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Natural constructions of some generalized
Kac–Moody algebras as bosonic strings
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There are 10 generalized Kac–Moody algebras whose denominator
identities are completely reflective automorphic products of singu-
lar weight on lattices of squarefree level. Under the assumption
that the meromorphic vertex operator algebra of central charge 24
and spin-1 algebra Âr

p−1,p exists we show that four of them can
be constructed in a uniform way from bosonic strings moving on
suitable target spaces.

1. Introduction

Generalized Kac–Moody algebras are natural generalizations of the finite-
dimensional simple Lie algebras. They are defined by generators and
relations and are allowed to have imaginary simple roots. Generalized
Kac–Moody algebras are in general infinite-dimensional but their theory
is in many aspects similar to the finite-dimensional theory. In particular
there is a character formula for highest weight modules and a denominator
identity. Borcherds has used twisted versions of the denominator identity
of the monster algebra to prove Conway and Norton’s moonshine conjec-
ture [3].

Borcherds’ singular theta correspondence [5] is a map from modular
forms for the Weil representation to automorphic forms on orthogonal groups.
Since these automorphic forms can be written as infinite products they
are called automorphic products. They have found various applications in
geometry, arithmetic and in the theory of Lie algebras. In particular, the
denominator identities of generalized Kac–Moody algebras are sometimes
automorphic products (cf. [18, 19]). Reflective automorphic products are
automorphic products whose divisors correspond to roots of the underly-
ing lattice and are zeros of order 1. They can be classified under certain
conditions [20].

In [18], a family of 10 generalized Kac–Moody algebras is constructed.
Recall that the Mathieu group M23 acts on the Leech lattice Λ. Let g be an
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element of squarefree order N in M23. Then g has characteristic polynomial∏
k|N (xk − 1)24/σ1(N) as automorphism of Λ. The eta product

ηg(τ) =
∏

k|N
η(kτ)24/σ1(N)

is a cusp form for Γ0(N) with multiplicative coefficients. The fixpoint lattice
Λg is the unique lattice in its genus without roots. We lift fg = 1/ηg to a
vector valued modular form

Fg =
∑

M∈Γ0(N)\Γ

fg|M ρD(M−1)e0

for the Weil representation ρD of the lattice Λg ⊕ II1,1 ⊕
√

NII1,1. Then we
apply the singular theta correspondence to Fg to obtain an automorphic
product Ψg (cf. [3, Theorem 13.3]). We summarize this in the following
diagram

g �→ 1
ηg

�→ Fg �→ Ψg.

The automorphic form Ψg has singular weight and is completely reflective,
i.e., has zeros of order 1 corresponding to all roots of Λg ⊕ II1,1 ⊕

√
NII1,1

(cf. [20]). The expansion of Ψg at any cusp is given by

eρ
∏

d|N

∏

α∈(L∩dL′)+
(1 − eα)[1/ηg](−α2/2d) =

∑

w∈W

det(w)w(ηg(eρ)),

where L = Λg ⊕ II1,1, ρ is a primitive norm 0 vector in II1,1 and W is the full
reflection group of L. This is the denominator identity of a generalized Kac–
Moody algebra whose real simple roots are the simple roots of W , i.e., the
roots α of L with (ρ, α) = −α2/2, and imaginary simple roots are the positive
multiples nρ of the Weyl vector with multiplicity 24σ0((N, n))/σ1(N).

In the prime order case, the above Lie algebras have also been con-
structed by a different method in [17] (cf. also [3, Section 14]).

One of the main results of [20] is that the 10 generalized Kac–Moody
algebras corresponding to the elements of squarefree order in M23 are the
only generalized Kac–Moody algebras whose denominator identities are com-
pletely reflective automorphic products of singular weight on lattices of
squarefree level splitting two hyperbolic planes.

For N = 1 and 2 these Lie algebras represent the physical states of
bosonic strings moving on suitable spacetimes (cf. [2, 13]).
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Let V be a meromorphic vertex operator algebra of central charge 24
and nonzero L0-eigenspace V1. Schellekens [21] proves that either V1 has
dimension 24 and V is the vertex operator algebra of the Leech lattice or
V1 has dimension greater than 24. He shows that in this case there are
exactly 69 modular invariant partition functions and describes explicitly the
corresponding vector spaces as sums of highest weight modules over affine
Kac–Moody algebras. If the monster vertex operator algebra is unique and
for each of the 69 partition functions there exists a unique vertex operator
algebra, Schellekens’ result implies that there are 71 meromorphic vertex
operator algebras of central charge 24. Up to now these conjectures are open.

In this paper we prove the following results.
Let p = 2, 3, 5 or 7 and let V be the prospective vertex operator algebra

V in [21] of central charge 24, trivial fusion algebra and spin-1 algebra Âr
q,p,

where q = p − 1 and r = 48/q(p + 1). Then the character of V as Âr
q-module

can be written as

χ =
∑

γ∈N ′/N

Fγ ϑγ .

