COMMUNICATIONS IN
NUMBER THEORY AND PHYSICS
Volume 1, Number 3, 479-512, 2007

The zeta-function of a p-adic manifold, Dwork
theory for physicists

PHILIP CANDELAS AND XENIA DE LA OSSA

In this article we review the observation, due originally to Dwork,
that the (-function of a variety, defined originally over the field
with p elements, is a superdeterminant. We review this obser-
vation in the context of the family of quintic 3-folds, 2?21 z? —
o) H?:l x; =0, and study the (-function as a function of the param-
eter ¢. Owing to cancellations, the superdeterminant of an infinite
matrix reduces to the (ordinary) determinant of a finite matrix,
U(yp), corresponding to the action of the Frobenius map on cer-
tain cohomology groups. The ¢-dependence of U(yp) is given by a
relation U(p) = E~1(¢P)U(0)E(p) with E(p) a Wronskian matrix
formed from the periods of the variety. The periods are defined by
series that converge for [|¢||, < 1. The values of ¢ that are of inter-
est are those for which P = ¢ so, for nonzero @, we have ||<p||p =1.
We explain how the process of p-adic analytic continuation applies
to this case. The matrix U(y) breaks up into submatrices of rank
4 and rank 2 and we are able from this perspective to explain some
of the observations that have been made previously by numerical
calculation.
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1. Introduction

A fundamental object of study for a variety over a finite field is its (-function.
Consider, for example, the one parameter family of quintic 3-folds, M.,
defined by the vanishing of the polynomial

5

5
(1.1) P(x, ) :Zx?—gpnxi,
i=1 i

1

which is the family of varieties that will largely occupy us here. If ¢ takes
values in F,, the field with p elements, and the variety is considered as a
subvariety of F,P*, then one can compute Ni(p) the number of solutions
o (1.1). More generally one can take ¢ € F, and the coordinates x; € Fpm
and denote the number of solutions by N,,(¢). The (-function is defined as
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a generating function for these numbers

(o) = exp{ > waﬁ:}.
m=1

The form of the (-function as a function of T is greatly restricted by the
Weil conjectures [1], which have since been proved. One of these conjectures,
proved by Dwork [2], states that the (-function is a rational function of T
The proof proceeds by showing that the (-function is a ratio of products
of determinants that of the form det (1 — U(g)T) for certain finite matrices
U(y) that are independent of T

Dwork showed [3,4] that the (-function is a superdeterminant (though
this was not stated in this language) of a matrix that expresses the action of
the Frobenius map on a differential complex associated to the variety. The
Frobenius map is important in what follows so we pause to review it here.

Consider again the variety defined by the equation P(z,¢) = 0 where
we take the coefficients of P to take values in E, (in our case this is just
the statement ¢ € [,) but we allow x to take values in a larger field such
as the algebraic closure of F, or, as we shall want to do later, in C, which
is the completion of the algebraic closure of QQ, the field of p-adic numbers.
Now, since P(z,¢) = 0 we have P(x,¢)? = 0. Hence

and where we have used the fact that P = ¢. In this way, we see that the
Frobenius map

Fr(z) = a?
is an automorphism of M. The fixed points of this map are the points
for which w? = x4, 7=1,...,5 and this is precisely the condition that = be

defined over F,. Thus N; is the number of fixed points of the Frobenius
map.! The approach of Dwork to the problem of calculating the numbers
N (¢) was to define a cohomology theory adapted to the p-adic context
and then to use an appropriate analog of the Lefshetz fixed point theorem
that applies to varieties defined over C. This permits the Euler number of
the fixed point set of an automorphism to be calculated as the trace of a
matrix representing the action of the automorphism on the cohomology of
the variety.

!The rigidity theorem (for an accessible account see, for example, [5]) states that
the Frobenius map generates the full Galois group, so one can equally say that Ny
is the number of fixed points of the Galois action.
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We work through this analysis here in the context of the quintic 3-fold
in a way that we hope is straightforward. The quantities that are familiar in
the complex case, particularly when the variety can be embedded in a toric
variety, duly make their appearance. In particular, the Newton polytope
of the variety and the cone of monomials over the Newton polyhedron play
an important role as do the periods of the variety and the Picard-Fuchs
equation. An intriguing difference that we do not resolve is that, in the
present calculation, the periods appear as infinite series rather than in the
truncated forms of [6].

The reader is warned at the outset that, in attempting to present a
reasonably self-contained account, we work through material that is by now
very classical. There are reviews of the work of Dwork, such as those by
Katz [7, 8] that have themselves become classic references. To quote from
these references would allow us to shorten this account considerably though
at the expense of being self-contained.

Dwork represents the (inverse of) the action of the Frobenius map by a
matrix U(g) that is given in a p-adic neighborhood of ¢ = 0 by the expression

(1.2) Up) = E~H(e")U(0)E(p),

where F is the Wronskian matrix formed from the periods of the variety. The
periods are defined by series, and the series converge on the disk |||, < 1. If
the series were to converge also for the Teichmiiller points for which ¢? = ¢
then the (-function, which is calculated in terms of determinants of the
form det(1 — U(y)T) would not depend on ¢. In fact, the series diverge
for [l¢ll, = 1 and the matrix U(p) has to be defined via a process of p-adic
analytic continuation. This leads to a matrix U(y) which is defined on the
Teichmiiller points but which is no longer of the form (1.2).

In [9], the (-function was calculated for the family (1.1). This was done
numerically in virtue of the fact that the numbers of points Ny, (¢) can be
computed rapidly in terms of the periods of M., (at least for p not too large
and for the first few values of m). This was sufficient to suggest that the
(-function factorizes in the form

R1 (¢, T) Ra (0, pPT?)*°? Rp (o, prT?)*/?
(1-T)1—-pT)1—-p*T)1—p*T)

(1.3) (e, T) =

the interesting point here is the form of the numerator since the form of the
denominator is standard. In this expression, p (= 1,2 or 4) is the smallest
integer such that 5|p” — 1 and the quantities R;, R4, Rp are quartics in
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their second argument. For example, Ry takes the form
Ri(p,T) = 1+ a(p)T + b(p)pT? + a(p)p’T? + p°T*

with a(¢) and b(y) integers that depend on .

