
communications in

number theory and physics

Volume 1, Number 2, 307–321, 2007

Fields of definition of singular K3 surfaces
Matthias Schütt

This paper gives upper and lower bounds for the degree of the field
of definition of a singular K3 surface, generalizing a recent result
by Shimada. We use work of Shioda–Mitani and Shioda–Inose and
classical theory of complex multiplication.

1. Introduction

Singular K3 surfaces have been paid considerable attention in algebraic and
arithmetic geometry since the groundbreaking work of Shioda and Inose
[16]. It follows from their theory that in many respects, singular K3 sur-
faces behave like elliptic curves with complex multiplication. For instance,
they are defined over number fields, and some finiteness result applies (cf.
Theorem 3.7).

This paper is concerned with fields of definition of singular K3 surfaces.
On the one hand, given an isomorphism class, we determine a model over a
certain number field in Proposition 4.1. This approach follows the ideas of
Shioda and Inose in [5], [14, 16].

On the other hand, we derive a lower bound on the degree of the field
of definition in Theorem 5.2. This result generalizes the recent analysis of a
special, yet important case by Shimada [12, Theorem 3 (T)]. Our techniques
employ class field theory (Section 2) and work of Shioda and Mitani [17] on
singular abelian surfaces (Section 6). In some cases, Theorem 5.2 can be
combined with Lemma 7.1 to strengthen the result (cf. Section 7). We
conclude the paper with some applications and remarks as to singular K3
surfaces over Q and future directions in this subject.

Singular K3 surfaces have several connections to physics and most notably
to string theory. For instance, one can apply the Kummer construction
to the product of an (elliptic) K3 surface and an elliptic curve to obtain
interesting Calabi–Yau threefolds. This has been exhibited for singular K3
surfaces with a particular view to L-series (cf. [6]). Hence the precise field
of definition is of importance. There are also connections to F-theory and
heterotic string duality where K3 surfaces of large Picard number come into
play (cf. [3, §5]).

307



308 Matthias Schütt

Throughout the paper we will only be concerned with smooth complex
projective varieties. Notation will be introduced wherever it is needed. A
systematic summary can be found at the beginning of Section 6.

2. CM elliptic curves

In this section, we shall recall the classical theory of elliptic curves with
complex multiplication (CM). This will serve both as a motivation and as a
toolbox for the similarly behaved singular K3 surfaces. The main reference
for this section is the book of Shimura [13].

Let E denote an elliptic curve. It is well known that E can be defined
over Q(j(E)), and obviously this field is optimal. With respect to the group
structure, Z ⊆ End(E). An elliptic curve is said to have CM if Z � End(E).
In this case, End(E) is an order O in some imaginary quadratic field K.

Write O = Z + Zω with im(ω) > 0 and set j(O) = j(ω). To O, there is
associated the ring class field H(O) = K(j(O)) which is an abelian extension
of K. Let dK denote the discriminant of K and f the conductor of O. Set
d = f2dK . Consider the class group Cl(d), consisting of primitive positive-
definite integral matrices of the form

(2.1) Q =
(

2a b
b 2c

)

with discriminant d = b2 − 4ac up to the standard action of SL2(Z). Dirich-
let composition gives Cl(d) the structure of an abelian group. By class field
theory, the Galois group of the extension H(O)/K is isomorphic to Cl(d).
On the other hand, we have a natural map

Ξ: Cl(d) −→ {elliptic curves with CM by O}/ ∼=

sending Q as in (2.1) to the complex torus

(2.2) Eτ = EZ+τZ = C/Z + τZ

with

(2.3) τ =
−b +

√
d

2a
.

Theorem 2.1 (cf. [4, Theorem 7.7], [13, Theorem 5.7]). The map Ξ is
a bijection. Any elliptic curve with CM by O can be defined over H(O). The
representatives arising from Ξ form a complete system of Galois conjugates
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over K. Ξ is compatible with the Galois action, as given by the isomorphism
Gal(H(O)/K) ∼= Cl(d).

We shall also employ adélic techniques. These will provide a uniform
description of the Galois action on all elliptic curves with CM by an order
in the fixed imaginary quadratic field K.

Let A∗
K denote the idéle group of K and Kab the abelian closure of K.

