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Children’s drawings from Seiberg–Witten curves
Sujay K. Ashok, Freddy Cachazo and Eleonora Dell’Aquila

We consider N = 2 supersymmetric gauge theories perturbed by
tree level superpotential terms near isolated singular points in the
Coulomb moduli space. We identify the Seiberg-Witten curve at
these points with polynomial equations used to construct what
Grothendieck called “dessins d’enfants” or “children’s drawings”
on the Riemann sphere. From a mathematical point of view, the
dessins are important because the absolute Galois group Gal(Q/Q)
acts faithfully on them. We argue that the relation between the
dessins and Seiberg–Witten theory is useful because gauge theory
criteria used to distinguish branches of N = 1 vacua can lead to
mathematical invariants that help to distinguish dessins belonging
to different Galois orbits. For instance, we show that the confine-
ment index defined in hep-th/0301006 is a Galois invariant. We fur-
ther make some conjectures on the relation between Grothendieck’s
program of classifying dessins into Galois orbits and the physics
problem of classifying phases of N = 1 gauge theories.

1. Introduction

The interest in N = 2 supersymmetric gauge theories is especially due to
the seminal work of Seiberg and Witten in the mid 90s [1,2]. They showed
that the low-energy action and infrared dynamics of the gauge theory on
the Coulomb branch can be completely solved and that all the relevant
information about the low-energy theory is encoded in a hyperelliptic curve
and in an associated meromorphic differential. This work led to a tremendous
amount of progress in the understanding of the physical aspects of N = 2
gauge theories, including the vacuum structure of related N = 1 theories. At
the same time, there have also been fascinating connections between Seiberg–
Witten theory and mathematics, especially to the Donaldson theory of four
manifolds [3].
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In this article, we unearth a new connection between a particular class
of Seiberg–Witten curves and what Grothendieck called “dessins d’enfants”
or “children’s drawings”. We will refer to these simply as “dessins” in what
follows. We will formally define a dessin later on, but for the moment by a
dessin we simply mean a connected graph on a two-dimensional surface, with
vertices of two kinds — say black and white — that alternate along the graph.

The original reason for studying such drawings in mathematics was that
there is a natural action of the absolute Galois group Gal(Q/Q) on them.
Moreover, the action is faithful, i.e., there is no group element, other than the
identity, that leaves invariant all dessins. The absolute Galois group is one of
the central objects of interest in mathematics, especially in number theory.
Surprisingly, this object has already made its appearance in the physics liter-
ature in the context of rational conformal field theory due to work by Moore
and Seiberg [4–6]. It has been known that the solutions of the Moore–Seiberg
equations lead to a projective representation of the so called Teichmüller
tower. As noted by Grothendieck in [7], the absolute Galois group also acts
on this tower. Amusingly enough, both the Teichmüller tower and the dessins
were introduced by Grothendieck in the same letter [7].

In the rest of Section 1 we will summarize recent progress made in [8, 9]
in understanding the vacuum structure of N = 1 gauge theories obtained
by deforming an N = 2 theory by a tree level superpotential. We will see
that these gauge theory techniques and the existing results could have impli-
cations for the study of the action of the Galois group on the dessins and,
conversely, we would like to argue that there is a wealth of information on the
mathematical side that could potentially lead to an improved understanding
of the phases of N = 1 gauge theories.

More generally, we conjecture that there is an intimate relation between
Grothendieck’s program of classifying dessins into Galois orbits and the
physics problem of classifying certain special phases of N = 1 vacua. The
precise form of the conjecture is given in Section 4.4. The meaning of the dif-
ferent physical and mathematical elements that go into this conjecture will
be explained in the remaining part of Section 1 and in Section 2, respectively.

This paper is organized as follows: in Section 2, we discuss the dessins
and related mathematical material. This includes Belyi maps, the action of
Gal(Q/Q) on dessins via Belyi maps and the correspondence with Seiberg–
Witten curves. In Section 3, we review the concept of invariants (order
parameters) which are used to distinguish orbits of dessins under the action
of Gal(Q/Q) (N = 1 gauge theory phases). In Section 4, we give exam-
ples of cross fertilization that arise from our identification of the physics
and mathematics programs. In particular, we explain how the confinement
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index introduced in [8] leads to a Galois invariant. In Sections 5 and 6, we
give some illustrative examples in full detail. In Section 7, we conclude with
many open questions and directions for future work. In Appendix A, we
give a very basic introduction to algebraic concepts in Galois theory with
the goal of understanding the definition of Gal(Q/Q) and its action. In the
same appendix, a small glossary of terms used in the text is given. Finally,
in Appendices B and C, we expand on some interesting issues discussed in
the rest of the paper.