The organization of this paper is as follows: in §2 we review the
theory of the Dwork character and show how this relates to an operator
on a vector space. The vector space in question is that of power series in
the coordinates x;. The (-function for M, is the superdeterminant of a
matrix acting on a complex of forms of degree up to 5. The matrices are, at
this stage, infinite matrices acting on the infinite-dimensional space of power
series. By defining a suitable covariant derivative, as we do in § 3, the eigen-
values of the supermatrix are seen to cancel in the superdeterminant apart
from a finite number that correspond to the action of the supermatrix on
finite-dimensional cohomology groups. Furthermore, the superdeterminant
corresponding to these cohomology groups itself decomposes into a product
of factors that can be identified with the quartics R1, R4, Rp that appear
in (1.3). The explicit computation of these determinants is the subject of § 4.

Our interest in this formalism arises, in part, from a desire to study
the arithmetic properties of the moduli spaces of p-adic Calabi-Yau vari-
eties. We hope to return to this topic elsewhere, particularly in regard to
arithmetic special geometry and arithmetic properties of the attractor mech-
anism. It is likely that the both the attractor varieties and the parameters to
which they correspond will have interesting arithmetic properties. We are
interested also in the fact that Dwork’s analysis manifests processes that
are familiar, in other contexts, to physicists. In particular, the process of
reducing infinite-dimensional Hilbert spaces to a finite-dimensional super-
symmetric subspace is familiar in the context of topological field theory. In
this context, there is a standard way of passing to the states and operators
of the supersymmetric subspace with the operators having the property that
they commute or anticommute with the supersymmetry generators. In the
context of Dwork theory, the cohomology spaces that are the analogs of the
supersymmetric subspace, have parameters and Dwork finds an interesting
and essential use for operators that do not commute with the cohomology
generators since these can map between spaces corresponding to different
parameter values. Our aim in this article is to explain these points. The
reader is warned that we do not aspire to complete mathematical rigor,
particularly with regard to processes such as the reduction of the infinite-
dimensional superdeterminants to the finite-dimensional superdeterminants
of matrices that act on the cohomology spaces, though we do explain how
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this reduction comes about. The detailed p-adic analysis is given in the
original papers of Dwork.

One final disclaimer is in order. The fact that the zeta-function of a vari-
ety may be understood in terms of the action of the Frobenius automorphism
on suitably defined cohomology groups is central to the Weil Conjectures and
as such has been central to much of modern number theory. These obser-
vations have been refined and improved and, given sufficient background,
there are other, more modern, ways of proceeding from a variety to its
¢-function [10-12]. The algorithmic complexity of the computation of the
(-function of a variety is also of interest in relation to cryptography. The
issue, in this context, is the rapid computation of the {-function for a general
variety for fields F,» with r large and p small. These considerations do not
concern us here though we note that, as a matter of practical calculation,
the methods of [6] work well in the regime of small r for p < 500, say.

After this work was complete we became aware of the recent paper of
Kloosterman [13] which has substancial overlap with the present work.

2. Dwork’s evaluation of the zeta function
2.1. Review of Dwork’s character
We begin by reviewing the properties of Dwork’s character © : F, — C};

a full account may be found in [14,15]. In order to define ©, we define first
a function § as a power series

o0
(2.1) F(X) =exp(n(X — X)) =D ca(nX)",
n=0
where 7 is a number in C, such that 7P~1 = —p. The exponential is under-

stood as given by the usual power series and the resulting power series in X
defines § in the first instance. By differentiating § we find

1dg p—1

— (1+ X 1)5

and it is easy to show from this relation that the series for § has the form
shown and that the coefficients satisfy the recurrence nc, = ¢,—1 + ¢cn—p
with ¢, = 0 for n < 0 and ¢g = 1. Now it is an essential fact that the series on
the right of (2.1) converges in the disk || X||,, < 1 + € for some fixed positive e.
The exponential series exp(7Y’) converges, for p-adic Y, in the disk [ V|, < 1
and the X-disk that ensures || X — XP|[, <1 is the disk || X[, < 1. We now



Zeta-function of a p-adic manifold 485

give an improved definition for F(X) as the sum of the series in (2.1) valid
throughout the disk where this series converges

(2.2) FX) =S elm X)X, <1+
n=0

So defined §(X) exists and is p-adic analytic in the disk [|X|[, <1+e€ On

the smaller disk [[X||, <1, we have §(X) = exp(m(X — XP)). We shall

need also to evaluate §(X) for [ X||, = 1. For such X the series converges,

however, as we shall see shortly, it does not converge to exp (7r (X - X p)).
The character © : F, — C7, of order p, is defined by

O(z) = F(Teich(x)).

The Teichmiiller representative X = Teich(x) corresponds to the embedding
of By in C, as a multiplicative group. We think of = as an integer in the
range 0 < x < p — 1 and then we define Teich(z) as a limit

Teich(z) = lim 2"
n—oo

which converges in the p-adic sense. Thus Teich(z) = x + O(p) and Teich(z)
satisfies the equation

(2.3) Teich(z)? = Teich(z).

In virtue of our previous discussion, however, we are prepared for the fact
that even though this last relation holds nevertheless O(z) # exp(0) = 1. In
fact, we see that

O(1) =1+ +0(n?)
and since |||, <1 it follows that ©(1) # 1. If, however, X? = X then

F(X)P = exp(prX — prXP) =1

since the presence of the p in the exponent ensures the convergence of
the series. In particular, ©(1) is a pth root of unity and since O(z) =
1 + 7 Teich(z) + O(7?) we see also that ©(z) = ©(1)Tih@) = g(1)".
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It follows from the definition of the Teichmiiller representative that for

z,y €,
Teich(x + y) = Teich(z) + Teich(y) + pZ
for some Z € Z,. From this we see that © is a nontrivial additive character,
that is
O(z +y) = 6(x) O(y),

and moreover is of order p since O(pz) = 1.

Dwork also adapted this construction to give a character of order p,
@7’ : Fpr — (C;

Or(z) = O(tr(z)),

where tr : E,» — [, is the trace map

tr(z) =a+ 2P +a* + -+ a2

Now the limit Teich(z) = lim,,_,o 29" exists also for z € F, though Teich(x),
for  # 0, is now a unit (has unit norm) of C, but is not, in general?, in L.