In the standard notation, there is a canonical surjection

[ · , K] : A∗
K −→ Gal

(
Kab/K

)
,

s �−→ [s, K].

Furthermore, the idéles carry a natural operation on the set of Z-lattices
in K, which is exhibited primewise by multiplication (cf. [13, §5.3]). For
s ∈ A∗

K and a lattice Λ, we shall simply write Λ �→ sΛ. In terms of the class
group Cl(d) and the corresponding lattices Z + τZ, this action can also be
interpreted as multiplication by sO. In this context, two Z-lattices in K are
multiplied by multiplying generators, and they are identified if they agree
up to homothety, i.e., up to scaling in K.

Theorem 2.2 (Main theorem of CM [13, Theorem 5.4]). Let E = EΛ
be a complex elliptic curve with CM by an order in K. Let σ ∈ Aut(C/K)
and s ∈ A∗

K such that σ = [s, K] on Kab. Then

Eσ ∼= Es−1Λ.

3. Singular K3 surfaces

In this section, we shall review the theory of singular K3 surfaces. Most of
it goes back to the classical treatment by Shioda and Inose [16].

Definition 3.1. A surface X is called singular, if its Picard number attains
the Lefschetz bound:

ρ(X) = h1,1(X).

In other words, a K3 surface X is singular if ρ(X) = 20. One particular
aspect of singular K3 surfaces is that they involve no moduli. In fact, the
general moduli space of complex K3 surfaces with Picard number ρ ≥ ρ0 has
dimension 20 − ρ0. Nevertheless, the singular K3 surfaces are everywhere
dense in the period domain of K3 surfaces (with respect to the analytic
topology).
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Definition 3.2. For a surface X, we define the transcendental lattice TX

as the orthogonal complement of the Néron–Severi lattice NS(X) :

TX = NS(X)⊥ ⊂ H2(X, Z).

For a K3 surface, lattice theory predicts that TX is even with signature
(2, 20 − ρ(X)). Hence, if X is moreover singular, then TX is a positive-
definite even oriented lattice of rank 2 (with the orientation coming from
the holomorphic 2-form on X). One of Shioda–Inose’s main results was the
Torelli theorem for singular K3 surfaces:

Theorem 3.3 [16, Theorem 4]. The map

X �−→ TX

induces a (1:1)-correspondence between isomorphism classes of singular K3
surfaces and isomorphism classes of positive-definite even oriented lattices
of rank 2.

Shioda and Inose established the surjectivity of the above map by means
of an explicit construction which is nowadays often referred to as Shioda–
Inose structure. Since this will be crucial to our arguments, we recall their
ideas in the following.

A positive-definite even-oriented lattice T of rank 2 is given by an inter-
section form Q as in (2.1) up to SL2(Z). If T = TX for some surface X, we
shall refer to its discriminant d also as the discriminant of X. As before, we
let K = Q(

√
d) denote the imaginary quadratic field associated to Q (or X).

In a preceding work [17], Shioda and Mitani constructed a singular
abelian surface A for any given intersection form Q. This arose as a product
of two elliptic curves Eτ1 , Eτ2 with

(3.1) τ1 = τ =
−b +

√
d

2a
and τ2 =

b +
√

d

2
.

By construction, Eτ1 , Eτ2 are isogenous elliptic curves with CM in K.

Theorem 3.4 [17, §3]. For Q as in (2.1), let τ1, τ2 as above. Then A =
Eτ1 × Eτ2 is a singular abelian surface with intersection form Q on TA.
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For an abelian surface A, we can consider its Kummer surface Km(A),
which is K3. This results in multiplying the intersection form on the tran-
scendental lattice by 2:

TKm(A) = TA(2).