Here N is the unique lattice of minimal norm 4 for p = 2, 3, 5 and minimal
norm 6 for p = 7 in the genus

II2m,0

(
pεp(m+2)

)
,

where m = 24/(p + 1) and εp = + for p = 2, 5, 7 and εp = − for p = 3, ϑγ is
the theta function of γ + N and Fγ the component corresponding to γ + N
of the lift of 1/η(τ)mη(pτ)m to the lattice N .

Suppose the vertex operator algebra V of central charge 24, trivial fusion
algebra and spin-1 algebra Âr

q,p exists and admits a real form. Then the
cohomology group of ghost number 1 of the BRST-operator Q acting on the
vertex superalgebra

V ⊗ VII1,1 ⊗ Vb,c

gives a natural realization of the generalized Kac–Moody algebra corre-
sponding to the elements of order p in M23.

For p = 2 these results are also obtained in [13]. The advantage of the
methods used here is that they do not use explicit formulas for the string
functions which are in general unknown so that they can probably be applied
to all the prospective vertex operator algebras in [21].
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The above result gives evidence to the conjecture that the generalized
Kac–Moody algebras whose denominator identities are completely reflec-
tive automorphic products of singular weight on lattices of squarefree level
describe bosonic strings moving on suitable spacetimes.

The paper is organized as follows.
In Section 2, we recall some results on the affine Kac–Moody algebras

and their highest weight representations.
In Section 3, we describe the Weil representation of SL2(Z) and construct

vector valued modular forms.
In Section 4, we recall some properties of vertex operator algebras and

Wess–Zumino–Witten (WZW) models.
In Section 5, we show that the character of the prospective vertex oper-

ator algebra V in [21] of spin-1 algebra Âr
q,p can be written in the form

χ =
∑

Fγ ϑγ as described above.
In the last section we show that the physical states of a chiral bosonic

string with vertex algebra V ⊗ VII1,1 give a realization of the generalized
Kac–Moody algebra corresponding to the elements of order p in M23.

2. Affine Kac–Moody algebras

In this section, we recall some results on the untwisted affine Kac–Moody
algebras and their highest weight representations from [14].

Let g be a finite-dimensional simple complex Lie algebra with Cartan
subalgebra h and root system Δ. Then g has an invariant symmetric bilinear
form which is nondegenerate on g and on h, so that there is a natural
isomorphism ν : h → h∗. We will often write α2 for (α, α). The coroot α∨

of a root α is the inverse image of 2α/α2 under ν. Let {α1, . . . , αl} be a set
of simple roots of g and aij = αj(α∨

i ) the corresponding Cartan matrix. We
denote the set of positive roots by Δ+. The reflections in the hyperplanes
orthogonal to the simple roots generate the Weyl group W . The Lie algebra
g has at most two different root lengths. The highest root

θ =
l∑

i=1

aiαi

is a long root and

θ∨ =
l∑

i=1

a∨
i α∨

i .

We normalize the bilinear form such that θ2 = 2.
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The untwisted affine Kac–Moody algebra corresponding to g is

ĝ = C[t, t−1] ⊗ g ⊕ CK ⊕ Cd,

where K is central and

[tm ⊗ x, tn ⊗ y] = tm+n ⊗ [x, y] + mδm+n(x, y)K
[d, tn ⊗ y] = ntn ⊗ y.

The vector space

ĥ = h ⊕ CK ⊕ Cd

is a commutative subalgebra of ĝ. We extend a linear function λ on h to ĥ
by setting λ(K) = λ(d) = 0. We define linear functions Λ0 and δ on ĥ by

Λ0(h ⊕ Cd) = 0, Λ0(K) = 1,

δ(h ⊕ CK) = 0, δ(d) = 1.

Then

ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ

and we have a natural projection ĥ∗ → h∗, λ �→ λ with Λ0 = δ = 0. A linear
function λ in ĥ∗ can be written

λ = λ + λ(K)Λ0 + λ(d)δ

and λ(K) is called the level of λ. We also extend the bilinear form from g
to ĝ by setting

(tm ⊗ x, tn ⊗ y) = δm+n(x, y)
(tm ⊗ x, K) = (tm ⊗ x, d) = 0

(K, K) = (d, d) = 0
(K, d) = 1.

Define

α0 = δ − θ.

Then

α∨
0 = K − θ∨
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and {α0, α1, . . . , αl} is a set of simple roots of ĝ and {α∨
0 , α∨

1 , . . . , α∨
l } is the

set of coroots. The fundamental weights Λ0, . . . ,Λl satisfy

Λi(α∨
j ) = δij , Λi(d) = 0.

Then Λi = Λi + a∨
i Λ0 and Λ1, . . . ,Λl are the fundamental weights of g. Let

bij be the inverse of the Cartan matrix of g. The scalar products of the
fundamental weights are

(Λ0, Λi) = 0

for i = 0, . . . , l and

(Λi, Λj) = (Λi, Λj) =
a∨

i

ai
bij

for i, j = 1, . . . , l.
The Weyl vector ρ ∈ ĥ∗ is defined by ρ(α∨

i ) = 1 for i = 0, . . . , l and
ρ(d) = 0 ([14], p. 82). The level of the Weyl vector is the dual Coxeter
number h∨.

