z]/〈xy − z2〉). The canonical sheaf K|X | is
locally free and π∗

1K|X | ∼= KX . Furthermore, the blow-down map

Y := P(OP1 ⊕ OP1(1)) π2−→ |X |

is a resolution of singularities with π∗
2K|X | ∼= KY . Thus the fibered product

Y ×|X | X induces a K-equivalence between Y and X . On each space, the
cohomology is generated by algebraic classes and so the Frobenius action is
easily computed.

Since Y is a scheme, Iμ(Y ) = Y , H∗
CR(Y , Ql) = H∗(Y , Ql), and Forb =

F ∗
Y is the map on cohomology induced by the usual arithmetic Frobenius
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morphism. The cohomology of Y is well known, and we have

ZH∗
CR

(Y, t) =
1

(1 − t)(1 − q−1t)2(1 − q−2t)
.

For the cohomology of X , we proceed as in Example 4.9 obtaining

Iμ(X ) = X � Bμ2.

The substack Bμ2 has age 1 and H0(Bμ2, Ql) is fixed by Forb. Thus Bμ2
contributes a factor of 1/1 − q−1t to ZH∗

CR
(X , t). The substack X ⊂ Iμ(X )

has age 0 and the action of Forb on H∗(X , Ql) agrees with the action of F|X |
on H∗(|X |, Ql). Thus X contributes a factor of 1/(1 − t)(1 − q−1t)(1 − q−2t)
to ZH∗

CR
(X , t), and we have

ZH∗
CR

(X , t) =
1

(1 − t)(1 − q−1t)2(1 − q−2t)
.

A. Appendix

Here we collect the proofs of several lemmas used above.

Lemma 4.2. K(X ) = K0,3(X , 0) is a smooth Deligne–Mumford stack
over Fq.

Proof. First, the moduli of stable maps to the coarse moduli scheme X is
given by K0,3(X, 0) ∼= M0,3 × X ∼= Spec(Fq) × X, and hence is a Deligne–
Mumford stack over Fq. Thus by [3, Theorem 1.4.1], K(X ) is a Deligne–
Mumford stack as well.

To see that K(X ) is smooth, it is sufficient to prove smoothness of K(X ).
Let K(X )

p−→ Mtw
0,3 be the forgetful functor to the Fq-stack of (not necessarily

stable) genus zero twisted curves with three marked points (see [15]). It
follows from Remark 1.10 in [ibid.] that Mtw

0,3 is smooth over Fq, thus
it suffices to show that p is smooth. By Proposition 17.10 and Corollary
17.9.2, p is smooth if and only if Ω1

K(X )/Mtw
0,3

is locally free of finite rank. For

this is suffices to show R0π∗f∗TX is locally free of finite rank, where π and
f are the universal curve and stable map, respectively, as in (4.1).

Let Spec(Fq)
p−→ K(X ) be a geometric point corresponding to the stable

map (C g−→ X , {Σi}). Then to show R0π∗f∗TX is locally-free it suffices to
show that dimH0(C, g∗TX ) is locally constant as p varies.
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For a tuple b = (b1, b2, b3) of positive integers, let Mtw
0,3(b) ⊂ Mtw

0,3 denote
the locus of curves with isotropy group μbi

at the ith marked point. The
decomposition Mtw

0,3 =
⊔

b Mtw
0,3(b) [15, Section 5.4] induces a decomposition

K(X ) =
⊔

b

p−1(Mtw
0,3(b)).

Note that since K(X ) consists of degree zero maps, the image of p is con-
tained in the locus of smooth curves with stable coarse moduli space. Fix b
for which p−1(Mtw

0,3(b)) is non-empty and let C be the unique domain curve
of maps in p−1(Mtw

0,3(b)). Then we have a morphism of Fq-stacks

p−1(Mtw
0,3(b))

Φ−→ Pic(C)

sending (C × S
f−→ X , {Σi}) to (f∗TX → C × S). (Φ is defined on morphisms

in the obvious way). Since Pic(C) is discrete [7, Section 3.1], Φ is locally
constant. Thus the functions (C × S

f−→ X , {Σi}) �→ hi(C, f∗TX ) are locally
constant as well. This proves the lemma.

We note that over the complex numbers the smoothness of K(X ) is
asserted in [1, Section 6.2]. �

Lemma 4.5.

1. The natural map

(R•π∗f
∗TX )∨ φ−→ Ω1

K(X )/Mtw
0,3

is a perfect relative obstruction theory with virtual dimension (denoted
vdim) given by the locally constant function

vdim = dimX − age ◦ e1 − age ◦ e2 − age ◦ e3.

2. R1π∗f∗TX is locally free (denote the locally constant rank by r), and
the virtual fundamental class (denoted [K(X )]vir) in Avdim(K(X ))Q

induced by φ is

[K(X )]vir = cr(R1π∗f
∗TX ).

Proof. Part (2) follows from [5, Proposition 7.3] using Part(1), Lemma 4.2
above, and [10, Theorem 5.2.1]. (The fact that R1π∗f∗TX is locally free also
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follows from the proof of Lemma 4.2 above.) For Part (1), we proceed exactly
as outlined in [1, Section 4.5]. Finally for the virtual dimension, it suffices
to compute χ(C, f∗TX ) = χ(C, f

∗
TX ), where (C f−→ X , {Σi}) is a Fq-point in

K(X ), and (C f−→ X , {Σi}) is the corresponding point in K(X ). However,
then the formula follows from the Riemann–Roch theorem on curves [1,
Theorem 7.2.1]. �

Lemma 5.2.