In the singular case, i.e., starting with A = Eτ1 × Eτ2 , Shioda–Inose pro-
ceeded as follows to achieve the original intersection form: An elaborate
investigation of the double Kummer pencil on Km(A) produced a certain
elliptic fibration. Then a quadratic base change gave rise to a singular K3
surface X with the original intersection form (cf. Section 4 for an explicit
equation). We can rephrase this in terms of the corresponding deck trans-
formation on X. This is a Nikulin involution, i.e., it has eight fixed points
and leaves the holomorphic 2-form invariant:

Theorem 3.5 [16, Theorem 2]. Any singular K3 surface X admits a
Nikulin involution whose quotient has a Kummer surface Km(A) as minimal
resolution. In particular, X is equipped with a Shioda–Inose structure

X A
↘ ↙

Km(A)

As a consequence of the above construction, singular K3 surfaces in many
respects behave like elliptic curves with CM. For instance, the following is
immediate:

Corollary 3.6 [16, Theorem 6]. Any complex singular K3 surface can
be defined over some number field.

By lattice and class theoretic means, Šafarevič widened this analogy to
the extent of the following finiteness result:

Theorem 3.7 [9, Theorem 1]. Fix n ∈ N. Up to isomorphism, there is
only a finite number of complex singular K3 surfaces which possess a model
defined over a number field of degree at most n over Q.

It is the minimal degree of the fields of definition for singular K3 surfaces
which we will be ultimately aiming at. As a first step towards the classifica-
tion of all singular K3 surfaces for fixed degree n, this paper derives upper
and lower bounds for this degree.
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4. Model over Q(j (τ 1),j (τ 2))

For a complex elliptic curve E, we know that E can be defined over Q(j(E)).
In this section, we shall derive an analog statement for singular K3 sur-
faces. To simplify its proof, we shall normalize the j-map such that j(i) = 1
(i2 = −1). This adjustment does not affect our results.

Proposition 4.1. Let X be a singular K3 surface with intersection form
Q. Let τ1, τ2 be as in (3.1). Then X has a model over Q(j(τ1), j(τ2)) (⊆
K(j(τ2))).

The proof builds on a result of Inose [5]. For a singular K3 surface X
as in the proposition, Inose derives a defining equation as a (non-smooth)
quartic in P3. This quartic has coefficients in the field Q(α, β) where

α3 = j(τ1)j(τ2) and β2 = (1 − j(τ1))(1 − j(τ2)).

The quartic polynomial can be interpreted as the elliptic fibration arising
from the quadratic base change in Shioda–Inose’s construction. In [15],
Shioda refers to it as Inose’s pencil :

X : y2 = x3 − 3 α t4 x + t5 (t2 − 2 β t + 1).

To prove the proposition, we only have to exhibit a twist of the above
fibration which is defined over the claimed smaller field. If α β �= 0, this
is achieved in terms of the variable change

t �−→ β t, x �−→ β

α
x, y �−→

√
β3

α3 y.

Writing A = α3, B = β2, the transformation results in the Weierstrass
equation

(4.1) X : y2 = x3 − 3 A B t4 x + A B t5 (B t2 − 2 B t + 1).

If α β = 0, it suffices to substitute the zero entries in the above transforma-
tion by 1. This proves Proposition 4.1. �

Remark 4.2. Shioda–Inose’s construction stays valid for any product
abelian surface A = E × E′ (cf. [14]). The Kummer surface of A can be
obtained from X via the base change t �→ t2:

(4.2) Km(A) : y2 = x3 − 3 A B t4 x + A B t4 (B t4 − 2 B t2 + 1).
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Corollary 4.3. Let X be a singular K3 surface with intersection form Q.
If Q is 2-divisible, then X can be defined over Q(j(τ1), j( τ2

2 )).

Proof. If Q is 2-divisible, then X = Km(A) for the singular abelian surface
A with intersection form 1

2Q. In view of (3.1), this leads to the claimed
coefficients which we insert in (4.2). �

The fibrations (4.1), (4.2) allow us to realize any singular K3 surface
over some predicted number field. However, this field L clearly need not
be optimal: For instance, if the two j-invariants are conjugate by some
quadratic Galois automorphism σ, then A and B are fixed by σ. This will
in some cases decrease the degree (see Section 7.2). In fact, for any r ≤ 4,
there are examples where L has degree 2r over Q, but X can be defined over
Q. We will briefly comment on this phenomenon in Section 7.3.

We end this section with an illustration of the interplay between Kummer
construction and Shioda–Inose structure, as indicated by Corollary 4.3:

Example 4.4 (Fermat quartic). The perhaps most classical singular K3
surface is the Fermat quartic in P3

S : x4
0 + x4

1 + x4
2 + x4

3 = 0.

