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Invariants of algebraic curves and topological
expansion

B. Eynard and N. Orantin

For any arbitrary algebraic curve, we define an infinite sequence of
invariants. We study their properties, in particular their variation
under a variation of the curve, and their modular properties. We
also study their limits when the curve becomes singular. In addi-
tion, we find that they can be used to define a formal series, which
satisfies formally an Hirota equation, and we thus obtain a new
way of constructing a τ -function attached to an algebraic curve.

These invariants are constructed in order to coincide with the
topological expansion of a matrix formal integral, when the alge-
braic curve is chosen as the large N limit of the matrix model’s
spectral curve. Surprisingly, we find that the same invariants also
give the topological expansion of other models, in particular the
matrix model with an external field, and the so-called double scal-
ing limit of matrix models, i.e., the (p, q) minimal models of con-
formal field theory.

As an example to illustrate the efficiency of our method, we
apply it to the Kontsevitch integral, and we give a new and extre-
mely easy proof that Kontsevitch integral depends only on odd
times, and that it is a KdV τ -function.

1. Introduction

Computing the topological expansion of various matrix integrals has been
an interesting problem for more than 30 years. The reason for it, is that
formal matrix integrals (cf [41] for a definition of formal integrals), are known
to be combinatorics generating functionals. Some formal matrix integrals
enumerate maps, or colored maps of given topology [14, 26, 27], some count
intersection numbers (the Kontsevitch integral and its generalizations [58]),
and physicists have also tried to reach the limit of continuous maps through
critical limits, and thus tried to recover Liouville’s field theory [28,57].

Many methods have been invented to compute those formal matrix inte-
grals, and the most successful is undoubtedly the “loop equations” method
[24, 53], which is in fact nothing but integration by parts, or Tutte’s equations
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[73, 74], or Schwinger–Dyson equations, or Ward identities, or Virasoro
constraints, or W-algebra [26]. Until recently, those loop equations were
solved only for the first few orders (mostly planar or torus), and case by
case (for each matrix model). One of the most remarkable methods was
obtained in [7]. Let us also mention that other methods were invented
using orthogonal polynomials [67] (only in the case were the formal inte-
gral comes from an actual convergent integral), or topological string theory
methods [11,22,65] using the so-called holomorphic anomaly equations.

In 2004, a new method for computing the large N expansion of matrix
integrals was introduced in [33], and further developed in [17, 40]. The
starting point of that method was not new, it was the same as in [7], it
consists in solving the loop equations recursively in powers of the expansion
parameter 1/N2, where N is the size of the matrix. To leading order, loop
equations become algebraic equations, and give rise to an algebraic curve
E(x, y) = 0 where E is some polynomial in two variables, which we call the
“classical spectral curve”.

The new feature which was introduced in [33] was to use contour integrals
and functions on the curve rather than on the x-plane as in [7]. When
written on the curve, the loop equations, together with the Cauchy residue
formula and the Riemann bilinear identity, simplify enormously, and take a
very universal structure which can be written entirely in terms of geometric
properties of the curve. In other words, the solution of loop equations of
many different matrix models, depends only on the properties of the spectral
curve, and not on the matrix model which gives that curve. In particular,
they can be written for any arbitrary algebraic curve, even for curves which
do not come from matrix models. It is thus tempting to define “free energies”
for any algebraic curve. This is what we do in this article.

Therefore, in this article, for any arbitrary algebraic curve E(x, y) = 0,
we define an infinite sequence of complex numbers F (g)(E), computed as
residues of meromorphic forms on the curve. Out of these F (g)(E)’s, we
build a formal power series:

(1.1) lnZN (E) = −
∞∑

g=0

N2−2gF (g)(E)

and we study its properties.
We compute the variations of F (g) under variations of the curve (varia-

tions of its complex structure, its moduli and modular transformations). We
show that the F (g)’s are invariant under some transformations of the curve,
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namely under transformations of the curve which preserve the symplectic
form up to a sign ±dx ∧ dy.

We also show that ZN (E) satisfies bilinear Hirota equations, and thus
ZN (E) is a formal τ -function and we construct the associated formal Baker–
Hakiezer function [9].

We thus have a notion of a τ -function associated to an algebraic curve.
Such notion has already been encountered in the literature [9], and it is
not clear whether our definition coincides with other existing definitions.
What can be understood so far, is that we are defining a sort of quantum
deformation of a classical τ -function whose spectral curve is E . The classical
τ -function being only the dispersionless limit lnZ∞(E) = −F (0)(E), while
our ZN (E) concerns the full system.

Almost by definition, if E is the algebraic curve coming from the large
N limit of the loop equations of a matrix model, then ZN (E) is the matrix
integral.

What is more interesting is to see what is ZN (E) for curves not coming
from the large N limit of the loop equations of a matrix model.

We study in details a few examples.

• The double scaling limit of a matrix model. It has been well known
since [26, 51], that if we fine tune the parameters of a matrix model
so that the algebraic curve E develops a singularity, the free ener-
gies become singular and the most singular part of the free energies
form the KP-hierarchy τ -function (KdV hierarchy for the one-matrix
model). We show, by looking at the double scaling limit of matrix mod-
els, that the KP τ -function (resp. KdV τ -function), coincides with our
definition for the classical limit of the (p, q) systems (resp. (p, 2)).

• It has been well known since the works of Kontsevitch [58], that the
KdV τ -function can be represented by another matrix integral called
Kontsevitch integral. Kontsevitch introduced that integral as a count-
ing function for intersection numbers, and proved that it is a KdV
τ -function. One of the key features is that it depends on the eigenval-
ues of a diagonal matrix Λ, only through the quantities tk = Tr Λ−k

for odd k (cf. [26, 49]). Another important known property is that, if
tk = 0 for k > p, it coincides with the (p, 2) τ -function found from the
double scaling limit of the one-matrix model, i.e., the (p, 2) conformal
minimal model.

Here, we prove that the Kontsevitch matrix integral coincides with our
ZN (E) when E is the large N limit of the Schwinger–Dyson equation of the
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Kontsevitch integral. The remarkable fact, is that for our ZN (E), the above
properties (i.e., the fact that it depends only on odd tk’s and the fact that
it gives the (p, 2) τ -function if tk = 0 for k > p) are trivial. We thus provide
a new proof of those properties, and maybe a new interpretation.

2. Main results of this article

In this section we just sketch briefly the contents of the main body of the
article.

2.1. Definitions

Given a polynomial of two variables E(x, y), we construct an infinite sequence
of multilinear meromorphic forms over the curve of equation E(x, y) = 0,
which we call:

(2.1) W
(g)
k (p1, p2, . . . , pk), k, g ∈ N.

In particular W
(g)
0 = −F (g) are complex numbers F (g)(E).

The F (g)’s and the W
(g)
k ’s are defined in terms of residues near the branch

points of the curve only, i.e., they depend only on the local behavior of the
curve near its branch points.

Then we show some properties:

• the W
(g)
k ’s are symmetric in their k variables;

• there is a “loop insertion operator” which increases k → k + 1:

(2.2) DB(pk+1,.)W
(g)
k (p1, p2, . . . , pk) = W

(g)
k+1(p1, p2, . . . , pk, pk+1);

• there is an inverse operator which contracts k → k − 1:

Res
pk→branch points

Φ(pk) W
(g)
k (p1, p2, . . . , pk)

= (2g + k − 3) W
(g)
k−1(p1, p2, . . . , pk−1).(2.3)

The F (g)’s and the W
(g)
k ’s are defined in a way which mimics the solution

of matrix models loop equations, and almost by definition, they coincide with
matrix model’s free energy and correlation functions when the polynomial E
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is chosen as the classical large N limit of the matrix model’s spectral curve:

(2.4) ln
(∫

dM exp −N Tr V (M)
)

= −
∞∑

g=0

N2−2g F (g)(E1MM)

and
〈

Tr
dx1

x1 − M
Tr

dx2

x2 − M
· · · Tr

dxk

xk − M

〉

=
∞∑

g=0

N2−2g−k W
(g)
k (p(x1), p(x2), . . . , p(xk)).(2.5)

The same construction works also for the two-matrix model and the
matrix model in an external field:

F
(g)
1MM = F (g)(E1MM),

F
(g)
2MM = F (g)(E2MM),

F
(g)
ext.field = F (g)(Eext.field),

(2.6)

in particular, it works for the Kontsevitch integral

(2.7) F
(g)
Kontsevitch = F (g)(EKontsevitch),

where the LHS is the topological expansion of the corresponding matrix
integral, and the RHS is the functional defined in this article, applied to the
curve E(x, y) = 0 coming from the large N limit of the Schwinger–Dyson
equations of the corresponding matrix model.

Let us emphasize that not every curve E is the large N limit of a matrix
model’s spectral curve, and thus our functional F (g)(E) is defined beyond
matrix models, and is really an algebro-geometric object. It has many
remarkable properties, and we list below some of the most important ones:

2.2. Remarkable properties

Theorem 4.8 Diagrammatic representation:

W
(g)
k+1(p, p1, . . . , pk) =

∑

G∈G(g)
k+1(p,p1,...,pk)

w(G) = w

⎛

⎜⎝
∑

G∈G(g)
k+1(p,p1,...,pk)

G

⎞

⎟⎠ ,

(2.8)
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where G(g)
k+1(p, p1, . . . , pk) is a set of trivalent graphs (built on trees), and w

is a Feynman-like weight function associating values to edges and integrals
(residues in fact) to vertices of the graph.

This theorem is important because it makes all formulae particularly
easy to remember, and many theorems below can be proved in a diagram-
matic way.

Theorem 8.1 Singular limits: If the curve becomes singular, the func-
tional F (g) commutes with the singular limit, i.e.,

(2.9) limF (g)(E) = F (g)(lim E).

Theorem 9.2 Integrability: the formal series:

(2.10) lnZN (E) = −
∞∑

g=0

N2−2g F (g)(E)

obeys Hirota’s bilinear equations, and thus is a τ -function.

Theorem 5.3 Homogeneity: F (g)(E) is homogeneous of degree 2 − 2g
in the moduli of the curve:

(2.11) (2 − 2g)F (g) =
∑

k

tk
∂F (g)

∂tk
.

Theorem 5.1 Deformations: If the curve E is deformed into E + δE ,
the differential y dx is deformed into y dx → y dx + δ(y dx) where δ(y dx)
is a meromorphic one-form which we denote δ(y dx) = −Ω, and which can
be written as: Ω =

∫
∂Ω W

(0)
2 Λ for some appropriate contour ∂Ω and some

appropriate function Λ. Then we have

(2.12) δW
(g)
k (p1, p2, . . . , pk) =

∫

∂Ω
Λ(pk+1) W

(g)
k+1(p1, p2, . . . , pk, pk+1).

Theorem 7.1 Symplectic invariance: F (g)(E) is unchanged under the
following changes of curve E(x, y):

(2.13)

y → y + R(x), R(x)=rational fraction of x,
y → cy, x → c−1x, c=complex number,
y → −y, x → x,
y → x, x → y.

all those transformations conserve the symplectic form dx∧dy up to the sign.



Algebraic curves and topological expansion 353

Theorem 6.2 Modular transformations: The modular dependence of
F (g)(E) is only in the Bergmann kernel (defined in Section 3.1.5), and thus
the modular transformations of F (g)(E) are derived from those of the Berg-
mann kernel. Under a modular transformation, the Bergmann kernel is
changed into B(p, q) → B(p, q) + 2iπ du(p)κ du(q), and thus we introduce a
new kernel for any arbitrary symmetric matrix κ:

(2.14) Bκ(p, q) → B(p, q) + 2iπ du(p)κ du(q).

We thus define some F
(g)
κ (E), and we compute:

(2.15)
∂F (g)

∂κ
.

We also remark that when κ = (τ − τ)−1, F
(g)
κ (E) is modular invariant.

2.3. Some applications, Kontsevitch’s integral

2.3.1. (p,q) minimal models, KP and KdV hierarchies. It is well
known [20, 26] that some rational singular limits of matrix models correspond
to (p, q) minimal models, and Theorem 8.1 implies that

(2.16) F
(g)
(p,q) = F (g)(E(p,q))

and it is well known that (p, q) minimal models are some reductions of KdV
hierarchy for q = 2 and KP hierarchy for general (p, q).

Notice that the x ↔ y symmetry of Theorem 7.1 (i.e., Equation (2.13))
implies the famous (p, q) ↔ (q, p) duality [26,28,56].

2.3.2. Kontsevitch integral’s properties. Kontsevitch’s integral is def-
ined as

ZKontsevitch(Λ) =
∫

dM e−N Tr (M3/3)−MΛ2
,

lnZKontsevitch = −
∞∑

g=0

N2−2g F
(g)
Kontsevitch(2.17)

and we define the Kontsevitch’s times:

(2.18) tk =
1
N

Tr Λ−k.



354 B. Eynard & N. Orantin

It is straightforward to write the Schwinger–Dyson equations and find the
classical spectral curve:

(2.19) EKontsevitch =

⎧
⎨

⎩
x(z) = z +

1
2N

Tr
1
Λ

1
z − Λ

,

y(z) = z2 + t1.

According to theorem 10.3, we have

(2.20) F
(g)
Kontsevitch = F (g)(EKontsevitch).

Using the x ↔ y invariance of Equation (2.13), we see that the only branch
point in y is located at z = 0, and since the F (g)’s depend only on the local
behavior near the branch point, we may perform a Taylor expansion of x(z)
near z = 0:

(2.21) EKontsevitch(t1, t2, . . .) =

⎧
⎪⎨

⎪⎩

x(z) = z − 1
2

∞∑

k=0

tk+2z
k,

y(z) = z2 + t1.

From the symplectic invariance Theorem 7.1, (i.e., Equation (2.13)), we may
add to x any rational function of y, i.e., of z2, thus we may substract to x its
even part, and thus the following curves are related by symplectic invariance:

(2.22) EKontsevitch(t1, t2, t3, . . .) ∼ EKontsevitch(t1, 0, t3, 0, t5, . . .).

We thus have a very easy proof that F
(g)
Kontsevitch depends only on odd times.

Moreover, if tk = 0 for k > p + 2, we have

(2.23) EKontsevitch(t1, t2, . . . , tp+2, 0, . . .) =

⎧
⎪⎨

⎪⎩
x(z) = z − 1

2

p∑

k=0

tk+2z
k,

y(z) = z2 + t1,

which is exactly the curve of the (p, 2) minimal model, i.e., it satisfies
KdV hierarchy. We thus have a very easy proof that ZKontsevitch is a KdV
τ -function.

Those are old and classical results about the Kontsevitch integral, and
we just propose a new proof, in order to illustrate the power of the tools we
introduce.
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3. Algebraic curves, reminder and notations

We begin by recalling some elements of algebraic geometry, which are used
to fix the notations. We refer the reader to [46] or [47] for further details
about algebro-geometric concepts.

−→ Summary of notations
E(x, y) = 0 −→ classical spectral curve
d1 + 1 = degx E −→ x-degree of the polynomial E
d2 + 1 = degy E −→ y-degree of the polynomial E (number of

sheets)
a = {ai} −→ set of branch points dx(ai) = 0
α = {αi} −→ poles of y dx
g/ −→ genus of the curve
Ai ∩ Bj = δij −→ cannonical basis of non-contractible

cycles
dui −→ cannonical holomorphic forms∮

Aj
dui = δij

τij =
∮

Bj
dui −→ Riemann’s matrix of periods

ui(p) =
∫ p

p0
dui −→ Abel map

A = A − κ(B − τA) −→ κ-modified A-cycles
B = B − τA −→ κ-modified B-cycles, Ai ∩ Bj = δij

dSq1,q2(p) −→ third kind differential with simple poles
q1 and q2, such that Res q1 dSq1,q2 = 1 =
− Res q2 dSq1,q2 and

∮
Ai

dSq1,q2 = 0
B(p, q) −→ Bergmann kernel, i.e., second kind differen-

tial with double pole at p = q, no residue
and vanishing A-cycle integrals

z =
�n + τ �m

2
−→ regular odd characteristic, i.e.,∑g

i=1 nimi = odd

dhz =
∑
i

∂θz(�v)
∂vi

∣∣∣∣
v=0

dui −→ holomorphic form with only double zeroes

E(p, q) =
θz(u(p) − u(q), τ)√

dhz(p)dhz(q)
−→ prime form independent of z with a simple

zero at p = q
Φ(p) =

∫ p

o
y dx −→ some antiderivative of y dx defined on the

universal covering
p, x(p) = x(p) −→ if p is near a branch points a, then p �= p

is the unique other point near a such that
x(p) = x(p)

pi(p), x(pi) = x(p) −→ the pi’s, i = 0, . . . , d2, are the pre-images of
x(p) on the curve. By convention p0(p) = p

DΩ = δΩ + Tr
(

κ δΩτ κ
∂

∂κ

)
−→ covariant variation w.r.t Ω = δ(y dx)
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Consider an (embedded) algebraic curve given by its equation:

(3.1) E(x, y) = 0,

where E is an almost arbitrary polynomial of two variables. This is equiva-
lent to considering a compact Riemann surface Σ and 2 meromorphic func-
tions x and y, such that

(3.2) ∀p ∈ Σ, E(x(p), y(p)) = 0.

We only require that E(x, y) is not factorizable, and that all branch
points (zeroes of dx) are simple, i.e., near a branch point ai, y behaves like
a square root

√
x − x(ai).

3.1. Some properties of algebraic curves

3.1.1. Sheets. For each complex x, there exist d2 + 1 = degy E solutions
for y of E(x, y) = 0. This means that there are exactly d2 + 1 points on the
Riemann surface Σ for which x(p) = x: Σ has a sheet structure with d2 + 1
x-sheets. We call them:

(3.3) x(p) = x ↔ p = pi(x), i = 0, . . . , d2.

3.1.2. Branch points and conjugated points Let ai, i = 1, . . . , n, a =
{a1, . . . , an} be the set of branch points, solutions of dx = 0:

(3.4) ∀a ∈ a, dx(a) = 0.

Since we assume that the branch points are simple zeros of dx, we have the
following property: if p is in the vicinity of a branch point ai, there is a
unique point p �= p, such that x(p) = x(p), which is also in the vicinity of
ai. p depends on i, and in general, p is not globaly defined (see figure 1 for
an example).

Notice that p is one of the pk defined in the previous section.
3.1.3. Genus, cycles, Abel map If the curve has genus g/, there are
2g/ homologically independent non-trivial cycles, and we may choose a (not
unique) canonical basis:

(3.5) Ai ∩ Bj = δij , Ai ∩ Aj = 0, Bi ∩ Bj = 0.

The simply connected domain obtained by removing all A and B-cycles from
the curve is called the “fundamental domain” (see figure 2 for the example
of the torus).
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a1 a2

y

xx(p)x(q)

q p

(2)p
(2)q

q p

Figure 1: Example of an algebraic curve with two x-branch points a1 and
a2 and a three sheeted structure (x has three pre-images). One can see that
the map p → p is not globally defined, for instance when q → p, we have
q → p(2). The notion of conjugated point depends on the branch point.

A

B

⇔

B

A

Figure 2: Example of canonical cycles and the corresponding fundamental
domain in the case of the torus (genus g/ = 1).

On a genus g/ curve, there are g/ linearly independent holomorphic forms
du1, . . . , dug/, which we choose normalized on the A-cycles:

(3.6)
∮

Aj

dui = δij .

The Riemann matrix of period is defined by the B-cycles

(3.7) τij =
∮

Bj

dui.

They have the property that

(3.8) τij = τji, Im τ > 0.

Given a base point p0 on the curve (we assume it is not on any A or
B-cycle), we define the Abel map

(3.9) ui(p) =
∫ p

p0

dui,
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where the integration path is in the fundamental domain. The g/-dimensional
vector u(p) = (u1(p), . . . , ug/(p)) maps the curve into its Jacobian.

3.1.4. Theta-functions and prime forms. We say that z ∈ Cg/ is a
characteristic if there exist two vectors with integer coefficients �a ∈ Zg/ and
�b ∈ Zg/ such that

(3.10) z =
�a + τ.�b

2
.

z is called an odd characteristic if

(3.11)
g/∑

i=1

aibi = odd.

Given a characteristic z = (�a + τ�b)/2, and given a symmetric matrix τij =
τji such that Im τ is positive definite, and a vector v ∈ Cg/, we define the θz

function:

θz(v, τ) =
∑

�n∈Zg/

exp(iπ(�n −�b/2)tτ(�n −�b/2)) exp(2iπ(v + �a/2)t.(�n +�b/2)).