1. There is an equivalence

K(X ×Fq
Fq)

∼=−→ K(X ) ×Fq
Fq.

2. Under the identification above, the following functors are 2-isomorphic:

K(FX )
∼=
⇒ FK(X ).

Proof. First we note that Part(1) appears in [3, Prop. 5.2.1]. However, we
include an elementary and explicit proof required for Part(2).

Denote the structure map by A : Spec(Fq) → Spec(Fq), and denote
projection maps by p (e.g., pX : X → X ). For part (1), an object of K(X ×Fq

Fq) over base Fq-scheme S is given by a commutative diagram:

(5.1)

�3
i=1Σi

⊂ � C fS � X

S

πS

� q� Spec(Fq),
�

where we have suppressed the map on coarse moduli spaces. Define a functor
φ by associating the pair consisting of the map q together with the diagram
given by composing fS (resp. q) in (5.1) with pX (resp. with A). It is
clear that pX ◦ fS is representable. To see that it is stable, note that the
map on coarse moduli schemes induced by pX is pX , the projection onto X.
Moreover, p∗

XOX(1) ∼= OX(1) and so fS is stable if and only if pX ◦ fS is
stable. One can define φ on morphisms in the obvious way, and it is easy to
see that indeed φ is a functor.
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For the reverse, an object of K(X ) ×Fq
Fq over base Fq-scheme S is given

by a commutative diagram:

(5.2)

�3
i=1Σi

⊂ � C
f ′

S � X

S

πS

� q′
� Spec(Fq),

�

where q′ factors through the structure map q′′ : S → Spec(Fq) (i.e., A ◦ q′′ =
q′). Then define ψ (inverse of φ) by sending (5.2) to the diagram given by
(5.1) with q replaced by q′′ and fS replaced by the unique map induced by
the pair (q′′ ◦ πS , f ′

S). One can define φ on morphisms in the obvious way.
It easy to check that indeed ψ is a functor and that the pair (φ, ψ) gives the
required equivalence.

For the second part, we show that the following diagram is 2-
commutative:

K(X )
FK(X )� K(X )

K(X )

φ

�

K(FX )
� K(X ).

ψ

�

Let η denote the diagram (5.1) in K(X ) above. Since FK(X ) = 1X × FSpec(Fq),
we have that φ ◦ FK(X ) ◦ ψ(η) is given by a diagram similar to (5.2) with q

replaced by FSpec(Fq) ◦ q and fS replaced by the unique morphism induced
by the pair (FSpec(Fq) ◦ q ◦ πS , pX ◦ fS). Denote this unique morphism by ∗.
On the other hand, consider the commutative diagram:

CS
fS � X

FX � X pX � X

S

πS

� q� Spec(Fq)
� FSpec(Fq)� Spec(Fq)

�
A� Spec(Fq),

�
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with two right squares Cartesian and FX ◦ pX = pX . This diagram shows
that ∗ is given by FX ◦ fS . Thus we see that φ ◦ FK(X ) ◦ ψ(η) = K(FX )(η).
One can further check that φ ◦ FK(X ) ◦ ψ and K(FX ) agree on morphism as
well and this proves the lemma. �

Lemma 5.3. The equation

K(FX )∗[K(X )]vir = q−vdim[K(X )]vir

holds in H∗(K(X ), Ql).

Proof. Consider the Cartesian diagram:

K(X )
pK(X )� K(X )

Spec(Fq)
�

A� Spec(Fq),
�

where we identify K(X ) with K(X ) by Lemma 5.2. The projection pK(X )
induces a map on Chow groups p∗

K(X ) : A∗(K(X ))Q → A∗(K(X ))Q. We first
show that p∗

K(X )[K(X )]vir = [K(X )]vir. Let UX (resp. UX ) denote the univer-
sal curves over K(X ) (resp. K(X )). By [3, Corollary 9.1.3], UX (resp. UX )
is an open and closed substack of K0,4(X , 0) (resp. K0,4(X , 0)). Thus the
proof of Lemma 5.2 identifies UX with UX ×Fq

Fq, and we have the following
diagram with Cartesian squares:

X pX � X

�
�

�
�

�
fX

	

�
�

�
�

�
fX

	

UX
pUX � UX

K(X )

πX

� pK(X )� K(X ).

πX

�
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Since p∗
X TX ∼= TX and p∗

K(X )R
1(πX )∗ ∼= R1(πX )∗p∗

UX
a simple diagram

chase gives

p∗
K(X )[K(X )]vir = cvdim(R1(πX )∗f

∗
X TX )

= cvdim(R1(πX )∗f
∗
X TX )

= [K(X )]vir.

Now fix a connected component K(X )0 ⊂ K(X ) so that the virtual dimen-
sion (vdim) is constant. If the virtual class on K(X )0 is given by

∑
ni[Vi],

where each Vi is a substack of pure dimension vdim, then [K(X )]vir =
∑

ni

[V i]. Thus we have K(FX )(V i) = FK(X )(V i) = V i. Furthermore, if F geo
K(X )

denotes the geometric Frobenius morphism, then we also have F geo
K(X )

(V i) =

V i. Hence (F geo
K(X )

)∗ [V i] = qvdim[V i] in the Chow group. However, after
passing to (co)homology the arithmetic and geometric Frobenius maps are
inverses, and this proves the lemma. �
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