We have
r—1
Teich (tr(z)) = Z Teich? () 4 pZ
/=0

with Z an integer of C,. It follows that
O, (i) = O(1) -0 Teieh” (@)

Note, however, that we cannot, in general, write the right-hand side of this
relation as the product

r—1
H ) ( 1)Teichpz(x)
=0

since the Teich? (z) are not, in general, in Zy. Dwork showed nevertheless
that O, has the remarkable splitting property

r—1

O,(z) = H @(l‘pz).

=0

2Recall that F, is an extension of degree r over E,. That is, F, = E,(a) with a,
the root of an irreducible monic polynomial of degree r with coefficients in F,. Thus
for x € F, the Teichmiiller representative will have the form Teich(z) = ZZ;(l) bpa®
with coefficients in Q, (in fact in Z,) but the root « is not in Q,.
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The characters in the product make sense through the series (2.2) for [ X||, <
1+ e€evenif X is in C, rather than Q.

To show the utility of Dwork’s character, let P(X) € F,[ X1, X2 ... X"
be a homogeneous polynomial of degree d and let v denote the number of
r=(zt...,2") € Fy., with no component zero, of solutions to the equation

P(z) =0, that is
vy = #{z e ()" | P(z) =0}.

Then in virtue of the relation

> 0. (yP(x)) = {ZS if P(fv)'zo,

otherwise
yeF,r ’

we have

(2.4) pvi=(p —1)" Z @ yP

(y,z)e(Fy )t

where the first term on the right arises from splitting off the y = 0 contri-
bution to the sum.
It is convenient to set 2z = y and to write

We will have need of some notation relating to polynomials and series. For
monomials, we employ a multi-index notation and write XV = []5_,(X*)%.
We shall refer to Z;‘L:1 v; as the degree of XV ignoring vg. The set of all
XV of degree £d with vg = ¢, £ = 0,1,..., define an n-dimensional lattice A.
Within this lattice the monomials XV that arise with nonzero coefficient in
W(X) define a polyhedron A. We shall have need also of the cone K C A
subtended from v = 0 by A. For the case of W, a generic cubic and n = 3
this is illustrated in figure 1. With these conventions we can write W (z) =
> vea wyzY and we shall understand W (X) for p-adic X to be given by

= > W XY, with Wy = Teich(wy).
vEA
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Figure 1: The cone K and polyhedron A for the generic cubic.

We have explained how the character © (W (z)) is related to the series
(2.5) FW(X)) = exp(r(W(X) — W(X)")).

We wish now to show also that © (W (z)) = &(Teich(z)) for &(X) the func-
tion defined by the power series

B(X) = exp(r(W(X) - W(XP))) = Y G X".

veK
In other words, we claim that the series on the right converges on the

polydisk [[X||, <1 though again it does not converge, when || X||, =1, to
exp(m(W(X) — W(XP))). To see that ©(W (z)) = &(Teich(z)) note that

O(W(x)) = [[ ©(wva")

veEA

= i Wy XY — Wy XPY
w11 el )

pr— 1 - p
XJTlgih(z)eXp[ﬂ(W(X) W (XP))]

= lim &(X).

X —Teich(x)
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Similar relations apply also to the functions (W ()?) and in this way we
see that our expression (2.4) can be rewritten in the form

26)  Pyr=0@" D"+ D G(X)B(XP).. &X' ).
(Xo)rr-1=1

2.2. Operators on a vector space

One of Dwork’s great insights was to regard the computation of the
(-function as a sequence of operations on a vector space in a way that
bears an intriguing similarity to the formalism of quantum mechanics. The
analog of a Hilbert space is here a ring H of power series of the form ®(X) =
> verx ®vXY, where the powers XV that occur lie in the cone K and the coef-
ficients ®y are required to decrease such that || ®y||, < H7T|]2eg Vas degv — 00.

A basis of states is provided by the monomials { XV }yex which, following
the usage of quantum mechanics, we can think of abstractly as states |v).
There is no notion of Hermitian conjugation, however, we may nevertheless
define a dual basis (v| by requiring

(ulv) = {1, ifu=v

0, otherwise.

In H, series W(X) are both states and operators, since a series ¥(X) maps
a state ®(X) to the state U(X)P(X).

Dwork made important use of an operator 2, : H — H, that seems to
have been first introduced by Adkin, and which may be regarded as an
inverse to the Frobenius map

a(xv) = { X7l
1 B 0, otherwise.

Equivalently the action of 2, on a series ®(X) = ) ;- ®y XV can be written

AP(X) =D Py XV,
veK

Dwork uses the notation ), for this map and this notation is common in the
literature. This, however, would be confusing in an account that attempts
to draw analogies with quantum mechanics owing to the established use of
1) in the latter context to denote state vectors.
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It is straightforward to establish the operator identities:
L. (2Ay)" = Ay
2. A, P(XT) = P(X)2A,
3. A D(X)D(XY) D (X‘f’l) = (A,P(X))"

We shall have need also of the matrix elements of operators of the form
A,®(X). These can be written in terms of the coefficients of @

(u| Ay P (X) |v) = Pgu—v
where it is understood that ¢y, =0 for w &€ K.

Consider now the effect of summing ®(X) over the images of (IFy)
We will see that this is related to the trace of the matrix 2,®(X)

n+1

Z q)(X) = (q - 1)n+1 Z cI)(qfl)v = (q - 1)n+1 TI‘(quq)(X))
(Xo)a—1=1 veK

We wish to apply this identity to the sum that arises in (2.6) in relation to
the calculation of v*. In virtue of the identities above we find

> e(X)e(x7) e (x )
(Xe)pr-1=1
= (g - 0" T (2,8 (X)8(X7) - 6 (x7))

®
— (g— 1) Tr((leﬂj(X))T)

We may also write
U =A,6(X) = e ™V X9, ™),

This last expression is useful for purposes of manipulation, however, it must
be borne in mind that, while &(X) € H, the series e=™(X) are not in H.
Thus it is not the case that Tr({) is Tr (2,), for example.