1.1. Physics preliminaries

In the Seiberg–Witten solution of N = 2 gauge theories, it is natural to study
the loci in the moduli space where the SW curve develops singularities. For
a pure U(N) gauge theory — the most well-studied case — the curve has
the form

(1.1) y2 = P 2
N(z) − 4Λ2N ,

where PN(z) = 〈det(zII − Φ)〉 and Φ is the adjoint scalar in the vector
multiplet. (We adopt the usual notation, with the subscripts denoting the
degree of the polynomials.) A well-studied [8] factorization is

(1.2) P 2
N(z) − 4Λ2N = F2n(z) H2

N−n(z) ,

which corresponds to a family of degenerate curves. Let us briefly discuss the
physical information that is encoded in this kind of polynomial equation.

The N = 2 Coulomb moduli space of the gauge theory is parametrized
by N parameters uk = 1

k
〈TrΦk〉 , constructed from the adjoint scalar Φ. The

problem studied in the physics literature is to find and classify the N = 1
supersymmetric vacua obtained by perturbing the N = 2 theory by a tree
level superpotential

(1.3) Wtree =
n+1∑

k=1

gk

k
TrΦk .

Once the tree level potential is introduced, all points in the Coulomb mod-
uli space are lifted except those for which N − n mutually local magnetic
monopoles become massless. The superpotential triggers the condensation
of monopoles and the magnetic Higgs mechanism leads to confinement of
the electric charges. The points at which this occurs are precisely those that
solve the factorization problem (1.2). At low energies at these points, out of
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the original U(1)N only a U(1)n subgroup remains unbroken and its coupling
constants are given by the reduced Seiberg–Witten curve

(1.4) y2 = F2n(z) .

From a simple counting of parameters, we see that (1.2) defines an n-
dimensional subspace of the moduli space. Plugging the uk’s as functions
of these n parameters into the superpotential Wtree , one gets an effective
superpotential

(1.5) Weff =
n+1∑

k=1

gk uk

on the moduli space. Thus, given the parameters gk , one can vary with
respect to the coordinates on the moduli space and obtain all the uk’s as
functions of the gk’s and Λ.

In other words, the form of the superpotential picks out specific points
in the N = 2 moduli space which correspond to N = 1 vacua. What was
shown in [10, 11] is that this extremization problem can be rephrased as the
problem of factorizing the Seiberg–Witten curve in the following manner:

(1.6) P 2
N(z) − 4Λ2N =

1
g2

n+1
((W ′

tree(z))2 + fn−1(z)) H2
N−n(z) .

Let us denote the critical points of Wtree by ai, i.e., W ′
tree(z) =

∏n

i=1 gn+1

(z − ai). We set gn+1 = 1 in what follows.
It is interesting to ask what the “moduli space” of N = 1 vacua is, as the

parameters gk’s are varied. The motivation for such a question was explained
in [8]: semiclassically, as Λ → 0, the gauge group U(N) can be broken to∏n

i=1 U(Ni) with
∑n

i=1 Ni = N by choosing Φ to be a diagonal matrix with
Ni entries equal to ai

1. It is therefore natural to ask whether it is possible
quantum mechanically to interpolate between vacua that have the same n
but different Ni’s.

This was answered in [8] where it was shown that, for example, vacua
with one U(1) factor can be smoothly connected to vacua with any allowed
values of Ni’s. All these classical limits are different corners of a single con-
nected subspace of the N = 2 moduli space, which was referred to as an
N = 1 branch. However, in [8] it was also discovered that there were other

1 We assume that all Ni �= 0. See Appendix C for some comments about the case
when some of the Ni are zero.
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Figure 1: Two N = 1 branches of the U(4) gauge theory obtained by deform-
ing the N = 2 theory by a cubic superpotential. Only those branches with
two U(1)’s in the infrared are shown. The two branches meet at a point
where one more monopole becomes massless.

branches distinguished by order parameters such as the expectation values of
Wilson loops. Branches meet at points where extra massless mutually local
monopoles appear. At these points other, branches also emanate which have
the same dimension but where some of the Ni’s are zero.

The structure of these branches and how they meet can be quite intricate
[8]. We use the example of a cubic superpotential in a U(4) gauge theory to
represent a region close to one of the points with three massless monopoles
in figure 1. At a generic point, the low energy group is U(1)2. At the special
point where the two branches meet, a third branch (not drawn) emanates,
which consists of vacua with a single U(1) as the low-energy group. Along
each of the depicted branches one can take a semi-classical limit and find
vacua corresponding to (classically) unbroken U(N1)×U(N2) gauge groups.

1.2. Dessins from gauge theory

Let us continue our analysis of the U(4) example. In figure 2, we show a
typical configuration of the zeroes of the polynomials that appear in (1.2),
which correspond to points in the branches shown in figure 1 near the semi-
classical limits. The line segments that are drawn represent the branch cuts.
Of course, it is not essential to draw the cuts through the zeroes of P (z)
(denoted by ◦) but this will have a mathematical significance when we for-
mally define a dessin. On the other hand, the cuts naturally pass through
the zeroes of H2

2 (z) (denoted by a bivalent • node in the drawing) since a
small deformation away from the N = 1 branch will split the double zeroes.
As is clear from the figure, these look like disconnected branchless trees.