We can write Λ ∈ ĥ∗ as

Λ =
l∑

i=0

niΛi + cδ

with labels ni = Λ(α∨
i ) and c = Λ(d). In representation theory, the value of

c is often unimportant. For example, if two weights Λ and Λ′ have the same
labels, the corresponding irreducible highest weight modules L(Λ) and L(Λ′)
are isomorphic as irreducible modules of the derived algebra ĝ′ = [ĝ, ĝ].

Let

P = {λ ∈ ĥ∗ | λ(α∨
i ) ∈ Z for i = 0, . . . , l}

be the weight lattice and

P+ = {λ ∈ P | λ(α∨
i ) ≥ 0 for i = 0, . . . , l}

be the set of dominant integral weights. Then

P =
l∑

i=0

ZΛi + Cδ.

We define P k = {λ ∈ P | λ(K) = k} and P k
+ = P k ∩ P+.
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Let Λ ∈ P k
+ with k > 0 and L(Λ) the corresponding irreducible highest

weight module. We define

mΛ =
(Λ + ρ)2

2(k + h∨)
− ρ2

2h∨

and the normalized character

χΛ = e−mΛδ ch L(Λ).

For λ ∈ ĥ∗ we define

mΛ,λ = mΛ − λ2

2k

and the string function

cΛ
λ = e−mΛ,λδ

∑

n∈Z

multL(Λ)(λ − nδ)e−nδ.

The string functions are invariant under the action of the affine Weyl group,
i.e.,

cΛ
w(λ) = cΛ

λ

for w ∈ Ŵ , so that

cΛ
w(λ)+kγ+aδ = cΛ

λ

for w ∈ W, γ ∈ M and a ∈ C ([14], (12.7.9)).
The multiplicities can be calculated with Freudenthal’s recursion formula

((Λ + ρ)2 − (λ + ρ)2) multL(Λ)(λ)

= 2
∑

α∈Δ+

∑

j≥1

multL(Λ)(α) (λ + jα, α) multL(Λ)(λ + jα).

Let

θλ = ekΛ0
∑

γ∈M+λ/k

e−kγ2δ/2+kγ ,

where M is the lattice generated by the long roots of g ([14], (12.7.3)). Then

θλ+kγ+aδ = θλ

for γ ∈ M and a ∈ C ([14], (13.2.3)).
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The normalized character is given by

χΛ =
∑

λ∈P k mod(kM+Cδ)

cΛ
λθλ

([14], (12.7.12)).
We obtain modular forms if we replace in the above definitions e−δ = q

with q = e2πiτ . The string functions transform under the generators of
SL2(Z) as

cΛ
λ (−1/τ) =

∣
∣M ′/kM

∣
∣−1/2 (−iτ)−l/2

∑

Λ′∈P k
+ mod Cδ

λ′∈P k mod(kM+Cδ)

SΛ,Λ′ e

(
(λ, λ′)

k

)

cΛ′

λ′ (τ)

with

SΛ,Λ′ = i|Δ+| ∣
∣M ′/(k + h∨)M

∣
∣−1/2 ∑

w∈W

det(w) e

(
−(Λ + ρ, w(Λ′ + ρ))

(k + h∨)

)

([14], Theorems 13.8 and 13.10) and

cΛ
λ (τ + 1) = e(mΛ,λ) cΛ

λ (τ)

([14], (13.10.4)).

3. The Weil representation

In this section, we describe the Weil representation of SL2(Z) and construct
vector valued modular forms. More details can be found in [20].

A discriminant form is a finite abelian group D with a quadratic form
D → Q/Z, γ �→ γ2/2 such that (β, γ) = (β + γ)2/2 − β2/2 − γ2/2 mod 1 is
a nondegenerate symmetric bilinear form. The level of D is the smallest
positive integer N such that Nγ2/2 ∈ Z for all γ ∈ D. The group algebra
C[D] of D is the algebra with basis {eγ | γ ∈ D} and products eβeγ = eβ+γ .

Let L be an even lattice with dual lattice L′. Then L′/L is a discriminant
form with the quadratic form given by γ2/2 mod 1. Conversely, every dis-
criminant form can be obtained in this way. The signature sign(D) ∈ Z/8Z

of a discriminant form is defined as the signature modulo 8 of any even
lattice with that discriminant form.
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Let D be a discriminant form of even signature. There is a unitary
action of the group SL2(Z) on C[D] defined by

ρD(T )eγ = e(−γ2/2) eγ

ρD(S)eγ =
e(sign(D)/8)

√
|D|

∑

β∈D

e((γ, β)) eβ,

where S =
(

0 −1
1 0

)
and T = ( 1 1

0 1 ) are the standard generators of SL2(Z).
This representation is called Weil representation.

Let
F (τ) =

∑

γ∈D

Fγ(τ)eγ

be a holomorphic function on the upper halfplane with values in C[D] and
k an integer. Then F is a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(

a b
c d

)
in SL2(Z) and F is meromorphic at ∞.

We can construct modular forms for the Weil representation by lifting
scalar valued modular forms on Γ0(N). Suppose that the level of D divides
N , where N is a positive integer. Let f be a scalar valued modular form on
Γ0(N) of weight k and character χD. Again we allow poles at cusps. Then

F (τ) =
∑

M∈Γ0(N)\Γ

f |M (τ) ρD(M−1) e0

is a vector valued modular form for ρD of weight k which is invariant under
the automorphisms of the discriminant form.