Using our identities in (2.6) we have

(pr _ 1)n N (p'r _ 1)n+1

(2.7) V= -

Tr (ﬂr) .
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We wish to use this expression to compute a function Z*(7') that is closely
allied to the (-function

In order to do this we note that

exp {i Tr(ilr)j:n} —exp{—Trlog(1 —UT)} =det (1 —UT)".

r=1

If we now expand the powers of (p" — 1) in (2.7) by the binomial theorem
we find

(2.8)
n n—j4+1) (n n+l _1\(n—k) (n+1

2@ = [ (-1 0 TLaer(1 - pfoira) )
J=0 k=0

At this stage the determinants that appear in this expression are determi-
nants of infinite matrices, however, Dwork has proved that Z* is a rational
function of T'. This is a consequence of the fact that, owing to the alter-
nating sign of the exponents in the last equation, determinants appear both
in the numerator and the denominator and there is cancellation between all
but a finite number of eigenvalues (note that the matrices are all diagonal
if 1 is). We are interested in how this cancellation comes about. This is a
story about cohomology to which we now turn.

3. Dwork cohomology
3.1. Exterior and covariant derivatives

Following Monsky and Washnitzer (for a good review, see [16] the original
reference is [17]), we define an analog of an exterior derivative that acts
on power series. The “differential forms” require for their definition formal
symbols dX%. We start by defining logarithmic derivatives and differentials

) co NG
oxe’ - Xoa

D, =X“
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—mTW(X) A

» eTl'W(X)

In order to commute with 4 =e , we take our exterior

derivative to be
aW(X) gya O aW(X) _  —aW(X)ea W(X)
D=e" dX aXae” =e " E4Dye™
where, here and in the following, a summation convention applies to repeated
indices. The &% are taken to anticommute among themselves so we shall

simply write £ .- £% instead of /\'f:1 &%. Spaces, Hp, of k-forms are
defined to be

My = {(I)mtxzmak (X) M5 -+ £ | Payapan (X) = (I)[alaz---ak](X) S 7'[},

where @[y q,...q,] denotes the skew part. We obtain in this way a chain

complex
0 — Hy — Hi — -+ — Hp — Hpt1 — O
! ! ! !
0O — Hy — Hi — -+ — Hp — Hpt1 — O

with the horizontal maps being ® and the vertical maps 4. Note that each
‘Hj. is isomorphic, as a vector space, to /\k Hi.

Owing to the fact that {* = dlog(X“) and the effect of 2, is, in effect,
to replace X by (X*)'/? we define

2A,(6%) = ;5"‘ hence also  H(£%) = ;ga.

With this convention it is easy to check that ® and 4 commute. It is
sufficient to check this for a form e™™W XV ¢Br ... ¢Bx

e ™TW xVv gﬁl...gﬁk 33; e~ ™W xVv Uaé‘agﬂl...éﬁk
Uy oy
—T v 1 & o -7 v a1 K
LommWap (XV) 0 g 2y Lot (XV) uageeh ek,

Having been defined so as to commute with il the operator ® should be
regarded as a covariant derivative. This being so, a comment is in order
regarding the manner in which © respects the Leibnitz rule. If we write
£*D, = D then we have

D(¢¥) = $ D + (D) ¥

which is appropriate if we regard ¥ as a vector and ¢ as an operator. We
learn that ® acts differently on vectors and operators. Note, however, the
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necessary consistency property that the derivative of a vector ® = ¢W¥ does
not depend on the decomposition of the product into its factors.

3.2. Overconvergent series

In order to have a well-behaved cohomology theory, it is necessary to place
convergence conditions on the series that arise in the differential forms.
A first thought is that one should require the series to converge on the
polydisks [| X ||, < 1. This, however, is inadequate as we see already from
the following standard one-dimensional example. Consider the 1-form

(o] o0
w= Zp"xp”_l dx =d (Z xp">.
n=0 n=0

Owing to the fact that w is a 1-form and the space is one-dimensional, we
have dw = 0. There is, however, no O-form 7 such that w = dn, since the
series on the right does not converge on the unit disk owing to the fact that
it does not converge for ||z[[, = 1. Thus if we merely require convergence
on the polydisks || X[, <1, then there is a failure of the Poincaré lemma:
that, for a contractible space, a form that is closed is also exact. It was
shown by Dwork in [3] that this difficulty may be overcome by requiring
that the series converge on polydisks of radius 1 + § for some § > 0. These
are referred to as overconvergent series. For a certain choice of § the set of
overconvergent series is the ring

H = {Z aym3e™) XVig, — 0 as deg(v) — oo} .
veK

In the cited work it is shown, moreover, that for this choice of ‘H the only
nontrivial cohomology occurs in Hg and Hy41.

3.3. The superdeterminant of the complex

The superdeterminant of the operator (1 — p™T' i) of the complex H, is

n+1
sdety, (1 —p"TU) = H detyy, (1 — p”TLl)(_l)z
=0

and we wish to show now that this superdeterminant is precisely the product
of determinants that arises in Z*(T"). Referring back to (2.8) we see that
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the latter expression contains the product

n+1 - (_1)2 (n:—l) -
(3.1) [ I detw. (1 —pn ’fTu) ]

=0

where we have written k¥ =n + 1 — £ for the index in the product and we
note that, in this context, the determinants refer to matrices that act on Hy.
An eigenfunction ®(X) € Hy of U, that has eigenvalue p, contributes a
factor (1 — p"uT') to dety, (1 — p™T' ). This eigenfunction also gives rise to
(”ng) eigenforms in each H; of the form ®(X) & - £ each satisfying

PU(@(X) €67 = p T (X) €M g,

Thus ®(X) contributes a factor [~y (1—p"tuT) VT o the superde-
terminant. Furthermore, it is immediate that every eigenform ¥ = W, .4,
Ex ... £ of U has coefficients Wy, ..o, in Ho that are eigenfunctions of 4.
Thus all the eigenforms are of the form ®(X)£* ---£% and we see that the
alternating product in the square brackets in (3.1) is precisely the superde-
terminant of the complex.

i Ny
sdety, (1 —p"TU) = H detyy, (1 —p"” Til) .
=0

If now W (X) € H, is a f-form which is an eigenform of {l with eigenvalue
p then, since ® and il commute we have also

u(@w) (X)) — 12U O(X)

and we see that if W (X) is nonzero it is a (£ + 1)-form with the same
eigenvalue as W) (X). The contribution of such eigenforms cancels from the
superdeterminant and in this way, we see that the superdeterminant reduces
to a superdeterminant on the ®-cohomology of the complex.

sdety, (1 — p"T U) = sdety, /oy, (1 —p"TLU).
It is important that the Dwork cohomology groups are finite-dimensional.