It turns out that one of the two branches in figure 1 has U(2)×U(2) as the
only semi-classical limit [8]. We now focus our attention on this branch. We
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Figure 2: Zeroes of P4(z) (denoted by ◦), zeroes of F4(z) (denoted by univa-
lent •) and zeroes of H2

2 (z) (bivalent •) near the semi-classical limits with
N1 = N2 = 2 (left) and N1 = 1, N2 = 3 (right). Edges represent branch cuts.

further tune the parameters of the superpotential so that the corresponding
N = 1 vacuum is an isolated singular point where H2(z) develops a double
root. There is only one such point in the branch we have chosen and it
naturally leads to a connected graph. This is shown in figure 3. We have
omitted the zeroes of P4(z) so as to not clutter the figure.

It turns out that such connected trees show up in the moduli space
whenever the Seiberg–Witten curve develops isolated singularities. Exam-
ples of such “rigid curves” include the maximally confining points [1, 12]
and the generalized Argyres–Douglas points [13]. Such singularities arise
when some of the zeroes of F2n and HN−n coincide, F2n(z) develops double
roots, etc.

The connected trees that appear at such special points in the moduli
space are precisely the “dessins d’enfants” that Grothendieck introduced as

Figure 3: Evolution of the two branchless trees in one N = 1 branch of the
U(4) gauge theory starting near the U(2) × U(2) semi-classical limit and
reaching an isolated singularity where we get a connected tree.
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a tool to study the structure of the absolute Galois group Gal(Q/Q). This is
the group of automorphisms of Q that leave Q fixed2. As mentioned earlier
Gal(Q/Q) acts faithfully on the dessins. This means that the only element of
the group that leaves every dessin invariant is the identity. The set of dessins
is then partitioned into orbits under the action of the group. (We exhibit
how Gal(Q/Q) acts on the dessins in Section 2.4.) One way of learning about
the Galois group is to construct a complete set of invariants that distinguish
dessins that belong to distinct Galois orbits. This is one of the goals in the
study of dessins in mathematics and we will discuss some of the known Galois
invariants in detail in Section 3.

In the following sections, we show that the known order parameters that
distinguish different branches of N = 1 vacua can be thought of as Galois
invariants. In particular, we prove that the “confinement index” introduced
in [8] is a Galois invariant and can be given a purely combinatorial inter-
pretation. Interestingly, we will find that certain operations on the gauge
theory side, such as the “multiplication map” introduced in [10], have a pre-
cise interpretation as operations on the dessins. We believe that solving the
non-rigid problem in (1.2) before specializing to singular points might lead to
a new and useful perspective in the study of dessins d’enfants. Conversely,
we will also see that this correspondence leads to open questions regard-
ing the interpretation of interesting mathematical invariants in the gauge
theory.

More explicitly, we would like to argue that the special points where the
dessins make their appearance can be thought of as special phases of the
N = 1 gauge theory. This would imply the existence of appropriate order
parameters, which distinguish these special points from generic points in the
N = 1 branch to which they belong. We provide some evidence for this in
the examples in Section 5.2.

So far, we have seen in an example how dessins can arise at iso-
lated singular points in the moduli space of a Seiberg–Witten curve. We
will now show that given a dessin, one can associate to it a polynomial
equation which corresponds to a singular Seiberg–Witten curve, of the
type discussed in this section. It turns out that this is precisely equiva-
lent to the content of the Grothendieck correspondence, which we discuss
next.

2 Here, Q is the field of rational numbers and Q is its algebraic closure. For more
details, see Appendix A.
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2. The Grothendieck correspondence

2.1. Mathematical preliminaries

The Grothendieck correspondence is a bijection between classes of dessins
and special classes of maps on punctured Riemann surfaces called Belyi
maps. At first sight, this might seem far removed from gauge theory physics
but we will describe a precise route to arrive at the correspondence between
Seiberg–Witten theory and the dessins d’enfants.

The first ingredient in the correspondence is the Belyi map. A Belyi
map [14] is a holomorphic map from any punctured Riemann surface to P1

with exactly three critical values at {0, 1,∞}. In [7], Grothendieck showed
that any dessin can be constructed from a Belyi map. For the purposes of
our discussion, we will restrict to dessins drawn on a Riemann sphere3. We
show two simple examples in figure 4. The key result that makes explicit
the relation to Seiberg–Witten theory is that Belyi maps are obtained as
solutions to certain polynomial equations.

As we will see, these equations have a natural interpretation as Seiberg–
Witten curves that describe particular degenerations of Riemann surfaces,
such as those we have already encountered in the introduction. More gen-
erally, we find that whenever the Seiberg–Witten curve factorizes so as to
give rise to a “rigid curve”, i.e., without free parameters, one can associate a

Figure 4: Examples of dessins; the bipartite structure of the graph is mani-
festly shown.

3 All the mathematical discussion in this section can be generalized to a general
Riemann surface and we refer the interested reader to [15].
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dessin to it4. Our goal will be to set-up a dictionary that maps the relevant
quantities in mathematics, related to the Galois group action on dessins, into
gauge theory language and vice versa.

