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Fuchsian equations of type DN
Vasily Golyshev and Jan Stienstra

We prove that a generic differential operator of type DN is irre-
ducible, regular, (anti)self-adjoint, and has quasiunipotent local
monodromies. We prove that the defining matrix of a DN oper-
ator can be recovered from the expression of the operator as a
polynomial in t and ∂t.

1. Introduction

Let A = (aij)0�i,j�N be a matrix with entries in C satisfying aij = 0 if
i − j > 1 and aij = 1 if i − j = 1 and aij = aN−j,N−i. With this matrix,
we associate a differential operator LA,∞ as follows. Let Ã = (aij∂t

j−i+1)
and ∂t = d

dt . The right determinant detright(t∂t − Ã) is a differential opera-
tor which is uniquely divisible from the right by ∂t. We define

LA,∞ = detright(t∂t − Ã)∂t
−1.

The notation LA,∞ signifies its dependence on A and the fact that the space
of its solutions has maximally unipotent monodromy at infinity. For Φ in a
given module over the ring of the differential operators (e.g., that of func-
tions of the variable t), the differential equation LA,∞Φ = 0 was called the
determinantal equation of order N , or simply equation DN, in [5]. Theo-
rem 5.8 in the present paper characterizes (through a constructive bijective
correspondence) these operators as precisely those differential operators of
the form

(t∂t)N t +
N+1∑

p=1

gp(t∂t) ∂t
p−1

with gp a polynomial of degree � N − p + 1 in t∂t, such that gp(argument) =
(−1)N−p+1gp(−argument − p).

The construction of the differential operators of type DN in [5] is moti-
vated by mirror symmetry for (complete intersections in) minimal Fano
varieties. Recall that an algebraic variety V over C is said to be a Fano
variety if its anticanonical class −KV is ample. We say that a Fano vari-
ety V of dimension N is minimal if its cohomology is as small as it can be:
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H2k(V, Z) = Z and H2k+1(V, Z) = 0 for all 0 ≤ k ≤ N . Projective spaces are
examples of minimal Fanos. The Hard Lefschetz theorem guarantees that a
complete intersection in a minimal variety is almost minimal, in the sense
that it only may acquire non-trivial cohomology in the middle dimension.
Given a minimal Fano V, we introduce the upper triangular matrix of its
normalized two-point Gromov–Witten invariants. Namely, the entry aij of
A = AGW(V ) is the GW invariant defined informally as

(j − i + 1)/degV × the number of maps P
1 −→ V of degree j-i+1

such that 0 goes to a point on a generic representative of the coho-
mology class Hj and ∞ to a point on a generic representative of
HN−i.

The maps are considered up to automorphisms of P
1 that fix 0 and ∞.

The matrix AGW(V ) is ‘symmetric’: aij = aN−j,N−i. We remark here that
this construction was essentially introduced by Dubrovin under the name
of ‘second structural connection’. For a textbook description of Dubrovin’s
theory, we refer the reader to [9].

There is, however, no general characterization of the differential opera-
tors of type DN (or matrices A) that actually arise from the enumerative
geometry of Fano varieties. What are the properties that distinguish LAGW ’s
within the affine space of all LA’s? A statement of the mirror conjecture
asserts that LAGW are of Picard–Fuchs type. Namely, there exists a pencil
of varieties Et over A

1 (the so called Landau–Ginzburg model for V ) and
a relative differential form ωt in this pencil such that the fibrewise period
integrals of this form as multivalued functions on the base are annihilated
by LAGW :

Mirror Conjecture : {LAGW ’s} ⊂ {LPF’s}.

A natural question, in the light of mirror symmetry, is then to ask
which of the above differential operators are Picard–Fuchs operators for
one-parameter families of complex varieties, or more generally variations of
Hodge structure.

According to Dubrovin (see [9, Chapter II]) a generic differential opera-
tor DN is associated with a Fuchsian connection, hence is regular. We prove
that it is irreducible and coincides, up to a sign, with its adjoint. It is known
to have maximal unipotent monodromy at t = ∞, and we show in this note
that it has quasi-unipotent monodromies elsewhere. Regularity and quasi-
unipotence of local monodromies are definite requirements for Picard–Fuchs
operators by Deligne, but do not suffice.
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Unfortunately, we know no general way to tell which of the differential
operators of type DN do also satisfy further requirements for coming from
a variation of R-Hodge structures or being globally crystalline.

2. Algebraic preliminaries

Conventions 2.1. In this section, R is an associative ring with unity. We
do not want to use ugly looking indices such as aiN . For this reason, we set
n = N, and produce our DNs starting with a matrix of size n + 1 whose row
and column indices run from 0 to n.

Definition 2.2. The right determinant detright(M) of a square matrix M =
(Mij)0�i,j�n with entries in R is defined by expanding with respect to the
right column:

detright(M) =
n∑

i=0

MinCin

where Cin is the cofactor of the element Min; the cofactor Cin is in turn a
right determinant times a sign (−1)i+n.

By fully expanding this recursive definition one sees that

detright(M) =
∑

σ

sign(σ)Mσ(n),n · · ·Mσ(0),0

where σ runs over all permutations of {0, . . . , n}. In particular, if M has a
row of 0’s, then detright(M) = 0.

Proposition 2.3. If two matrices M =(Mij)0�i,j�n and M ′ =(M ′
ij)0�i,j�n

are related by M ′
ij = (−1)j−i+1Mij, then detright(M ′) = (−1)n+1detright(M).

Definition 2.4. Let M = (Mij) be a square matrix with entries in R. We
say that M is almost triangular1 if Mij = 0 for i > j + 1, and Mj+1,j = −1.