(3.12)

If z is an odd characteristic, θz is an odd function of v, and in particular
θz(0, τ) = 0 and we define the following holomorphic form:

(3.13) dhz(p) =
g/∑

i=1

dui(p) · ∂θz(v)
∂vi

∣∣∣∣
v=0

.

All its g/ − 1 zeroes are double zeroes, so that it makes sense to consider its
square root defined on the fundamental domain. The prime form is

(3.14) E(p, q) =
θz(u(p) − u(q))√

dhz(p) dhz(q)
.

It is independent of z, and it vanishes only if p = q (and with a simple zero),
and has no pole.

3.1.5. Bergmann kernel. We define a bilinear meromorphic form called
the “Bergmann kernel” [10, 48]:

(3.15) B(p, q) = Bergmann kernel
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as the unique one-form in p, which has a double pole with no residue at
p = q and no other pole, and which is normalized such that

(3.16) B(p, q) ∼p→q
dz(p)dz(q)

(z(p) − z(q))2
+ finite,

∮

AI

B = 0,

where z is any local coordinate on the curve in the vicinity of q. The
Bergmann kernel depends only on the complex structure of the curve, and
not on the details of E . For instance, if E has genus zero, B is the Bergmann
kernel of the projective complex plane (the Riemann sphere), and if the
curve has genus 1, B is related to the Weierstrass function.

Properties

(3.17) B(p, q) = B(q, p),
∮

q∈Bi

B(p, q) = 2iπ dui(p).

For any odd characteristic z, we have

(3.18) B(p, q) = dp dq ln (θz(u(p) − u(q))).

If f(p) is any meromorphic function, its differential is given by

(3.19) df(p) = Res
q→p

B(p, q)f(q).

3.1.6. Third type differentials. Given two points q1 and q2 on the
curve, we define the one-form dSq1,q2

by

(3.20) dSq1,q2
(p) =

∫ q1

q2

B(p, q),

where the integration path is in the fundamental domain.
dSq1,q2

is the unique meromorphic form with only simple poles at q1 and
q2, such that:

(3.21) Res
q1

dSq1,q2
= 1 = − Res

q2
dSq1,q2

,

∮

Ai

dSq1,q2
= 0.

3.1.7. Modified set of cycles. In order to easily deal with modular
properties of the objects we are going to introduce, it is convenient to define
some modified cycles and kernels with an arbitrary symmetric matrix κ.
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When κ = 0, all those quantities reduce to the unmodified ones. The mod-
ular transformations of the modified objects, merely amount to a change
of κ.

We thus choose an arbitrary g/ × g/ symmetric matrix κ with complex
coefficients, and we define another set of cycles:

Ai = Ai −
∑

j

κij

(
Bj −

∑

l

τjlAl

)
,

Bi = Bi −
∑

j

τijAj .

(3.22)

They satisfy

(3.23) Ai ∩ Bj = δij , Ai ∩ Aj = 0, Bi ∩ Bj = 0

and we straightforwardly have

(3.24)
∮

Ai

duj = δij ,

∮

Bi

duj = 0.

3.1.8. Modified Bergmann kernel. We also define the modified Berg-
mann kernel, normalized on A instead of A:

(3.25) B(p, q) = B(p, q) + 2iπ
∑

i,j

dui(p) κij duj(q).

It is such that

(3.26) B(p, q) = B(q, p),
∮

AI

B = 0,

∮

q∈Bi

B(p, q) = 2iπ dui(p)

and if f(p) is any meromorphic function, its differential is given by:

(3.27) df(p) = Res
q→p

B(p, q)f(q).

• For κ = 0 we have B = B.

• For κ = (τ − τ)−1, B is the Schiffer kernel [10, 48], and it is modular
invariant.

3.1.9. Modified prime form. Similarly we define a modified prime form:

(3.28) E(p, q) = E(p, q) e2iπut(p)κu(q).

It vanishes only if p = q (with a simple zero), and has no pole.
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3.1.10. Modified third type differentials. In the same fashion, we
define the modified third type differentials dSq1,q2 by

(3.29) dSq1,q2(p) =
∫ q1

q2

B(p, q),

where the integration path is in the fundamental domain.
dSq1,q2 is the unique meromorphic form with only simple poles at q1 and

q2, such that

(3.30) Res
q1

dSq1,q2 = 1 = − Res
q2

dSq1,q2 ,

∮

Ai

dSq1,q2 = 0.

Properties

dSq1,q2 = −dSq2,q1 ,(3.31)

dSq1,q2(p) = dp ln
(

θz(u(p) − u(q1))
θz(u(p) − u(q2))

)

+ 2iπ
∑

i,j

dui(p)κij(uj(q1) − uj(q2)),(3.32)

∮

Bi

dSq1,q2 = 2iπ(ui(q1) − ui(q2)),(3.33)

dq1(dSq1,q2(p)) = B(q1, p),(3.34) ∫ p2

p1

dSq1,q2 =
∫ q2

q1

dSp1,p2 .(3.35)

Cauchy residue formula: for any meromorphic function f(p) we have

(3.36) f(p) = − Res
q1→p

dSq1,q2(p)f(q1).

3.1.11. Bergmann τ-function. The Bergmann τ -function τBx was intr-
oduced and studied in [37, 61, 62], it is such that

(3.37)
∂ ln (τBx)
∂x(ai)

= Res
p→ai

B(p, p)
dx(p)

.

It is well defined because the Rauch variational formula [68] implies that the
RHS is a closed form. Notice that τBx is defined only up to a multiplicative
constant which will play no role in all the sequel.
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3.2. Examples: genus 0 and 1

3.2.1. Genus 0. If the curve E has a genus g/ = 0, it is conformally equiv-
alent to the Riemann sphere, i.e., the complex plane with a point at ∞, and
there exists a rationnal parametrization of the curve. It means that there
exists two rational functions X(p) and Y (p) such that:

(3.38) E(x, y) = 0 ↔ ∃p ∈ C, x = X(p), y = Y (p).

In this case, the Bergmann kernel is the Bergmann kernel of the Riemann
sphere:

(3.39) B(p, q) = B(p, q) =
dp dq

(p − q)2
= dp dq ln (p − q).

The prime form is

(3.40) E(p, q) = E(p, q) =
p − q√
dp dq

.

3.2.2. Genus 1. If the curve has genus g/ = 1, then it can be paramet-
rized on a rhombus corresonding to the fundamental domain of a torus (see
figure 2). It means that there exists two elliptical functions X(p) and Y (p)
such that (see [75] for elliptical functions):

E(x, y) = 0 ↔ ∃p ∈ C, x = X(p), y = Y (p)
X(p + 1) = X(p + τ) = X(p), Y (p + 1) = Y (p + τ) = Y (p)(3.41)

Then, the Bergmann kernel is the corresponding Weierstrass
function [75]:

(3.42) B(p, q) =
(
℘(p − q, τ) +

π

Im τ

)
dp dq.

The prime form is

(3.43) E(p, q) =
θ1(p − q, τ)

θ′
1(0, τ)

√
dp dq

.

When κ = (−1/2iImτ), the modified Bergmann kernel is the Schiffer
kernel, and if g/ = 1 it is the Weierstrass function:

(3.44) B(p, q) = ℘(p − q, τ) dp dq.
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3.3. Riemann bilinear identity

If ω1 and ω2 are two meromorphic forms on the curve. Let p0 be an arbi-
trary base point, we consider the function Φ1 defined on the fundamental
domain by

(3.45) Φ1(p) =
∫ p

p0

ω1.

We have

(3.46) Res
p→all poles

Φ1(p)ω2(p) =
1

2iπ

g/∑

i=1

∮

Ai

ω1

∮

Bi

ω2 −
∮

Bi

ω1

∮

Ai

ω2.

Note that this identity holds also for the modified cycles with any κ:

(3.47) Res
p→all poles

Φ1(p)ω2(p) =
1

2iπ

g/∑

i=1

∮

Ai

ω1

∮

Bi

ω2 −
∮

Bi

ω1

∮

Ai

ω2.

In particular with ω1(p) = B(p, q), we have

(3.48) Res
p→all poles

dSp,p0(q) ω(p) = −
g/∑

i=1

dui(q)
∮

Ai

ω

and

(3.49) ω(q) = Res
p→poles of ω

dSp,p0(q) ω(p) +
g/∑

i=1

dui(q)
∮

Ai

ω.

3.4. Moduli of the curve

The curve E(x, y) = 0 is parameterized by

• A genus g/ compact Riemann surface Σ̄, with periods τij .

• Punctures αi at the poles of x and y, whose moduli are given by the
negative coefficients of the Laurent series of y dx near the poles.

• The A-cycle integrals of y dx, called filling fractions.
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3.4.1. Filling fractions. We define

(3.50) εi =
1

2iπ

∮

Ai

y dx

which are called “filling fractions” by analogy with matrix models [35].

3.4.2. Moduli of the poles. Consider a pole α of y dx, define the “tem-
peratures”

(3.51) tα = Res
α

y dx.

Notice that

(3.52)
∑

α

tα = 0.

Then consider the three cases:

• Either α is a pole of x of degree dα, then we define the local parameter
near α as

(3.53) zα(p) = x(p)(1/dα);

• or α is not a pole of x neither a branch point (thus it is a pole of y),
then we define the local parameter near α as

(3.54) zα(p) =
1

x(p) − x(α)
.

• or α is not a pole of x, and it is a branch point (thus it is a pole of y),
then we define the local parameter near α as

(3.55) zα(p) =
1√

x(p) − x(α)
.

In all cases, in the vicinity of α, we define the “potential”

(3.56) Vα(p) = Res
q→α

y(q) dx(q) ln
(

1 − zα(p)
zα(q)

)
,

which is a polynomial in zα(p):

(3.57) Vα(p) =
deg Vα∑

k=1

tα,k zk
α(p).
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The tα,k are the moduli of the pole α.
We have the following properties:

dVα(p) = Res
q→α

y(q) dx(q)
dzα(p)

zα(p) − zα(q)
,(3.58)

Res
α

dVα = 0(3.59)

and

(3.60) y(p) dx(p) ∼
p→α

dVα(p) − tα
dzα(p)
zα(p)

+ O

(
dzα(p)
zα(p)2

)
.

We have from Equation (3.49)

y(p) dx(p) = −
∑

α

Res
q→α

B(p, q)Vα(q) +
∑

α

tαdSα,o(p) + 2iπ
∑

i

εi dui(p).

(3.61)

If we introduce

(3.62) Bα,k(p) = − Res
q→α

B(p, q) zα(q)k,

we can turn this expression to

(3.63) y dx =
∑

α,k

tα,kBα,k +
∑

α

tα dSα,o + 2iπ
∑

i

εi dui(p)

in order to exhibit the moduli of the curve.

4. Definition of correlation functions and free energies

In all this section, the curve E(x, y) = 0 and a symmetric matrix κ are
given and fixed. The unfamiliar reader may choose κ = 0 since most usual
applications (matrix models) correspond to that case.

4.1. Notations

Consider an arbitrary point p ∈ Σ̄, and a point q of Σ̄ which is in the vicinity
of a branch point ai (so that q is well defined). We define
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Definition 4.1. Diagrammatic rules:

vertex : ω(q) = (y(q) − y(q)) dx(q),(4.1)

line-propagator: B(p, q),(4.2)

arrow-propagator: dEq(p) =
1
2

∫ q

q
B(ξ, p),(4.3)

where the integration path is a path which lies entirely in a vincinity of ai

(thus it is uniquely defined)1.

(4.4) root : Φ(q) =
∫ q

o
y dx,

where o is an arbitrary base point on the curve, i.e., Φ is an arbitrary
antiderivative of y dx, i.e., dΦ = y dx.

The reason why we call these objects diagramatic rules and vertices, prop-
agator or root, is explained in Section 4.5 below.

Notice that dE depends on i, i.e., on which branch point we are con-
sidering, but we omit to mention the index i in order to make the nota-
tions easier to read. In all what follows it is always clear which i is being
considered.

Notation for subset of indices
Given a set of points of the curve {p1, p2, . . . , pn}, if K = {i1, i2, . . . , ik}

is any subset of {1, 2, . . . , n}, we denote:

(4.5) pK = {pi1 , pi2 , . . . , pik
}.

4.2. Correlation functions and free energies

4.2.1. Correlation functions. The k-point correlation functions to order
g, W

(g)
k , are meromorphic multilinear forms, defined by the following recur-

sive triangular system:

1This definition is the opposite of the notation used in [19, 40] since the integral
goes from q to q instead of going from q to q.
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Definition 4.2. Correlation functions

W
(g)
k = 0 if g < 0.(4.6)

W
(0)
1 (p) = 0.(4.7)

W
(0)
2 (p1, p2) = B(p1, p2)

(4.8)

and define recursively (remember that pK is a k-uplet of points cf
Equation 4.5):

W
(g)
k+1(p,pK) = Res q→a dEq(p)ω(q)

(∑g
m=0

∑
J⊂K

W
(m)
|J |+1(q,pJ)W (g−m)

k−|J |+1(q,pK/J) + W
(g−1)
k+2 (q, q,pK)

)

(4.9)

This system is triangular because all terms in the RHS have lower 2g + k

than in the LHS and given W
(0)
1 and W

(0)
2 , it has a unique solution.

Notice that W
(g)
k+1(p, p1, . . . , pk) is a multilinear meromorphic form in

each of its arguments, it is clearly symmetric in the last k-ones, and we
prove below (Theorem 4.6) that it is in fact symmetric in all its arguments.

More properties of W
(g)
k+1 are studied below in Section 4.4.

4.2.2. Free energies. We define the free energies which are complex
numbers:

Definition 4.3. Free energies.
For g > 1

(4.10)

F (g) =
1

2 − 2g

∑

i

Res
q→ai

Φ(q)W (g)
1 (q)

and

(4.11)

F (1) = −1
2

ln (τBx) − 1
24

ln

(
∏

i

y′(ai)

)
− ln(detκ)
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where

(4.12) y′(ai) =
dy(ai)
dzi(ai)

, zi(p) =
√

x(p) − x(ai)

and τBx is the Bergmann τ -function defined in Equation (3.39).
F (0) is defined in the next section.

4.2.3. Leading order free energy F (0). Let us define F (0) as follows:
(4.13)

F (0) =
1
2

∑

α

Res
α

Vαy dx +
1
2

∑

α

tαμα − 1
4iπ

∑

i

∮

Ai

y dx

∮

Bi

y dx

where μα is given by

(4.14) μα =
∫ o

α

(
y dx − dVα + tα

dzα

zα

)
+ Vα(o) − tα ln (zα(o)).

Notice that μα depends on some base point o, but the sum
∑

α tαμα

does not.

4.2.4. Special free energies and correlation functions. All the quan-
tities defined so far, were defined with the κ-modified cycles and modified
Bergmann kernel. Let us also define them for κ = 0 (for instance F (1) obvi-
ously needs another definition).

Therefore we also define the unmodified quantities corresponding to κ =
0, as

∀k, g, W
(g)
k (p1, . . . , pk) := W

(g)
k (p1, . . . , pk)

∣∣∣
κ=0

,(4.15)

for g > 1, F (g) :=
1

2 − 2g

∑

i

Res
q→ai

Φ(q)W (g)
1 (q) = F (g)|κ=0,(4.16)

F (1) = −1
2

ln (τBx) − 1
24

ln

(
∏

i

y′(ai)

)
,(4.17)

and
(4.18)

F (0) =
1
2

∑

α

Res
α

Vαy dx +
1
2

∑

α

tαμα − 1
4iπ

∑

i

∮

Ai

y dx

∮

Bi

y dx.
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Remark 4.1. The special functions, except F (1) and F (0), are obtained
by changing B and dS by B and dS in the diagrammatic rules defined in
Section 4.5.

4.3. τ-Function

Definition 4.4. We define the τ -function as the formal power series in
N−2:

(4.19)

ln (ZN (E)) = −
∞∑

g=0

N2−2gF (g).

We show in Section 9 that ZN (E) is indeed a τ -function because it obeys
Hirota equations, order by order in N−2.

4.4. Properties of correlation functions

The loop functions defined in Definition 4.2 satisfy the following theorems,
whose proofs can be found in Appendix A:

Theorem 4.1. The correlation function W
(0)
3 is worth:

(4.20) W
(0)
3 (p, p1, p2) = Res

q→a

B(q, p)B(q, p1)B(q, p2)
dx(q) dy(q)

In particular, W
(0)
3 is symmetric in its three variables.

Theorem 4.2. For (k, g) �= (1, 0), the loop function W
(g)
k+1(p, p1, . . . , pk)

has poles (in any of its variables p, p1, . . . , pk) only at the branch points.

Theorem 4.3. For every A cycle we have

(4.21) ∀i = 1, . . . ,g/,

∮

p∈Ai

W
(g)
k+1(p, p1, . . . , pk) = 0,

(4.22) ∀i = 1, . . . ,g/, ∀m = 1, . . . , k,

∮

pm∈Ai

W
(g)
k+1(p, p1, . . . , pk) = 0.
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Theorem 4.4. For every k and g, we have

(4.23)
∑

i

W
(g)
k+1(p

i, p1, . . . , pk)
dx(pi)

= δk,1δg,0
dx(p1)

(x(p) − x(p1))2

and if k ≥ 1:

(4.24)
∑

i

W
(g)
k+1(p1, p

i, p2, . . . , pk)
dx(pi)

= δk,1δg,0
dx(p1)

(x(p) − x(p1))2
,

where we recall that pi are all the points such that x(pi) = x(p)
(see Section 3.1).

Theorem 4.5. For (k, g) �= (0, 1),

P
(g)
k (x(p),pK) =

1
dx(p)2

∑

i

[
− 2y(pi) dx(p)W (g)

k+1(p
i,pK)

+ W
(g−1)
k+2 (pi, pi,pK) +

g∑

m=0
∑

J⊂K

W
(m)
j+1 (pi,pJ)W (g−m)

k−j+1(pi,pK/J)
]

(4.25)

is a rational function of x(p), with no poles at branch points.

Theorem 4.6. W
(g)
k is a symmetric function of its k variables.

Corollary 4.1.

∀i, Res
p→ai

W
(g)
k+1(p, p1, . . . , pk) = 0,(4.26)

∀i, Res
p→ai

x(p)W (g)
k+1(p, p1, . . . , pk) = 0,(4.27)

∑

i

Res
p→ai

y(p)W (g)
k+1(p, p1, . . . , pk) = 0,(4.28)

∑

i

Res
p→ai

x(p)y(p)W (g)
k+1(p, p1, . . . , pk) = 0.(4.29)

Theorem 4.7. For k ≥ 1 we have

Res
pk+1→a,p1,...,pk

Φ(pk+1)W
(g)
k+1(pK, pk+1) = (2g + k − 2)W (g)

k (pK)

+ δg,0δk,1y(p1) dx(p1).(4.30)
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Notice that for k = 0 and g ≥ 2, it holds by definition if we define
W

(g)
0 = −F (g).

4.5. Diagrammatic representation

The recursive definitions of W
(g)
k and F (g) can be represented graphically.

We represent the multilinear form W
(g)
k (p1, . . . , pk) as a blob-like “sur-

face” with g holes and k legs (or punctures) labeled with the variables
p1, . . . , pk, and F (g) with 0 legs and g holes.

(4.31)

We represent the Bergmann kernel B(p, q) (which is also W
(0)
2 , i.e., a

blob with 2 legs and no hole) as a straight non-oriented line between p and q

(4.32)

We represent (dEq(p)/ω(q)) as a straight arrowed line with the arrow
from p toward q, and with a tri-valent vertex whose legs are q and q

(4.33)

Graphs

Definition 4.5. For any k ≥ 0 and g ≥ 0 such that k + 2g ≥ 3, we define:
Let G(g)

k+1(p, p1, . . . , pk) be the set of connected trivalent graphs defined
as follows:

1. There are 2g + k − 1 tri-valent vertices called vertices.

2. There is one 1-valent vertex labeled by p, called the root.

3. There are k 1-valent vertices labeled with p1, . . . , pk called the leaves.

4. There are 3g + 2k − 1 edges.
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5. Edges can be arrowed or non-arrowed. There are k + g non-arrowed
edges and 2g + k − 1 arrowed edges.

6. The edge starting at p has an arrow leaving from the root p.

7. The k edges ending at the leaves p1, . . . , pk are non-arrowed.

8. The arrowed edges form a ”spanning2 planar3 binary skeleton4 tree”
with root p. The arrows are oriented from root towards leaves. In
particular, this induces a partial ordering of all vertices.