2.2. Dessins from Belyi maps

We now state without proof some basic mathematical facts, which are crucial
to establish the relation between the dessins and Seiberg–Witten theory. See
[15] for a thorough discussion and for a full list of references. The main result
we will use is the Grothendieck correspondence, which connects the theory
of dessins with algebraic curves defined over Q, the algebraic closure of Q.
Let us see how this comes about.

Consider an algebraic curve X defined over C. Such a curve is defined over
Q if and only if there exists a non-constant holomorphic function f : X → P1

such that all its critical values lie in Q. A theorem by Belyi [14] gives a very
striking result: X is defined over Q if and only if there exists a holomorphic
map f : X → P1 such that its critical values are {0, 1,∞}.

A map β : X → P1 with all its critical values in {0, 1,∞} is therefore
called a Belyi map. A Belyi map is called clean if all ramification degrees
over 1 are exactly equal to 2.

Let us give a simple example that will be very relevant in the rest of the
paper. Let X = P1 and β a polynomial. To guarantee that all critical points
that map to 1 have ramification degree 2, we set

(2.1) β(z) = 1 − P 2(z) ,

where P (z) is a polynomial. Let us see under which conditions β is a clean
Belyi map. The critical points are computed as the zeroes of

(2.2)
dβ(z)

dz
= −2P (z)P ′(z).

This means that the zeroes of P (z) are critical points. Their ramification
degree is 2 since P (z) is squared in β and their critical value, i.e., β evaluated
at a zero of P (z), is 1. All we need is that the remaining critical points, which
are precisely the roots of P ′(z), have critical value 0. In other words, they
must also be roots of 1−P 2(z). Up to the freedom to shift z, these conditions
have only a discrete number of solutions. These are Belyi maps.

4 This is up to a shift of z in (1.2). In gauge theory, this corresponds to the overall
U(1) degree of freedom that decouples from the strong dynamics in the infrared.
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Figure 5: We show how the dessin is the pre-image of the interval [0, 1]
under the Belyi map. Note that as we move from 0 to 1, the number of lines
emanating from a given pre-image of 0 is given by the ramification degree
of the map at those points. Since the map is clean, exactly two lines meet at
each pre-image of 1.

We now have the ingredients to formally define a dessin: for the purposes
of this paper, we define a dessin d’enfant on the sphere as the pre-image
under a clean Belyi map of the interval joining 0 and 1 in P1. In other words,
the dessin D associated to a clean Belyi map β is D = β−1([0, 1]) ⊂ X. We
show this pictorially in figure 5 for the case β(z) = 1−P 2

4 (z) = F4(z) H4
1 (z).

Such a dessin has a natural bipartite structure given by assigning a • to
the pre-images of 0 and ◦ to the pre-images of 1. We will refer to a pre-image
of 0 as a vertex of the dessin. An edge is a line segment between two vertices
that contain exactly one pre-image of 1. For example, the second dessin
in figure 4 is clean (while the first is not) so that the notion of edges and
vertices as we just defined makes sense: it has seven edges and seven vertices.
In what follows, we will restrict our attention to clean dessins and refer to
them simply as dessins. Likewise, the corresponding clean Belyi maps will
be simply called Belyi maps.

Also important for characterizing the dessins are the pre-images of ∞,
denoted by ×. There is one pre-image of ∞ for each open cell enclosed by a
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set of edges. For example, a dessin is a tree if and only if the pre-image of
∞ is a single point.

The study of dessins on the sphere is important because the absolute
Galois group Gal(Q/Q) acts faithfully on them. As mentioned before, the
absolute Galois group is the group of automorphisms of Q that leaves invari-
ant Q and it is a remarkably complex object. We give a basic introduction
to the Galois group in Appendix A. It can also be shown that not only is
the action of Gal(Q/Q) on genus-0 dessins faithful, but so is the action on
the much smaller set of trees.

The main thing to take away from this section is that one can map the
problem of classifying dessins to the problem of classifying Belyi maps β. As
we have seen, these are a special class of rational functions on the Riemann
sphere that satisfy the conditions in the definition above. We now turn to the
question of how Belyi maps corresponding to a given dessin can be explicitly
constructed. This will naturally lead us to gauge theory physics.

2.3. Belyi maps from polynomial equations

Consider a dessin D on the sphere with N edges. Let V = {u1, . . . , uk},
where ui is the number of vertices (pre-images of 0) of valence i. We choose
k to be the maximum vertex valence in D. Let C = {v1, . . . , vm}, where vi

is the number of faces with i edges. Again we choose m to be the maximum
face valence in D. The lists V and C are called the valency lists of D.

Let Gvi
(z) and Jui

(z) be polynomials of degree vi and ui respectively,
with undetermined coefficients. Take one polynomial for each element in V
and in C. Pick i0 to be the valence whose vi0 is the smallest non-zero value
in C. Then let all polynomials Gvi

(z) and Jui
(z) be monic except for Gvi0

(z)
which we choose to be of the form

(2.3) Gvi0
(z) = α(zvi0−1 + · · ·).