This is a nontrivial fact for which a proof, valid for an arbitrary smooth
variety, was given in 1997 by Berthelot [18].
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Now that the states have become forms we shall define the inner product
(®|¥) to be the constant term in the expansion of the highest order form,
that is the coefficient of £0¢!...£". Given that the only nontrivial coho-
mology occurs in Hg and H,+1 we shall principally be concerned with com-
puting products (¢|¥) between zero-forms (p| = ¢*(X) and (n + 1)-forms
| W) = 1p(X) £0¢L - 7. When this is the case we may write

(@IV) = (¢, ¥)

with the inner product on the right denoting the inner product defined
previously for zero-forms.

Now if [x) = L x*(X)eas, o3, 6760 -+ €0, where €44,6,..3, denotes
the permutation symbol, is an n-form then ® |x) = Do x® 061 --- €™ and we
see that in cohomology

P(X) = 9(X) + Dax®(X).

In order for our inner products to respect this equivalence, the dual states
must satisfy

(3-2) (¢, Dax®) =0

for all x®.
Let v_ denote the operator that projects onto the space of dual states

VXY = XV, if —v e K, deg(v) #0,
0, otherwise

and let

@Z = —v_ eﬂW(X)Da e—’/rW(X)

then a little thought shows that

(¢, Dat) = (D59, ¥)

for all ¢ and . Thus (3.2) requires the condition D},¢*(X) = 0 be imposed
on the allowed dual states.
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4. Calculation of the determinants

In this section, we will verify that the (-function for the quintic takes the
form

det (1 — U((p)T/p)
(1 =T)(1 = pT)(1 = p*T)(1 — p*T)

(4.1) (e, T) =

with () acting on certain cohomology groups that we will find.
The cohomology groups are in correspondence with monomials v with
deg(v) =0, 5, 10, 15, 20 and we will find that the determinant det(l—UT/p)
breaks up naturally into a part that depends on ¢ and a part that is
independent of . The ¢-dependent part has the correct dimension 204
and corresponds to monomials ¥V with deg(v) =0, 5, 10, 15, 20 whose
exponent vectors v have no component zero. With the matrix U restricted
to this subspace the (-function takes the form (4.1). We believe that it is
straightforward to deduce this form by performing an iteration based on (2.8)
but we have not performed the calculation.

We anticipate from [6] and [9] that the monomials of degree 5/, 0 < ¢ < 5,
will play a special role. Among these, there are 126 monomials of degree 5.
The fifth powers, x?, and the twenty monomials whose exponents are per-
mutations of (2,1,1,1,0) turn out to be trivial in cohomology. In the case
of the monomials which are permutations of (2,1,1,1,0) these are related
to monomials that are permutations of (4,1,0,0,0) and will not need to be
counted separately. We are left with 101 quintic monomials. The monomial

def
Q = xoT1T2T3T475

plays a special role, and there are 100 others that we denote by zV. We
anticipate also that the determinants which are in principle of size 204 x 204
break up into a 4x4 block, corresponding to a basis {Q, Q% Q3 Q*}, and
100 blocks of size 2x2 corresponding to bases {zV, Qz"}, one for each of the
quintic monomials V. We begin by considering the case ¢ = 0.

4.1. The 4 X 4 determinant for ¢ =0

When ¢ = 0 the operator whose determinant we wish to compute is

5

11(0) = Q[p Hg(XOXiS)-

=1
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Consider the effect of this operator on a basis [£) = (—7Q)*.
5
(4.2) Y(O)|e) = (-1 > (H cnl.) D o | P e
ni,...,n5 >0 \i=1 A

The terms in the sum that survive the effect of 2, are those for which
(4.3) 5ni+£=0modp, :=1,...,5.

Note that these conditions imply that >, n; + ¢ = 0, modp on summation
over i. To proceed, it is useful to define integers 1 <a <p—1land1<b<4
such that a is the smallest positive integer that represents —1/5 in F, and b
satisfies

5a+1 = bp.

The integers a and b depend on the value of p mod 5, and are given in
table 1.
Equation (4.3) is solved by writing

n; = n(l) + kip,
where
n(l) =al — [aﬁ]
P p

is the smallest positive representative of af mod p. Since 5n(f) + ¢ =
0 mod p there is an integer 0 < r(¢) < 4 such that

Sn(l) + £ =r(l)p.

A little thought reveals that, for p # 5, r(¢) has the property that it is the
smallest positive residue of ¢ mod 5

r(0) = bl — 5 {bﬂ .

Returning to (4.2) we see that
5 )

$40)1) = (1% [T | 32 chpenp® (~7X0X2)™ | r(0)) .

i=1 \ k;=0
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Now for any state |y), we have the following identity that holds in
cohomology

Dilx) = (Dz‘ + 51 X0 X, — WSOQ) Ix) =0

or equivalently
D; _
(4.4) (~7X0X7) [x) = €7 e T2 x) -

Where we defer setting ¢ = 0 for the present. Now it follows from this last
relation that

D\ .
(-nXox?)" [ =7 () ey,
m

A word of caution is warranted here. Note that the right-hand side of this
last relation contains the Pochhammer symbol

(2).-(2) (B9 (3 en

not the power (D;/5)™. This is so, because we must unwrap the powers of
X from the outside in order to use (4.4). Thus we have

(~rXoX?)" ) = ~xXoXP ( (~mXoX?)" (W) )
—_ TP % e—7r<PQ( (_WXOXE)mfl |\I’> )

m— Dz —
= (—7X0X7?) temeQ (5 +m — 1> e ™)

To naively unwrap the power from the inside would be wrong since the
equalities are true in cohomology, so |¥) = |®) means, of course, that |[¥) —
|®) =D |x) for some |x). The formalism has the awkward feature that we
can have |¥) = |®), in this sense, yet f(X)|V) # f(X) |®), in general, since
F(X)D |x) is not necessarily a derivative. Worse still, it follows that we
can have |¥) =0 but f(X)|¥) # 0. We could avoid this awkwardness by
restricting the allowed operators to be those that commute with ®, however,
that would leave us with a very small class of operators; in the present case,
we would be limited to just the constants. These are indeed the operators
that map H/D(¢)H to itself, for fixed ¢. An essential aim in the following
is, however, to study how the cohomology varies with ¢. It is precisely
because the operators we use do not commute with ® that they can map
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between spaces corresponding to different values of ¢. For example we shall
see shortly that

e H /D (p) — H/D(0).