9. There are k non-arrowed edges going from a vertex to a leaf, and g
non-arrowed edges joining two inner vertices. Two inner vertices can
be connected by a non-arrowed edge only if one is the parent of the
other along the tree.

10. If an arrowed edge and a non-arrowed inner edge come out of a vertex,
then the arrowed edge is the left child. This rule only applies when
the non-arrowed edge links this vertex to one of its descendants (not
one of its parents).

We have the following useful lemma:

Lemma 4.1. There is a 1 to 3g + 2k − 1 map from G(g)
k+1(p,pK) to G(g)

k+2
(p,pK, pk+1).

Proof. If G is a graph in G(g)
k+2(p, p1, . . . , pk, pk+1), remove the non-arrowed

edge attached to the leaf pk+1 and remove the corresponding vertex, and
merge the incoming and the other outgoing edges of that vertex. You
clearly get a graph G′ ∈ G(g)

k+1(p, p1, . . . , pk). It is clear that the same graph
is obtained 3g + 2k − 1 times (the number of edges of G′). And it is clear
that from any G′ ∈ G(g)

k+1(p, p1, . . . , pk), you can obtain 3g + 2k − 1 graphs
G ∈ G(g)

k+2(p, p1, . . . , pk, pk+1) by adding a new vertex on any edge, and link-
ing this new vertex to the leaf pk+1. �

Example of G(2)
1 (p) As an example, let us build step by step all the graphs

of G(2)
1 (p), i.e., g = 2 and k = 0.

2It goes through all vertices.
3planar tree means that the left child and right child are not equivalent. The

right child is marked by a black disk on the outgoing edge.
4a binary skeleton tree is a binary tree from which we have removed the leaves,

i.e. a tree with vertices of valence 1, 2 or 3.



Algebraic curves and topological expansion 373

We first draw all planar binary skeleton trees with one root p and 2g +
k − 1 = 3 arrowed edges:

(4.34)

Then, we draw g + k = 2 non-arrowed edges in all possible ways such that
every vertex is tri-valent, also satisfying rule 9 of Definition.4.5. There is
only one possibility for the first graph and two for the second one:

(4.35)

It just remains to specify the left and right children for each vertex. The
only possibilities in accordance with rule 10 of Definition 4.5 are5:

(4.36)

In order to simplify the drawing, we can draw a black dot to specify the
right child. This way one gets only planar graphs.

(4.37)

Remark that without the prescriptions 9 and 10, one would get 13 different
graphs whereas we only have 5.

Weight of a graph Consider a graph G ∈ G(g)
k+1(p, p1, . . . , pk). Then, to each

vertex i = 1, . . . , 2g + k − 1 of G, we associate a label qi, and we associate
qi to the beginning of the left child edge, and qi to the right child edge.

5Note that the graphs are not necessarily planar.
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Thus, each edge (arrowed or not), links two labels which are points on the
Riemann surface Σ̄.

• To an arrowed edge going from q′ toward q, we associate a factor
(dEq(q′)/(y(q) − y(q)) dx(q)).

• To a non-arrowed edge going between q′ and q we associate a factor
B(q′, q).

• Following the arrows backwards (i.e., from leaves to root), for each
vertex q, we take a residue at q → a, i.e., we sum over all branch
points.

After taking all the residues, we get the weight of the graph:

(4.38) w(G),

which is a multilinear form in p, p1, . . . , pk.
Similarly, we define weights of linear combinations of graphs by

(4.39) w(αG1 + βG2) = αw(G1) + βw(G2)

and for a disconnected graph, i.e., a product of two graphs:

(4.40) w(G1G2) = w(G1)w(G2).

Theorem 4.8. We have

W
(g)
k+1(p, p1, . . . , pk) =

∑

G∈G(g)
k+1(p,p1,...,pk)

w(G) = w

⎛

⎜⎝
∑

G∈G(g)
k+1(p,p1,...,pk)

G

⎞

⎟⎠.

(4.41)

Proof. This is precisely what the recursion Equations 4.9 of Definition 4.2
are doing. Indeed, one can represent them diagrammatically by

(4.42) �



Algebraic curves and topological expansion 375

Such graphical notations are very convenient, and are a good support
for intuition and even help proving some relationships. It was immediately
noticed after [33] that those diagrams look very much like Feynman graphs,
and there was a hope that they could be the Feynman’s graphs for the
Kodaira–Spencer theory. But they ARE NOT Feynman graphs, because
Feynman graphs cannot have non-local restrictions like the fact that non-
oriented lines can join only a vertex and one of its descendent.

Those graphs are merely a notation for the recursive Definition 4.2.

Lemma 4.2. (Symmetry factor) The weight of two graphs differing by
the exchange of the right and left children of a vertex are the same. Indeed,
the distinction between right and left child is just a way of encoding symmetry
factors.

Proof. This property follows directly from Theorem 4.4 and the definition
(Equation (4.9)). Consider one term contributing to the first part of RHS
of Equation (4.9):

Res
q→a

dEq(p)
ω(q)

W
(m)
|J |+1(q,PJ)W (g−m)

k−|J |+1(q,PK/J)

= − Res
q→a

dEq(p)
ω(q)

W
(m)
|J |+1(q,PJ)W (g−m)

k−|J |+1(q,PK/J)

= Res
q→a

dEq(p)
ω(q)

W
(m)
|J |+1(q,PJ)W (g−m)

k−|J |+1(q,PK/J),(4.43)

where the equalities are obtained by adding terms without residues at the
branch points to the integrand and using Theorem 4.4. One can perform
the same trick for the second term in Equation (4.9) and this proves the
lemma. �

4.6. Examples

Let us present some examples of correlation functions and free energy for
low order.

Correlation functions To leading order, one has the first correlation func-
tions given by

W
(0)
2 (p, q) = B(p, q).(4.44)
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(4.45)

(4.46)

First orders for the one point correlation function read:

(4.47)
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(4.48)

where the last expression is obtained using Lemma 4.2.

Free energy The second-order free energy reads

−2F (2) = Res
p→a

Res
q→a

Res
r→a

Res
s→a

Φ(p) dEq(p)
ω(q)

dEr(q)
ω(r)

dEs(q)
ω(s)

B(r, r)B(s, s)

+ Res
p→a

Res
q→a

Res
r→a

Res
s→a

Φ(p) dEq(p)
ω(q)

dEr(q)
ω(r)

Φ(p) dEs(r)
ω(s)

B(r, q)B(s, s)

+ Res
p→a

Res
q→a

Res
r→a

Res
s→a

Φ(p) dEq(p)
ω(q)

dEr(q)
ω(r)

dEs(r)
ω(s)

[B(q, r)B(s, s)

+ B(s, q)B(s, r) + B(s, q)B(s, r)]
(4.49)

4.7. Remark: Teichmuller pant gluings

Every Riemann surface of genus g with k punctures can be decomposed into
2g + k pants whose boundaries are 3g + k closed geodesics (in the metric
with constant negative curvature). The number of ways (in the combinato-
rial sense) of gluing 2g + k pants by their boundaries is clearly the same as
the number of diagrams of G(g)

k , and each diagram corresponds to one pant
decomposition.

Example with k = 1 and g = 2:

5. Variations of the curve

The goal of this section is to study how the various F (g) and correlation
functions change under the variations of moduli of the curve.
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Consider an infinitesimal variation of the curve E → E + δE . It induces
a variation of the function y(x) at fixed x:

(5.1) δΩ y|x dx = −Ω.

If we use a local coordinate z, we may prefer to work at fixed z instead of
fixed x, we have a Poisson structure:

(5.2) δΩ y|z dx − δΩ x|z dy = −Ω.

The possible Ω’s can be classified as first type (holomorphic), second
type (residueless, and vanishing A-cycles) and third type (only simple poles
and vanishing A-cycles), see [12] for this classification.

5.1. Rauch variational formula

Equation 5.2 implies that the variation of position of a branch point ai is
given by:

(5.3) δΩ x(ai) =
Ω(ai)
dy(ai)

.

We assume here that (Ω/dy) has no pole at branch points. Then, Rauch
variational formula [47, 68] implies that the change of the Bergmann kernel is

δΩB(p, q)|x(p),x(q) =
∑

i

Ω(ai)
dy(ai)

Res
r→ai

B(r, p)B(r, q)
dx(r)

=
∑

i

Res
r→ai

Ω(r)B(r, p)B(r, q)
dx(r) dy(r)

.(5.4)

In particular after integrating over a B-cycle we have

δΩdu(p)|x(p) =
∑

i

Res
r→ai

Ω(r)B(r, p)du(r)
dx(r) dy(r)

,(5.5)

and integrating again over a B-cycle:

δΩτ = 2iπ
∑

i

Res
r→ai

Ω(r) du(r) dut(r)
dx(r) dy(r)

.(5.6)
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Let us compute the variations of the κ-modified Bergmann kernel:

δΩB(p, q)|x(p),x(q) = δΩB(p, q)|x(p),x(q) + 2iπδΩ dut(p)|x(p) κ du(q)
+ 2iπ dut(p) κ δΩ du(q)|x(q)

= Res
r→a

Ω(r)B(r, p)B(r, q)
dx(r) dy(r)

+ 2iπ Res
r→a

Ω(r)B(r, p) dut(r)κ du(q)
dx(r) dy(r)

+ 2iπ Res
r→a

Ω(r)B(r, q) dut(p) κ du(r)
dx(r) dy(r)

= Res
r→a

Ω(r)B(r, p)B(r, q)
dx(r) dy(r)

+ Res
r→a

Ω(r)B(r, p)(B(r, q) − B(r, q))
dx(r) dy(r)

+ Res
r→a

Ω(r)(B(r, p) − B(r, p))B(r, q)
dx(r) dy(r)

= Res
r→a

Ω(r)B(r, p)B(r, q)
dx(r) dy(r)

+ 4π2 Res
r→a

Ω(r) dut(p)κ du(r) dut(r)κ du(q)
dx(r) dy(r)

= Res
r→a

Ω(r)B(r, p)B(r, q)
dx(r) dy(r)

− 2iπ dut(p)κ δΩτ κ du(q),(5.7)

i.e.

(
δΩ + tr

(
κ δΩτ κ

∂

∂κ

))

x(p),x(q)
B(p, q) = Res

r→a

Ω(r)B(r, p)B(r, q)
dx(r) dy(r)

= −2 Res
r→a

Ω(r) dEr(p)B(r, q)
ω(r)

.(5.8)

We thus define the covariant variation:

(5.9)

DΩ = δΩ + Tr
(

κ δΩτ κ
∂

∂κ

)
.
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It is more convenient to rewrite Equation (5.8) as follows:

DΩB(p, q) = −2 Res
r→a

Ω(r) dEr(p)B(r, q)
ω(r)

= −2 Res
r→a

Res
s→r

Ω(r) dEr(p)B(s, q)
(y(r) − y(r))(x(s) − x(r))

= 2 Res
r→a

Res
s→r

Ω(r) dEr(p)B(s, q)
(y(r) − y(r))(x(s) − x(r))

= 2 Res
r→a

Ω(r) dEr(p)B(r, q)
ω(r)

= Res
r→a

dEr(p)
ω(r)

[
Ω(r)B(r, q) + Ω(r)B(r, q)

]
(5.10)

because now we recognize the propagator and vertex of Definition 4.1. Sim-
ilarly, by integrating once with respect to q, near a branch point aj we get

DΩ dEq(p)|x(p),x(q) = −2 Res
r→a

dEr(p)
ω(r)

Ω(r) dEq(r)

= Res
r→a

dEr(p)
ω(r)

[Ω(r) dEq(r) + Ω(r) dEq(r)](5.11)

Those two relations can be depicted

and

From this last variation, one can compute the covariant variations of the
correlation functions and free energies through the following lemma:
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Lemma 5.1. For any symmetric bilinear form f(q, p) = f(p, q):

DΩ

(
Res
q→a

dEq(p)
ω(q)

f(q, q)
)

x(p)
= 2

∑

i,j

Res
r→ai

Res
q→aj

dEr(p)
ω(r)

Ω(r)
dEq(r)
ω(q)

f(q, q)

+
∑

j

Res
q→aj

dEq(p)
ω(q)

DΩ(f(q, q))x(q).

(5.12)

Graphically, this means that taking the variation of a diagram just con-
sists in adding a leg Ω in all possible edges of the graph. In particular if Ω
can be written as

(5.13) Ω(p) =
∫

∂Ω
B(p, q)Λ(q),

where the path ∂Ω does not intersect small circles around branch points6,
then we have

Theorem 5.1. Variations of correlation functions and free energies: For
g + k > 1 we have

(5.14)

DΩW
(g)
k (p1, . . . , pk)

∣∣∣
x(pi)

=
∫

∂Ω
W

(g)
k+1(p1, . . . , pk, q)Λ(q)

and, for g ≥ 1,

(5.15)

DΩF (g) = −
∫

∂Ω
W

(g)
1 (p)Λ(p).

This theorem is proved in Appendix B. It follows directly from Lemmas
4.1 and 5.1.

6This excludes the case where Ω corresponds to the variation of an hard edge,
cf. [12, 16,36].
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5.2. Loop insertion operator

In particular for any point q lying away from the branch points, if we choose

(5.16) Ω(p) = B(p, q)

we call DB(.,q) the loop insertion operator, by analogy with matrix models
[7, 39].

It acts on the correlation functions and free energies as follows:

Theorem 5.2.

(5.17) DB W
(g)
k (p1, . . . , pk) = W

(g)
k+1(p1, . . . , pk, q),

(5.18) DB F (g) = −W
(g)
1 (q)

and

(5.19) DB F (0) = y(q) dx(q) +
1

4iπ

(
κ

∮

B
y dx

)t ∮

B

∮

B
W3,0κ

∮

B
y dx.

Thus, the loop insertion operator, adds one leg to correlation functions.

5.3. Variations with respect to the moduli

Let us consider canonical variations of the curve corresponding to each mod-
uli of the curve defined in Section 3.4. We use Equation (3.63)

(5.20) y dx =
∑

α,k

tα,kBα,k +
∑

α

tα dSα,o + 2iπ
∑

i

εi dui(p)

to identify the Ω’s corresponding to varying only one modulus.

Variation of filling fractions Consider the variation of the curve

(5.21) Ω(p) = −2iπ dui(p) = −
∮

Bi

B(p, q).

i.e., ∂Ω = Bi and Λ = −1. It is such that

(5.22) δΩεj = δij , δΩtα = 0, δΩVα = 0.
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Therefore it is equivalent to varying only the filling fraction εi = (1/2iπ)
∮
Ai

y dx:

(5.23) D−2iπdui
=

∂

∂εi
.

Theorem 5.1 gives

(5.24)
∂

∂εi
W

(g)
k (p1, . . . , pk) = −

∮

Bi

W
(g)
k+1(p1, . . . , pk, q),

and

(5.25)
∂

∂εi
F (g) =

∮

Bi

W
(g)
1 (q),

and

(5.26)
∂

∂εi
F (0) = −

∮

Bj

y dx +
1

4iπ

(
κ

∮

B
y dx

)t

δ−2iπ dui
(τ) κ

∮

B
y dx.

Variation of temperatures

Let α and α′ be two distinct poles of y dx. Consider the variation of the
curve

(5.27) Ω(p) = −dSα,α′(p) =
∫ α′

α
B(p, q), i.e., ∂Ω = [α, α′], Λ = 1.

It is such that

(5.28) δΩεj = 0, δΩtβ = δα,β − δα′,β , δΩVβ = 0.

Therefore it is equivalent to varying only the temperatures tα and tα′ :

(5.29) D−dSα,α′ =
∂

∂tα
− ∂

∂t′α
.

Notice that it is impossible to vary only one temperature tα since we have∑
β tβ = 0.
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Theorem 5.1 gives

(
∂

∂tα
− ∂

∂t′α

)
W

(g)
k (p1, . . . , pk) =

∫ α′

α
W

(g)
k+1(p1, . . . , pk, q),(5.30)

(
∂

∂tα
− ∂

∂t′α

)
F (g) =

∫ α

α′
W

(g)
1 (q)(5.31)

and

(
∂

∂tα
− ∂

∂t′α

)
F (o) = μα − μα′ +

1
4iπ

(
κ

∮

B
y dx

)t

δ−dSα,α′ (τ) κ

∮

B
y dx.

(5.32)

Variation of the moduli of the poles Let α be a pole of y dx. Consider the
variation of the curve

(5.33) Ω(p) = −Bα,k = Res
α

B(p, q)zk
α(q),

i.e., ∂Ω is a small circle around α and Λ = (1/2iπ)zk
α. It is such that

(5.34) δΩεj = 0, δΩtβ = 0, δΩtβ,k′ = δα,βδk,k′ .

Therefore it is equivalent to varying only the coefficient tα,k:

(5.35) D−Bα,k
=

∂

∂tα,k
.

Theorem 5.1 gives

∂

∂tα,k
W

(g)
k (p1, . . . , pk) = Res

α
zk
α(q)W (g)

k+1(p1, . . . , pk, q),(5.36)

∂

∂tα,k
F (g) = − Res

α
zk
α(q)W (g)

1 (q)(5.37)

and

(5.38)
∂

∂tα,k
F (o) = Res

α
y dxzk

α +
1

4iπ

(
κ

∮

B
y dx

)t

δBα,k
(τ)κ

∮

B
y dx.
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5.4. Homogeneity

Theorem 5.3. For g > 1, we have the homogeneity property:

(5.39) (2 − 2g)F (g) =
∑

α,k

tα,k
∂

∂tα,k
F (g) +

∑

α

tα
∂

tα
F (g) +

∑

i

εi
∂

∂εi
F (g)

i.e., F (g) is homogeneous of degree 2 − 2g.

The proof is given in Appendix B.

5.5. Variations of F (0) with respect to the moduli

In this section we compute the first and second deriatives of F (0) with
respect to the moduli of the curve. This paragraph is only for bookkeeping
since those expressions have been known for some time [12, 13, 63]. Here we
set κ = 0.

First derivatives of F (0)

∂F (0)

∂tα,k
= Res

α
zk
α y dx,(5.40)

∂F (0)

∂tα,β
=

(
∂

∂tα
− ∂

∂tβ

)
F (0) = μα − μβ,(5.41)

∂F (0)

∂εi
= −

∮

Bi

y dx.(5.42)

Second derivatives of F (0)

∂2F (0)

∂tα,k ∂tβ,l
= (δα,β − 1) Res

p→α
Res
q→β

zα(p)kB(p, q)zβ(q)l,(5.43)

∂2F (0)

∂tα,k ∂tγ,β
= Res

α
zk
α dSγ,β ,(5.44)

∂2F (0)

∂tα,k ∂εi
= 2iπ Res

α
zk
α dui = −

∮

Bi

Bα,k,(5.45)



386 B. Eynard & N. Orantin

∂2F (0)

∂εi ∂tα,β
= 2iπ(ui(β) − ui(α)),(5.46)

∂2F (0)

∂εi ∂εj
= 0(−2iπτij for F (0)),(5.47)

∂2F (0)

∂t2α,β

= ln (dζα(α) dζβ(β)E(α, β)2),(5.48)

∂2F (0)

∂tα,β ∂tα,γ
= ln

(
dζα(α)E(α, β)E(α, γ)

E(β, γ)

)
,(5.49)

∂2F (0)

∂tα,β ∂tδ,γ
= ln

(
E(δ, β)E(α, γ)
E(α, δ)E(β, γ)

)
,(5.50)

where ζα = (1/zα) is a local coordinate around the pole α.

Remark 5.1. The definition of F (0) given in Equation (4.13) is nothing
but the homogeneity property since it is written in terms of the first deriva-
tives. One can also write a formula focussing more on the second-order
derivatives of F (0):

F (0) = −1
2

∑

α,β

Res
p→α

Res
q→β

Vα(p)B(p, q)Vβ(q) +
∑

α,β

tβ Res
α

Vα dSβ,o

− 1
2

∑

α,β

tαtβ ln (γα,β) − 1
2
εt

∮

B
y dx,(5.51)

where

(5.52) ln γα,α = −
∫ o

α

(
dSα,o′ +

dzα

zα

)
+ ln (zα(o))

and

(5.53) ln γα,β = ln
(

E(α, β)E(o, o′)
E(α, o′)E(β, o)

)
.

One can notice that, in these terms,

(5.54)
∂2F (0)

∂t2α,β

= ln(γα,αγβ,β).
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6. Variations with respect to κ and modular transformations

6.1. Variations with respect to κ

We have introduced the matrix κ in order to easily compute modular trans-
formations of our functions. Somehow variations of κ play the role of
infinitesimal modular transformations. Therefore it is important to com-
pute ∂/∂κ, and we will use this result in Section 6.2.