For an almost triangular matrix M one can reformulate Definition 2.2 as
a simple inductive algorithm (cf. [3]) that consecutively expresses a principal

1In numerical linear algebra, a matrix M is said to be “upper (resp. lower)
almost triangular” or in “upper (resp. lower) Hessenberg form” if Mij = 0 for
i > j + 1 (resp. j > i + 1). Our almost triangular matrices are thus the “upper
almost triangular” matrices of numerical linear algebra subject to the additional
requirement that all the subdiagonal elements be −1s.
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minor in terms of preceding ones:

P0 = 1, Pj+1 =
j∑

i=0

MijPi, detright(M) = Pn+1.

More generally, P0, . . . , Pn+1 are the right principal minors of M .

Proposition 2.5. Let M be an almost triangular matrix of size n. Define
the elements Qj in R inductively by:

Q0 = 1, Qj+1 =
j∑

i=0

QiMn−j,n−i.

Then Qn+1 = detright(M).

Proof. When fully expanded both inductive algorithms lead to:

Pn+1 = Qn+1 =
∑

M(ik,ik+1−1)M(ik−1,ik−1) · · ·M(i0,i1−1)

where the sum is over all sequences (i0, . . . , ik+1) of integers satisfying 0 =
i0 < i1 < · · · < ik < ik+1 = n + 1. �

Definition 2.6. For a square matrix M = (Mij)0�i,j�n with entries in R
let M τ be the matrix with (i, j)-entry M τ

ij = Mn−j,n−i.
Thus M τ is the “transpose of M with respect to the anti-diagonal”. It

relates to the ordinary transpose M t as M τ = JM tJ, where J = (Jij)0�i,j�n

denotes the matrix with Jij = 1 if i + j = n and Jij = 0 otherwise.

Proposition 2.7. Let R be as above and let E be a right R-module. Let
ξ0, . . . , ξn be elements of E. Let M = (Mij)0�i,j�n be an almost triangular
matrix over R. Then

(ξ0, . . . , ξn)M τ = (0, . . . , 0) =⇒ ξ0detright(M) = 0.

Proof. If (ξ0, . . . , ξn)M τ = (0, . . . , 0), then ξj+1 =
∑j

i=0 ξiMn−j,n−i for j =
0, . . . , n − 1. This implies ξj = ξ0Qj for 0 � j � n with Qj as in Proposi-
tion 2.5. Now (ξ0, . . . , ξn)(right column of M τ ) = 0 implies ξ0detright(M) = 0.

�
Suppose that the ring R is equipped an anti-involution ∨; i.e., a map R →

R, x �→ x∨, such that (x + y)∨ = x∨ + y∨ and (xy)∨ = y∨x∨ for all x, y ∈ R.
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Let M = (Mij) be an almost triangular matrix over R. Applying the anti-
involution to the inductive algorithm in Proposition 2.5 we obtain

Q∨
0 = 1, Q∨

j+1 =
j∑

i=0

M∨
n−j,n−iQ

∨
i ,

which is in fact the inductive algorithm in the paragraph below Definition 1.4
for computing the right determinant of the matrix M τ∨ (on matrices ∨ acts
componentwise). Thus

Proposition 2.8. One has (detright(M))∨ = detright(M τ∨).

3. Almost triangular matrices over the Weyl algebra

Let B = Q[aij ] be the commutative polynomial ring in the variables aij with
0 � i � j � n. We put a grading on B so that aij is homogeneous of degree
j − i + 1. Let R be the Weyl algebra over B, i.e., the non-commutative
polynomial ring B[u, u∗] with centre B modulo the commutation relation
uu∗ − u∗u = 1. We define the matrix Ã = (Ãij)0�i,j�n with entries in R by
Ãij = 0 if i > j + 1, Ãij = 1 if i = j + 1 and

Ãij = aiju
j−i+1 if i < j + 1.

Then uu∗ − Ã is an almost triangular matrix; here, and henceforth, we
simplify the notation by writing just uu∗ instead of uu∗ times the iden-
tity matrix of size n + 1. Using the inductive algorithm in the paragraph
below Definition 2.4 one checks that its right determinant has an expansion
of the form:

(3.1) detright(uu∗ − Ã) = (uu∗)n+1 +
n+1∑

p=1

n−p+1∑

k=0

x
(p)
k up(uu∗)k

in which x
(p)
k is a homogeneous element of degree p in B.

Define, for p � 1, the endomorphisms τ�p and τ�p of the ring B by

τ�p(aij) = 0 if j − i + 1 < p, τ�p(aij) = aij if j − i + 1 � p,
τ�p(aij) = 0 if j − i + 1 > p, τ�p(aij) = aij if j − i + 1 � p.

Then τ�p(x(p)
k ) = x

(p)
k and τ�p(x(p)

k ) is a linear combination of the variables
ai,p+i−1, since x

(p)
k is homogeneous of degree p. Thus for every p, 1 � p � n,
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there is a square matrix K(p) = (K(p)
ki ) over Q of size n + 2 − p such that

τ�p(x(p)
k ) =

n−p+1∑

i=0

K
(p)
ki ai,p+i−1.

Lemma 3.1. The matrix K(p) is invertible over Q, for every p � 1.

Proof. For j � i � 0, let E(i,j) = (E(i,j)
kl )0�k,l�n denote the matrix with

E
(i,j)
ij = uj−i+1, E

(i,j)
k+1,k = 1 for 0 � k � n − 1 and E

(i,j)
kl = 0 else. The recur-

sion rule in the paragraph below Definition 2.4 yields

detright(uu∗ − E(i,p+i−1)) − (uu∗)n+1 = −(uu∗)n+1−p−iup(uu∗)i

= −up(uu∗ − p)n+1−p−i(uu∗)i =
n−p+1∑

k=0

K
(p)
ki up(uu∗)k.