In [8], relying on a result later proven by Cassels [2], Pjateckĭı-Šapiro and
Šafarevič show that the intersection form on TS is

Q =
(

8 0
0 8

)
.

Our previous considerations provide us with two further ways to describe
S. On the one hand, S = Km(Ei × E2i). Both elliptic curves are defined
over Q, so the same holds for this model of S. On the other hand, we
can apply the Shioda–Inose construction to A = Ei × E4i. In this case, the
latter factor is only defined over a quadratic extension of Q. Hence, it is a
priori not clear how to descend the model given by the special case analog
of (4.1) to Q.

5. Lower bound for the degree of the field of definition

In this section, we state our main result, giving a lower bound on the degree
of the field of definition L of a singular K3 surface X. Note that the extension
Q(j(τ1), j(τ2))/Q from Proposition 4.1 is in general not Galois, but the
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composition with the CM-field K always is by class field theory. Therefore,
we will rather work with LK and compute the degree

l = [LK : K] | [L : Q].

The question of complex conjugation (in C) will be briefly addressed in
Section 7.1.

Let X be a singular K3 surface, defined over some number field L.
Assume that L contains the CM-field K and is Galois over K. In studying
the Galois conjugates Xσ, we are particularly concerned with the transcen-
dental lattices TXσ .

Lemma 5.1. For any σ ∈ Gal(L/K), TXσ lies in the same genus as TX .

Proof. The Néron–Severi lattice is a geometric invariant. In particular, the
discriminant forms of NS(X) and NS(Xσ) agree. By [7, Corollary 1.9.4], the
transcendental lattices TX , TXσ lie in the same genus. �

Our main result is the following theorem which was first established by
Shimada [12, Theorem 3 (T)] in the special case of fundamental discriminant
d (i.e., d = dK):

Theorem 5.2. In the above notation, the set of isomorphism classes of the
transcendental lattices TXσ equals the genus of TX :

{[TXσ ];σ ∈ Gal (L/K)} = genus of TX .

We note that our proof for general transcendental lattices differs signif-
icantly from Shimada’s special case. Before going into details, we observe
the theorem’s implications on the degree l. Denote the degree of primitivity
of TX by m and let d′ be such that d = m2d′. Let h be the class number of
TX , i.e., h = h(d′) = #Cl(d′). Denote by g the number of genera in Cl(d′).
Then the number n of classes per genus in Cl(d′) is given by

n =
h

g
= #Cl2(d′).

Corollary 5.3. The number of classes per genus divides [L : K]. In the
above notation, n | l.

It follows from Shioda–Inose’s construction (cf. Theorem 3.3) that in
order to prove Theorem 5.2, it suffices to derive the analogous statement for
the corresponding abelian surface A = Eτ1 × Eτ2 :
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Theorem 5.4. Let A be a singular abelian surface over some number field.
Let K = Q(

√
d) be the CM-field of A. Then,

{[TAσ ];σ ∈ Aut (C/K)} = genus of TA.

Proving this theorem has the advantage that we can work with the
explicit factors given by Theorem 3.4. Moreover, the Galois action on these
elliptic curves is completely understood in terms of class field theory as
reviewed in Section 2.

6. Singular abelian surfaces

In order to prove Theorem 5.4, we shall recall further results from Shioda–
Mitani’s paper [17]. Beforehand, we recall and fix some notation related to
the construction of Theorem 3.4. Let Q be an even positive-definite binary
quadratic form as in (2.1) with discriminant d and τ1, τ2 as in (3.1):

Notation: K = Q(
√

d) imaginary quadratic field associated to Q
dK discriminant of K
m degree of primitivity of Q
Q′ = 1

mQ primitive even quadratic form associated to Q

d′ = d
m2 discriminant of Q′

Cl(Q) class group of Q
(= forms of Cl(d′) multiplied by m)

f conductor of Q: d = f2dK

f ′ conductor of Q′: d′ = f ′2dK

O order in K of conductor f
O′ order in K of conductor f ′

Cl(O′) class group of O′

It is immediate that upon varying Q within its class group, τ2 does not
change essentially, i.e., always Z + τ2Z = O. In other words, the isomor-
phism class of A (or TA) is completely reflected in τ1 (plus d), as it varies
with Q, or equivalently, with Q′.