First, notice that W
(g)
k (p1, . . . , pk) is a polynomial in κ of degree 3g +

2k − 3, and F (g) is a polynomial in κ of degree 3g − 3 for g > 1 (number of
propagators in a graph of G(g)

k ).

Theorem 6.1.

(6.1)

2iπ
∂

∂κij
W

(g)
k (pK) =

1
2

∮

r∈Bj

∮

s∈Bi

W
(g−1)
k+2 (pK, r, s)

+
1
2

∑
h

∑

L⊂K

∮

r∈Bi

W
(h)
|L|+1(pL, r)

∮

s∈Bj

W
(g−h)
k−|L|+1(pK/L, s)

and in particular for g ≥ 2:

(6.2)

−2iπ
∂

∂κij
F (g) =

1
2

∮

r∈Bj

∮

s∈Bi

W
(g−1)
2 (r, s)

+
1
2

g−1∑

h=1

∮

r∈Bi

W
(h)
1 (r)

∮

s∈Bj

W
(g−h)
1 (s)

and

(6.3)
∂

∂κij
F (1) =

1
κji

.

This theorem is proved in Appendix B
Notice that these equations are to be compared with the Kodaira–

Spencer theory [1, 2, 11, 42].
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6.2. Modular transformations

Consider a modular change of cycles:

(6.4)
(

A
B

)
=

(
δAA′ δAB′

δBA′ δBB′

)(
A′

B′

)
,

(
A′

B′

)
=

(
δA′A δA′B
δB′A δB′B

)(
A
B

)
,

where δA′A = δt
BB′ , δA′B = −δt

AB′ , δB′B = δt
AA′ , δB′A = −δt

BA′ and the matri-
ces δAA′ , δAB′ , δBA′ , δBB′ have integer coefficients and satisfy δAA′δt

BB′ −
δBA′δt

AB′ = Id.
Under this transformation of the cycle homology basis, the Abel map

and the matrix of period change like

(6.5) du′ = J du, du = J −1 du′

with J = (δt
AA′ + τ ′δt

AB′) = (δBB′ − τδAB′)−1 and

τ ′ = (δBB′ − τδAB′)−1(−δBA′ + τδAA′),

τ = (δt
AA′ + τ ′δt

AB′)−1 (δt
BA′ + τ ′δt

BB′).(6.6)

Let us define the following symmetric matrix:

(6.7) κ̂ = κ̂t = (δBB′δ−1
AB′ − τ)−1 = δAB′J

it is such that the Bergmann kernel changes like:

(6.8) B′ = B + 2iπ dutκ̂ du.

The κ-modified Bergmann kernel changes like

B′(p, q) = B(p, q) + 2iπ
[
du′t(p)κ du′(q) + dut(p)κ̂ du(q)

]

= B(p, q) + 2iπ dut(p)
(
κ̂ + J tκJ

)
du(q).(6.9)

In other words, the effect of a modular change of cycles is equivalent to
a change κ → κ̂ + J tκJ in the definition of the kernel B(p, q).

Thus, the modular variations of the free energies satisfy the following
theorem:

Theorem 6.2. For g ≥ 2 the modular transformation of the free energies
F (g) consists in changing κ to κ̂ + J tκJ in the definitions of the modified
Bergmann kernel and Abelian differential.
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The first correction F (1) changes like

(6.10) F (1)′
= F (1) − 1

2
ln (δBB′ − τδAB′).

An equivalent way of saying the same thing, is that: if we change the
basis of cycles and change the matrix κ → J t −1(κ − κ̂)J −1, then the F (g)’s
are unchanged for g > 1.

Proof. The result for g ≥ 2 comes directly from the variation of the Berg-
mann kernel.

F (1) depends on the cycles only through the Bergmann τ -function. Since,

∂ ln (τB′x)
∂x(ai)

− ∂ ln (τBx)
∂x(ai)

= Res
p→ai

B′(p, p) − B(p, p)
dx(p)

= 2iπ Res
p→ai

dut(p)κ̂ du(p)
dx(p)

= −2iπ Res
p→ai

dut(p)κ̂ du(p)
dx(p)

= − Tr κ
∂τ

∂x(ai)

= − Tr (δBB′ − τδAB′)−1 ∂τδAB′

∂x(ai)

=
∂ ln det(δBB′ − τδAB′)

∂x(ai)
(6.11)

and this characterizes the Bergmann τ -function totally (up to a general
multiplicative factor), one obtains the second result of the theorem. �
Remark 6.1. The transformation of leading order F (0) is more com-
plicated and its computation is more involved as the final result depends
explicitely on the position of the poles α in the fundamental domain. Let us
just mention that it depends on all the parameters of the modular transfor-
mation explicitely.

Theorem 6.3. If one chooses κ = (i/2 Imτ), then F (g)(κ) is modular
invariant.

Proof. It is well known that for that value of κ, the modified Bergmann
kernel is the Schiffer kernel and is modular invariant. Indeed, it is easy to
check that if κ = (i/2 Imτ) one has κ̂ + J tκJ = (i/2 Imτ ′).

Since the only modular dependence of F (g) for g ≥ 1 is in the Bergmann
kernel, this proves the modular invariance of the F (g)’s. �
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7. Symplectic invariance

The following theorem is mostly the reason why we call F (g)’s invariants of
the curve. This theorem seems to be rather important and it has beautiful
applications as we will see in Section 10.4.1.

Theorem 7.1. The following transformations of E leave the F (g)’s
unchanged:

• x → (ax + b)/(cx + d) and y → ((cx + d)2)/(ad − bc)y.

• y → y + R(x) where R is any rational function.

• y → y and x → −x.

• y → x and x → y.

Notice that these are transformations which conserve the symplectic
form

(7.1) |dx ∧ dy|.

In particular, we have the PSL2(C) invariance:

(7.2)
(

x
y

)
−→

(
a b
c d

) (
x
y

)
, (ad − bc)2 = 1.

That symplectic invariance seems to be a very powerful tool to see if
different matrix models have the same topological expansion. For example,
in Section 10.4.1 we show how symplectic invariance can be used to provide
a new and very easy proof of some properties of the Kontsevitch integral.

Proof. Invariance under the first two transformations is obvious from the
definitions, because the only x and y dependance of the W

(g)
k ’s is in ω(q) =

(y(q) − y(q)) dx(q) which is clearly unchanged under the first two transfor-
mations (notice that the transformation x → (ax + b)/(cx + d) conserves the
branch points). In fact, the first two transformations leave W

(g)
k unchanged.

In the third transformation the only thing which changes is the sign of
ω, and it is easy to see that W

(g)
k is multiplied by (−1)2g−2+k = (−1)k, and

F (g) is multiplied by (−1)2g−2 = 1.
The fourth transformation is the difficult one. The proof consists in

building some “mixed correlation functions”, and seeing that their definition
by inverting the roles of x and y lead to the same objects. Since it is long
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and involves new results in the framework of matrix model, it is written in
a separate paper [43].

The case of F (0) and F (1) is done separately in Appendix C. �

8. Singular limits

Consider a one-parameter family of algebraic curves:

(8.1) E(x, y, t)

such that the curve at t = 0 has a singular branch point a with a p/q rational
singularity, i.e., in some local coordinate z near a we have

(8.2)

⎧
⎨

⎩

t = 0,
x(z) ∼ x(a) + (z − a)q,
y(z) ∼ y(a) + (z − a)p.

At t �= 0, the singularity is smoothed, and we have (the local parameter
is now ζ = z t−ν):

(8.3)
{

x(z, t) ∼ x(a) + tqν Q(ζ) + O(tqν),
y(z, t) ∼ y(a) + tpν P (ζ) + O(tpν),

where Q is a polynomial of degree q and P is a polynomial of degree p, and
where ν is some exponent which depends on the choice of the parameter t.

The curve

(8.4) Esing(ξ, η) =
{

ξ(ζ) = Q(ζ)
η(ζ) = P (ζ)

= Resultant(Q − ξ, P − η)

is called the singular spectral curve.
One observes that F (g)(E) is singular in the small t limit, and it behaves

like

F (g)(E(t)) ∼ tγgF
(g)
sing + O(tγg), for g ≥ 2,(8.5)

F (1)(E(t)) ∼ − 1
24

(p − 1)(q − 1)ν ln (t) + O(1), for g = 1.(8.6)

F
(g)
sing is called the double scaling limit of F (g). The exponent γg and F

(g)
sing

are given by the following theorem:
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Theorem 8.1. Singular limits:

(8.7)
F

(g)
sing(E) = F (g)(Esing), for g ≥ 2

and

(8.8) γg = (2 − 2g)(p + q)ν.

In other words, our construction of F (g) commutes with the singular limit.

Proof. It is easy to see that the most singular term in the limit of the
Bergmann kernel in that regime, behaves like t0, and thus dEz′(z) as well.
The denominator ((y(z) − y(z)) dx(z) in the recursion behaves like tν(p+q)

(P (ζ) − P (ζ))Q′(ζ)dζ, and by recursion on k and g, we easily see that

(8.9) W
(g)
k (z1, . . . , zk) ∼ t(2−2g−k)(p+q)ν ω

(g)
k (ζ1, . . . , ζk)

if all zi’s are close to a, and is subdominant if some zi’s are not in the vicinity
of a. The leading contribution to W

(g)
k is thus obtained by taking z′ and z′

in the vicinity of a only in Equation 4.9, i.e., ω
(g)
k (ζ1, . . . , ζk) obey the same

recursion formula as Equation 4.9, with the curve Esing. The same holds for
the free energy. �

9. Integrability

Here, we prove that Z is a τ -function, because it satisfies some Hirota
equation.

9.1. Baker–Akhiezer function

Given two points ξ and η in the fundamental domain, we define the following
kernel as a formal series in 1/N :

KN (ξ, η) =
e−N

∫ ξ

η
y dx

E(ξ, η)
√

dx(ξ) dx(η)
exp

⎛

⎝−
∞∑

g=0

∞∑

l=1,2−2g−l<0

1
l!

N2−2g−l

∫ ξ

η

∫ ξ

η
· · ·

∫ ξ

η
W

(g)
l (p1, . . . , pl)

⎞

⎠ ,(9.1)

where the integration path lies in the fundamental domain.
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This kernel has the following properties:

• Notice that (x(ξ) − x(η))KN (ξ, η) → 1 when η → ξ.

• We have

(9.2) lim
η→ξ

(
KN (ξ, η) − 1

(x(ξ) − x(η))

)
= −Ny(ξ) +

W1(ξ)
dx(ξ)

,

where W1 =
∑∞

g=1 N1−2gW
(g)
1 .

• We have:

(9.3) KN (ξ, η) = K−N (η, ξ).

• One may think that KN is singular at branch points because lnKN has
poles, however, using the singular limit Theorem 8.1, we see that the
leading behavior of all W

(g)
l ’s is given by the W

(g)
l ’s of the Airy curve

y =
√

x described in Section 10.5. Therefore, near a branch point a,
when ξ, η → a, to leading order KN is the Traicy–Widom kernel [72]:

KN (ξ, η) ∼ Ai(ξ̂)Ai′(η̂) − Ai′(ξ̂)Ai(η̂)

ξ̂ − η̂
,

ξ̂ = N2/3(x(ξ) − x(a)), η̂ = N2/3(x(η) − x(a)).(9.4)

In other words, KN is not singular near branch points.

• The only singularities of KN (ξ, η) are essential singularities at all the
poles of y dx, with a singular part equal to exp (−N

∫ ξ
η y dx), as well

as a simple pole at ξ = η.

Then, given a pole α of y dx, we define for ξ in the vicinity of α:

ψα,N (ξ) =
e−N Vα(ξ)e−N

∫ ξ

α
(y dx−dVα+tαdzα/zα)

E(ξ, α)
√

dx(ξ)dζα(α)
(zα(ξ))Ntα exp

⎛

⎝−
∞∑

g=0

∞∑

l=1,2−2g−l<0

1
l!

N2−2g−l

∫ ξ

α

∫ ξ

α

· · ·
∫ ξ

α
W

(g)
l (p1, . . . , pl)

⎞

⎠

= lim
η→α

(
K(ξ, η)

√
dx(η)
dζα(η)

e−NVα(η)(zα(η))Ntα

)
,(9.5)
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where ζα is the local parameter near α, ζα = 1/zα, and φα,N (ξ) = ψα,−N (ξ).
They have the following properties:

• ψα,N was defined only in the vicinity of α, but it can be easily analyt-
ically continued to the whole curve, by choosing an arbitrary point o
in the vicinity of α and writing:

∫ ξ

α

(
y dx − dVα + tα

dzα

zα

)
+ Vα(ξ) − tα ln (zα(ξ))

=
∫ ξ

o
y dx +

∫ o

α

(
y dx − dVα + tα

dzα

zα

)
+ Vα(o) − tα ln (zα(o)).(9.6)

• Using the singular limit Theorem 8.1 near branch points, we see that
the leading behavior of all W

(g)
l ’s is given by the W

(g)
l ’s of the Airy

curve y =
√

x described in Section 10.5. Therefore, near a branch
point a, when ξ, η → a we have

ψα,N (ξ) ∼ C Ai(ξ̂), ξ̂ = N2/3(x(ξ) − x(a)),(9.7)

where C is some normalization constant (C = ψα,N (a)/Ai(0)). In
other words, ψα,N is not singular near branch points.

• The only singularities of ψα,N are essential singularities at all the poles
of y dx, with a singular part equal to exp (−N

∫ ξ
y dx).

This is why we call those formal functions Baker–Akhiezer functions (cf. [9]).

Remark 9.1. In fact, those functions are exactly Baker–Akhiezer func-
tions only when the curve has genus g/ = 0. In the general case, the Baker–
Akhiezer functions must also have the property that they take the same value
after going around a non-trivial cycle. It is not difficult to multiply ψα,N by
the appropriate θ function in order to fulfill that property. However, if we
do that, we destroy the 1/N2 expansion.

This is why the ψα,N defined above can be called a“formal Baker-Akhiezer
function”. This definition is sufficient to find a formal Hirota equation, valid
only order-by-order in 1/N2.
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9.2. Sato relation

Given two points ξ and η on Σ, and a complex number r, we define the
curve:

(9.8) E + r[ξ,−η] =
{(

x(p), y(p) + r
dSξ,η(p)
dx(p)

)
, p ∈ Σ

}
.

The differential y dx + r dSξ,η has the same A-contour integrals as y dx, the
same poles with the same singular part, plus two additional simple poles,
one located at p = ξ with residue r, and one at p = η with residue −r.

We have Sato’s relation:

Theorem 9.1.

KN (ξ, η) =
ZN (E + (1/N)[ξ,−η])

ZN (E)
, ψα,N (ξ) =

ZN (E + (1/N)[ξ, α])
ZN (E)

.

(9.9)

Indeed, the definition of KN is the formal Taylor expansion in powers of
r = 1/N of the RHS.

9.3. Hirota equation

Consider two algebraic curve E(x, y) and Ẽ(x, y) with the same conformal
structure (i.e., the same compact Riemann surface Σ), then we have an
Hirota bilinear relation:

Theorem 9.2. We have the bilinear relation:

(9.10) Res
η→ζ

dx(η) KN (ξ, η) K̃Ñ (η, ζ) = KN (ξ, ζ)

and also

(9.11) Res
ξ→α

dx(ξ) ψα,N (ξ) ψ̃α,−Ñ (ξ) = 0 if Ñ t̃α > Ntα + 1,

which takes exactly the form of the Hirota equation [9, 60].

It is important to notice that this Hirota equation makes sense only
order-by-order in its 1/N2 expansion. In the way we have obtained it, it
is meaningless for finite N (appart maybe from the genus zero case g/ = 0,
under the condition that the 1/N2 series is convergent). Therefore, we have
a “formal Hirota equation”.
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10. Application: topological expansion of matrix models

In this section, we show how the objects defined in Section 4.2.4 (i.e., κ = 0)
correspond to the terms of the topological expansion of the free energy and
correlation functions of various matrix models when one considers appropri-
ate curves E(x, y). Notice that in all this section, we consider κ = 0.

10.1. Formal one-matrix model

The formal one-matrix model (cf. [41]), is known to be the generating
function which enumerates maps of given topology since the work of [14],
then [8, 25, 52]. Its topological expansion was computed in several steps.
The authors of [7] introduced a recursive algorithm to compute the F (g)’s,
only in the one-cut case (i.e., g/ = 0), and then the method was extended to
other cases [3,4]. The computation of the subleading term F (1) was done in
general by Chekhov [15]. The computation to all orders of the correlation
functions was found in [33], and the free energies in [17].

10.1.1. Definition

Definition 10.1. Formal one-matrix model. Consider a “semi-clas-
sical” potential V (x), i.e., such that V ′(x) is a rational function. Let D(x)
be its denominator, i.e., D(x)V ′(x) is a polynomial of degree d, and let
X1, . . . , Xd be its zeroes:

(10.1) D(x)V ′(x) =
d∏

i=1

(x − Xi)

We write

(10.2) δVi(x) = V (x) − V (Xi) − 1
2
V ′′(Xi)(x − Xi)2

Choose an integer n, and a d-partition of n, �n = {n1, . . . , nd}, such that

(10.3)
d∑

j=1

nj = n.
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The following gaussian integral (where each matrix Mi is of size ni) is
a polynomial in T of the form

(−1)lnl

l! T l
e− n

T

∑
i niV (Xi)

∫
dM1 · · · dMd

d∏

i=1

exp
(
−nV ′′(Xi)

2T
Tr (Mi − Xi1ni

)2
)

∏

i>j

det(Mi ⊗ 1nj
− 1ni

⊗ Mj)2
(
∑

i

Tr δVi(Mi)

)l

=
dl/2∑

k=l/2

Ak,lT
k.

(10.4)

We define the formal matrix integral as the formal power series in T :

(10.5) Z1MM =
∞∑

k=0

T k

⎛

⎝
2k∑

j=0

Ak,j

⎞

⎠ .

One can also define its formal logarithm, i.e., the free energy

(10.6) F1MM = − lnZ1MM =
∞∑

k=0

T kBk.

It is a standard computation discovered by ’t Hooft ([41, 71]), that, for
fixed εi = Tni

n , for every k, n−2Bk is a polynomial in 1/n2:

(10.7) Bk(n1, . . . , nd) =
gmax(k)∑

g=0

Bk,g(ε1, . . . , εd)
(n

T

)2−2g
.

Thus, we define the following formal power series in T

(10.8) F
(g)
1MM =

∞∑

k=0

T kBk,g(ε1, . . . , εd).

Remark. Here, the question of convergence of those series is not relevant.
It is well known that each F

(g)
1MM is a convergent series (because it is written

in terms of algebraic functions of T ), but F1MM is not.
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10.1.2. Loop equations and classical spectral curve It is easy to
see (this property holds for each power of T because it holds for Gaussian
integrals) that the formal matrix integral satisfies, order by order in powers
of T , the loop equations (i.e., Virasoro constraints), which can be written
(see [24,26]):

(10.9) y(x)2 +
T 2

n2 ω2(x, x) =
V ′(x)2

4
− T

n

〈
Tr

V ′(x) − V ′(M)
x − M

〉

where y(x) = V ′(x)
2 − T

n

〈
Tr 1

x−M

〉
and ω2(x, x′) =

〈
Tr 1

x−M Tr 1
x′−M

〉

c
, where

the expectation value < . > is defined in a formal way similar to F .
If one identifies the coefficients of n0 in each side, one gets an algebraic

equation (here hyperelliptical), which is called the “classical spectral curve”:

(10.10) E1MM(x, y) = D(x)2
(

y2 − 1
4
V ′2(x) + P (x)

)

where D(x)P (x) is a polynomial of degree at most deg(D(x)V ′(x)) − 1, and
completely determined by the condition that the polynomial P (x) is a formal
power series in powers of T such that at T = 0:

(10.11) P (x, T = 0) =
d∑

i=1

εi
V ′(x)
x − Xi

.

It is such that there exist some contours Ai, i = 1, . . . , d such that:

(10.12)
1

2iπ

∮

Ai

y dx = εi

Notice that the genus g/ of the curve E1MM is the number of non-vanishing
εi’s minus one.

Most often in the litterature, V is chosen polynomial such that V ′(0) = 0,
and only the 1-cut case is considered, with only one non-vanishing filling
fraction at X = 0. The resulting curve has genus g/ = 0. This is the case
that is relevant for enumerating polygonal surfaces.

It was proved in [17, 33], in the case of polynomial potentials only (but
it is clear that it can be extended to the semi-classical case), that one has:

Theorem 10.1.