Invertibility of the matrix K(p) therefore follows from the fact that
the elements (uu∗ − p)n+1−p−i(uu∗)i with 0 � i � n − p + 1 are linearly
independent. �

Theorem 3.2. Consider the polynomial ring Λ = Q[λ(p)
k ]0�k�n−p+1�n

together with the ring morphism ϕ : Λ → B, ϕ(λ(p)
k ) = x

(p)
k . Then ϕ is an

isomorphism.

Proof. From the paragraph after Equation (3.1) and Lemma 3.1 we see that
ai,p+i−1 is a linear combination of the elements x

(p)
k with 0 � k � n − p + 1

plus a polynomial in the elements aij with j − i + 1 < p. So, by induction,
ai,p+i−1 is in the image of ϕ. Hence ϕ is surjective. Put a grading on Λ
by declaring that λ

(p)
k is homogeneous of degree p. Then ϕ is a morphism

between graded Q-algebras. Moreover, for every p, the homogeneous pieces
of degree p in Λ and B are Q-vector spaces of the same dimension. So in
each degree ϕ is a surjective linear map between vector spaces of the same
dimension. Hence ϕ is an isomorphism. �

In down to earth terms the theorem means:

Corollary 3.3. The matrix A can be reconstructed from the expansion of
detright(uu∗ − Ã).

Proof. By the theorem, the coefficients x
(p)
k in the expansion of detright(uu∗ −

Ã) are algebraically independent and the matrix entries aij are polynomials
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in the x
(p)
k ’s. This remains true when the x

(p)
k ’s are specialized to complex

numbers, leading to an almost triangular matrix −A over C. �

4. Realizations

In this section, R is the Weyl algebra over C, i.e., the non-commutative
polynomial ring C[u, u∗] with centre C modulo the relation uu∗ − u∗u = 1.
Further, A = (aij)0�i,j�n is a matrix with entries in C such that −A is almost
triangular. We define the matrix Ã = (Ãij)0�i,j�n with entries in R by

Ãij = aiju
j−i+1.

We want to apply the result of Proposition 2.7 to the almost triangular
matrix uu∗ − Ãτ . So, we need a right R-module E and in it elements
ξ0, . . . , ξn such that

(ξ0, . . . , ξn)(uu∗ − Ã) = (0, . . . , 0).

We will present two realizations of this situation, called the first-model and
the second-model. The terminology first-model and second-model refers to
the fact that these give the first and the second structure connection, respec-
tively, in [9, Chapter II]; see 4.2 and 4.3 below. For both realizations, we use
an isomorphism of the Weyl algebra with an algebra of differential operators:

first-model: R
∼→ C[z, ∂z], u �→ z, u∗ �→ −∂z (∂z = d

dz ),
second-model: R

∼→ C[t, ∂t], u �→ ∂t, u∗ �→ t (∂t = d
dt).

These isomorphisms with the Weyl algebra yield the isomorphism

C[t, ∂t]
∼→ C[z, ∂z], t �→ −∂z, ∂t �→ z.

This means that the first-model as a left C[z, ∂z]-module is the Fourier trans-
form of the second-model as a left C[t, ∂t]-module in the standard sense
(cf. [8, p. 71]).

The algebra C[z, ∂z] admits an anti-involution ∨ which is the identity on
C and satisfies

z∨ = z, ∂z
∨ = −∂z.

Using this anti-involution, one can turn a right module E over C[z, ∂z] into
a left module by defining

aξ = ξa∨ for ξ ∈ E, a ∈ C[z, ∂z].



330 Vasily Golyshev & Jan Stienstra

The same applies, of course, to C[t, ∂t].

4.1. First-model

For the first-model we take the free module E with basis ξ0, . . . , ξn over the
ring of Laurent polynomials C[z, z−1] and give it the structure of a right
module over C[z, ∂z] by defining

(ξ0, . . . , ξn)∂z = (ξ0, . . . , ξn)(I − Ã1)z−1,

where I is the identity matrix of size n + 1 and Ã1 = (aij zj−i+1).
This definition implies

(ξ0, . . . , ξn)(−z∂z − Ã1) = (ξ0, . . . , ξn)(−∂z z + (I − Ã1)) = (0, . . . , 0).

So, Proposition 2.7 implies

ξ0detright(−z∂z − Ãτ
1) = 0.

Passing from right to left modules with the involution ∨ and also using
Proposition 2.8 we can rewrite the above formulas as

First-model connection: (∂zξ0, . . . , ∂zξn) = (ξ0, . . . , ξn) (Ã1 − I)z−1,

First-model differential equation: detright(∂zz − Ã1)ξ0 = 0.

4.2. First-model (bis)

We introduce the diagonal matrix

T = diag(0, 1, . . . , n).

Then zT = diag(1, z . . . , zn) and Ã1 = z−T A zTz. Thus, by the change of
coordinates (ζ0, . . . , ζn) = (ξ0, . . . , ξn)z−T one can put the above 1st-model
connection in the format of [9, p. 53, formula (1.23)]:

(∂zζ0, . . . , ∂zζn) = (ζ0, . . . , ζn)(A − (I + T)z−1).

4.3. Second-model

For the second-model, we take the free module E′ with basis η0, . . . , ηn over
the ring C[t, χ−1

A ], where χA = det(A − t) is the characteristic polynomial
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of the matrix A = (aij). We give E′ the structure of a right module over
C[t, ∂t] by defining

(η0, . . . , ηn)∂t = (η0, . . . , ηn) T (A − t)−1.