In other words, we have chosen the coefficient of zvi0 to vanish and we have
factored out the coefficient of zvi0−1 which we call α.
Now construct the two polynomials

(2.4) A(z) =
k∏

j=1

Juj
(z)j , B(z) =

m∏

i=1

Gvi
(z)i .

Then if A(z) and B(z) are such that there exists a monic polynomial PN(z),
with N equal to the number of edges of the dessin, and which satisfies the
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polynomial constraint

(2.5) A(z) − B(z) = P 2
N(z) ,

then

(2.6) β(z) = 1 +
P 2

N(z)
B(z)

=
A(z)
B(z)

is a rational clean Belyi map. Note that the polynomial equation is rigid,
in the sense that there are no coefficients in the polynomials which are free
parameters5. There are thus only a finite number of solutions to (2.4). The
discussion has been rather abstract so far, so let us illustrate the various con-
cepts with some simple examples which have already been discussed in [16].

Consider the dessin in figure 6 which has six edges. From the figure, we
see that each open cell is bounded by three edges and every vertex is trivalent.
The valency lists are therefore of the form V = {0, 0, 4} and C = {0, 0, 4}.
From the discussion above, we need A(z) = J3

4 (z) and B(z) = G3
3(z) such

that they satisfy the polynomial equation

(2.7) P 2
6 (z) + G3

3(z) = J3
4 (z).

It turns out that there is only one solution to the polynomial equation
(2.7) [16]. However, in general, such polynomial equations have more than
one solution. For instance, the polynomial equation

(2.8) P 2
10(z) + G5

3(z) = J3
4 (z) J̃2

4 (z).

Figure 6: Dessin corresponding to the solution of the factorization
problem (2.7).

5 Up to a shift and rescaling of z. We will return to this point in Section 2.7.
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Figure 7: Dessin corresponding to the solution of the factorization problem
(2.8). The bivalent • vertices are roots of J̃4(z) while the trivalent • nodes
are the roots of J4(z).

turns out to have two solutions [16]. This is because for the same valency lists
V = {0, 4, 4} and C = {0, 0, 0, 0, 4} (which we can infer from the polynomial
equation), there are two dessins one can draw. These are shown below in
figure 7. We shall revisit this specific example in Section 6 in much more
detail.

The key result which we will use from now on is that for every dessin D
with valency lists V and C there exists a solution to the factorization problem
(2.5) such that the corresponding Belyi function gives D = β−1([0, 1]). This
is a simplified version of the Grothendieck correspondence [7].

2.4. Action of the galois group

So far, we have mentioned repeatedly that the absolute Galois group Γ =
Gal(Q/Q) acts faithfully on dessins. We now show how Γ acts on the dessins
via the Belyi map.

Let D be a dessin such that D = β−1([0, 1]). Furthermore, let β be of
the form

β =
A(z)
B(z)

=
z2N + a1z

2N−1 + · · · + a2N

zL + b1zL−1 + · · · + bL

,

where A(z) and B(z) solve the polynomial equation (2.5), N is, as before,
the degree of P (z) and L =

∑m

i=1 ivi. Then Γ acts on D by twisting the
coefficients6 in β . For g ∈ Γ, Dg is defined to be the dessin obtained by the

6 The ai (and bj) are algebraic numbers; i.e., they are solutions to some polynomial
equations with coefficients in Q. The solutions to such equations include ai along
with other algebraic numbers which are, by definition, in the Galois orbit of ai.
Twisting by the relevant group element of Γ here refers to choosing another element
in the orbit of ai. For a more formal discussion, refer to Appendix A.
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action of g on D, i.e., Dg = β−1
g ([0, 1]), where

(2.9) βg =
Ag(z)
Bg(z)

=
z2N + g(a1)z2N−1 + · · · + g(a2N)

zL + g(b1)zL−1 + · · · + g(bL)
.

Thus, given a solution to the polynomial problem (2.5) it is easy to
understand how the dessin changes under the action of the Galois group.
However, given two dessins, it is in general very difficult to tell whether they
belong to the same Galois orbit or not. This is the central problem associated
to the dessins d’enfants. Later, we will discuss several Galois invariants that
mathematicians have introduced in order to distinguish dessins that belong
to distinct Galois orbits by studying the combinatorial data associated to
each dessin.

2.5. The identification

We have already discussed the Seiberg–Witten curves for pure gauge the-
ories in (1.1). Recall that for a U(N) gauge theory with L < 2N massive
flavors with masses given by mi, the Seiberg–Witten curve that captures the
infrared dynamics of the gauge theory is the following hyperelliptic Riemann
surface [17, 18]:

(2.10) y2 = 〈det(zI − Φ)〉2 − 4Λ2N−L

L∏

i=1

(z + mi) .