(10.13)
F

(g)
1MM = F (g)(E1MM)
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This proves that F (g) (which we recall is a formal power series in T )
generically has a finite radius of convergence T < Tc.

We also have

〈
Tr

1
x(p1) − M

· · · Tr
1

x(pk) − M

〉

c
=

∞∑

g=0

N2−k−2g W
(g)
k (p1, . . . , pk)

dx(p1) · · · dx(pk)

+ δk,1 N

(
1
2
V ′(x(p1)) − y(p1)

)

− δk,2

(x(p1) − x(p2))2
.(10.14)

10.2. Two-matrix model

The formal two-matrix model is known to be the generating function which
counts bicolored maps (let us say the two colors are + or −, thus it is an
Ising model on a random map), it was introduced by Kazakov [54]. The loop
equations were first written in [69]. F (0) was computed in [12,13,38,63]. F (1)

was first found in [34] for the g/ = 0 case, the in [35] for g/ = 1, then in [37]
for arbitrary g/. Then higher orders for the correlation functions were first
derived in [40], and the F (g)’s for g ≥ 2 were first found in [19]. During the
same time it became clear that matrix models topological expansion was
closely related to algebraic geometry [21–23,55].

10.2.1. Definition

Definition 10.2. Similarly, consider V ′
1 and V ′

2 two rational functions
with respective denominators D1(x) and D2(x). The equation

(10.15)

{
V ′

1(Xi) = Yi

V ′
2(Yi) = Xi

i = 1, . . . , d

has d = deg(V ′
1D1) ∗ deg(V ′

2D2) solutions. We then write

(10.16) δV1,i(x) = V1(x) − V1(Xi) − Yi(x − Xi) − V ′′
1 (Xi)

2
(x − Xi)2,

and

(10.17) δV2,i(y) = V2(y) − V2(Yi) − Xi(y − Yi) − V ′′
2 (Yi)
2

(y − Yi)2.
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We then choose an integer n, and a d-partition of n:

(10.18) n =
d∑

i=1

ni.

The following gaussian integral (where each matrix Mi or M̃i is of size
ni) is a polynomial in T of the form:

(−1)lnl

l! T l
exp

(
− n

T

∑

i

ni Tr (V1(Xi) + V2(Yi) −XiYi)

)∫
dM1 · · · dMddM̃1 · · · dM̃d

d∏

i=1

exp
(

− n

T
Tr

(
V ′′

1 (Xi)
2

(Mi − Xi 1ni
)2

+
V ′′

2 (Yi)
2

(M̃i − Yi 1ni
)2 − (Mi − Xi 1ni

)(M̃i − Yi 1ni
)
))

∏

i>j

det(Mi ⊗ 1nj
− 1ni

⊗ Mj)
∏

i>j

det(M̃i ⊗ 1nj
− 1ni

⊗ M̃j)

(
∑

i

Tr δV1,i(Mi) + δV2,i(M̃i)

)l

=
dl/2∑

k=l/2

Ak,lT
k.

(10.19)

Similarly to the one-matrix case, we can define the formal two-matrix model
as a formal power series in powers of T (see [41]):

(10.20) Z2MM =
∞∑

k=0

T k

⎛

⎝
2k∑

j=0

Ak,j

⎞

⎠.

One can also define its formal logarithm, i.e., the free energy

(10.21) F2MM = − lnZ2MM =
∞∑

k=0

T kBk.

Again, it is a standard computation ([41, 71]), that, for fixed εi = Tni

n ,
for every k, n−2Bk is a polynomial in 1/n2:

(10.22) Bk(n1, . . . , nd) =
gmax(k)∑

g=0

Bk,g(ε1, . . . , εd)
(n

T

)2−2g
.
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Thus, we define the following formal power series in T :

(10.23) F
(g)
2MM =

∞∑

k=0

T kBk,g(ε1, . . . , εd).

10.2.2. Loop equations and classical spectral curve Again, the for-
mal two-matrix integral satisfies, order by order in powers of T , the loop
equations (i.e., W -algebra constraints), which can be written (see [24,26])

(10.24) (y − y(x))U(x, y) +
T 2

n2 U(x, y; x) = E(x, y),

where y(x) = V ′
1(x) − T

n

〈
Tr 1

x−M1

〉
, U(x, y) = x−V ′

2(y) + T
n

〈
Tr 1

x−M1

V ′
2 (y)−V ′

2 (M2)
y−M2

〉
and U(x, y; x′) =

〈
Tr 1

x−M1

V ′
2 (y)−V ′

2 (M2)
y−M2

Tr 1
x′−M1

〉

c
, and

E(x, y) = (y − V ′
1(x)) (x − V ′

2(y)) − T
n 〈 Tr V ′

1 (x)−V ′
1 (M1)

x−M1

V ′
2 (y)−V ′

2 (M2)
y−M2

〉 + T ,
and where the expectation value < . > is defined in a formal way similar
to F .

If one chooses y = y(x) and identifies the coefficients of n0 in each side,
one gets an algebraic equation E2MM(x, y) = 0, which is called the “classical
spectral curve” [34,35]:

(10.25) E2MM(x, y) = D1(x) D2(y) ((V ′
1(x) − y)(V ′

2(y) − x) − P (x, y) + T ),

where D1(x) D2(y)P (x, y) is a polynomial of degree ≤ deg(D1V
′
1) in x and

a polynomial of degree ≤ deg(D2V
′
2) in y, and with fixed filling fractions:

(10.26)
1

2iπ

∮

AI

y dx = T
nI

N
= εI ,

∑

I

εI = T

and such that in the limit T → 0 and ∀I εI → 0, one has

y ∼ V ′
1(x) −

∑

i

εi

x − Xi
+ O(T 2), x ∼ V ′

2(y) −
∑

i

εi

y − Yi
+ O(T 2).

(10.27)

Then one has the following.

Theorem 10.2.

(10.28)
F

(g)
2MM = F (g)(E2MM)
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Proof. This theorem was proved in [19,40].
Again, this proves a posteriori, that F

(g)
2MM (which we recall is a formal

power series in T ) genericaly has a finite radius of convergence T < Tc.
We also have:

〈
Tr

1
x(p1) − M1

· · · Tr
1

x(pk) − M1

〉

c
=

∞∑

g=0

N2−k−2g W
(g)
k (p1, . . . , pk)

dx(p1) · · · dx(pk)

+ δk,1N(V ′(x(p1)) − y(p1))

− δk,2

(x(p1) − x(p2))2
.(10.29)

Remark that the one-Matrix model is a special case of the two-matrix
model with V2 a quadratic polynomial.

10.3. Double scaling limits of matrix models, minimal CFT

It is well known that double scaling limits of the one-matrix model, or two-
matrix models are in relationship with (p, q) minimal models of conformal
field theory [20, 26, 59].

We have seen that as long as the curve is regular, all the F (g)’s can
be computed. This shows that the radius of convergence in T of F (g)(T )
is reached for singular curves. So far, only rational singularities have been
studied in detail.

Thus, consider the case where the potentials V1 and V2 are fine-tuned
so that the curve E2MM has a p/q singularity at T = Tc (notice that for the
one-matrix model one necessarily has q = 2):

(10.30)

⎧
⎪⎨

⎪⎩

T = Tc,

x(z) ∼p→a x(a) + (z − z(a))q,

y(z) ∼p→a y(a) + (z − z(a))p.

We can use the notation of Section 8 with t = T − Tc, and thus at t �= 0, the
singularity is resolved, and we have (the local parameter is now ζ = zt−ν):

(10.31)

⎧
⎪⎨

⎪⎩

x(z, t) ∼ x(a) + tqν Q(ζ) + O(tqν),
y(z, t) ∼ y(a) + tpν P (ζ) + O(tpν),
ζ = zt−ν ,

where Q is a polynomial of degree q and P is a polynomial of degree p.
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The curve

(10.32) Esing(ξ, η) =

{
ξ = Q(ζ)
η = P (ζ)

= Resultant(Q − ξ, P − η)

is called the singular spectral curve.
The dependence on T of the two-Matrix model is such that

(10.33)
d

dT
y dx

∣∣∣∣
x

= dS∞x,∞y
,

where ∞x and ∞y are the two common poles of x and y. They are far away
from branch points, and in particular from the singularity. This means that
in the vicinity of the singularity we have

(10.34)
d

dT
y dx

∣∣∣∣
x

∼ C tν dζ + O(t2ν),

where C is some constant of order 1. After substitution with the limit
Equation (10.31) this implies the Poisson relation7

(10.35) pP (ζ)Q′(ζ) − qQ(ζ)P ′(ζ) =
C

ν
t1−(p+q−1)ν

and therefore

(10.36) ν =
1

p + q − 1
.

Thereom 8.1. proves that

(10.37) F
(g)
2MM(T ) ∼

T→Tc

(T − Tc)(2−2g)(p+q)/(p+q−1)F (g)(Esing), for g ≥ 2.

We also have

F
(0)
2MM(T ) ∼

T→Tc

C2

2
(p + q − 1)2

(p + q)(p + q + 1)
(T − Tc)2+2ν + reg, for g = 0,

(10.38)

F
(1)
2MM(T ) ∼

T→Tc

− 1
24

(p − 1)(q − 1)ν ln (T − Tc) + O(1), for g = 1

(10.39)

7This Poisson relation is well known and can be found in [20, 26].
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We thus have a way to compute explicitely the double scaling limit of
F

(g)
2MM.

10.3.1. (p,q) minimal models Let us study in more details the curve
E(p,q) (cf [20]).

As we have seen above, the curve for the (p, q) minimal model is of the
form:

(10.40) E(p,q)(x, y) =

{
x = Q(ζ)
y = P (ζ)

= Resultant(Q − x, P − y),

where P and Q are polynomials of respective degrees p and q, satisfying:

(10.41) pPQ′ − qQP ′ =
t1
ν

The solution of which can be written [26]

(10.42) P = (Qp/q)+

and

(10.43) (Qp/q)− =
t1
q

ζ1−q + O(ζ−q),

where we have used the notations f = f+ + f−, with f+ and f− denoting
respectively the positive and the negative part of the Laurent series of f .
This last equation implies q − 2 equations for the coefficients of Q.

The curve E(p,q) has genus zero g/ = 0, and is such that x and y have
only one pole α = ∞. The Bergmann kernel is

(10.44) B(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2
.

The moduli (of the pole) of that curve are the Qk and Pk such that:

(10.45) Q(ζ) =
q∑

k=0

Qkζ
k, P (ζ) =

p∑

k=0

Pkζ
k

by a translation on ζ, we can assume that Qq−1 = 0, and by a rescaling of ζ
we can assume that Qq−2 = −qQq, and the Poisson Equation (10.41) implies
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that Pp−1 = 0 and Pp−2 = −pPp, thus

(10.46) Qq−1 = Pp−1 = 0,
Qq−2

Qq
= −q,

Pp−2

Pp
= −p.

We find

(10.47) F (0)(E(p,q)) = 0.

10.3.2. Other times More generaly [26], we can deform the (p, q) min-
imal model with p + q − 2 times t1, . . . , tp+q−2. For this purpose, one con-
siders Q(ζ) a degree q monic polynomial,

(10.48) Q(ζ) = ζq +
q−2∑

j=0

uq−jζ
j ,

whose coefficients u2, . . . , uq are determined as functions of q − 1 parameters,
t1, . . . , tq−1, by the following requirement:

(10.49) (Qp/q)− =
q−2∑

j=1

q − j

q
tq−jQ

−j/q +
t1
q

ζ1−q + O(ζ−q).

Then we define the degree p monic polynomial P (ζ) by

(10.50) P = ζp +
p−2∑

j=0

vp−jζ
j = Q

p/q
+ −

p−1∑

j=1

j + q

q
tq+j−1Q

j/q
+ ,

which depends on p − 1 other times tq, . . . , tq+p−2.
The corresponding classical spectral curve is

(10.51) E(p,q)(x, y) = Resultant(x − Q, y − P ).

and depends on times t1, . . . , tp+q−2. One can check that if t2 = t3 = · · · =
tp+q−1 = 0, one recovers the (p, q) minimal model.

It is well known that this curve is the spectral curve of the dispersionless
Witham hierarchy [64].
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10.3.3. Examples of minimal models

• Airy curve (2, 1)
The classical spectral curve for the (2, 1) minimal model is

E(2,1)(x, y) = y2 + t1 − x.(10.52)

Q(ζ) = ζ2 + t1, P (ζ) = ζ.(10.53)

It is studied with particular care in Section 10.5 since it describes
the behavior of a generic curve around the branch points, and thus
coincides with Tracy–Widom law [72].

• Pure gravity (3, 2)

(10.54) Q(ζ) = ζ2 − 2v, P (ζ) = ζ3 − 3vζ, t1 = 3v2.

The classical spectral curve is

(10.55) E(3,2)(x, y) = x3 − 3v2x − y2 + 2v3

and is studied in details in Section 10.6.

• Ising model (4, 3)

Q(ζ) = ζ3 − 3vζ − 3w, P (ζ) = ζ4 − 4vζ2 − 4wζ + 2v2 − 5
3
t5(ζ2 − 2v)

(10.56)

with

(10.57) t1 = 4v3 + 6w2, t2 = 6vw.

The classical spectral curve is

E(4,3)(x, y) = x4 − y3 − 4v3x2 + 3v4y + 2v6

+ 12wv(−xy + v2x) + 6w2(−x2 + 2vy − 4v3) + 8w3x − 3w4

+ 5t5(−x2y − v2x2 + 2v3y + 2v5

− 2wyx + 2v2wx + 3w2y − 17v2w2)

+
25
3

t25(v
2y + 2v4 − 4vwx − 12vw2)

+
125
27

t35(−x2 + 2v3 − 6wx − 9w2).(10.58)
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The variations with respect to the moduli t5, t2 and t1 correspond,
respectively, to the variations of the form y dx

Ω5 = −dΛ5 = d(ζ5 − 5vζ3 + 10v2ζ),(10.59)

Ω1 = −dΛ1 = d

(
ζ +

5
12

t5
v3 − w2 (2v2ζ + 2vw − wζ2)

)
(10.60)

and

(10.61) Ω2 = −dΛ2 = d

(
ζ2 +

5
6

t5
v3 − w2 (v2ζ2 − 2vwζ − 2w2)

)

in the notations of Section 5.

• Unitary models (q + 1, q)

E(q+1,q)(x, y) = Tq+1(x) − Tq(y),(10.62)
Q(ζ) = Tq(ζ), P (ζ) = Tq+1(ζ)(10.63)

where Tp is the pth Tchebychev’s polynomial.

10.4. Matrix model with external field

Define the formal matrix model with external field [78]

(10.64) ZMext =
∫

dM e−N Tr (V (M)−MΛ̂),

where V ′(x) is a rational function with denominator D(x), and Λ̂ is a fixed
N × N matrix. Consider its topological expansion (in the sense of a formal
integral as in the one-matrix case above [41]):

(10.65) FMext = − lnZMext =
∞∑

g=0

N2−2g F
(g)
Mext.

Let us assume that Λ̂ has s distinct eigenvalues λ̂1, . . . , λ̂s with respective
multiplicities m1, . . . , ms such that

∑
i mi = N . The minimal polynomial
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of Λ̂ is:

(10.66) S(y) =
∏

i

(y − λ̂i).

Define the classical curve obtained by “removing” the 1/N2 connected
term in the loop equations:

(10.67) EMext(x, y) = ((V ′(x) − y)S(y) − P (x, y))D(x)

where

(10.68) P (x, y) =
1
N

〈
Tr

V ′(x) − V ′(M)
x − M

S(y) − S(Λ̂)
y − Λ̂

〉

so that P (x, y)D(x) is a polynomial in both x and y.
Then one has the following.

Theorem 10.3.

(10.69)
F

(g)
Mext = F (g)(EMext)

Proof. This theorem is proved in Appendix D, and the proof is very similar
to that of the two-matrix case above, see [19]. �

10.4.1. Application to Kontsevitch integral The Kontsevitch inte-
gral is known to be the generating function which computes intersection
numbers of moduli space of Riemann surfaces (see [21,58]). It is defined as:

ZKontsevitch =
∫

dM exp
(

−N Tr
(

M3

3
− M(Λ2 + t1)

))
, t1 =

1
N

Tr
1
Λ

(10.70)

where Λ has eigenvalues λ1, . . . , λN . Thus, it is ZMext with V (x) = x3/3 and
Λ̂ = Λ2 + t1. Its classical curve is

(10.71) EKontsevitch(x, y) = (x2 − y)S(y) − xS1(y) − S2(y),

where S1(y) and S2(y) are polynomials in y of degree at most s − 1.
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If we assume that the curve has genus zero (which is the case if we want
the F

(g)
Kontsevitch to be the generating functions for intersection numbers), then

we can find explicitely a rational parametrization:

(10.72) EKontsevitch(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

x(z) = z +
1

2N
Tr

1
Λ

1
z − Λ

y(z) = z2 +
1
N

Tr
1
Λ

.

Using the symplectic invariance of Theorem 7.1, we may exchange the roles
of x and y. There is a unique branch point in y, solution of y′(z) = 0, located
at z = 0. Since the formulae for F (g) consist in taking residues of rational
functions at the branch point, we may consider the Taylor expansion of x(z)
near z = 0, i.e.,

(10.73) EKontsevitch(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

x(z) = z − 1
2

∞∑

k=0

tk+2z
k,

y(z) = z2 + t1

where we have defined the Kontsevitch times:

(10.74) tk =
1
N

Tr Λ−k

so that:

(10.75)
F

(g)
Kontsevitch = F (g)(EKontsevitch)

Again, using symplectic invariance of Theorem 7.1, we may add to x(z)
any rational function of y(z), i.e., we immediately get a one-line proof of the
following well-known theorem:

Theorem 10.4. F
(g)
Kontsevitch depends only on the odd times t2k+1, with k ≤

3g − 2:

(10.76)
F

(g)
Kontsevitch = F

(g)
Kontsevitch(t1, t3, t5, . . . , t6g−3)

.
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And, if we assume that tk = 0 for k ≥ p + 2, the curve is:

(10.77)

⎧
⎪⎪⎨

⎪⎪⎩

x(z) = z − 1
2

p∑

k=0

tk+2z
k

y(z) = z2 + t1

,

which is identical to the curve of the (p, 2) model of Section 10.3.1, and which
is well known to satisfy KdV hierarchy. Thus, again we have a one-line proof
of the well-known result:

Theorem 10.5. ZKontsevitch is a KdV hierarchy τ -function.

This also allows to recover straightforwardly the equivalence of the dou-
ble scaled limit of the hermitian one matrix model and the Kontsevich inte-
gral [66].

10.4.1.1. Examples: the first few correlation functions
For Kontsevitch’s curve we have:

B(z, z′) =
dz dz′

(z − z′)2
, dEz(z′) =

z dz′

z2 − z′2 ,

ω(z) = 2z2dz

⎛

⎝2 −
∑

j

t2j+3 z2j

⎞

⎠,(10.78)

and the only branch point is located at z = 0.
From the Definition 4.2, we easily get the first correlation functions:

W
(1)
1 (z) = − dz

8(2 − t3)

(
1
z4 +

t5
(2 − t3)z2

)
,(10.79)

W
(0)
3 (z1, z2, z3) = − 1

2 − t3

dz1 dz2 dz3

z2
1z

2
2z

2
3

,

(10.80)

W
(1)
2 (z1, z2) =

dz1 dz2

8(2 − t3)4z6
1z

6
2

[
(2 − t3)2(5z4

1 + 5z4
2 + 3z2

1z
2
2)

+ 6t25z
4
1z

4
2 + (2 − t3)(6t5z

4
1z

2
2 + 6t5z

2
1z

4
2 + 5t7z

4
1z

4
2)

]
(10.81)
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and

W
(2)
1 (z) = − dz

128(2 − t3)7z10

[
252 t45z

8 + 12 t25z
6(2 − t3)(50 t7z

2 + 21 t5)

+ z4(2 − t3)2(252 t25 + 348 t5t7z
2 + 145 t27z

4 + 308 t5t9z
4)

+ z2(2 − t3)(203 t5 + 145 z2t7 + 105 z4t9 + 105 z6t11)

+ 105 (2 − t3)4
]
.(10.82)

The first and second order free energies are found:

(10.83) F
(1)
Kontsevitch = − 1

24
ln

(
1 − t3

2

)

and

(10.84) F
(2)
Kontsevitch =

1
1920

252 t35 + 435 t5t7(2 − t3) + 175 t9(2 − t3)2

(2 − t3)5
.

which coincide with expressions previously found in the literature [49].