Let Ã = (aij ∂t
j−i+1) and V = diag(1, ∂t, ∂t

2, . . . , ∂t
n). Then V Ã = ∂tAV

and V ∂tt = (∂tt + T)V and

(η0, . . . , ηn) (V Ã − V ∂tt) = (η0, . . . , ηn) (∂t (A − t) − T)V = (0, . . . , 0).

Thus, if we define the elements ξ′
0, . . . , ξ

′
n in E′ by ξ′

k = ηk(∂t)k, then

(ξ′
0, . . . , ξ

′
n)(∂tt − Ã) = (0, . . . , 0).

So, Proposition 2.7 implies

ξ′
0detright(∂tt − Ãτ ) = 0.

Passing from right to left modules with the involution ∨ and also using 2.8
we can write this formula also as

detright(−t∂t − Ã∨)η0 = 0.

Note Ã∨ = (aij (−∂t)j−i+1). Proposition 2.3 enables one to rewrite the above
formulas as

Second-model connection: (∂tη0, . . . , ∂tηn) = (η0, . . . , ηn) T (t − A)−1,

Second-model differential equation: detright(t∂t − Ã)η0 = 0.

This second-model connection has exactly the form of [9, p. 53,
formula (1.22)].

Remark 4.1. Note that the top row of T is zero and that therefore η0 is
actually absent from the right hand side of the second-model connection for-
mula. Consequently, the C[t, χ−1

A ]-submodule E′′ of E′ with basis η1, . . . , ηn

is stable under the action of ∂t, i.e., ∂tE
′′ ⊂ E′′. Moreover, ∂tη0 ∈ E′′ and

this implies that the class of η0 modulo E′′ is horizontal for the connection
on the quotient E′/E′′. The counterpart of this structure is that the second-
model differential operator is divisible on the right by ∂t; see Lemma 5.1.
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4.4. Connection versus differential equation

We remind the reader how the problem of finding horizontal sections for a
connection relates to that of solving a differential equation.

Let A be a commutative algebra with a left action of C[t, ∂t] that satisfies
the Leibniz rule. Assume also that A acts on the right on the free A–module
E ⊗

C[t,χ−1
A ] A with the Leibniz rule

∂t(ea) = (∂te)a + e(∂ta), e ∈ E ⊗
C[t,χ−1

A ] A, a ∈ A.

Let Φ be an invertible matrix of size n + 1 whose entries are elements of A,
and assume that

∂t((η0, . . . , ηn)Φ) = (0, . . . , 0).

(In practice, A would of course be the algebra of analytic functions on
some open subset U of C; (η0, . . . , ηn)Φ is then a basis for the space of
horizontal analytic sections over U for the connection.)

From

∂t((η0, . . . , ηn)Φ) = (∂t(η0, . . . , ηn))Φ + (η0, . . . , ηn)∂tΦ

= (η0, . . . , ηn)(T (t − A)−1Φ + ∂tΦ) = (0, . . . , 0)

we see that Φ is “a fundamental solution matrix” of the system

∂tΦ = T (A − t)−1Φ.

The trivial fact ∂t(Φ−1Φ) = 0 implies ∂tΦ−1 = Φ−1 T (t − A)−1. One
can therefore apply the arguments in section 4.3 to the columns of Φ−1 in
place of (η0, . . . , ηn). Thus, the left-most column of Φ−1 is componentwise
annihilated by the differential operator detright(t∂t − Ã). So the elements
appearing as entries in the left-most column of Φ−1 are solutions of the
differential equation detright(t∂t − Ã)f = 0.

5. Differential operators of type DN

Lemma 5.1. Let A = (aij)0�i,j�n be a matrix with entries in C such that
−A is almost triangular. Let Ã denote the matrix with (i, j)-entry aij∂t

j−i+1.
Then the differential operator detright(t∂t − Ã) in the second-model differen-
tial equation is uniquely divisible from the right by ∂t.
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Proof. This follows from Proposition 2.5 and the observation that in the
matrix t∂t − Ã the entry in position (i, j) is uniquely divisible from the
right by ∂t if i � j. �

Definition 5.2. With A and Ã as in Lemma 5.1 we define the differential
operator

LA,∞ = detright(t∂t − Ã) ∂t
−1.

Proposition 5.3. The operators LA,∞ one obtains with Definition 5.2 are
precisely the operators of the form

(t∂t)nt +
n+1∑

p=1

gp(t∂t) ∂t
p−1.

with gp a polynomial of degree � n − p + 1 in t∂t.

Proof. Setting u = ∂t and u∗ = t in the right-hand side of (3.1) and applying
the anti-involution ∨ gives

LA,∞ = (−1)n

⎛

⎝t(∂tt)n +
n+1∑

p=1

n−p+1∑

k=0

x
(p)
k ∂t

p−1(∂tt)k

⎞

⎠
∨

= (t∂t)nt +
n+1∑

p=1

n−p+1∑

k=0

(−1)n+k+p−1x
(p)
k (t∂t)k∂t

p−1

�

Continuing the discussion in section 4.4 we see that the entries in the left-
most column of the matrix ∂tΦ−1 are solutions to the differential equation
LA,∞g = 0.

Let us now consider the ring of differential operators C[w, w−1, ∂w] on the
torus Spec C[w, w−1]. The substitution t = w−1 transforms ∂t into −w2∂w

and t∂t into −w∂w. Thus the differential operator LA,∞, expanded as in
Proposition 5.3, transforms into

(−w∂w)nw−1 +
n+1∑

p=1

gp(−w∂w) (−w2∂w)p−1.
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Definition 5.4. With the notations as in the above paragraph we define
the differential operator

LA,0 = (w∂w)n +
n+1∑

p=1

(−1)ngp(−w∂w) (−w2∂w)p−1w.