Now we consider the following cases. Let p = 2, 3, 5 or 7. Then there is an
automorphism of the Leech lattice of cycle shape 1mpm with m = 24/(p + 1).
The fixpoint lattice Λp is the unique lattice in its genus without roots. Let
II1,1 be the even unimodular Lorentzian lattice of rank 2. Then the lattice

Λp ⊕ √
pII1,1

has level p and genus

II2m+1,1

(
pεp(m+2)

)

with εp = +,−, +, + for p = 2, 3, 5, 7. The eta product

f(τ) =
1

η(τ)mη(pτ)m
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is a modular form for Γ0(p) of weight −m with poles at the cusps 0 and ∞
and trivial character for p = 2, 3 and 5 and character χ

((
a b
c d

))
=

(
d
7

)
in the

case p = 7. We define T -invariant functions gj by

f

(
τ

p

)

= g0(τ) + g1(τ) + · · · + gp−1(τ)

with gj |T (τ) = e(j/p)gj(τ), i.e.,

gj(τ) =
1
p

p−1∑

k=0

e

(

−kj

p

)

f

(
τ + k

p

)

.

We lift the modular form f to a modular form F =
∑

Fγeγ on Λp ⊕ √
pII1,1

using the above construction. Then F has components

Fγ(τ) =

{
f(τ) + g0(τ) if γ = 0,

gj(τ) if γ �= 0 and γ2/2 = −j/p mod 1.

The components Fγ with γ2/2 = 0 mod 1 are modular forms for Γ0(p) of
weight −m and of nontrivial quadratic character in the case p = 7.

4. WZW theories

In this section, we recall some results on vertex operator algebras and WZW
models. References are [7, 9–11, 22].

Let V be a vertex operator algebra satisfying certain regularity prop-
erties. In particular, we assume that V is simple and rational, i.e., V is
irreducible as a module over itself and V has only finitely many noniso-
morphic simple modules and every module decomposes into a finite direct
sum of irreducible modules. Let {M0, . . . , Mn} with M0 = V be the set of
nonisomorphic simple modules. The dimensions of the intertwining spaces

Nk
ij = dim

(
Mk

Mi Mj

)

satisfy Nk
ij = Nk

ji, N j
0i = δj

i and N0
ij = δji+ for a unique i+ depending on i.

The fusion algebra is the free vector space C[I], where I = {0, . . . , n}
with products

i × j =
∑

k∈I

Nk
ijk.

The fusion algebra is commutative, associative and i × 0 = i.
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Zhu [22] has shown that the space of genus 1 correlation functions of V
is invariant under SL2(Z) and has a basis corresponding to the modules Mi.
We denote the S-matrix with respect to this basis by Sij . A consequence
of this result is that the characters χi of the modules Mi are invariant
under SL2(Z).

The S-matrix is related to the structure constants of the fusion algebra
by the Verlinde formula (cf. [12])

Nk
ij =

∑

n∈I

SinSjnS−1
kn

S0n
.

A module Mi is called a simple current if for each j there is a unique
k such that i × j = k. Then of course i × i+ = 0. This condition is also
sufficient, i.e., Mi is a simple current if and only if N j

ii+ = δj0. A simple
current generates an action of a group Z/NZ on the set of modules.

An important problem is when there is a vertex algebra structure on a
sum over the modules Mi extending V . In some special cases, e.g., simple
current extensions of WZW models, this problem has been solved.

Let g be a finite-dimensional simple complex Lie algebra with affiniza-
tion ĝ and k a positive integer. Then the irreducible ĝ-module L(kΛ0) has a
canonical structure as a simple rational vertex operator algebra which sat-
isfies the above mentioned regularity properties. The simple modules are
the irreducible ĝ-modules L(Λ) with Λ ∈ P k

+ and Λ(d) = 0. This theory is
called the WZW model corresponding to g of level k. Since in this case,
the S-matrix is known, the structure constants of the fusion algebra can
be calculated by the Verlinde formula. Fuchs [8] has determined the simple
currents of the WZW models. The nontrivial simple currents correspond to
the weights Λ, where Λ is k times a cominimal weight of g. If g is E8 there
is an exceptional simple current at level 2.

Let V be a vertex operator algebra. Then the L0-eigenspace V1 is a Lie
algebra under [u, v] = u0v with invariant bilinear form (u, v) = u1v. The
components of the fields u(z) =

∑
m∈Z

umz−m−1 and v(z) =
∑

n∈Z
vnz−n−1

satisfy the commutation relations

[um, vn] = ([u, v])m+n + m(u, v)δm+n1.