10.5. Example: Airy curve

The curve y =
√

x is particularly important, because it corresponds to the
leading behavior of any generic curve near its branch points. It is also the
minimal model (1, 2) (cf [26,28]), also called Tracy–Widom law [72].

Consider the curve

(10.85) E(x, y) = y2 − x.

We chose the uniformization p = y:

(10.86)

{
x(p) = p2

y(p) = p.

There is only one pole α = ∞, and there is only one branch-point located
at a = 0, the conjugated point is p = −p. The Bergmann kernel is the
Bergmann kernel of the Riemann sphere:

(10.87) B(p, q) =
dp dq

(p − q)2
, dEq(p) =

q dp

q2 − p2 , ω(q) = 4q2dq
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It is easy to see that all correlation functions with 2g + k ≥ 3 are of the
form:

(10.88) W
(g)
k (p1, . . . , pk) = ω

(g)
k (p2

1, . . . , p
2
k) dp1 . . . dpk.

Moreover, the diagrammatic rules are clearly homogenous, so that the func-
tion W

(g)
1 (p) must be a homogeneous function of p. It is easy to find that:

(10.89) W
(g)
1 (p) =

cg dp

p6g−2

and the total 1−point function is

(10.90) W1(p, N) = −Ny dx +
∞∑

g=1

N1−2gW
(g)
1 (p) = W1(N1/3p, 1).

Similarly, the total two-point function is

(10.91) W2(p, q, N) =
∞∑

g=0

N−2gW
(g)
2 (p, q) = W2(N1/3p, N1/3q, 1)

and in general

Wk(p1, . . . , pk, N) =
∞∑

g=0

N2−2g−kW
(g)
k (p1, . . . , pk)

= Wk(N1/3p1, . . . , N
1/3pk, 1).(10.92)

The solution of the recursion Definition 4.2 can be found explicitely in
terms of the Airy function.

Consider g(x) = Ai′(x)/Ai(x) where Ai(x) is the Airy function, i.e.,
g′(x) + g2(x) = x = p2. In terms of the variable p we write

(10.93) f(p) = g(p2), f2 +
f ′

2p
= p2.

It can be expanded for large p

(10.94) f(p) =
∞∑

k=0

fkp
1−3k = p − 1

4p2 − 9
32p5 + · · · ,

where the coefficients in the expansion satisfy

(10.95)
4 − 3k

2
fk−1 +

k∑

j=0

fjfk−j = δk,0.
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The solution of the recursion Definition 4.2 for the one-point function is

W1(p, 1) = −2
p2 − f(p)f(−p)
f(p) − f(−p)

p dp

= −2p2 dp +
dp

(2p)4
+

9!! dp

32 (2p)10 +
15!!

34 (2p)16 · · · ,(10.96)

W2(p, p′, 1) = −4
(f(p) − f(p′)) (f(−p) − f(−p′))

(p2 − p′2)2 (f(p) − f(−p)) (f(p′) − f(−p′))
p dp p′ dp′.

(10.97)

In particular

(10.98) W2(p, p, 1) =
f ′(p)f ′(−p)

(f(p) − f(−p))2
dp2,

so that

(10.99) W2(p, p, 1) + W1(p, 1)2 = 4p4 dp2 = x dx2.

Similarly, we find for instance (with obvious cyclic conventions for the
indices)

W3(p1, p2, p3, 1)

=
dx1dx2dx3

(p2
3 − p2

2)(p
2
3 − p2

1)(p
2
2 − p2

1)

×
∑3

i=1 f(pi)f(−pi)(f(pi−1) + f(−pi−1) − f(pi+1) − f(−pi+1))
(f(p1) − f(−p1))(f(p2) − f(−p2))(f(p3) − f(−p3))

=
dp1 dp2 dp3

2 p2
1 p2

2 p2
3

+
dp1 dp2 dp3

26 p8
1 p8

2 p8
3

+ · · ·
(10.100)

and one can easily find similar expressions for all Wk’s.
In fact, all correlation functions can be written with a determinantal

formula [31,32], with the Tracy–Widom kernel [72]:

(10.101) K(x, x′) =
Ai(x)Ai′(x′) − Ai′(x)Ai(x′)

x − x′
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The fact that the Baker–Akhiezer function is Ai(x) and satisfies the differen-
tial equation Ai′′ = xAi can be seen as a consequence of the Hirota equation
Theorem 9.2.

Remark 10.1. To large N leading order the first term W
(0)
k can be written

in terms of Ferrer diagrams (Young diagrams):

W
(0)
k (p1, . . . , pk) =

k − 3!
2k−2

∏

j

dpj

p2
j

∑

|λ|=k−3

Mλ(1/p2
i )

∏

j

2λj + 1!!
λj !

1
nj(λ)!

,

(10.102)

where λ is a Ferrer diagram, ni(λ) = #{j / λj = i}, and Mλ are the elemen-
tary monomial symetric polynomials:

(10.103) Mλ(zi) =
∑

i1 �=i2 �=···�=ik−3

zλ1
i1

· · · zλk−3

ik−3
.

For instance with k = 4 there is only one diagram (1), and M(1)(z1, z2,
z3, z4) = z1 + z2 + z3 + z4, and:

(10.104) W
(0)
4 (p1, p2, p3, p4) =

3
4

dp1 dp2 dp3 dp4

p2
1 p2

2 p2
3 p2

4

(
1
p2
1

+
1
p2
2

+
1
p2
3

+
1
p2
4

)
.

Remark 10.2. The free energies are all vanishing for that curve:

(10.105) ∀g F (g) = 0.

10.6. Example: pure gravity (3,2)

In this section, we study in details the (3, 2) minimal model, also called pure
gravity [26].

It corresponds to the curve

(10.106) E(3,2) =

⎧
⎪⎨

⎪⎩

x(z) = z2 − 2v,

y(z) = z3 − 3vz,

t1 = 3v2.
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We recognize Tchebychev’s polynomials T2 and T3, which satisfy the Poisson
relation Equation (10.41). Up to a rescaling z =

√
v p, the curve reads

(10.107) E(3,2) =

⎧
⎪⎨

⎪⎩

x(p) = v(p2 − 2),

y(z) = v3/2(p3 − 3p),
t1 = 3v2.

There is only one x-branch point at p = 0, and the conjugated point is
p = −p. The Bergmann kernel is the Bergmann kernel of the Riemann
sphere:

B(p, q) =
dp dq

(p − q)2
, dEq(p) =

q dp

q2 − p2(10.108)

ω(q) = (y(q) − y(q))dx(q) = 4v5/2 (q2 − 3) q2 dq,(10.109)

Φ(q) = v5/2
(

2 q5

5
− 2q3

)
.(10.110)

Under a variation of t1 we have

Ω1(p) = −∂y(p)dx(p)
∂t1

∣∣∣∣
x(p)

= v1/2 dp = −v1/2 Res
∞

qB(p, q),

Λ1(q) = −v1/2 q,(10.111)

so the effect of ∂/∂t1 is equivalent to

(10.112)
∂

∂t1
W

(g)
k

∣∣∣∣
x

= −v1/2 Res
q→∞

qW
(g)
k+1.

10.6.1. Some correlation functions Using Definition 4.2, we find

W
(0)
3 (p1, p2, p3) = −v−5/2

6
dp1dp2dp3

p2
1p

2
2p

2
3

,(10.113)

W
(1)
1 (p) = −v−5/2

(12)2
p2 + 3

p4 dp,(10.114)
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W
(1)
2 (p, q) = v−5

15q4 + 15p4 + 6p4q2 + 2p4q4

+ 9p2q2 + 6p2q4

25 33 p6 q6 dp dq,(10.115)

W
(2)
1 (p) = −v−15/2 7

135 + 87p2 + 36p4 + 12p6 + 4p8

210 35 p10 dp(10.116)

W
(0)
4 (p1,p2, p3, p4) =

v−5

9p2
1p

2
2p

2
3p

2
4

(
1 + 3

∑

i

1
p2

i

)
dp1dp2dp3dp4(10.117)

W
(0)
5 (p1, p2, p3, p4, p5)
dp1dp2dp3dp4dp5

=
v−15/2

9p2
1p

2
2p

2
3p

2
4p

2
5

⎛

⎝1 + 3
∑

i

1
p2

i

+ 6
∑

i<j

1
p2

i p
2
j

+ 5
∑

i

1
p4

i

⎞

⎠.

(10.118)

etc...
Using Definition 4.3, and Equation (10.112), we find from Equation

(10.113):

(10.119)
∂3F (0)

∂t31
= − 1

6v
= − 1

2
√

3t1
−→ ∂2F (0)

∂t21
= − t

1/2
1√
3

and using Equation (10.114):

(10.120)
∂F (1)

∂t1
= − 1

(12)2v2 = − 1
48t1

−→ ∂2F (1)

∂t21
=

1
48 t21

as well as using Equation (10.116):

(10.121)
∂F (2)

∂t1
= −v−7 7

28 35 = − 7

28 33/2 t
7/2
1

−→ ∂2F (2)

∂t21
=

49

29 33/2 t
9/2
1

.

We may thus verify that the second derivative of the free energy:

(10.122) u =
∂2F

∂t21
=

∞∑

g=0

t
(1−5g)/2
1 u(g), F (g) =

4u(g)

5(1 − g)(3 − 5g)
.

satisfies the Painlevé equation to the first orders:

(10.123) u2 +
1
6
u′′ =

1
3
t1.
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It is well known that this equation is satisfied to all orders [26], and here
this can be seen as a consequence of the Hirota equation Theorem 9.2.

11. Conclusion

In this paper, we have constructed an infinite family of invariants of alge-
braic curves. By construction, these invariants coincide with the topological
expansion of matrix integrals in the special case where the algebraic curve is
the large N part of the matrix integral’s spectral curve. But we emphasize
again that the construction presented here goes beyond matrix models.

Our invariants are defined only in terms of algebraic geometry, and they
have many interesting properties, like homogeneity, and integrability (they
obey some Hirota equation).

The problem of computing the F (g)’s for matrix models is an old problem
which was addressed many times, and which found more and more elaborate
answers [7]. We claim that ours is more efficient, because it contains all
multicut cases, and various types of matrix models at once. Also, even in
the simplest cases (one-matrix model, 1 cut), our expressions are simpler
than what existed before [7]. Our F (g)’s are defined recursively, like those
of [7], but the recursions are much easier to handle, and it is much easier to
deduce properties to any order g from our construction.

The efficiency of our method becomes striking when one wants to com-
pare different models (Kontsevitch and KdV for instance), or when one
wants to take singular limits. Another important application of our method,
is to prove that our F (g)’s provide a solution to the holomorphic anomaly
equations of [11] in topological string theory, thus confirming the Dijkgraaf
Vafa correspondence. We claim that this can be proved easily from our
work, and we present it in a coming paper [42]. It would also be interesting
to compare our free energies with the D-Modules considered in [5, 6] as par-
tition functions of a unified matrix M-theory by checking that they indeed
satisfy the equations of [6].

One of the reasons our method is very efficient also, is that it can be
represented diagrammatically, without equations, and thus very easy to
remember.

11.1. Perspectives and generalizations

• The first thing one could think about is to understand what our F (g)’s
compute in algebraic geometry. There has been some attempts to
recognize the first few of them F (1) as the Dedekind function [29, 30],
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F (2) as the Eisenstein series [50], but the answer for higher g is still
obscure. Also a combinatoric interpretation is missing.

• Beyond that, it would be important to understand the combinatorics
behind our diagrammatic construction. Since all diagrams are obtained
from trees, it seems to be related to Schaeffer’s method for counting
maps [70], but this issue needs to be investigated further.

• Double scaling limits of matrix models are in relationship with confor-
mal field theory (CFT), and in particular minimal models. It would
be interesting to compare our formulae with those obtained directely
from CFT [28, 76, 77], and, since higher genus CFT is far less known,
maybe our method can bring something new to CFT.

• Also, the link between formal matrix models (i.e., those defined as
combinatorial generating functions, for which it makes sense to con-
sider a topological expansion, cf. [41]), and actual convergent matrix
integrals needs to be better understood. The difficulty lies beyond
any order in perturbation, and integrability could play a key role in
understanding the relationship in more details.

• It would be interesting to check that the topological expansion for the
chain of matrices [38], is also given by the same F (g)’s. This is an open
question, but there are strong evidences that the answer is positive.
For instance, it is easy to see from [38] that F (0) and some of the first
few correlation functions are indeed the same.

• It would be interesting also to extend our construction to other types of
matrix models, for instance non-hermitian (real symmetric or quater-
nionic). A first attempt was done in [18]. Another possible extension is
toward the O(n) matrix model, whose large N limit is known in terms
of an agebraic curve [44,45]. To leading order, the O(n) matrix model
solution looks very similar to that of the one-matrix model, except
that correlation functions are no longer meromorphic functions on the
curve. Instead they gain a phase shift after going around a non-trivial
cycle. This would probably allow to define a twisted version of our
construction.
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Appendix

A. Properties of correlation functions

In this section, we prove the theorems stated in Section 4.4.
We use very much the following obvious properties:

∑

i

B(pi, q)
dx(pi)

=
dx(q)

(x(p) − x(q))2
,(A.1)

dEq(p)
ω(q)

=
dEq(p)
ω(q)

,(A.2)

and

(A.3) lim
q→ai

dEq(p)
ω(q)

dx(q) = −1
2

lim
q→ai

B(p, q)
dy(q)

dx(q).

The third one is nothing but De L’Hôpital’s rule.

Proof of Theorem 4.1. From the Definition 4.2, we have:

W
(0)
3 (p, p1, p2) = Res

q→a

dEq(p)
ω(q)

(B(q, p1)B(q, p2) + B(q, p2)B(q, p1))

= 2 Res
q→a

dEq(p)
ω(q)

B(q, p1)B(q, p2)

= 2 Res
q→a

Res
r→q

dEq(p)
(y(q) − y(q))(x(r) − x(q))

B(q, p1)B(r, p2)

= −2 Res
q→a

Res
r→q

dEq(p)
(y(q) − y(q))(x(r) − x(q))

B(q, p1)B(r, p2)
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= −2 Res
q→a

dEq(p)
ω(q)

B(q, p1)B(q, p2)

= Res
q→a

B(q, p)B(q, p1)B(q, p2)
dx(q)dy(q)

,(A.4)

where we have used Equations (A.2), (A.1) and (A.3). �

Proof of Theorem 4.2. It is obvious from the definition that if p is away from
branch points, the residues are finite integrals, and W

(g)
k+1 is finite. The only

poles can be obtained when p pinches an integration contour, i.e., at branch
points.

Then, it is easy to see by recursion on k and g that it holds for any pi. �

Proof of Theorem 4.3. The first one is a property of dEq(p), and the second
one follows from recursion on k and g, and it holds for W

(0)
2 = B. �

Proof of Theorem 4.4. The case k = 1, g = 0 comes from Equation (A.1),
and by integration:

(A.5)
∑

i

dEq(pi)
dx(pi)

= 0,

which proves Equation (4.23). Then, it is clear from the iterative definition

of W
(g)
k+1 for k ≥ 1, that the dependance of W

(g)
k+1(p1,p,p2,...,pk)

dx(p) in p is a sum of
integrals involving only the following quantities:

(A.6)
∑

j

Res
q→aj

dEj,q(q1)
ωj(q)

B(q, p)
dx(p)

W
(g)
l+1(q, q2, . . . , ql),

for some q1, . . . , ql
8. Using Equation (A.1) we have to compute:

∑

i

∑

j

Res
q→aj

dEj,q(q1)
ωj(q)

B(q, pi)
dx(pi)

W
(g)
l+1(q, q2, . . . , ql)

=
∑

j

Res
q→aj

dEj,q(q1)
ωj(q)

dx(q)
(x(q) − x(p))2

W
(g)
l+1(q, q2, . . . , ql)

8Since it may not be clear which branch point dE and ω refers to, one indicates
it with an index.
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=
1
2

∑

j

Res
q→aj

dEj,q(q1)
ωj(q)

dx(q)
(x(q) − x(p))2

(
W

(g)
l+1(q, q2, . . . , ql)

+ W
(g)
l+1(q, q2, . . . , ql)

)

= −1
2

∑

qi �=q,q

∑

j

Res
q→aj

dEj,q(q1)
ωj(q)

(dx(q))2

(x(q) − x(p))2
W

(g)
l+1(q

i, q2, . . . , ql)
dx(qi)

= 0,(A.7)

where the second equality holds due to (A.2), the third equality holds due
to Equation (4.23), and the last equality holds because that last expression
has no poles at the branch points. This proves Equation (4.24). �

Proof of Theorem 4.5. It is clearly a rational function of x(p) because it is
a symmetric sum on all sheets. From Theorem 4.2, the RHS may have
poles at branch points, and/or at the poles of some y(pi), and/or when
x(p) = x(pl) for some l. Let us prove that the poles at branch points actualy
cancel.

Let us denote in this section:
(A.8)

U
(g)
k (q, q′, pK) =

g∑

m=0

∑

J⊂K

W
(m)
j+1 (q, pJ)W (g−m)

k−j+1(q′, pK/J) + W
(g−1)
k+2 (q, q′, pK).

From Theorem 4.4, we have:

∑

i

U
(g)
k (qi, qi, pK) = −

∑

i

∑

l �=i

U
(g)
k (ql, qi, pK)

= −U
(g)
k (q, q, pK) − U

(g)
k (q, q, pK)

−
∑

qi �=q,q

(U (g)
k (q, qi, pK) + U

(g)
k (q, qi, pK))

−
∑

qi �=q,q

(U (g)
k (qi, q, pK) + U

(g)
k (qi, q, pK))

−
∑

qi �=q,q

∑

l �=i,ql �=,q,q

U
(g)
k (ql, qi, pK)(A.9)
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and from Theorems 4.4 and 4.2, only the first two terms have poles at
branch-points, and thus,

−
∑

i

∑

j

Res
q→aj

dEj,q(p)
ωj(q)

U
(g)
k (qi, qi, pK)

=
∑

j

Res
q→aj

dEj,q(p)
ωj(q)

(U (g)
k (q, q, pK) + U

(g)
k (q, q, pK))

= 2
∑

j

Res
q→aj

dEj,q(p)
ωj(q)

U
(g)
k (q, q, pK)

= 2W
(g)
k+1(p, pK),(A.10)

where the last equality holds from the definition of W
(g)
k+1. Thus, we have

(A.11) W
(g)
k+1(p, pK) = −1

2

∑

j

Res
q→aj

dEj,q(p)
ωj(q)

(
∑

i

U
(g)
k (qi, qi, pK)

)
.

Then, we rewrite it in terms of P
(g)
k above

W
(g)
k+1(p, pK) = −1

2

∑

j

Res
q→aj

dEj,q(p)
ωj(q)

(
P

(g)
k (x(q), pK) dx(q)2

+2
∑

i

y(qi)dx(q)W (g)
k+1(q

i, pK)

)

= −1
2

∑

j

Res
q→aj

dEj,q(p)
ωj(q)

(
P

(g)
k (x(q), pK) dx(q)2

+ 2y(q)dx(q)W (g)
k+1(q, pK)

+ 2y(q)dx(q)W (g)
k+1(q, pK)

)

= −1
2

∑

j

Res
q→aj

dEj,q(p)
ωj(q)

(
P

(g)
k (x(q), pK) dx(q)2

+ 2(y(q) − y(q))dx(q)W (g)
k+1(q, pK)

)
,(A.12)
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where we have used Theorem 4.4 again. That gives

W
(g)
k+1(p, pK) = −1

2

∑

j

Res
q→aj

dEj,q(p)
ωj(q)

P
(g)
k (x(q), pK) dx(q)2

−
∑

j

Res
q→aj

dEj,q(p) W
(g)
k+1(q, pK).(A.13)

Let us compute that last integral
∑

j

Res
q→aj

dEj,q(p) W
(g)
k+1(q, pK)

= − Res
q→p

dEj,q(p) W
(g)
k+1(q, pK) +

1
2iπ

∑

i

∮

q′∈Bi

B(p, q′)
∮

Ai

W
(g)
k+1(q, pK)

− 1
2iπ

∑

i

∮

q′∈Ai

B(p, q′)
∮

Bi

W
(g)
k+1(q, pK)

= − Res
q→p

dEj,q(p) W
(g)
k+1(q, pK) +

∑

i

dui(p)
∮

Ai

W
(g)
k+1(q, pK)

= − Res
q→p

dEj,q(p) W
(g)
k+1(q, pK)

= −W
(g)
k+1(p, pK),

(A.14)

where we have deformed the contour of integration using Riemann bilinear
identity, and then we have used Theorem 4.3. Thus we have:

(A.15)
∑

j

Res
q→aj

dEj,q(p)
ωj(q)

P
(g)
k (x(q), pK) dx(q)2 = 0.