This means, according to the above paragraph, that the substitution t = w−1

transforms LA,∞ into (−1)n LA,0 w−1.

Proposition 5.5. The operators LA,0 one obtains with Definition 5.4 are
precisely the operators of the form

(w∂w)n +
n+1∑

p=1

wp Gp(w∂w)
p−1∏

l=1

(w∂w + l)

where Gp is a polynomial of degree � n + 1 − p in w∂w, related to the poly-
nomial gp from Proposition 5.3 by:

Gp(argument) = (−1)n−p+1gp(−argument − p).

Proof. Note gp(−w∂w)(w2∂w)p−1 w = wpgp(−w∂w − p)
p−1∏
l=1

(w∂w + l). �

The anti-involution ∨ on C[t, ∂t] defined by t∨ = t, ∂t
∨ = −∂t maps a

differential operator L =
∑

i,j cijt
i∂t

j to L∨ =
∑

i,j cij(−∂t)jti. Thus, L∨ is
the adjoint of L in the sense of [8, p. 55]. We want to determine the adjoint
of the operator LA,∞. Recall from Definition 5.2 that

LA,∞ = detright(t∂t − Ã)∂t
−1,

where Ã is the matrix with (i, j)-entry aij∂t
j−i+1. Using Proposition 2.8

we find:
L∨

A,∞ = −∂t
−1detright(−∂tt − Ãτ∨),

where Ãτ is the matrix with (i, j)-entry an−j,n−i∂t
j−i+1.

Using Proposition 2.3, one sees

L∨
A,∞ = (−1)ndetright(t∂t − Ãτ )∂t

−1 = (−1)nLAτ ,∞.

Definition 5.4 now gives

L∨
A,0 = (−1)nwLAτ ,0 w−1.
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Theorem 5.6. The following three statements are equivalent

(i) A = Aτ ,

(ii) L∨
A,∞ = (−1)nLA,∞,

(iii) L∨
A,0 = (−1)nwLA,0 w−1.

Proof. This follows directly from the preceding paragraph and
Corollory 2.3. �

Definition 5.7. Following [5, 2.10] we call LA,0 a differential operator of
type DN0,0 if the matrix A satisfies the condition A = Aτ . Under the same
symmetry condition LA,∞ is called a differential operator of type DN∞,1.
Here, N = n is the order of the operator. Thus, for n = 3 the operator
LA,∞ is of type D3∞,1.

Theorem 5.8. (i) An operator L of type DN∞,1 satisfies L∨ =(−1)nL.

(ii) The operators of type DN∞,1 are precisely the differential operators of
the form

(t∂t)nt +
n+1∑

p=1

gp(t∂t) ∂t
p−1

with gp a polynomial of degree � n − p + 1, that satisfies

gp(argument) = (−1)n−p+1gp(−argument − p).

(iii) An operator L of type DN0,0 satisfies L∨ = (−1)nwLw−1.

(iv) The operators of type DN0,0 are precisely the differential operators of
the form

(w∂w)n +
n+1∑

p=1

wp Gp(w∂w)
p−1∏

l=1

(w∂w + l)

where Gp is a polynomial of degree � n − p + 1, that satisfies

Gp(argument) = (−1)n−p+1 Gp(−argument − p).
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Proof. (i) follows from Theorem 5.6 and Definition 5.7.

(ii) Write the operator L as in Proposition 5.3. Then L∨ = (−1)nL
becomes

t(−∂tt)n +
n+1∑

p=1

(−∂t)p−1gp(−∂tt) = (−1)n

⎡

⎣(t∂t)nt +
n+1∑

p=1

gp(t∂t) ∂t
p−1

⎤

⎦

and boils down to

gp(t∂t)∂t
p−1 = (−1)n+p−1∂t

p−1 gp(−∂tt) = (−1)n+p−1gp(−t∂t − p) ∂t
p−1

for every p � 1. This proves (ii).

(iii) and (iv) follow directly from Theorem 5.6, (ii) and Proposition 5.5. �

Example 5.9. For λ ∈ C consider the matrix

A =

⎛

⎝
λ −3

2λ2 −λ3

1 −2λ −3
2λ2

0 1 λ

⎞

⎠

A straightforward calculation shows that for this matrix

LA,∞ = t3∂t
2 + 3t2∂t + t − λ.

Divided by t, it yields a monic polynomial in t∂t with coefficients in C(t). In
the case λ 
= 0, one of these coefficients, λ/t, is not analytic at 0 hence, by
the Fuchs criterion, the operator LA,∞ has an irregular singularity at t = 0.

Remark 5.10. The above example shows that operators of type DN∞,1
may have irregular singularities. On the other hand, we will see in the next
section that if the matrix A is diagonalizable the corresponding operators
DN∞,1 and DN0,0 have only regular singularities.

6. Monodromy

Assumption 6.1. In this section, we assume that −A is almost triangular,
A is diagonalizable and A = Aτ .
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We are going to investigate the local monodromies of the second-model
connection,

(∂tη0, . . . , ∂tηn) = (η0, . . . , ηn) T (t − A)−1,

or equivalently (cf. Section 4.4) of the system

∂tΦ = T (A − t)−1Φ.

It is clear that the singularities are at ∞ and at the eigenvalues of A.
Since −A is almost triangular, the last coordinate of every eigenvector of A
is non-zero (if it were zero, then the value of the pairing of the bottom row
of A with the eigenvector would be zero, hence so would be the (n − 1)th
coordinate, and so forth). This implies that all eigenspaces of A have dimen-
sion 1. Since A is diagonalizable, this means that all eigenvalues of A have
multiplicity 1. Let

A = CΛC−1, Λ = diag(λ0, . . . , λn).