To state Shioda–Mitani’s result, recall the notion of multiplication and
equivalence of Z-lattices in K defined in Section 2. Note that the product
of two lattices which corresponds to quadratic forms in Cl(d′) and Cl(d),
corresponds to a quadratic form in Cl(d′).
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Proposition 6.1 [17, Proposition 4.5]. Let A be the abelian surface
given by Q in Theorem 3.4. Let Λ1, Λ2 be Z-lattices in K of conductor
f1, f2. Then

A ∼= EΛ1 × EΛ2 ⇐⇒
{

(i) Λ1Λ2 ∼ Z + τ1Z,

(ii) f1f2 = mf ′2 (= ff ′).

(Shioda–Mitani’s original formulation involved another condition on the
right-hand side, but this is implied by the first equivalence.)

Proof of Theorem 5.4. Upon conjugating A, the resulting lattices of its fac-
tors stay in the same class group, so the second condition of Proposition 6.1
is trivially fulfilled. Alternatively, this follows from the invariance of the
genus of TAσ which is completely analogous to Lemma 5.1. Hence we only
have to consider the first condition of Proposition 6.1.

Let σ ∈ Aut(C/K) and s ∈ A∗
K such that σ = [s, K] on Kab. Denote

the lattice Λj = Z + τjZ. By Theorem 2.2,

Aσ ∼= Es−1Λ1 × Es−1Λ2 .

Then Proposition 6.1 and commutativity give the isomorphism

(6.1) Aσ ∼= Es−2Λ1 × EΛ2 .

With σ resp. s varying, the lattices (s−1O′)2 cover the whole principal genus
in the class group Cl(O′), since this consists exactly of the squares Cl2(O′).
Interpreting s−2Λ1 = (s−2O′)Λ1 = (s−1O′)2Λ1, we derive that s−2Λ1 always
lies in the same genus. Since throughout this argument, we fix the lattice
Λ2 of the second factor in (6.1), this proves the claim of Theorem 5.4. �

7. Applications and remarks

7.1. Complex conjugation

In Section 5, we decided to consider the field of definition L of a singular K3
surface only over the CM-field K of the surface. This assured the extension
to be Galois, but certainly at the loss of some information. Part of this
information can be recovered by considering the complex conjugation ι of C.

It is immediate that (Eτ )ι = Eτ̄ . This directly translates to a singular
K3 surface X (or singular abelian surface) with intersection form Q. We
obtain that Xι has intersection form Q−1 with respect to the group law in
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its class group Cl(Q). In terms of the coefficients as in (2.1), this corresponds
to b �→ −b.

Lemma 7.1. Let X be a singular K3 surface over some number field L
with intersection form Q. If Q2 �= 1 in Cl(Q), then 2|[L : Q].

The condition is most easily checked when Q is in reduced form, i.e., in
terms of (2.1) −a < b ≤ a ≤ c (and b ≥ 0 if a = c). Then Q is 2-torsion in
Cl(Q) if and only if one of the three inequalities becomes equality by [4,
Lemma 3.10].

7.2. Example: d = −23

Let d = −23 and K = Q(
√

d). Then h(d) = 3 and actually

Cl(d) =
{(

2 1
1 12

)
,

(
4 −1

−1 6

)
,

(
4 1
1 6

)}

consists of only one genus. This is the first case where Q(j(OK))/Q is
not Galois, since the conjugates of j(OK) are clearly not real. Inserting
τ1 = τ2 = −1+

√
d

2 into (4.1), we find that the singular K3 surface with the
first intersection form is defined over Q(j(OK)). However, combining Theo-
rem 5.2 and Lemma 7.1, we see that the other two singular K3 surfaces can
only be defined over the Hilbert class field H = K(j(OK)).

This observation agrees with the following fact: on the one hand, there
is some quadratic σ ∈ Gal(H/K) such that we can write these other surfaces
as in (4.1) with j(τ2) = j(τ1)σ. Nevertheless, the fixed field of σ still is just
Q, so this does not decrease the degree of the field of definition.