Schellekens [21] studies the character valued partition functions of mero-
morphic vertex operator algebras of central charge 24. With the help of the
level 1 trace identities he proves the following result. Let V be a vertex
operator algebra of central charge 24, trivial fusion algebra and nonzero V1.
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Then either dimV1 = 24 and V1 is commutative or dim V1 > 24 and V1 is
semisimple. In the first case, V is the vertex operator algebra of the Leech
lattice. In the second case, V can be written as a sum of modules over the
affinization V̂1 of V1. Using the trace identities of level 2, he shows that there
are at most 69 possibilities for the Lie algebra V1 if dimV1 > 24. For each of
these possibilities, he finds exactly one modular invariant partition function
and describes explicitly the decomposition of V as V̂1-module. For many of
these vector spaces, it is still open whether they have a vertex algebra struc-
ture because the extension problem for WZW models has not been solved
in general so far. Schellekens’ results suggest that there are 71 meromorphic
vertex operator algebras of central charge 24, the monster vertex operator
algebra, the vertex operator algebra of the Leech lattice and the 69 vertex
operator algebras with Kac–Moody symmetry.

5. Characters of some vertex operator algebras

In this section, we show that the character of the prospective conformal
field theory in [21] of spin-1 algebra Âr

p−1,p can be written in the form χ =∑
Fγ ϑγ .
Let p = 2, 3, 5 or 7 and q = p − 1.
First, we describe some properties of the affine Kac–Moody algebra Âq.

The central element K is given by

K = α∨
0 + · · · + α∨

q .

Let

λ = n0Λ0 + · · · + nqΛq = (n0, . . . , nq)

be in P mod Cδ. Then λ has level

λ(K) = n0 + · · · + nq

and norm

(λ, λ) = λ2 =
q∑

i,j=1

bijninj ,

where bij is the inverse of the Cartan matrix of Aq.
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The natural projection from P mod Cδ to the lattice A′
q sends

λ = n0Λ0 + · · · + nqΛq

to

λ = n1Λ1 + · · · + nqΛq.

This map induces a bijection from the weights of level p in P mod Cδ to the
lattice A′

q.
The group A′

q/Aq
∼= Z/pZ is sometimes called congruence group and its

elements congruence classes. It can be represented by the elements Λi with
Λi + Λj = Λi+j where addition is taken modulo p.

Let λ = pΛ0 = (p, 0, . . . , 0). Then the irreducible highest weight module
L(λ) is a vertex operator algebra whose irreducible modules correspond to
the weights (n0, . . . , nq), where the ni are nonnegative integers and n0 +
· · · + nq = p. The simple currents are given by the weights pΛi. They act
by cyclicly shifting the coefficients to the right, i.e., (pΛi).(n0, . . . , nq) =
(nq+1−i, . . . , nq−i), and form a group isomorphic to Z/pZ.

We describe some properties of the simple currents.
Let λ be a weight of level p and s a simple current. Then λ and s.λ are

in the same class.
Furthermore

Proposition 5.1. The string functions of Âq of level p are invariant under
the following action of a simple current s

cΛ
λ = cs.Λ

s.λ .

Proof. There is a diagram automorphism φ acting on
⊕l

i=0 Cαi such that
φ.αi mod Cδ = s.(αi mod Cδ) for i = 0, . . . , l. We extend φ to ĥ∗ by
φ.Λ0 = s.Λ0. Then there is a unique map φ on ĥ satisfying (φ.λ)(φ.y) = λ(y)
for all λ ∈ ĥ∗ and y ∈ ĥ. This map gives an isomorphic realization and there-
fore an isomorphism of ĝ. Hence

cs.Λ
s.λ = cφ.Λ+Cδ

φ.λ+cδ = cφ.Λ
φ.λ = cΛ

λ . �

The isomorphism from the discriminant group to the group of simple
currents sending Λi to pΛi satisfies
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Proposition 5.2. Let μ be a weight of level 0 such that μ = Λi mod Aq.
Then

cΛ
λ+pμ = cΛ

(pΛi).λ

for all Λ in P p
+ and all λ in P p.

Proof. Let λ = (n0, . . . , nq) be a weight of level p and μ = (m0, . . . , mq)
a weight of level 0 such that μ = Λ1 mod Aq. Then

w1w2 . . . wq(λ + pμ) = (nq, n0, . . . , nq−1) mod Aq

= (pΛ1).λ mod Aq

so that
cΛ
λ+pμ = cΛ

w1w2...wq(λ+pμ) = cΛ
(pΛ1).λ.

This implies the statement. �
Let V be the prospective vertex operator algebra in [21] of spin-1 algebra

Âr
q,p, where r = 48/q(p + 1). Then V is a sum of irreducible highest weight

modules of Âr
q, the weight of each factor Âq having level p. We denote the

set of highest weight vectors by M . The set M is invariant under the natural
action of a subgroup G of the group of simple currents and decomposes into
G-orbits G\M . In the appendix, we list G and orbit representatives of G\M
together with their multiplicities.

Using the isomorphism from the discriminant group to the group of
simple currents we can consider G as subgroup of Ar

q
′/Ar

q. We denote by
(Ar

q, G) the rational lattice obtained by gluing the elements of G to Ar
q and

analogously by (Ar
q, G

⊥) the rational lattice obtained by gluing the elements
of the orthogonal complement G⊥ to Ar

q. Note that (Ar
q, G

⊥) is the dual
lattice of (Ar

q, G).
The character of V as Âr

q-module is given by

χV =
∑

Λ∈M

mult(Λ) χΛ

=
∑

Λ∈M

mult(Λ)
r∏

i=1

∑

λi∈A′
q/pAq

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈Ar
q

′/pAr
q

∑

Λ∈M

mult(Λ)
r∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui).
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We have

Proposition 5.3. The only nonzero contributions in the above expression
for the character of V come from weights λ in (Ar

q, G
⊥).