By Assumption 6.1 and Definition 2.6, we have A = Aτ = JAtJ. Hence,
CΛC−1 = (CtJ)−1ΛCtJ. Since λi 
= λj if i 
= j, this implies that CtJC is
a diagonal matrix. By multiplying C on the right by a suitable diagonal
matrix, we may assume

CtJC = I.

Let u0, . . . ,un be the columns of the matrix C. So, ui is an eigenvector of
A for the eigenvalue λi.

Theorem 6.2. With the above assumptions and notations

(i) the second-model system can be written as

∂tΦ =
n∑

j=0

1
t − λj

SjΦ

where Sj = −TCEjC
−1 and Ej is the (n + 1) × (n + 1)-matrix with 1

in position (j, j) and zeros elsewhere;

(ii) the vectors ui with i 
= j are eigenvectors of Sj for the eigenvalue 0
and Tuj is an eigenvector of Sj for the eigenvalue −n

2 .
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Proof. The first statement is an immediate consequence of

(A − t)−1 = C(Λ − t)−1C−1 =
n∑

j=0

1
λj − t

CEjC
−1.

From SjC = −TCEj one sees that the vectors ui with i 
= j are eigenvec-
tors of Sj for the eigenvalue 0 and that Tuj generates the image of Sj .
So Tuj is also an eigenvector of Sj with eigenvalue equal to trace(Sj) =
trace(−C−1TCEj). The remaining eigenvalue thus equals the (j, j) entry
of the matrix −C−1 TC. Since (C−1 TC)t = Ct T (Ct)−1 = C−1 JTJ C, the
diagonal of C−1 TC equals 1/2 times the diagonal of C−1 (T + JTJ) C = nI.
Therefore, trace(Sj) = −n/2. �

Theorem 6.3. Under the Assumption 6.1 the singularities of the system
of differential equations

∂tΦ = T (A − t)−1Φ

are regular singular points located at ∞ and at the (distinct) eigenvalues
λ0, . . . , λn of A.

The monodromy transformation M∞ along a small positively oriented
simple loop around ∞ is maximally unipotent, i.e., (M∞ − I)n 
= 0,
(M∞ − I)n+1 = 0.

In case n is odd the monodromy transformation Mj along a small posi-
tively oriented simple loop around λj has an eigenvalue 1 with n-dimensional
eigenspace and an eigenvalue −1 with 1-dimensional eigenspace.

In case n is even 1 is the only eigenvalue of the monodromy transfor-
mation Mj along a small positively oriented simple loop around λj and the
dimension of the eigenspace is � n.

Proof. The proof of this theorem is given in the following section. �

6.1. Formal Fuchsian theory

We borrowed the following concise account of it from [2, Chapter III, Sec-
tion 8]. Let G be a square matrix with entries in C[[x]]. Write D = x d

dx .
For an invertible matrix H with entries in C[x, x−1], define G[H] as G[H] =
(DH)H−1 + HGH−1. If a matrix Φ of functions in x satisfies DΦ = GΦ,
then D(HΦ) = G[H](HΦ).

Let α be an eigenvalue of G(0). Then according to [2, Lemma III. 8.2]
there is an invertible matrix H with entries in C[x, x−1] such that the matrix
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G[H] has entries in C[[x]] and such that the matrix G[H](0) has the same
eigenvalues, counted with multiplicities, as G(0), except that α is replaced
by α + 1. A similar construction with H−1 instead of H replaces α by
α − 1. By repeated application of this construction, we find an invertible
matrix H with entries in C[x, x−1] such that the matrix G[H](0) has prepared
eigenvalues; i.e., the eigenvalues α0, . . . , αn satisfy: if αi ∈ Z then αi = 0, and
if αi − αj ∈ Z then αi = αj . The system DΨ = G[H]Ψ then has a solution
matrix of the form Ψ = W exp(G[H](0) log x) where W is a matrix with
entries in C[[x]] such that W (0) is the identity matrix. Thus, if x runs
through a small positively oriented loop about 0 the fundamental solution
matrix Φ = H−1Ψ gets multiplied from the right by exp(2πiG[H](0)).

For the local monodromy of our system ∂tΦ = T (A − t)−1Φ around ∞
we use the local coordinate x = t−1. This puts the system in the form

x
d

dx
Φ = GΦ with G = T (I − Ax)−1.

So, G(0)=T=diag(0, 1, . . . , n). Take H = diag(1, x−1, x−2, . . . , x−n). Then

G[H] = (DH)H−1 + HGH−1 = T(−I +
∑

k�0

(xH A H−1)k).

We see that G[H](0) is a nilpotent matrix with G[H](0)n 
= 0 and
G[H](0)n+1 = 0. So, G[H](0) has prepared eigenvalues and the monodromy
is given by the maximally unipotent matrix exp(2πiG[H](0)).

For the local monodromy around an eigenvalue λj of A we apply the
general theory in the earlier paragraphs with x = t − λj and G = Tx(A −
λj I − xI)−1. Then G(0) = Sj as in Theorem 6.2.

Thus, if n is odd G(0) has prepared eigenvalues. The matrix for the mon-
odromy around λj is exp(2πiG(0)) and has an eigenvalue 1 with n-dimensional
eigenspace and an eigenvalue −1 with 1-dimensional eigenspace.

If n is even G(0) does not have prepared eigenvalues. The general theory
now provides a matrix H such that 0 is the only eigenvalue of G[H](0) and
the eigenspace has dimension � n.