We would like to propose the following identification and argue that it is
a useful one. Let us identify objects in (2.5) and in (2.10) as follows: PN(z) =
〈det(zI − Φ)〉, B(z) = −4Λ2N−L

∏L

i=1(z − mi). In particular, α = −4Λ2N−L.
In each case, the precise form of A(z) in (2.4) defines the special point in the
Coulomb moduli space we are looking at. Since dessins are associated only
to rigid factorizations of the Seiberg–Witten curves, they appear at isolated
singular points in the moduli space of the N = 2 gauge theory.

At this point, it appears as if the relation to Seiberg–Witten curves is
purely at a formal level. We will show in what follows that this is more than
a superficial similarity and we exhibit features of the gauge theory that have
a natural interpretation as operations on the dessin. For this, we have to
abandon our N = 2 point of view and deform the theory to N = 1 by a tree
level superpotential as reviewed in Section 1.1.

We mentioned earlier that the absolute Galois group acts faithfully on
the set of all trees. For most part of the paper, we will restrict our discussion
to the set of trees and only in Section 6 will we discuss dessins with loops.
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2.6. Trees on the Riemann sphere: refined valency lists

Since trees have only one open cell (with the associated vertex at infinity)
the Seiberg–Witten curve associated to the dessin is that of the pure U(N)
gauge theory:

(2.11) y2 = P 2
N(z) − 4Λ2N .

By itself, the curve in (2.11) does not correspond to any dessin, but if we
tune the parameters in PN(z) so that we are at an isolated singularity in
the moduli space, the curve factorizes, and the zeroes of the polynomials
involved will describe vertices of a dessin. This also means that the Belyi
map (2.6) is a polynomial

(2.12) β(z) =
A(z)
B(z)

= 1 − P 2
N(z)

4Λ2N
,

where PN(z) solves the factorization

(2.13) (PN(z) − 2ΛN)(PN(z) + 2ΛN) =
k∏

j=1

(Juj
(z))j .

From the expression it follows that the two factors on the left cannot have
any factors in common. Thus, for trees, the problem always reduces to solving
two lower order equations of the form

(2.14)

PN(z) − 2ΛN =
k∏

j=1

(Qu−
j
(z))j

PN(z) + 2ΛN =
k∏

j=1

(Ru+
j
(z))j

such that u−
j + u+

j = uj for every j. One can now define a new bipartite
structure on the dessin by assigning a +(−) to every zero of Ru+

j
(Qu−

j
)

such that if a given vertex (pre-image of 0) is of one sign, every one of its
neighbors is of the opposite sign. The bipartite structure is unique up to an
overall sign flip. This leads to a more refined valency list {V +, V −} than the
{V, C} introduced earlier7 where V± denotes the positive/negative valency

7C contains just one element and is trivial for the case of trees.
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Figure 8: Refined valency list for the trees. V + = {2, 0, 0, 1} and V − =
{3, 0, 1} for this case.

list. For instance, from (2.14) u+
j is the number of j-valent vertices of type

“+”. With the refined valency list, the trees can be redrawn as shown in the
figure below.

Note that in the figure on the right, we have removed the pre-images of
1 depicted as ◦ on the left. This is common practice in the literature when
dealing with trees. There is one more common convention which is to depict
elements in V + by • and elements in V − by ◦; we have not adopted this
convention in order to avoid confusion and we simply add ± to the •’s as in
figure 8.

Clearly, the dessins that arise from different valency lists belong to dis-
tinct Galois orbits; we will comment more about this in the next section.

Interestingly enough, there is a related splitting of the polynomial equa-
tion in the gauge theory. In [8], while solving the non-rigid problem (1.2), it
was found that the N = 1 branches are classified by the integers (s+, s−),
where s± refers to the number of double roots in each of the factors on the
left hand side of (2.14). This is already a hint that the mathematical goal of
classifying dessins according to Galois orbits might be closely related to the
more physical problem of studying the branches of N = 1 vacua in gauge
theory. We will see this in more detail in Section 4.

2.7. Equivalence classes of trees

Let us consider the Equations (2.14) in more detail. These equations have
two free parameters corresponding to the scale and shift of z. In other words,
if P

(1)
N (z) is a solution then P

(2)
N (z) = P

(1)
N (az+b) is also a solution. In physics

as well as in mathematics, it is natural to consider monic polynomials. This
means that a is restricted to be an Nth root of unity.
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The trees constructed using the Belyi map (2.12) with P
(1)
N (z) and P

(2)
N (z)

are identical except for a displacement or rotation in the z plane. In the math-
ematical literature, such trees are considered equivalent and one considers
equivalence classes of such Belyi maps. The Grothendieck correspondence
is in fact an isomorphism between equivalence classes of Belyi maps8 and
children’s drawings.

Every tree has associated to it a number field (see Appendix A for a
primer on field extensions) [15], determined by the field of definition of the
polynomial PN(z) that gives the corresponding Belyi map (2.12). This might
be a little puzzling at first, since the transformation z → az + b can in
general involve arbitrary algebraic numbers. This means that the number
field associated to trees that differ by translations and rotations can be
different. On the other hand, we have just said that such trees are taken to
define an equivalence class on which Gal(Q/Q) acts.