Proof. A case-by-case analysis shows M ⊂ (Ar
q, G

⊥). It is easy to see that
cΛ
λ = 0 if Λ and λ are not in the same class. Therefore any nonzero contri-

bution to the character of V comes from a weight λ in (Ar
q, G

⊥). �

It follows

Proposition 5.4. The character of V as Âr
q-module can be written as

χV =
∑

λ∈N ′/N

F̃λ ϑλ,

where N =
√

p(Ar
q, G), ϑλ is the theta function of the coset λ + N and

F̃λ =
∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.
√

pλi
.

Proof. By Propositions 5.3 and 5.1 we have

χV =
∑

λ∈Ar
q

′/pAr
q

∑

Λ∈M

mult(Λ)
r∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Λ∈M

mult(Λ)
r∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Γ∈G\M

∑

Λ∈G.Γ

mult(Γ)
r∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cgi.Λi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

r∏

i=1

θλi
(τ, zi, ui)

∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.λi
(τ),
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where GΛ denotes the stabilizer of Λ in G. Using Proposition 5.2 we get

χV =
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

μ∈p(Ar
q ,G)/pAr

q

r∏

i=1

θλi+μi
(τ, zi, ui)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.(λi+μi)
(τ)

=
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

μ∈p(Ar
q ,G)/pAr

q

r∏

i=1

θλi+μi
(τ, zi, ui)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

si.gi.λi
(τ)

=
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

μ∈p(Ar
q ,G)/pAr

q

r∏

i=1

θλi+μi
(τ, zi, ui)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.λi
(τ).

Here si is the simple current of Âq such that cΛi

gi.λi+gi.μi
= cΛi

si.gi.λi
. Note that

s = (s1, . . . , sr) is in G because μ = (μ1, . . . , μr) is in p(Ar
q, G)/pAr

q. Now

∑

μ∈p(Ar
q ,G)/pAr

q

r∏

i=1

θλi+μi
(τ, zi, ui)

=
∑

μ∈p(Ar
q ,G)/pAr

q

∑

ν∈pAr
q

r∏

i=1

e(pui) e

(
τ(λi + μi + νi)2

2p
+ (λi + μi + νi, zi)

)

=
∑

μ∈p(Ar
q ,G)

r∏

i=1

e(pui) e

(
τ(λi + μi)2

2p
+ (λi + μi, zi)

)

=
∑

μ∈√
p(Ar

q ,G)

r∏

i=1

e(pui) e

(
τ(λi +

√
pμi)2

2p
+ (λi +

√
pμi, zi)

)

=
∑

μ∈√
p(Ar

q ,G)

r∏

i=1

e(pui) e

(
τ(λi/

√
p + μi)2

2
+ (λi/

√
p + μi,

√
pzi)

)

,
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so that

χV =
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

μ∈√
p(Ar

q ,G)

r∏

i=1

e(pui) e

(
τ(λi/

√
p + μi)2

2

+ (λi/
√

p + μi,
√

pzi)
)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.λi
(τ)

=
∑

λ∈(1/
√

p)(Ar
q ,G⊥)/

√
p(Ar

q ,G)

∑

μ∈√
p(Ar

q ,G)

r∏

i=1

e(pui) e

(
τ(λi + μi)2

2

+ (λi + μi,
√

pzi)
)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.
√

pλi
(τ).

This implies the proposition. �
Note that the functions F̃γ are invariant under G, the permutations

Sym(G) of the r components which leave G invariant and by Proposition
5.1 also under Ŵ r.

Proposition 5.5. The lattice N =
√

p(Ar
q, G) has genus

II2m,0

(
pεp(m+2)

)
,

where m = 24/(p + 1) and εp = +,−, +, + for p = 2, 3, 5, 7. In the case
p = 2, the 2-adic Jordan components are even. The minimal norm of N
is 4 for p = 2, 3 and 5, and 6 for p = 7. This is the largest possible minimal
norm of a lattice in this genus and N is the unique lattice up to isomorphism
with this minimal norm.

Proof. It is easy to see that N is an even lattice. Furthermore, we have
pN ′ =

√
p(Ar

q, G
⊥) ⊂ √

p(Ar
q, G) = N because G⊥ ⊂G. Using |G|2 = p24/q−2

we get

det(N) = det(Ar
q, G)(p)

= prq det(Ar
q, G)

=
prq

|G|2 det (Ar
q)

=
prp

|G|2
= pm+2.
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This implies that N has the stated genus (cf. [6, p. 386 ff., Theorem 13]).
The minimal norm of N follows from the minimal distance of G considered
as linear code in F

r
p. We find that the minimal norm of N is 4 for p = 2, 3

and 5, and 6 for p = 7. We leave the proof of the other statements to the
reader. �

Now we determine the function

F̃ =
∑

γ∈D

F̃γeγ ,

where D is the discriminant form of N , explicitly.