It is better therefore to proceed carefully with these caveats in mind.
Returning to our calculation, we take note of a relation for the p-adic
I-function [15] established recently by Robert [19]

oo
Typ(pz—a) = ciprap’ (2 0<a<p—1,2€7,
k=0

and we see that our expressions simplify considerably yielding

801 = (=% 13 (5 ) In0)

where in writing this last relation we have used the fact that pr/5—n =
¢/5. The matrix (k|4(0)|¢) is of size 5x5, has one entry in each row and
column and (0| (0) |0) = 1. The determinant of the 4x4 block with 1 < k,
[ < 4, after the replacement ¢ — t/p yields the the factor R1(t,0) of the zeta
function of [9].

Recall that r(¢) is the reduction of b¢ mod 5. We see from table 1, that
b” =1 mod 5 precisely when p” =1 mod 5, in fact, for p £ 2,5, we have
that b is the smallest positive integer that is 1/p mod 5. For p =1, that
is 5|p — 1, we have b =1 and r(¢) = ¢ so the matrix is diagonal and one
easily verifies the corresponding quartics Rj(t,0) given in [9]. For p =2
we have U(0)2[¢) = —p°|¢), 1 < ¢ <4, leading to R1(¢,0) = (1 + p*t?)? in
these cases. For p = 4 the states form a cycle of length four and (0)*|¢) =
—pl916), 1 < ¢ < 4 leading to Ry(t,0) = 1 + pSti.

Table 1: The quantities a and b as functions of p.

p mod 5 a b relation P
1 = 1 =1 1
2 3L 3 bt=1 4
3 -1 2 bt = 4
4 A1 4 b =1 2

5
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For ¢ =0 it is straightforward to see that a basis of solutions to the
equations ®7 ®*(X) = 0 is provided by the dual states

(ul = X~ HZ TI'XO)_;;5 - 0 <wu; <4, 5/deg(u)
i=1r,=

and that these states are dual to the states XV.

2. Variation of structure

We turn now to the case ¢ # 0 and the operator
() = Ay exp(m (W (X) = W(X)"))

5
=, [ [§(X0XD) F(—¢Q)
=1
™ 4(0) e Y,

In order to evaluate the matrix for the operator {(y) explicitly we first
take [|¢]|, <1, for which the operators e ™% and e™"? preserve H, and
we will later continue () to [¢l|l, =1. In our discussion of cohomology
in the previous section, it was implicit that the parameters of W satisfied
relations analogous to ¢? = . Now we have ||¢|| p < 1soaterm pPQP arises
in W(X)P and this leads to the presence of ¢P in the expression for (¢p).

We wish to study how the matrix {(p) acts on the cohomology groups
H/®. To emphasize the dependence of the states in the quotient space on
the parameter we append a ¢ to the states. Thus the state |v>§0, for exam-
ple, denotes the equivalence class of XV in H/®. The parameter depen-
dence arises because the states now correspond to equivalence classes and
the ®-operator depends on ¢. We write D(p) to emphasize this dependence;
setting W = Wy — Q@ we have

(4.5) D(p) = ™R ™o P ™Wo o=@ — TR D (() e Y,

Now, by writing out the derivative explicitly, we see that

D.
$0) 10 = (wXoX7 4 o2 Do o) ).
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As a relation on H/D(¢) this becomes
5 w7 Di —x
(—7XoX7) ), =e WQ?e W), .

The corresponding relation on H/D(0) is
(46) (7 XoX7) [ W)y = 2 [ ).
In virtue of (4.5), we also have e ™@D(p) = D(0)e~ ™. Tt follows that

o~ TeR (\xm +9(p) |X>) = ™R W) + D(0) |e ™2 x).
From this and an analogous relation involving e™% we learn that

e H/D(p) = H/D(0) and ™9 H/D(0) — H/D(p).

A restatement of the above is that

e TP ]\Il>§0 = ‘e_me\I'>0 and ™9 |®), = ’eme{)hp.
We find it convenient to build the exponential factors into the notation and

write

def

def _
U5 ) E e ™R W), and  [W;0) = (W),

We apply these considerations to the operator {(y) which is a composition
of maps between the following spaces.

H/D(p) = H/D(0)
i) 4 1 (o)

ere?Q

H/D(P) +—  H/D(0)
We will understand the matrix for 4(¢) to have components
Uje(p) = oo (1] €70 14(0) 772 [0), = (5 @¥| 4(0) |65 ) -

The operator 4(p) maps between spaces that are in general different but
which become the same when P = ¢. Now for the state on the right of this
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last matrix element we can write

0 (—m Q) 0>
n—~{

® :
Ty 0

145 ) =

I
Mg =

3
Il
o

e 5m+j —L

5 ;0

oo 5m+] —£ j 5
5m+g—£ (5)m’*7’ )

mO

[
M) =

0

o T
3

Q

where the third line follows from breaking up the n-sum by writing n=
5m—+7, 0 <7 <4, and the fourth by noting that

5 5
4.7 —7Q)%™ |U; 0) = —XoX2)" |U; 0) = =) |w;0).
40 (7@ 90 = [ (rex)” w50 g<5)m|,>
In this way, we see that
4
(4.8) 60y = 15; 0 E
=0
with
0 (705m+j—€ j 5
4.9 B (o)=S"_¥Y (1
(4.9 0= mrra (3).