Since h(−92) = 3, we obtain exactly the same results for singular K3 sur-
faces with discriminant −92. For the imprimitive case, apply Corollary 4.3.

7.3. Concluding remarks

For a singular K3 surface, we can always combine Theorem 5.2 and
Lemma 7.1 to obtain a lower bound on its field of definition. Section 7.2
gave three examples where this lower bound coincided with the upper bound
from Proposition 4.1. This can be easily generalized:

Lemma 7.2. Let X be a singular K3 surface with intersection form Q,
discriminant d and degree of primitivity m. Let τ1 be as in (3.1). Assume
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that (d, m) or (d
4 , m

2 ) is to be found in the following table, where r always
denotes an odd integer:

d m

−4 1
−8
−16

−pr, p ≡ 3 mod 4
−4pr, p ≡ 3 mod 4

−12 2
−16

−4pr, p ≡ 7 mod 8

−27 3

If Q = 1 in Cl(Q), then Q(j(τ1)) is the minimal field of definition of X.
Otherwise the minimal field of definition is K(j(τ1)).

Proof. The lemma follows whenever the mentioned upper and lower bounds
coincide. In the primitive case, this is equivalent to the condition that Cl(d)
consists only of one genus. By [4, Theorems 3.11, 3.15], this gives the first
entries. Generally, the imprimitive case additionally requires h(d) = h(d′).
Thus we obtain the other entries from [4, Corollary 7.28]. This proves the
claim for the pairs (d, m).

If 2|m, we can furthermore employ the Kummer construction from
Corollary 4.3. This directly gives the claim for pairs (d

4 , m
2 ). �

If there is more than one genus, one might still hope that the lower
bound is always attained in the primitive case (and maybe even if 1

2Q is
primitive). So far, this hope is particularly supported by examples with
discriminant of relatively small absolute value. Mostly, these examples are
extremal elliptic surfaces (cf. [1, 10]).

There has been particular interest in singular K3 surfaces over Q. By
Theorem 5.2, the class group in this case is only 2-torsion. One easily finds
101 discriminants satisfying this condition. By [18], there is at most one
further discriminant (of enormously large absolute value).

The number of corresponding imaginary quadratic fields is 65. The
problem of finding singular K3 surfaces over Q just for these fields (regardless
of the actual discriminant) is related to the following modularity question
which was formulated independently by Mazur and van Straten:
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Question 7.3 (Mazur, van Straten). Is any newform of weight 3 with
rational Fourier coefficients associated to a singular K3 surface over Q?

With this respect, the 2-torsion statement has already been obtained
in [11, Prop. 13.1] where one can also find a list of the 65 fields and the
newforms (up to twisting).

So far, we know singular K3 surfaces over Q for 43 of these fields.
Remarkably, the class groups in these cases are 2-torsion of rank up to
4. In other words, the class number becomes as large as 16. In contrast,
there is only one apparent general way to descend the field of definition.
This essentially consists in the Weil restriction from an elliptic curve to an
abelian surface because then we can apply the Shioda–Inose construction to
this surface (cf. the discussion succeeding Corollary 4.3 and in Section 7.2).
However, this technique a priori only decreases the rank of 2-torsion in the
Galois group by 1.

A general solution to the problem of the field of definition of a singu-
lar K3 surface seems still far away (although Lemma 7.2, gives a complete
answer for a good portion of singular K3 surfaces). The main difficulty
seems to lie in the imprimitive case: replacing Q by a multiple mQ gives

τ1(mQ) = τ1(Q), τ2(mQ) = mτ2(Q).

In particular, the class number stays unchanged. In other words, our lower
bound from Theorem 5.2 is fixed. Meanwhile the upper bound of Proposi-
tion 4.1 increases with m, since τ2 changes. On the other hand, Theorem 3.7
tells us that the degree of the field of definition does in fact increase with
the degree of primitivity. It is our intention to pursue this issue in a future
work.

We conclude the paper with the following remark which underlines the
subtleties involved in the imprimitive case: There is a singular K3 surface
over Q with degree of primitivity as large as 30. Beukers and Montanus
[1] found an elliptic K3 surface with configuration [3, 3, 4, 4, 5, 5]. This has
intersection form

Q = 30
(

2 0
0 2

)
.
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