Theorem 5.6. The function F̃ is a modular form of weight −24/(p + 1)
for the Weil representation of N .

Proof. We have to show that

F̃γ(τ + 1) = e
(
−γ2/2

)
F̃γ(τ)

and

F̃γ

(

−1
τ

)

=
e(sign(D)/8)

√
|D|

τk
∑

β∈D

e
(
(γ, β)

)
F̃β(τ)

with k = −24/(p + 1) for all γ in D.
To prove these equations we proceed as follows. We choose a set of

functions {F̃γ1 , F̃γ2 , . . . , F̃γn
} such that each F̃γ is conjugate to exactly one

F̃γj
under the action of G, Sym(G) and Ŵ r.
Using the T -invariance of the string functions we verify that

F̃γj
(Tτ) = e

(
−γ2

j /2
)

F̃γj
(τ) .

This implies that the F̃γ transform correctly under T .
Let γ ∈ D. We define constants cγ,γl

by

∑

β∈D

e
(
(γ, β)

)
F̃β =

∑

l

cγ,γl
F̃γl

.

If γ is equivalent to γj under the above symmetries then

cγ,γl
= cγj ,γl

.
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The action of S on F̃γj
is given by

F̃γj
(Sτ) =

∑

Λ∈G\M

∑

g∈G

mult(Λ)
|GΛ|

r∏

i=1

cΛi

gi.
√

p(γj)i
(Sτ).

We determine the S-matrix of the string functions by computer calculations
using the formula in Section 2 and write F̃γj

(Sτ) as polynomial in the string
functions. We check that

F̃γj
(Sτ) =

e(sign(D)/8)
√

|D|
τk

∑

l

cγj ,γl
F̃γl

(τ).

To see this, it is helpful to replace the weight λ in the string function cΛ
λ in

the expression of F̃γj
(Sτ) and of the F̃γl

by the unique dominant weight in
the Ŵ -orbit of λ in the set of weights of L(Λ). This shows that F̃γj

and the
F̃γ have the desired transformation behaviour under S. �

Since the theta function of a lattice transforms under the dual Weil rep-
resentation of the corresponding lattice it is now obvious that the character

χV =
∑

γ∈N ′/N

F̃γ ϑγ

is invariant under SL2(Z).
As in Section 3, let

f(τ) =
1

η(τ)mη(pτ)m

and define T -invariant functions gj by

f

(
τ

p

)

= g0(τ) + g1(τ) + · · · + gp−1(τ),

where gj |T (τ) = e(j/p)gj(τ). Then

Theorem 5.7. The modular form F̃ is equal to the lift F of the modular
form f to N .

Proof. Since the lattices N and Λp ⊕ √
pII1,1 have the same signature modulo

8 and isomorphic discriminant forms the components of F =
∑

Fγeγ



472 Thomas Creutzig, Alexander Klauer & Nils R. Scheithauer

are given by

Fγ =

{
f + g0 if γ = 0,

gj if γ �= 0 and γ2/2 = −j/p mod 1.

We calculate the first nonvanishing coefficient of the string functions by com-
puter using Freudenthal’s formula and determine the singular coefficients of
F̃ . It turns out that they are equal to the singular coefficients of F . Hence
the difference of F̃ and F is a holomorphic modular form of negative weight
which is finite at ∞ and therefore must be 0. �

If explicit formulas for the string functions are available then Theorem
5.7 can also be proved in the following way. The modular properties of
the string functions imply that F̃γ in the formula of Proposition 5.4 is a
modular form of weight k and some level N with poles at cusps. The same
is true for Fγ . Hence we can deduce equality of these functions by comparing
sufficiently many coefficients. For Â1 and Â2, there are explicit formulas for
the string functions determined by Kac and Peterson [15]. We have used
them to verify the statement of Theorem 5.7 in the cases p = 2 and 3.

Unfortunately, explicit formulas for the string functions are known only
in a very few cases. The advantage of the proof of Theorem 5.7 given
above is that it only needs the first nonvanishing coefficient of the string
functions which is easy to determine using Freudenthal’s formula. Therefore
our method can also be applied to the other prospective vertex operator
algebras in [21].

6. Construction of some generalized Kac–Moody algebras
as bosonic strings

We show that the physical states of a chiral bosonic string with vertex
algebra V ⊗ VII1,1 give a realization of the generalized Kac–Moody algebra
corresponding to the elements of order p in M23.

We assume now that the prospective vertex operator algebra V in [21]
with spin-1 algebra Âr

p−1,p exists and has a real form.
We will work in this section over the real numbers.
Let VII1,1 be the vertex algebra of the Lorentzian lattice II1,1. Recall

that the b,c -ghost system of the bosonic string is described by the vertex
superalgebra of the lattice Z. It carries a conformal structure of weight
−26. We call the corresponding vertex operator superalgebra Vb,c. There is
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an action of the BRST-operator Q with Q2 = 0 on the vertex superalgebra

V ⊗ VII1,1 ⊗ Vb,c.