This completes the proof of Theorem 6.3. �
Let us now turn to the local monodromies of the operator LA,∞ defined

in 5.2. As we have seen in Section 4.4 the entries in the left-most column
of the matrix Φ−1 (where Φ is as in Theorem 6.3) constitute a basis for
the solution space of the differential equation detright(t∂t − Ã)f = 0. So the
local monodromies act on this basis by multiplication from the left by certain
matrices M−1

∞ and M−1
j (j = 0, . . . , n).
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We know from Definition 5.2 that detright(t∂t − Ã) = LA,∞∂t. So the
constant functions are solutions of the differential equation detright(t∂t −
Ã)f = 0 and the solution space of the differential equation LA,∞g = 0 is
obtained by taking the solution space of detright(t∂t − Ã)f = 0 modulo the
constant functions. Since the constant functions are fixed by all local mon-
odromies we derive from Theorem 6.3 the following result about the mon-
odromies of the operator LA,∞:

Corollary 6.4. Under the Assumption 6.1 the differential equation

LA,∞g = 0

has regular singularities located at ∞ and at the (distinct) eigenvalues
λ0, . . . , λn of A.

The local monodromy around ∞ is maximally unipotent, i.e., represented
by an n × n-matrix M̃∞ satisfying (M̃∞ − I)n−1 
= 0, (M̃∞ − I)n = 0.

If n is odd the local monodromy around λj has eigenvalues 1 and −1
with eigenspaces of dimension n − 1 and 1, respectively.

If n is even 1 is the only eigenvalue of the local monodromy around λj

and the dimension of the eigenspace is � n − 1.

7. Polarizability and generic irreducibility

In this section, we prove that a generic operator of type DN is irreducible.
The tactic is as follows. First, we prove that reducibility is a closed condition
on an open set of the affine space of parameters of DNs. Up to this point
we deal with the DN∞,1 flavor. Then we exhibit a single irreducible DN
operator H, for aesthetic reasons in the DN0,0 form, such that any operator
in its neighborhood in the analytic topology is still irreducible.

We start, however, with the polarizability theorem:

Theorem 7.1. The monodromy of a differential operator L of type DN
is polarized (i.e., its monodromy representation respects a non-degenerate
bilinear form).

Proof. The operator L determines a vector bundle over A
1(C)\{singularities

of L} and a connection in it. The adjoint gives rise to the dual connection in
the dual bundle. Hence, the monodromy representation that corresponds to
the adjoint is contragredient to the original one. We have proved in Theo-
rem 4.6 that the differential operator L of type DN∞,1 coincides, up to a sign,
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with its adjoint. Hence, its monodromy representation is isomorphic to its
contragredient, and any such isomorphism corresponds to a non-degenerate
bilinear form respected by the monodromy representation. �

If a polarized monodromy representation is irreducible, then the polariz-
ing bilinear form is defined uniquely up to a scalar (being an endomorphism
of an irreducible object), and is either symmetric or skew depending on how
the argument interchange involution acts on its span.

In our discussion of irreducibility, we consider differential operators with
rational coefficients, i.e., elements of C(t)[∂t]. As before, N = n.

Definition 7.2. Let L = cn∂n + cn−1∂
n−1 + · · · + c0 ∈ C(t)[∂], and p be a

point in P
1(C). The residue respL is by definition resp(cn−1/cn)dt.

Proposition 7.3. Let L = cn∂n + cn−1∂
n−1 + · · · + c0 be a differential

operator of type DN∞,1 with n + 1 distinct finite singularities. Then:

(i) The residue of L at any finite singularity p is n
2 .

(ii) The residue of L at infinity is −n(n + 1)/2.

Proof. Recall that we have identified L’s of type DN∞,1 in Theorem 5.8(ii)
as the differential operators of the form

(t∂t)nt +
n+1∑

p=1

gp(t∂t) ∂t
p−1

with gp a polynomial of degree � n − p + 1, that satisfies

gp(argument) = (−1)n−p+1gp(−argument − p).

Consider the pth term to the right of the summation sign in the formula
above. It can be presented as

ḡp

(
t∂t +

p

2

)
∂t

p−1,

where ḡp is, depending on the parity of n − p + 1, an even or odd polynomial
(i.e., as a function of its argument). Let

∑
c
(p)
i (t)∂t

i be the expansion of the
pth term.

To compare c
(p)
n with c

(p)
n−1 it suffices to assume that ḡp is a monomial (as

a function of its argument) of the degree n − p + 1: the lower order terms
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contribute neither to c
(p)
n nor to c

(p)
n−1. Inductively on l,

(
t∂t +

p

2

)l
= tl∂t

l +
l(l + p − 1)

2
tl−1∂t

l−1 + · · · ,

and we compute c
(p)
n = tn−p+1 and c

(p)
n−1 = (n−p+1)n

2 tn−p, hence c
(p)
n−1 = n

2
dc

(p)
n

dt .
Arguing in the same vein about (t∂t)nt = t(t∂t + 1)n, we see, by linearity,
that cn−1 = n

2
dcn

dt . Expanding cn into a series at a singularity proves the
assertion (i).

Assertion (ii) follows because the sum of the residues of a rational func-
tion is 0. �

Definition 7.4. We say that a differential operator L = cn∂n + cn−1∂
n−1

+ · · · + c0 ∈ C(t)[∂] is irreducible if it cannot be represented as a product
L = L1L2 with L1, L2 ∈ C(t)[∂] of positive order.

Consider the affine space A = Spec C[aij ], 0 � i � j � n, of differential
operators of type DN.

Proposition 7.5. The locus of reducible DN operators is closed in a non-
empty open subset of A.

Proof. Let {L = cn∂t
n + cn−1∂t

n−1 + · · · + c0} be any set of differential
operators with rational coefficients such that:

(i) the degrees of numerators and denominators of all ci are bounded.

(ii) there is a finite set R ⊂ C such that the residue at any singularity of
any operator in the family is in R.