It follows also that
' 4
(G5 ") = ((=7QYe™ ™" % 0| = > El(¢P) (k; 0|
k=0
and hence we arrive at the expression
(4.10) U(p) = E~H(¢")U(0) E().
We are seeking to calculate the 5x5 determinant det(1 — U(¢)T/p). The

matrices E~1, U(0) and E and hence also U(p) all have a first row
(1,0,0,0,0). Thus apart from a factor of (1 —7/p) the 5 x 5 determinant
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reduces to a 4 x 4 determinant of the same form but with the matrix indices
running over the range 1 < j,¢ < 4. We shall abuse notation by denoting
these reduced matrices by the same symbols as previously.
The matrix Ejp, 1 < j,£ < 4 is a Wronskian matrix as we see by noting
that
Bule)=(15)  Enle)
and that ¢pFEj; satisfies the Picard-Fuchs® equation

£o(eBn(e)) =0, with £,= ()54 - 6.
=1

with 6, = ap%. Being a Wronskian the determinant of E has a simple form
1

det b= —""—-.
(1= (0/5)°)

The components of the matrices F(¢) and E~!(y) are power series in ¢ with
coefficients that are p-adic fractions. However, it appears to be the case, on
the basis of numerical experiment, that U(y) is a matrix whose components
are power series with coefficients that are p-adic integers. Integrality of these
coefficients would follow it; one could show that the basis we use “comes
from” crystalline cohomology. One may well be able to do this using results
from [20, § 3]. In any event equation (4.10) provides a power series expansion
for U(p). This series converges for [|¢[|, < 1 but not for [[¢||, =1 since the
coefficients do not tend to zero. It has, however, been shown by Lauder [10]
(see especially the Appendix) that the offending coefficients can, however, be
summed to a rational function. For the present case, numerical experiment
suggests that we may write

(4.11) U(Teich(5)z/z> = (ii;) Un (Teich(5)w> +0(pY)

with lNJn(gp) a polynomial in ¢ of order approximately 5p™ and N > n. For
example, if p = 3,7 or 11 and n = 3 then N = 8 (in fact for p = 3 we have
N =9). Thus we may compute U(y) to arbitrary p-adic precision by taking

3The Picard-Fuchs operator that we givse here is related to the corresponding
Picard-Fuchs operator, L, of [6] by L, = % L.
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n sufficiently large and then setting ¥ = v in Up. It is a consequence of
the relation (4.11) that the limit

Ulp) = lim Uy ()

n—oo
exists and is a convergent series for [¢||, = 1. Note also that if we under-
stand the rational function as a limit we have

|y 1; 4 = Teich(u), u € By, u® # 1
1- wSp" B in; 1/}5 =1.
P

We find that p*|U,(p) for ¢® = 1, so that we may use (4.11) to compute
U even for these values. Take now ¢ = Teich(5u), u € F,, with u® # 1 then
we have

det(l ~U(9) T/p) = 1+a(p) T+ b(e) pT” + a(p) p°T° + p°T*
with the coefficients most easily calculated as
a= —ltrﬁ and b= 1 ((tr [7)2 - tr(ﬁ2)>
p 2p3 :

In this way, we recover the values of the coefficients given in the tables of [9].

Having observed that the matrix U may be evaluated for [|¢[, =1 by
resumming an infinite series it follows that U may be calculated by the
simpler expedient of choosing a sufficiently large integer s, expanding the
matrices F(p) and E~1(¢P) to p® and p*~! terms, respectively, and evalu-
ating on the Teichmiiller point in each of these sums. We have remarked
above that neither the power series for F nor the power series for U con-
verge when [|¢|[, = 1. Nevertheless the procedure just outlined provides a
convergent sequence of approximants to U as s — oco. The convergence of
the series for U(y) may well be a consequence of the overconvergence discov-
ered by Dwork [21] for hypergeometric functions with rational parameters
that satisfy certain conditions.

4.3. The other monomials

By applying a procedure closely analogous to that of § 3.1 we may calculate
the matrix U in a basis corresponding to the monomials |v) = (—m)"XV.
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We find that

5

(4.12) 4O 1v) = (=15 T (%) ).

=1

where r; is the smallest positive residue of bv; mod 5 and b, 1 <b <4, is
again such that bp = 1 mod 5. It is straightforward also to find the relations
analogous to (4.8) and (4.9). Let XV be the monomial resulting from the
extraction of as many powers of ) from XV as possible, so that XV = Q‘XV
and at least one component of v is zero. We have

‘e—me(_ﬂ_)von; 0> — ‘e—me(_Tr)Z—&—f)oQZXO; 0>

4
(4.13) = i1+ %0) Egju(p)
j=0
with
e 5m+] ¢ 5
J+

4.14

( ) Eq iy 2:05m+]_g|H< >

To apply this result, consider the family of monomials obtained from a
given monomial XV by multiplying successively by powers of () and then
reducing the exponents mod 5. The families that descend in this way from
our representative quintics are displayed in table 2.

Table 2: The four five-dimensional cohomology groups with the
corresponding representatives of the two-dimensional subgroups
distinguished by a .

(1,4,0,0,0) (3,2,0,0,0) (3,1,1,0,0) (2,2,1,0,0)
(1,4,0,0,0) (3,2,0,0,0) (3,1,1,0,0) (2,2,1,0,0)
(2,0,1,1,1) *(4,3,1,1,1) *(4,2,2,1,1) *(3,3,2,1,1)
*(3,1,2,2,2) (0,4,2,2,2) (0,3,3,2,2) *(4,4,3,2,2)
*(4,2,3,3,3) (1,0,3,3,3) *(1,4,4,3,3) (0,0,4,3,3)
(0,3,4,4,4) *(2,1,4,4,4) (2,0,0,4,4) (1,1,0,4,4)

(a7b> = (%7 %) (a7 b) = (%7 %) (avb) = (%7 %) (a7 b) = (%7 g)
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In each column of the table there are two monomials that are distin-
guished by a *. These are monomials that have ¢ # 0. Now it is clear that
the relation (4.13) acts within each family and a little thought reveals that,
on a family, the operator e ™9 acts as a 5x5 matrix which, relative to a
basis in which the three monomials with ¢ = 0 are taken first and the two
with ¢ # 0 are taken last, has the block structure