Since this holds for any p, we can write for any m ≥ 0:

0 = Res
p→ai

(y(p) − y(ai)) (x(p)

− x(ai))m
∑

j

Res
q→aj

dEj,q(p)
ωj(q)

P
(g)
k (x(q), pK) dx(q)2
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= − Res
q→ai

Res
p→q,q

dEj,q(p)
ωj(q)

(y(p) − y(ai)) (x(p)

− x(ai))m P
(g)
k (x(q), pK) dx(q)2

= − Res
q→ai

dx(q) (x(q) − x(ai))m P
(g)
k (x(q), pK),(A.16)

which proves that P
(g)
k (x(q), pK) can have no pole at q = ai. �

Proof of Theorem 4.6. Assume this is proved for h < g, and at g, it is proved
for l < k. Then we have:

W
(g)
2 (p1, p2) =

∑

i

Res
q→ai

dEq(p1)
ω(q)

[
2

g∑

m=0

W
(m)
2 (q, p2)W

(g−m)
1 (q)

+ W
(g−1)
3 (q, q, p2)

]

=
∑

i

Res
q→ai

dEq(p1)
ω(q)

B(q, p2) W
(g)
1 (q)

+
∑

i

Res
q→ai

∑

i′

Res
q′→ai′

dEq(p1)
ω(q)

dEi′,q′(p2)
ωi′(q′)

[
2

g−1∑

m′=0

W
(m′)
2 (q′, q)W (g−m′−1)

2 (q′, q)

+ 2
g∑

m=1

W
(g−m)
1 (q)W (m−1)

3 (q′, q′, q)

+ 2
g−1∑

m′=0

W
(m′)
3 (q′, q, q)W (g−m′−1)

1 (q′)

+ 4
g∑

m=1

m∑

m′=0

W
(m′)
2 (q′, q)W (m−m′)

1 (q′)W (g−m)
1 (q)

+ W
(g−2)
4 (q, q′, q, q′)

]
(A.17)

and W
(g)
2 (p2, p1) is given by the same integral except that the order for

computing residues is reversed, the residue in q is computed before q′. The
difference is thus obtained by pushing the contour of q′ through the contour
of q, and is obtained as the residue at q = q′. Notice that only W

(0)
2 (q, q′) has

a pole at q = q′, all the other W
(g)
k have no poles at q = q′ from Theorem 4.2.
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Thus, we have

W
(g)
2 (p1, p2) − W

(g)
2 (p2, p1)

−
∑

i

Res
q→ai

dEq(p1) B(q, p2) − dEq(p2) B(q, p1)
ω(q)

W
(g)
1 (q)

=
∑

i

Res
q→ai

Res
q′→q

dEq(p1)
ω(q)

dEq′(p2)
ωi(q′)

B(q, q′)

[
4

g∑

m=0

W
(m)
1 (q′)W (g−m)

1 (q) + 2W
(g−1)
2 (q′, q)

]

= 2
∑

i

Res
q→ai

Res
q′→q

dEq(p1)
ω(q)

dEq′(p2)
ωi(q′)

B(q, q′) U
(g)
0 (q, q′)

=
∑

i

Res
q→ai

Res
q′→q

dEq(p1)
ω(q)

dEq′(p2)
ωi(q′)

B(q, q′)
(
U

(g)
0 (q, q′) + U

(g)
0 (q, q′)

)
,

(A.18)

where we have used the notation of Theorem 4.5.
Similarly, for higher values of k, we find:

W
(g)
2+k(p1, p2, pK) − W

(g)
2+k(p2, p1, pK)

−
∑

i

Res
q→ai

dEq(p1) B(q, p2) − dEq(p2) B(q, p1)
ω(q)

W
(g)
k+1(q, pK)

=
∑

i

Res
q→ai

Res
q′→q

dEq(p1)
ω(q)

dEq′(p2)
ωi(q′)

B(q, q′)
(
U

(g)
k (q, q′, pK) + U

(g)
k (q, q′, pK)

)

(A.19)

Then it gives

W
(g)
2+k(p1, p2, pK) − W

(g)
2+k(p2, p1, pK)

−
∑

i

Res
q→ai

dEq(p1) B(q, p2) − dEq(p2) B(q, p1)
ω(q)

W
(g)
k+1(q, pK)

=
∑

i

Res
q→ai

dEq(p1)
ω(q)

dq′

(
dEq′(p2)
ωi(q′)

(
U

(g)
k (q, q′, pK) + U

(g)
k (q, q′, pK)

))

q′=q

(A.20)
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and by integrating half of it by parts we get

W
(g)
2+k(p1, p2, pK) − W

(g)
2+k(p2, p1, pK)

= −
∑

i

Res
q→ai

B(q, p1)dEq(p2) − B(q, p2)dEq(p1)
ω(q)2

(
U

(g)
k (q, q, pK)

+ U
(g)
k (q, q, pK)

)
(A.21)

+
∑

i

Res
q→ai

dEq(p1) B(q, p2) − dEq(p2) B(q, p1)
ω(q)

W
(g)
k+1(q, pK).

Now we use the following Lemma

Lemma A.1. If f(q, q′) is localy a bilinear differential near a branch point
ai, with no poles, and symmetric in q and q, and in q′ and q′, then:

(A.22) Res
q→ai

B(q, p1)dEq(p2) − B(q, p2)dEq(p1)
ω(q)2

f(q, q) = 0.

Proof. The residue is a simple pole, and we can use formula (A.3), that
gives:

Res
q→ai

B(q, p1)dEq(p2) − B(q, p2)dEq(p1)
ω(q)2

f(q, q)

= Res
q→ai

B(q, p1)B(q, p2) − B(q, p2)B(q, p1)
ω(q)dy(q)dx(q)

f(q, q)

= 0.(A.23)

�

Using this Lemma, as well as Theorem 4.5, we get:

W
(g)
2+k(p1, p2, pK) − W

(g)
2+k(p2, p1, pK)

= −
∑

i

Res
q→ai

B(q, p1)dEq(p2) − B(q, p2)dEq(p1)
ω(q)2

(y(q)

− y(q))dx(q)W (g)
k+1(q, pK)

+
∑

i

Res
q→ai

dEq(p1) B(q, p2) − dEq(p2) B(q, p1)
ω(q)

W
(g)
k+1(q, pK)

= 0.(A.24)

�
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Proof of Corollary 4.1. For any rational function R(x) with no pole at x(ai)
we have

Res
ai

R(x(p))W (g)
k+1(p, p1, . . . , pk)

=
1
2

Res
ai

R(x(p))
(
W

(g)
k+1(p, p1, . . . , pk) + W

(g)
k+1(p, p1, . . . , pk)

)

= 0(A.25)

due to Theorem 4.4.
For m = 0, 1 compute

∑

α

Res
p→α

x(p)my(p)W (g)
k+1(p, pK)

= −1
2

∑

α

Res
p→α

x(p)m

dx(p)

(
− 2y(p)dx(p)W (g)

k+1(p, pK)

+
g∑

h=0

∑

I⊂K

W
(h)
|I|+1(p, pI)W

(g−h)
k−|I|+1(p, pK/I) + W

(g−1)
k+2 (p, p, pK)

)

=
1
2

Res
p→ai,pK

x(p)m

dx(p)

(
− 2y(p)dx(p)W (g)

k+1(p, pK)

+
g∑

h=0

∑

I⊂K

W
(h)
|I|+1(p, pI)W

(g−h)
k−|I|+1(p, pK/I) + W

(g−1)
k+2 (p, p, pK)

)

=
1
2

k∑

j=1

Res
p→pj

x(p)m

dx(p)
(
B(p, pj)W

(g)
k (p, pK/{j})

)

+
1
2

∑

i

Res
p→ai

x(p)m

dx(p)

(
− 2y(p)dx(p)W (g)

k+1(p, pK)

+
g∑

h=0

∑

I⊂K

W
(h)
|I|+1(p, pI)W

(g−h)
k−|I|+1(p, pK/I) + W

(g−1)
k+2 (p, p, pK)

)
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=
1
2

k∑

j=1

dpj

(
x(pj)m W

(g)
k (pK)

dx(pj)

)

+
1
4

∑

i

Res
p→ai

x(p)m

dx(p)

(
− 2y(p)dx(p)W (g)

k+1(p, pK)+

+
g∑

h=0

∑

I⊂K

W
(h)
|I|+1s(p, pI)W

(g−h)
k−|I|+1(p, pK/I) + W

(g−1)
k+2 (p, p, pK)

)

+
1
4

∑

i

Res
p→ai

x(p)m

dx(p)

(
− 2y(p)dx(p)W (g)

k+1(p, pK) +

+
g∑

h=0

∑

I⊂K

W
(h)
|I|+1(p, pI)W

(g−h)
k−|I|+1(p, pK/I) + W

(g−1)
k+2 (p, p, pK)

)

=
1
2

k∑

j=1

dpj

(
x(pj)m W

(g)
k (pK)

dx(pj)

)

+
1
4

∑

i

Res
p→ai

x(p)m

dx(p)

(
P

(g)
k (x(p), pK)dx2(p)

)

=
1
2

k∑

j=1

dpj

(
x(pj)m W

(g)
k (pK)

dx(pj)

)

(A.26)

due to Theorem 4.5. �

Proof of Theorem 4.7. The case k = 1, g = 0 is easy:

(A.27) Res
p2→p1

Φ(p)B(p1, p2) = dΦ(p2) = y(p1)dx(p1).

We prove the theorem by recursion on g and k. Suppose it is proved for all
k′ for g′ ≤ g − 1, and for k′ ≤ k − 1 if g′ = g. We write K = {1, . . . , k} and
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K ′ = {1, . . . , k − 1}. Then we have from Equation (4.9):

Res
pk→a

Φ(pk)W
(g)
k+1(p, p1, . . . , pk)

= Res
pk→a

Res
q→a

Φ(pk)
dEq(p)
ω(q)

(
g∑

m=0

∑

J⊂K′

W
(m)
j+2 (q, pJ , pk)W

(g−m)
k−j (q, pK′/J)

+
g∑

m=0

∑

J⊂K′

W
(m)
j+1 (q, pJ)W (g−m)

k−j+1(q, pK′/J , pk) + W
(g−1)
k+2 (q, q, pK′ , pk)

)
.

(A.28)

Then we exchange the contours of integration

(A.29) Res
pk→a

Res
q→a

= Res
q→a

Res
pk→a

+ Res
q→a

Res
pk→q,q

.

Thus

Res
pk→a

Φ(pk)W
(g)
k+1(p, p1, . . . , pk)

= Res
q→a

Res
pk→a

Φ(pk)
dEq(p)
ω(q)

(
g∑

m=0

∑

J⊂K′

W
(m)
j+2 (q, pJ , pk)W

(g−m)
k−j (q, pK′/J)

+
g∑

m=0

∑

J⊂K′

W
(m)
j+1 (q, pJ)W (g−m)

k−j+1(q, pK′/J , pk) + W
(g−1)
k+2 (q, q, pK′ , pk)

)

+ Res
q→a

Res
pk→q,q

Φ(pk)
dEq(p)
ω(q)

(
g∑

m=0

∑

J⊂K′

W
(m)
j+2 (q, pJ , pk)W

(g−m)
k−j (q, pK′/J)

+
g∑

m=0

∑

J⊂K′

W
(m)
j+1 (q, pJ)W (g−m)

k−j+1(q, pK′/J , pk) + W
(g−1)
k+2 (q, q, pK′ , pk)

)
.

(A.30) �
The first term is computed from the recursion hypothesis, and the second
term can exist only if the correlation function containing pk has poles at pk =
q or pk = q, and from Theorem 4.2, this can happen only if the correlation
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function containing pk is a Bergmann kernel. That gives:

Res
pk→a

Φ(pk)W
(g)
k+1(p, p1, . . . , pk)

= Res
q→a

dEq(p)
ω(q)

(
g∑

m=0

∑

J⊂K′

(2m + (j + 1)

− 2)W (m)
j+1 (q, pJ)W (g−m)

k−j (q, pK′/J)

+
g∑

m=0

∑

J⊂K′

(2(g − m) + (k − j) − 2)W (m)
j+1 (q, pJ)W (g−m)

k−j (q, pK′/J)

+ (2(g − 1) + k + 1 − 2)W (g−1)
k+1 (q, q, pK′)

)

+ Res
q→a

Res
pk→q,q

Φ(pk)
dEq(p)
ω(q)

(
B(q, pk)W

(g)
k+1(q, pK′)

+ W
(g)
k (q, pK′)B(q, pk)

)

= (2g + k − 3) Res
q→a

dEq(p)
ω(q)

(
g∑

m=0

∑

J⊂K′

W
(m)
j+1 (q, pJ)W (g−m)

k−j (q, pK′/J)

+ W
(g−1)
k+1 (q, q, pK′)

)

+ Res
q→a

dEq(p)
y(q) − y(q)

(
y(q)W (g)

k+1(q, pK′) + y(q)W (g)
k (q, pK′)

)

= (2g + k − 3) Wk(p, p1, . . . , pk−1)

+ Res
q→a

dEq(p)
y(q) − y(q)

(
y(q)(W (g)

k+1(q, pK′)

+ W
(g)
k (q, pK′)) + (y(q) − y(q))W (g)

k (q, pK′)
)

= (2g + k − 3)Wk(p, p1, . . . , pk−1)

+ Res
q→a

dEq(p)
y(q) − y(q)

(y(q) − y(q))W (g)
k (q, pK′)

= (2g + k − 3) Wk(p, p1, . . . , pk−1) − Res
q→a

dEq(p) W
(g)
k (q, pK′)
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= (2g + k − 3) Wk(p, p1, . . . , pk−1) +
1
2

Res
q→a

dSq,o(p) W
(g)
k (q, pK′)

− 1
2

Res
q→a

dSq,o(p) W
(g)
k (q, pK′)

= (2g + k − 3) Wk(p, p1, . . . , pk−1) +
1
2

Res
q→a

dSq,o(p) W
(g)
k (q, pK′)

− 1
2

Res
q→a

dSq,o(p) W
(g)
k (q, pK′)

= (2g + k − 3) Wk(p, p1, . . . , pk−1) + Res
q→a

dSq,o(p) W
(g)
k (q, pK′)

= (2g + k − 3) Wk(p, p1, . . . , pk−1) − Res
q→p

dSq,o(p) W
(g)
k (q, pK′)

− 1
2iπ

∑

j

(∮

Bj

B(q, p)
∮

Aj

W
(g)
k (q, pK′)

−
∮

Aj

B(q, p)
∮

Bj

W
(g)
k (q, pK′)

)

= (2g + k − 3) Wk(p, p1, . . . , pk−1) − Res
q→p

dSq,o(p) W
(g)
k (q, pK′)

− dut(p)
(

(1 + κτ)
∮

A
W

(g)
k (q, pK′) − κ

∮

B
W

(g)
k (q, pK′)

)

= (2g + k − 3) Wk(p, p1, . . . , pk−1) − Res
q→p

dSq,o(p) W
(g)
k (q, pK′)

− dut(p)
∮

A
W

(g)
k (q, pK′)

= (2g + k − 3) Wk(p, p1, . . . , pk−1) − Res
q→p

dSq,o(p) W
(g)
k (q, pK′)

= (2g + k − 2) Wk(p, p1, . . . , pk−1).
(A.31)

B. Variation of the curve

In this appendix, we proove the theorems stated in Sections 5 and 6.1.
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Proof of Lemma. 5.1

DΩ

⎛

⎝
∑

j

Res
q→aj

dEq(p)
ω(q)

f(q, q)

⎞

⎠

x(p)

=
∑

j

Res
q→aj

dEq(p)
ω(q)

DΩ(f(q, q))x(q)

−
∑

j

Res
q→aj

dEq(p)
(ω(q))2

(Ω(q) − Ω(q)) f(q, q)

+ 2
∑

j

Res
q→aj

∑

i

Res
r→ai

dEr(p)
ω(r)

Ω(r)
dEq(r)
ω(q)

f(q, q)

=
∑

j

Res
q→aj

dEq(p)
ω(q)

DΩ(f(q, q))x(q) − 2
∑

j

Res
q→aj

dEq(p)
(ω(q))2

Ω(q) f(q, q)

+ 2
∑

j

Res
q→aj

∑

i

Res
r→ai

dEr(p)
ω(r)

Ω(r)
dEq(r)
ω(q)

f(q, q)

=
∑

j

Res
q→aj

dEq(p)
ω(q)

DΩ(f(q, q))x(q)

− 2
∑

j

Res
q→aj

Res
r→q

dEq(r)dEr(p)
ω(q)ω(r)

Ω(r) f(q, q)

+ 2
∑

j

Res
q→aj

∑

i

Res
r→ai

dEr(p)
ω(r)

Ω(r)
dEq(r)
ω(q)

f(q, q)

=
∑

j

Res
q→aj

dEq(p)
ω(q)

DΩ(f(q, q))x(q)

+ 2
∑

i

Res
r→ai

∑

j

Res
q→aj

dEr(p)
ω(r)

Ω(r)
dEq(r)
ω(q)

f(q, q).

(B.1) �

Proof of Theorem 5.1. This theorem straightforwardly comes from the dia-
grammatic rules described in the preceding paragraph except for the varia-
tion of F (1).
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Let us prove it for F (1) with Ω(p) =
∫
C B(p, q)Λ(q). One has

−
∫

C
W

(g)
1 (p)Λ(p) = − Res

q→a

∫
C dEq(p)Λ(p)

ω(q)
B(q, q)

= − Res
q→a

∫
C dEq(p)Λ(p)dzi(q)dzi(q)

ω(q)

[
1

(z(q) − z(q))2

+
1
6
SB(q)

]
,(B.2)

where zi is a local variable near the branch point ai and SB is the corre-
sponding Bergmann projective connection. Since the last term has a simple
pole at the branch point ai, one can write

− Res
q→a

∫
C dEq(p)Λ(p)dzi(q)dzi(q)

ω(q)
1
6
SB(q) = −1

2

∑

i

Ω(ai)dy(ai) Res
q→ai

B(q, q)
dx(q)

= −1
2
δΩ ln τBx.(B.3)

On the other hand, one can express the first term thanks to the local
variables zi and compute

− Res
q→a

∫
C dEq(p)Λ(p)dzi(q)dzi(q)

ω(q)(z(q) − z(q))2
= − 1

24
δΩ(y′(ai))(B.4)

provided that zi(q) − zi(q) = 2zi(q). �

Proof of Theorem (5.3). Using Theorem 4.7, we have:

(B.5) (2 − 2g)F (g) = − Res
a

ΦW
(g)
1

and using Equation (3.61), we can choose for any arbitrary o′:

(B.6) Φ(p) = −
∑

α

Res
α

Vα dSp,o′ +
∑

α

tα

∫ α

o
dSp,o′ +

∑

i

εi

∮

Bi

dSp,o′ ,
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which implies

(2 − 2g)F (g) = − Res
a

ΦW
(g)
1

=
∑

α

Res
p→a

Res
q→α

Vα(q)dSp,o′(q)W (g)
1 (p)

−
∑

α

tα Res
p→a

∫ α

q=o
dSp,o′(q)W (g)

1 (p)

−
∑

i

εi Res
p→a

∮

q∈Bi

dSp,o′(q)W (g)
1 (p).(B.7)

Since the poles α and the branch points ai do not coincide, one can exchange
the order of integration. Then, one can move the integration contours for p
in order to integrate only around the last pole p → q:

(2 − 2g)F (g) =
∑

α

tα

∫ α

q=o
Res
p→q

dSp,o′(q)W (g)
1 (p)

−
∑

α

Res
q→α

Res
p→q

Vα(q)dSp,o′(q)W (g)
1 (p)

+
∑

i

εi

∮

q∈Bi

Res
p→q

dSp,o′(q)W (g)
1 (p)

=
∑

α

Res
q→α

Vα(q)W (g)
1 (q) −

∑

α

tα

∫ α

q=o
W

(g)
1 (q)

−
∑

i

εi

∮

q∈Bi

W
(g)
1 (q).(B.8) �

Proof of Theorem (6.1). We have

2iπ
∂

∂κij
W

(0)
2 (p1, p2) =

1
2
(2iπ)2(dui(p1)duj(p2) + dui(p2)duj(p1))

=
1
2

∮

r∈Bj

∮

s∈Bi

(B(p1, r)B(p2, s) + B(p2, r)B(p1, s)).(B.9)

Thus the theorem holds for k = 2 and g = 0. And by integration we get

− 2iπ
∂

∂κij
dEq(p)

= 2(iπ)2(dui(p)(uj(q) − uj(q)) + duj(p)(ui(q) − ui(q)))

= −1
2

∮

r∈Bi

∮

s∈Bj

(B(p, r)dEq(s) + B(p, s)dEq(r)).