According to [7, section 9], there exists a positive integer h such that for
any factorization

(7.1) L = L′L′′

where L′ = ∂t
n′

+ c′
n′−1∂t

n′−1 + · · · + c′
0 and L′′ = c′′

n′′∂t
n′′

+ c′′
n′′−1∂t

n′′−1

+ · · · + c′′
0 with c′

i, c
′′
i ∈ C(t), the degrees of numerators and denominators

of all c′
i, c

′′
i are bounded from above by h.

According to Proposition 7.3, the set D.S. of all DN’s with n + 1 distinct
finite singularities satisfies hypotheses (i) and (ii) above. Therefore, the
factorization (7.1) can be interpreted as defining a subscheme of the product
of (an open subscheme of) the affine space A of the parameters aij of DN and
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(open subschemes of) affine spaces of variable coefficients of the numerators
and denominators of c′s and c′′s. By Chevalley’s theorem2, the reducible
locus is a finite union of locally closed subsets of D.S. Hence, reducibility is
a closed condition on an open subset of A. �

Consider the operator

H = Dn − wn+1(D + 1)(D + 2) . . . (D + n).

Up to a scalar, it is the pullback of the regular hypergeometric operator

H′ = Dn
u − u

(
Du +

1
n + 1

) (
Du +

2
n + 1

)
. . .

(
Du +

n

n + 1

)

under the Kummer cover u = wn+1. The coefficients of H′ at u0 and u1 are
the polynomials Dn

u and (Du + 1
n+1)(Du + 2

n+1) · · · (Du + n
n+1) that have

no common roots mod Z. According to the classical criterion [8, 3.2.1],
its monodromy is irreducible. It can be computed as in [1], or using the
following proposition from [4]:

Proposition 7.6. [4, 1.2.2]. Let F be a linear space endowed with a non-
degenerate symmetric (or skew) form (, ). Let U be a non-degenerate opera-
tor acting on F . Let v be a cyclic vector for the operator U and let S be the
reflection with respect to v:

S : x �→ x − (x, v)v.

Then

1 +
∞∑

i=1

(U iv, v)ti =
det(1 − tUS)
det(1 − tU)

.
�

Consider the global monodromy of H′. Let U be its monodromy around
∞ and S be the monodromy around 1. The monodromy around 0 is then the
inverse of US. Computing for instance by the standard Fuchsian procedure
described in Section 6.1, one arrives at a classically known description of
polarized hypergeometric monodromy [8, 3.2–3.3, 3.4, 3.5.4, 3.5.8]. There is
a unique, up to a scalar, non-degenerate bilinear form respected by U and
S. It is symmetric for n odd and skew for n even. S is a pseudoreflection3

2Under a morphism of finite type of Noetherian schemes, the image of a finite
union of locally closed subsets is a finite union of locally closed subsets [6, Ex 3.19].

3I.e., S − I has rank 1.
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in O (resp. Sp), hence a symmetric (resp. skew) reflection with respect to
some vector v. US is unipotent. The eigenvalues of U are all non-trivial
(n + 1)th roots of unity, each with multiplicity 1.

In particular, v is a cyclic vector for U , because the C[U ]-span of v is
stable under U and S and because the monodromy representation of H′ is
irreducible.

The global monodromy of H is the index (n + 1) subgroup of that of
H′, generated, say, by the reflections with respect to v, Uv, U2v, . . . , Unv.
Compute (U jv, U i) by applying Proposition 7.6.:

(7.2) (U jv, U iv) = (U j−iv, v) = ±Cj−i
n+1 for 0 ≤ i 
= j ≤ n

This shows that no two of U iv are orthogonal. Hence, the subgroup
generated by these reflections acts on the fiber F irreducibly.

Proposition 7.7. The operator H is of type DN0,0. It has n + 1 distinct
singularities and is irreducible.

Proof. The first assertion follows from the presentation in 5.8(iv), the second
one is obvious. The third one was proved in the previous paragraph: in a
non–trivial factorization H = H1H2 both factors need to be regular singular,
in particular, the local system of solutions of H2Φ = 0 would be a non–trivial
subsystem of the one for H. �

Theorem 7.8. A generic differential operator L of type DN is irreducible.

Proof. We will spell out a semicontinuity argument in a sufficiently small
open neighborhood of H in analytic topology of A(C) to show that the
monodromy stays irreducible. By Corollory 6.4, the monodromy is generated
by n + 1 pseudoreflections of the form x �→ x + hi(x)vi, i = 0, . . . , n where
each hi stands for a non-zero covector in a fiber vector space, and each vi,
for a non-zero vector. Let Hi = ker hi.

Assume the monodromy representation is reducible, and F0 is a
monodromy-stable proper subspace of F . An alternative is now associated
with each vi : F0 either contains vi, or is in Hi. Reduce, if necessary, our
neighborhood and note that F0 cannot contain all v’s (resp., be contained in
all H’s) because the subspace spanned by all v’s is F (resp., the intersection
of all H’s is zero), since this is the case for H. Hence, there would exist i and
j such that vj ∈ Hi, which again is impossible because it does not happen
for H: no bracket in formula 7.2 is zero.
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Summing up, the monodromy stays irreducible under deformation of H
in the class of non-degenerate DNs; it implies that irreducibility is Zariski
dense; we showed that reducibility is locally closed in Proposition 7.5. There-
fore, the locus of irreducible DNs contains a non-empty Zariski open set. �

A corollary is

Theorem 7.9. The monodromy representation of a generic (non-
degenerate) operator DN is polarizable by a bilinear form which is unique
up to a scalar. The polarization is skew if N is even and symmetric if N
is odd. �
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