The resolution to this puzzle is that, although the Galois group acts non-
trivially on all these trees, there is always a way of choosing the tree with
the simplest number field [19] as a representative of the equivalence class.
It turns out that the action of Gal(Q/Q) on just the representatives of each
class is faithful. Therefore, for the purposes of studying the absolute Galois
group one uses the shift and scale of z to pick the simplest representative.

All these statements have a counterpart in physics. The freedom to shift
by b corresponds to the fact that the underlying theory is U(N), as opposed
to SU(N). The overall U(1) decouples in the IR and gives rise to this shift
degree of freedom. Just like in mathematics, one can use this shift to bring
any tree level superpotential to a form that displays the N = 1 branches,
introduced in Section 1, most clearly. We will use this in Section 5.

More intriguing is the meaning of the rescaling by an Nth root of unity.
In physics, this corresponds to different kinds of confinement distinguished
by the behavior of combinations of Wilson and ’t Hooft loop operators.
Roughly speaking, the trivial root of unity corresponds to usual confinement,
whereas the other roots correspond to oblique confinement [8]. Quite nicely,
the mathematical criterion of choosing the simplest number field corresponds
in physics to choosing the phase with usual confinement.

It would be very interesting to explore the connection between the “not-
so-simple number fields” and the oblique confining phases. However, since
our goal is to establish a connection between dessins (in terms of equivalence

8 The equivalence class of Belyi maps is, in fact, up to any SL(2,C) transformation.
However, we have used one of these to put the pole at ∞. Thus, only shift and scale
transformations remain.
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classes) and gauge theory, we will restrict our study to physics phases with
only usual confinement.

2.8. Example: the maximally confining N = 1 vacua

For now, let us discuss as an example the simplest tree one can draw: a
branchless linear tree with N edges. Such a tree has two vertices of valence
1 and N − 1 vertices of valence 2. From the general discussion above, it is
easy to write down the corresponding Seiberg–Witten curve for this case:

(2.15) P 2
N(z) − 4 = (z2 − 4)H2

N−1(z).

Here we have set ΛN = 1.
This Seiberg–Witten curve corresponds to points where N − 1 mutually

local monopoles go massless. The N = 1 vacua are obtained by perturbing
the N = 2 theory by a mass deformation, with Wtree = 1

2TrΦ2. The condi-
tion ΛN = 1 has N different solutions that correspond to the N different
maximally confining N = 1 vacua9. However, as discussed above, we take the
simplest solution, i.e., Λ = 1. The solution to this equation is well known and
given in terms of Chebyshev polynomials10. In figure 9, the zeroes of PN(z)
and HN−1(z) have been depicted showing how the branchless tree arises.

Figure 9: The dessin that corresponds to the maximally confining vacuum.
Case by case, it is obtained by plotting the zeroes of the polynomials that
solve the factorization problem (2.15). See for example figure 17 for the
N = 6 plot.

9 The reason for the name is that the low energy gauge group is just U(1) ⊂ U(N).
10 Here, the shift symmetry is used to set 〈TrΦ〉 = 0.
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The importance of the branchless tree lies in the fact that these appear
at the intersection of the N = 1 branches, the point marked by a cross in
figure 1. They also appear near the semi-classical limits (Λ → 0) as shown
in figure 2. Although these truncated branchless trees cannot be thought of
as dessins, they seem to be “building blocks” that come together to create a
dessin at an isolated singularity. We discuss this point in more detail in the
conclusions.

So far, we have been rather loose in the language employed to discuss
aspects of the factorization problems. Techniques from both the physics and
mathematics literature have been used interchangeably. We now turn to a
more systematic discussion of how the dessins are classified from a mathe-
matical point of view. We will follow this up with a review of how the N = 1
vacua are classified from a physics point of view.

3. Invariants

3.1. Invariants from mathematics

One way of learning about the structure of the absolute Galois group
Gal(Q/Q) is by constructing a complete set of invariants under the action of
Gal(Q/Q) such that any two dessins that do not belong to the same Galois
orbit will disagree in at least one invariant. Such a complete list of invariants
is currently not known although many invariants have been constructed. In
this section, we review the most basic invariants11 associated to dessins that
are related by the action of Gal(Q/Q) [15, 20].

3.1.1. Valency lists. The most intuitive invariants are the valency lists
V and C introduced in Section 2. These are clearly invariants, since as we
saw they are determined by the form of the polynomial equation which is
invariant under the action of Gal(Q/Q) . It is sometimes possible to define
more refined valency lists, corresponding to different ways of solving the
polynomial equation. We have already seen this for the case of trees, where
we introduced the {V +, V −} valency lists. As we discussed, this possibility
of constructing a new invariant has a nice counterpart in physics; it will be
further clarified in the examples that follow. Note that by concentrating on
dessins coming from the same factorization problem we can forget about the
valency list invariant since all dessins constructed this way have the same

11 More invariants than those discussed here are known, but for the purpose of our
analysis we will concentrate on those that can be most easily computed explicitly.
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valence list. Therefore, the search is for other invariants that will distinguish
different Galois orbits.