(B.10)
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2iπ
∂

∂κij
W

(g)
k+1(p, pK)

= 2iπ
∂

∂κij
Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

(
W

(g−1)
k+2 (q, q, pK)

+
∑

W
(h)
j+1(q, pJ)W (g−h)

k−j+1(q, pK/J)
)

=
1
2

∮

r∈Bi

∮

s∈Bj

Res
q→a

B(p, r)dEq(s) + B(p, s)dEq(r)
(y(q) − y(q))dx(q)

(W (g−1)
k+2 (q, q, pK)

+
∑

W
(h)
j+1(q, pJ)W (g−h)

k−j+1(q, pK/J)
)

+ Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

(
2iπ

∂

∂κij
W

(g−1)
k+2 (q, q, pK)

)

+ Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

(∑
2iπ

∂

∂κij
W

(h)
j+1(q, pJ)W (g−h)

k−j+1(q, pK/J)
)

+ Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

(∑
W

(h)
j+1(q, pJ)2iπ

∂

∂κij
W

(g−h)
k−j+1(q, pK/J)

)

=
1
2

∮

r∈Bi

∮

s∈Bj

(B(p, r)W (g)
k+1(s, pK) + B(p, s)W (g)

k+1(r, pK))

+
1
2

∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

(W (g−2)
k+4 (q, q, pK , r, s)

+ 2W
(h)
j+3(q, q, pJ , r)W (g−1−h)

k−j+1 (pK/J , s)

+ 2W
(h)
j+s2(q, pJ , r)W (g−1−h)

k−j+2 (q, pK/J , s))

+
1
2

∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

∑

J

W
(g−h)
k−j+1(q, pK/J)×

×
(

W
(h−1)
j+3 (q, pJ , r, s) + 2

∑

L

W
(m)
l+2 (q, pL, r)W (h−m)

k−j−l+1(pK/(J∪L), s)

)

+
1
2

∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

∑

J

W
(g−h)
k−j+1(q, pK/J)×

×
(

W
(h−1)
j+3 (q, pJ , r, s) + 2

∑

L

W
(m)
l+2 (q, pL, r)W (h−m)

k−j−l+1(pK/(J∪L), s)

)

(B.11)
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We regroup together all terms with two W ’s and all terms with three W ’s:

2iπ
∂

∂κij
W

(g)
k+1(p, pK)

=
1
2

∮

r∈Bi

∮

s∈Bj

(B(p, r)W (g)
k+1(s, pK) + B(p, s)W (g)

k+1(r, pK))

+
∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

∑

J

W
(h−1)
j+3 (q, pJ , r, s)

× W
(g−h)
k−j+1(q, pK/J)

+
∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

(W (h)
j+2(q, pJ , r)

× W
(g−1−h)
k−j+2 (q, pK/J , s))

+
1
2

∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

W
(g−2)
k+4 (q, q, pK , r, s)

+
∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

×
(
∑

J

∑

L

W
(m)
l+2 (q, pL, r)W (h−m)

k−j−l+1(pK/(J∪L), s)W
(g−h)
k−j+1(q, pK/J)

)

+
∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

×

×
(
∑

J

∑

L

W
(m)
l+2 (q, pL, r)W (h−m)

k−j−l+1(pK/(J∪L), s)W
(g−h)
k−j+1(q, pK/J)

)

+
1
2

∮

r∈Bi

∮

s∈Bj

Res
q→a

dEq(p)
(y(q) − y(q))dx(q)

(
2W

(h)
j+3(q, q, pJ , r)

W
(g−1−h)
k−j+1 (pK/J , s)

)

(B.12)

We recognize the recursion relation Equation (4.9) in lines 2–5, and in lines
6–8, and this gives the theorem.

The theorem for the free energies, is easy obtained using Theorem 4.7.
�
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C. Proof of the symplectic invariance of F (0) and F (1)

C.1. F (1)

Let us study how F (1) is changed under the exchange of the roles of x and
y. For this purpose, we define the images of F (1) and W

(1)
1 (p) under this

transormation, i.e.,

(C.1) Ŵ
(1)
1 (p) := − Res

q→b

∫ q
q̃ B(p, ξ)

2(x(q) − x(q̃))dy(q)
B(q, q̃),

and

(C.2) F̂ (1) = −1
2

ln τBy − 1
24

ln
∏

j

x′(bj),

where b denotes the set of y-branch points, q̃ is the only point satisfy-
ing y(q) = y(q̃) and approaching a branch point bj when q → bj , τBy is the
Bergmann τ -function associated to y and x′(bj) = dx(bj)

dz̃j(bj)
. According to The-

orem 5.1, for any variation Ω of the curve, the variation of the free energy
reads

(C.3) δΩF̂ (1) =
∫

C
Ŵ

(1)
1 (p)Λ(p).

Thus, the variation of the difference between the two “free energies” reads

(C.4) δΩ(F (1) − F̂ (1)) =
∫

C
(W (1)

1 (p) + Ŵ
(1)
1 (p))Λ(p).

In order to evaluate this quantity, one needs the following lemma:

Lemma C.1. For any choice of variable z:

W
(1)
1 (p) + Ŵ

(1)
1 (p) =

1
24

dp

[
1

x′y′

(
2SBz(p) +

x′′y′′

x′y′ +
x′′2

x′2

− x′′′

x′ +
y′′2

y′2 − y′′′

y′

)]
,(C.5)

where the derivatives are taken with respect to the variable z and SBz denotes
the Bergmann projective connection associated to z.
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Proof. From the definitions, one easily derives that

(C.6) W
(1)
1 (p) + Ŵ

(1)
1 (p) = Res

q→p

B(p, q)
(x(p) − x(q))(y(p) − y(q))

.

Let us now expand the integrand in terms of an arbitrary local variable
z when p → q. The different factors read

B(p, q)
dz(p)dz(q)

=
1

(z(p) − z(q))2
+

1
6
SBz(p) − z(p) − z(q)

12
S′

Bz(p)

+ O((z(p) − z(q))2)(C.7)

and

1
y(p) − y(q)

=
1

(z(p) − z(qs))y′(p)

[
1 − (z(p) − z(q))

y′′

2y′

+ (z(p) − z(q))2
(

y′′2

4y′2 − y′′′

6y′

)

+
(z(p) − z(q))3

24

(
−y′′′′

y′ + 4
y′′′y′′

y′2 − 3y′′3

y′3

)

+ O((z(p) − z(q))4)
]
.(C.8)

Inserting it altogether inside Equation (C.6), one can explicitly compute the
residues and one recognizes the formula (C.5). �

We can now prove the following theorem stating the symmetry of F (1)

under the exchange of x ↔ y:

Lemma C.2. The two free energies transform in the same way under any
variation of the moduli of the curve:

(C.9) δΩF (1) = δΩF̂ (1).

Proof. We already know that

δΩ
(
F (1) − F̂ (1)) =

∫

p∈C

1
24

dp

[
1

x′y′

(
2SBz(p) +

x′′y′′

x′y′ +
x′′2

x′2

− x′′′

x′ +
y′′2

y′2 − y′′′

y′

)]
Λ(p)(C.10)

for an arbitrary variable z.
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We just have to check that this quantity vanishes for the transformations
corresponding to varying the moduli of the curve. Because the function
inside the differential w.r.t. p vanishes at the poles of y dx, one can check
that it is indeed the case. �

Thus, the first correction to the free energy satisfies the following varia-
tion under symplectic transformations:

Theorem C.1. F (1) does not change under the following transformations
of E:

• y → y + R(x) where R is a rational function.

• y → cy and x → 1
cx where c is a non-zero complex number.

• x → x + R(y) where R is a rational function.

• y → x and x → y.

F (1) is shifted by a multiple of iπ/12 when E is changed by x → −x.

Proof. The first transformation is obvious from the definition since neither
ln τBx nor y′(ai) changes.

The second one follows from Theorem 2 in [37] for f = x and g = x
c

which shows that the variations of ln(τBx) and y′(ai) compensate.
The fourth one is nothing but Lemma C.2 and it gives the third one

when combined with the first.
The last transformation holds because ln τBx is left unchanged and y′(ai)

changes sign. �

C.2. F (0)

Theorem C.2. F (0) does not change under the following transformations
of E:

• y → y + P(x), where P is a polynomial.

• y → y and x → −x.

• y → cy and x → 1
cx, where c is a non-zero complex number.

• x → x + P(y), where P is a polynomial.

• y → x and x → y.
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Proof. The second and third transformations come from the structure of
F (0) which is bilinear in objects proportionnal to y dx.

One can obtain the last one following the same method as for F (1): we
compute the variation of the difference of the two free energies under the
changes of the moduli of E and show that they vanish.

Let us now show the first invariance. In this case, the variation of the
free energy is δP(x)dxF (0). Since P(x) is a polynomial one can write it

(C.11) P(x(p)) = Res
q→p

B(p, q)Q(x(q)) = −
∑

α

Res
q→α

B(p, q)Q(x(q)),

where Q(x) is also a polynomial in x. Then, Theorem 5.1 implies the invari-
ance of F (0) under this transformation.

The fourth transformation is a combination of the first and the last
one. �

D. Matrix model with an external field

We consider the matrix model with external field defined in Section 10.4:

(D.1) Z(Λ) :=
∫

Hn

dM e−NTr(V (M)−MΛ̂),

where we assume that Λ̃ is the diagonal matrix:

(D.2) Λ̂ = diag (

n1︷ ︸︸ ︷
λ̂1, . . . , λ̂1,

n2︷ ︸︸ ︷
λ̂2, . . . , λ̂2, . . . ,

ns︷ ︸︸ ︷
λ̂s, . . . , λ̂s )

and V ′(x) is a rational fraction with denominator D(x): V ′(x) =
∑d

k=0 gkxk

D(x) .

In particular, the polynomial S(y) :=
∏s

i=1(y − λ̂i) is the minimal poly-
nomial of Λ̃.

We define the correlation functions wk(x1, . . . , xk) := Nk−2〈∏k
i=1Tr 1

xi−M

〉

c
and their 1/N2 expansion

(D.3) w̄k(xK) =
∞∑

h=0

1
N2h

w
(h)
k (xK).

We also define the auxiliary functions

(D.4) uk(x, y;xK) := N |K|−1

〈
tr

1
x − M

S(y) − S(Λ)
y − Λ

|K|∏

r=1

Tr
1

xir
− M

〉

c
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and

Pk(x, y;xK) := N |K|−1

〈
tr

V ′(x) − V ′(M1)
x − M

S(y) − S(Λ)
y − Λ

|K|∏

r=1

Tr
1

xir
− M

〉

c

.

(D.5)

Notice that uk,(x, y;xK) is a polynomial in y of degree s − 1, and D(x)Pk

(x, y;xK) is a polynomial in x of degree d − 1 and in y of degree s − 1 (note
that P0 corresponds to P in Equation (10.68)).

It is convenient to renormalize those functions, and define:

(D.6) uk(x, y;xK) := uk(x, y;xK) − δk,0S(y)

and

(D.7) wk(xK) := wk(xK) +
δk,2

(x1 − x2)2
.

D.1. Loop equations

Consider the change of variables

(D.8) δM =
1

x − M

S(y) − S(Λ)
y − Λ

.

You get the loop equation

w1(x)u0(x, y) +
1

N2 u1(x, y; x) = V ′(x)u0(x, y) − P0(x, y) − yu0(x, y)

+ S(y)w1(x),(D.9)

i.e.,

(y + w1(x) − V ′(x))(u0(x, y) − S(y)) +
1

N2 u1(x, y; x)

= (V ′(x) − y)S(y) − P0(x, y).(D.10)

We define the polynomial both in x and y

(D.11) EMext(x, y) := ((V ′(x) − y)S(y) − P0(x, y))D(x)

and

(D.12) Y (x) := V ′(x) − w1(x).
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The loop equation thus implies

(D.13) (y − Y (x))u0(x, y)D(x) +
1

N2 u1(x, y; x)D(x) = EMext(x, y)

and in particular

(D.14) EMext(x, Y (x)) =
1

N2 u1(x, Y (x); x)D(x).

The leading order of the topological expansion reads

(D.15) E
(0)
Mext(x, Y (x)) = 0,

which defines an algebraic curve.

D.2. Leading order algebraic curve

Let us study the curve EMext(x, y) = E
(0)
Mext(x, y) = 0 defining a compact Rie-

mann surface Σ and two functions x and y defined on it.
Because y is a solution of a degree s + 1 equation, EMext(x, y) has s + 1

x-sheets. The sheets can be identified by their large x behavior:

• in the physical sheet, we have Y (x) ∼ V ′(x) − 1/x + O(1/x2)

• in the other sheets, Y (x) ∼ λ̂i + ni

N
1
x + O(1/x2)

Let us note by pi ∈ Σ with i = 0 . . . s the different points of the curve
whose x-projection are x(p), i.e.,

(D.16) ∀i, j x(pi) = x(pj).

The superscript 0 corresponds to the point in the physical sheet.
From the correlation functions previously defined on the x and y pro-

jections, one defines the corresponding meromorphic one-forms on the curve
as follows:

(D.17) Wk(pK) := wk(x(pK)) dx(p1) · · · dx(pk)

and

(D.18) Uk(p, y;pK) := uk(x(p), y;x(pK)) dx(p)dx(p1) · · · dx(pk)
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as well as there to pological expansions

Wk(pK) =
∞∑

h=0

N2−2h W
(h)
k (pK) and

Uk(p, y;pK) =
∞∑

h=0

N2−2h U
(h)
k (p, y;pK).(D.19)

D.2.1. Filling fractions and genus The curve has a genus g ≤ ds − 1
and we work with fixed filling fractions

(D.20) εI := 12iπ

∮

AI

y dx.

D.2.2. Subleading loop equations Consider the topological expan-
sion of the loop (D.14). It reads, for h ≥ 1:

E(h)(x, y) = D(x)(y − Y (x))u(h)
0 (x, y) + D(x)w(h)

1,0 (x)u(0)
0 (x, y)

+ D(x)
h−1∑

m=1

w
(m)
1,0 (x)u(h−m)

0 (x, y) + D(x)u(h−1)
1 (x, y; x),(D.21)

where E(h)(x, y) is the hth term in the �
2-expansion of the spectral curve.

D.3 Diagrammatic rules for the correlation functions and the
free energy

In this section, one proves that the correlation functions’ and the free
energy’s topological expansion of this model do coincide with the W

(h)
k ’s

and F (h)’s defined following the definitions of Equations (4.15) and (4.16)
for the classical spectral curve EMext(x, y) = 0.

D.3.1 The semi-classical spectral curve Let us re-express the semi-
classical spectral curve (i.e., the whole formal series EMext(x, y)) in terms of
the classical one E

(0)
Mext(x, y).

Theorem D.3.

EMext(x, y) = −D(x)′′
〈

s∏

i=0

(
y − V ′(x(p)) +

1
N

Tr
1

x(p(i)) − M

)〉′′

= D(x)
[
(V ′(x) − y)S(y) − P0(x, y)

]
(D.22)
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and

(D.23) U0(p, y) = −′′
〈

s∏

i=1

(
y − V ′(x(p)) +

1
N

Tr
1

x(p(i)) − M

)〉′′

,

where ′′ < . >′′ means that one replace w2 by w2 in the expansion.

Proof. One proves that the 1/N2-expansions of

(D.24) Ẽ(x, y) = −D(x)

〈
s∏

i=0

(
y − V ′(x(p)) +

1
N

Tr
1

x(p(i)) − M

)〉

and

(D.25) Ũ(p, y) = −D(x)

〈
s∏

i=1

(
y − V ′(x(p)) +

1
N

Tr
1

x(p(i)) − M

)〉

coincide with the expansion of EMext(x, y) and U0(p, y).
Let the topological expansions be

(D.26) Ẽ(x, y) =
∑

g

N−2gẼ(g)(x, y), Ũ(p, y) =
∑

g

N−2gŨ (g)(p, y).

Expanding the expressions of Ẽ(x, y) and Ũ(p, y) into cumulants, one
recovers

Ẽ(h)(x, y) = (y − Y (x))D(x)Ũ (h)
0 (x, y) + D(x)w(h)

1 (x)Ũ (0)
0 (x, y)

+ D(x)
h−1∑

m=1

w
(m)
1 (x)Ũ (h−m)

0 (x, y) + D(x)Ũ (h−1)
1 (x, y; x),(D.27)

which coincides with Equation (D.21).
One easily proves that this system of equations admits a unique solution

thanks to the polynomial properties of Ũ(p, y) and that the leading orders
h = 0 coincide. The proof is extremely similar to that for the two-matrix
model (cf. Theorem 1 in [19]). �

D.3.2. Diagrammatic solution One has

(D.28) W
(0)
2 (p1, p2) = B(p1, p2),

where B is the Bergmann kernel of the algebraic curve EMext.
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The coefficient of ys of Equation (D.22), divided by D(x), is

(D.29) V ′(x) +
∑

i

Λi =
∑

i

Y (pi).

It implies that
(D.30)

dx(p)dx(q)
(x(p) − x(q))2

=
∑

i

W
(0)
2 (pi, q) and ∀h > 1,

∑

i

W
(h)
2 (pi, q) = 0,

i.e.,

(D.31) ω2(p, q) +
s∑

i=1

ω2(pi, q) = 0.

The coefficient of ys−1 is
∑

i<j

Y (pi)Y (pj) +
1

N2 ω2(pi, pj) = V ′(x)
∑

i

Λi +
∑

i<j

ΛiΛj

+
1
N

〈
Tr

V ′(x) − V ′(M1)
x − M1

〉
.(D.32)

Notice that
∑

i<j

(
Y (pi)Y (pj) +

1
N2 ω2(pi, pj)

)

=
1
2

∑

i

⎛

⎝Y (pi)(V ′(x) +
∑

j

Λj − Y (pi)) − 1
N2 ω2(pi, pi)

⎞

⎠

=
1
2

⎛

⎝V ′(x) +
∑

j

Λj

⎞

⎠
2

− 12
∑

i

(
Y (pi)2 +

1
N2 ω2(pi, pi)

)
.(D.33)

Thus,

V ′(x)2 +
∑

i

Λ2
i − 2

N

〈
Tr

V ′(x) − V ′(M1)
x − M1

〉

=
∑

i

(
Y (pi)2 +

1
N2 ω2(pi, pi)

)
.(D.34)

Notice that the LHS is the ratio of a polynomial in x and D(x):
Q(x)/D(x) = V ′(x)2 +

∑
i Λ2

i − 2N〈 Tr (V ′(x) − V ′(M1))/x − M1〉.
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The topological expansion of this equation reads for h ≥ 1

(D.35)

2
d2∑

i=0

y(pi)W (h)
1,0 (pi)dx(p)

=
d2∑

i=0

h−1∑

m=1

W
(m)
1,0 (pi)W (h−m)

1,0 (pi)

+
d2∑

i=0

W
(h−1)
2,0 (pi, pi) + 2

Q(h)(x(p))dx(p)2

D(x(p))
.

From now on, following the lines of [19], one multiplies these equations
by 1/2(dEp,p(q))/(y(p) − y(p)), takes the residues when p → μα and sums
over all the branch-points and obtains:

W
(h)
1,0 (q)=

∑

α

Res
p→μα

(1/2)dEp,p(q)(W
(h−1)
2,0 (p, p) +

∑h−1
m=1 W

(m)
1,0 (p)W (h−m)

1,0 (p))
(y(p) − y(p))dx(p)

.

(D.36)

Differentiating wrt the potential V (xi), one can finally write down an
expression for the correlation functions:

(D.37)

W
(h)
k+1,0(q, pK) =

∑

α

Res
p→μα

(1/2)dEp,p(q)
(y(p) − y(p)) dx(p)

(
W

(h−1)
k+1,0 (p, p, pK)

+
∑

j,m

W
(m)
j+1,0(p, pJ) W

(h−m)
k+1−j,0(p, pK−J)

⎞

⎠.

This coincides with the reccursive Definition 4.15 and ensures the equal-
ity of the correlation functions with the former defined special “loop func-
tions”.

Keeping on following [19], one finds that the topological expansion of the
free energy also coincides with the special free energies defined on (4.16),
that is the τ -function of the algebraic curve.
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