1 S
0o G)’
where the 1 denotes a 3 x 3 matrix and G denotes a 2 x 2 matrix. The unit

matrix arises from the j = 0 terms in (4.13) when ¢ = 0. Now the inverse of
such a block matrix has a similar form, in fact

1 S\ /1 -sG!
0o G) ~\o Gt )

The operator $4(0) will, in general, act between monomials from different
families but the operator preserves the number of zeros of a vector of expo-
nents. Thus the vectors that have £ % 0 are mapped among themselves.
By considering all the vectors together we can form big matrices for the
operators e ™9 and ¢™"¥, but provided we write a basis with the vectors
that have £ = 0 before those with ¢ # 0 these big matrices will still take a
block triangular form of the type we are discussing. In this basis, the oper-
ator 4(0) will be block-diagonal. It follows that the matrix (1 — U(p)T/p)
is block upper triangular and hence its determinant reduces (apart from a
term (1 —7T'/p)", that is independent of ¢) to the determinant of a matrix
evaluated on the monomials that have ¢ # 0.

If we evaluate the operator e~ ™% with respect to the bases provided
by these vectors with ¢ # 0 we find, on using (4.13) and the multiplication
formula for the I'-function in the form

o= (), (5), (5), 5)..

that it corresponds to a matrix that is essentially a Wronskian matrix of
hypergeometric functions. Setting z = (%)5,

fla,b;z) = oF(a,b;a+b;z) and
1—a—b

ﬁgFl(l—a,l—bﬂ—a—b;z),
—a—

g(a, b;z) =
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the matrix is

fla,bz) 2T f(a,b; Z))

) +bd
gla,byz) 277+

G(a,b;z) = < L g(a,b; 2)

where, for each family, the parameters a, b take the values shown in table 2.
In each case, we have the relation

1
1—2z

det G(a,b; z) =

The values of the a and b coefficients given in the table differ from those that
correspond to the A and B curves of [9] but this is due merely to the fact
that here we have hypergeometric functions with argument z while in [9] we
were dealing with functions of argument 1/z. The functions

1 1
2 % <a,1 —b;1+a—b; ) and 2z U R (1 —a,b;1—a+0; >
z z

satisfy the same differential equation as 2 Fi(a,b;a + b; 2).

The block structure of £(0) depends on the value of p. We will illustrate
the structure for p = 4, since the other cases are simpler. The matrix ((0)
relates, for the case p = 4, a vector v with the mod 5 reduction of 2v. This
process interchanges the permutations of the (4,1,0,0,0) family with the
(3,2,0,0,0) family. We take as a basis the monomials:

These are taken in pairs, alternately, from the (4,1,0,0,0) and (3,2,0,0,0)
families and their permutations. With respect to this basis the matrix ()
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takes the form

G 0 0
0 H 0
0 0 N
0 0

0
w

0

0

o o o <
o o o Q

0 0
H Z
0 0
0 0

N © ©o o
o o o K

0 0 0 0 0
0 0 0 0 0
V o G 0 Y
0o w 0 H 0

o @
Mmoo o o

where the blocks correspond to 2 x 2 matrices, Y = GVH and Z = HWG.
Thus the determinant we require takes the form

1 0 0 ~TY/p
-TZ 1 0 0
det(l—uT>:det /P
p 0 ~TY/p 1 0
0 0 —TZ/p 1
T4
= det (1 - p4(YZ)2> )

The last equality follows on factoring the matrix into the product of an
upper triangular and lower triangular matrix

1 0 0 ~TY/p
~TZ/p 1 0 0
0 —-TY/p 1 0
0 0 -TZ/p 1
1 -T%YZY/p® -T*YZ/p* -TY/p\ /1-T*YZ)?/p* 0 0 0
0 1 0 0 —~TZ/p 1 0 0
— 10 0 1 0 0 ~TY/p 1 0
0 0 0 1 0 0 -TZ/p1

It follows from these considerations that

T
det (1 -y ) =1+ pSe(p) T + p'2T18.
p
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The explicit factors of p follow from counting the explicit powers that appear
in (4.12). The coefficient ¢(¢) has, for ¢ = Teich(5)v, a structure similar to
that which we have seen in the previous section

c(y) = p14Tr<(YZ)2) - G:Z;’p) &n (Teich(E))z/)) +0(pM)

which again allows us to recover the results of [9].

5. Open problems

We list here three open problems related to the present work.

5.1. Special geometry

A formulation of p-adic special geometry valid throughout the moduli space
would seem to be a necessary prerequisite for a proper discussion of the
arithmetic properties of conifolds and attractor geometries.

5.2. The ¢ = oo limit

Related to the above is the difficulty of developing a formalism analo-
gous to Dwork analysis presented here but with the ability to expand the
operator (p) about ¢ = oo instead of expanding, as here, about ¢ = 0.
The variety corresponding to ¢ = oo is highly singular and this has, so
far, prevented the application of the methods illustrated here. A specific
question is what is the ‘correct’ form for the (-function for the quintic
for ¢ = 0co. In particular considerations of mirror symmetry [9] suggest
that the ‘correct’ form of the factor Ry(,T), for example, for 1) = oo
should be

(1=T)(1 =pT)(1 = p*T)(1 = p°T).

It is of interest to know if there is a reasonable way of justifying this form
in terms of the action of the Frobenius map on the cohomology. When
o = oo the variety degenerates into five intersecting planes. Counting the
[F,-rational points is straightforward but does not give the desired form for
the zeta-function.
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5.3. Truncated periods versus infinite series

In this work, we have calculated the numbers of points of the variety, say
Ni(¢), in terms of the periods, with the periods given by infinite series.
In [6] these same numbers are calculated in terms of truncated periods
and semiperiods, that is, periods and semiperiods truncated to the first p
terms whose argument is the parameter evaluated on the Teichmiiller points.
Since, in the latter approach, one deals with finite series there is no need
for the process of analytic continuation that has occupied us here. It is of
interest to understand how these two calculations are related. In particular,
explicit expressions are given in [6] of the form

1 =2
m=1

with A = 1/Teichy® and the f3,,, coefficients for which explicit expressions are
known in terms of the p-adic I'-function. It would be of interest to investigate
whether similar expressions are available for the 4 matrix evaluated on the
Teichmiiller points.
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