The cohomology group of ghost number 1 has a Lie bracket [16] and we
denote this Lie algebra by G. The vertex algebra V is graded by the
rational lattice N ′, so that G is graded by N ′ ⊕ II1,1. The no-ghost the-
orem (cf. [2, Theorem 5.1]) implies that the graded dimensions are given
by dimGα = 2m + 2 if α = 0 and dimGα = [Fα](−α2/2) if α �= 0. Here
Fα is the component of F corresponding to α mod II1,1 (cf. Theorem 5.7).
Furthermore, Theorem 2 in [4] shows that G is a generalized Kac–Moody
algebra.

In order to obtain an even grading lattice L we rescale N ′ ⊕ II1,1 by p.
It is easy to see that L has genus II2m+1,1(p+m). The lattice Λp ⊕ II1,1 has
the same genus. It follows from Eichler’s theory of spinor genera that there
is only one class in this genus so that L is isomorphic to Λp ⊕ II1,1. Thus
we have

Proposition 6.1. The Lie algebra G is a generalized Kac–Moody algebra
graded by the Lorentzian lattice L. The Cartan subalgebra has dimension
2m + 2 and

dim Gα =

{
[f ](−α2/2) if α ∈ L\pL′,

[f ](−α2/2) + [f ](−α2/2p) if α ∈ pL′,

for nonzero α, where

f(τ) =
1

η(τ)mη(pτ)m
= q−1 + m + · · · .

We recall that [f ](n) denotes the coefficient at qn in the Fourier expan-
sion of the function f .

Let ρ be a primitive norm 0 vector in II1,1. Then ρ is a Weyl vector for
the reflection group W of L = Λp ⊕ II1,1 (cf. [1]).

Theorem 6.2. The denominator identity of G is

eρ
∏

α∈L+

(1 − eα)[f ](−α2/2)
∏

α∈pL′+

(1 − eα)[f ](−α2/2p)

=
∑

w∈W

det(w) w

(

eρ
∞∏

n=1

(1 − enρ)m(1 − epnρ)m

)

.
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The real simple roots of G are the simple roots of W , i.e., the norm 2 vectors
in L with (ρ, α) = −1 and the norm 2p vectors in pL′ with (ρ, α) = −p. The
imaginary simple roots of G are the positive multiples nρ of the Weyl vector
with multiplicity m if p � |n and multiplicity 2m if p|n.

Proof. We only have to prove the second statement. Let K be the general-
ized Kac–Moody algebra with root lattice L, Cartan subalgebra L ⊗ R and
simple roots as stated in the theorem. We lift f to a vector valued modular
form F on L ⊕ √

pII1,1. Note that F admits the same description as the
lift of f on Λp ⊕ √

pII1,1 in Section 3. Then we apply the singular theta
correspondence to F to obtain an automorphic form Ψ of singular weight.
The expansion of Ψ at any cusp is given by

eρ
∏

α∈L+

(1 − eα)[f ](−α2/2)
∏

α∈pL′+

(1 − eα)[f ](−α2/2p)

=
∑

w∈W

det(w) w

(

eρ
∞∏

n=1

(1 − enρ)m(1 − epnρ)m

)

.

This is the denominator identity of K. We see that G and K have the same
root multiplicities. The product in the denominator identity determines
the simple roots of G because we have fixed a Cartan subalgebra and a
fundamental Weyl chamber. It follows that G and K have the same simple
roots and are isomorphic. �

Appendix

Below we list the groups G as linear codes in F
r
p and orbit representatives

of G\M together with their multiplicities.
In the case p = 2, the glue code G is the binary Hamming code of length

16 and orbit representatives are

• (2, 0)16

• 8 × (1, 1)16

• The remaining orbit representatives can be described as follows. In
the dual binary Hamming code of length 16, for every codeword of
weight 8, identify the 1-components with the highest weight (1, 1) and
for the 0-components allow all combinations of (2, 0) and (0, 2) such
that both of these highest weights appear an odd number of times.
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In the case p = 3, the glue code G is the ternary zero sum code of length
6 and orbit representatives are

• (3, 0, 0)6

• (1, 1, 1)4(3, 0, 0)2 and all permutations

• (2, 0, 1)5(0, 1, 2) and (2, 1, 0)5(0, 2, 1)

• 6 × (1, 1, 1)6.

In the case p = 5, the glue code is F
2
5 and orbit representatives are

• (5, 0, 0, 0, 0)2

• (2, 0, 1, 0, 2)2

• (2, 0, 0, 2, 1)(3, 0, 1, 1, 0) and (3, 0, 1, 1, 0)(2, 0, 0, 2, 1)

• (1, 1, 1, 1, 1)(1, 0, 0, 1, 3) and (1, 0, 0, 1, 3)(1, 1, 1, 1, 1)

• 4 × (1, 1, 1, 1, 1)2.

In the case p = 7, the glue code is F7 and orbit representatives are

• (7, 0, 0, 0, 0, 0, 0)

• (2, 0, 0, 1, 3, 0, 1) and (2, 1, 0, 3, 1, 0, 0)

• (2, 0, 0, 2, 0, 3, 0)

• (1, 0, 1, 0, 1, 2, 2)

• 3 × (1, 1, 1, 1, 1, 1, 1).
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