3.1.2. Monodromy group. Every dessin is associated to a cover of IP1,
defined by the Belyi map

β : Σ −→ U ≡ IP1\{0, 1,∞} ,

that maps the edges of the graph on the Riemann surface Σ into the open
segment 01 on IP1 . If the graph has N edges, where we count the number
of edges to be equal to the number of pre-images of 1, the map β gives a
2N -fold cover of U (see figure 10 for an illustration).

Consider π1(U, 01) , the homotopy group of paths in U that begin and
end on a point of 01 . Since a closed path based on 01 in IP1 can be mapped
into a path between any two of the 2N segments in the fiber over 01 , any
given element of π1(U, 01) acts on the dessin as a permutation of the half-
edges (that go between a filled and unfilled vertex in figure 10). Therefore,
the covering map β induces a map from π1(U, 01) to S2N . Let us denote by
σ0, the permutation corresponding to circling once the point z = 0 on IP1

and by σ1 the permutation corresponding to circling once the point z = 1 .
Recall that the dessins have a bipartite structure that keeps track of whether
a vertex is mapped to 0 or 1 by the Belyi map. One can convince oneself
that σ0 is the element of S2N that permutes cyclically the edges incident on
each vertex (that maps to 0) and, similarly, σ1 is a cyclic permutation of the
edges incident on each pre-image of 1. The subgroup of S2N generated by σ0

and σ1 is the monodromy group of the dessin and it is a Galois invariant [21].

Figure 10: Left: Example of a dessin with N = 4 edges. Right: The 8 half-
edges come from the preimage of the open interval 01, i.e. the preimage of 0
and 1 are not shown.



Children’s drawings from Seiberg–Witten curves 257

Let us consider the example of the dessin in figure 10. There are eight
half-edges. The monodromy group is generated by the following permuta-
tions:

(3.1)
σ0 = (1, 7, 6)(2, 3)(4, 5) ,

σ1 = (1, 2)(3, 4)(5, 6)(7, 8) .

We will give the explicit monodromy groups for the examples we will
encounter later.

3.1.3. Belyi extending maps. It is possible to construct new invariants
by composing the Belyi map of interest with any Belyi-extending map and
then computing the valency lists or the monodromy group of the new dessins
obtained this way [9]. A Belyi extending map is a Belyi map α : IP1 → IP1

defined over Q , such that its composition with any other Belyi map does not
change the associated number field. For our purposes, we relax the definition
slightly: by a Belyi extending map here we will mean any map α defined
over Q that can be composed with a Belyi map β to give another Belyi map
βα := α ◦ β.

Let I be any invariant of a dessin Dα , where Dα = β−1
α ([0, 1]); the claim

[9] is that I is also an invariant of the dessin D = β−1([0, 1]). For example,
for the Belyi extending map α2(z) = 4z(1 − z) , the monodromy group of
Dα is the cartographic group of D, which is known to be another Galois
invariant. Later we will prove that the multiplication map of [10, 8] is the
physical realization of the Belyi extending map α2.

3.2. Invariants from physics

As discussed in Section 1, one problem that is very similar to the classification
of dessins using Galois invariants is the problem of classifying branches of
N = 1 vacua using order parameters, such as Wilson and ’t Hooft loops.
We will consider those N = 1 vacua that are obtained in the infrared by
starting with an N = 2 gauge theory and adding a tree level superpotential
Wtree for the adjoint scalar Φ. The discussion of the gauge theory order
parameters in this section will closely follow that of [8]. In fact, what follows
is just a summary. We refer the reader to [8] for all relevant details and
proofs.

3.2.1. Confinement index. In a U(N) gauge theory a natural order
parameter is the expectation value of a Wilson loop W in, say, the fundamen-
tal representation. The Wilson loop in the tensor product of r fundamental
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representations is W r. Clearly, for r = N there is no area law, for it is equiv-
alent to a singlet representation (due to electric screening). A measure of
confinement is the smallest value of r, which can only be between 1 and N ,
for which W r does not exhibit an area law. Such a value is denoted by t and
it is called the confinement index. When the gauge group is broken classi-
cally to a product of factors U(N1) × U(N2) × · · · × U(Nn) one has to also
use the ’t Hooft loop H to determine the confinement index. By embedding
a ’t Hooft–Polyakov magnetic monopole of the full U(N) theory in any two
of the U(Ni) factors, we take into account magnetic screening. If for each
U(Ni), we get that W ri

i Hi has no area law, this implies that in the full U(N)
theory W ri−rj has no area law. The relative sign comes from the fact that
the magnetic monopole sits in both groups with opposite charges.

Therefore, after taking into account electric and magnetic screening, the
confinement index is given by the greatest common divisor of the Ni and
bi = ri − ri+1. These two sets of quantities, Ni’s and bi’s, will have a very
clear combinatorial meaning, which will allow us to compute the confinement
index just by inspection of any dessin.

As a preparation for that let us mention that both set of quantities
are encoded in the expectation values of the generating function for chiral
operators TrΦs, given by [22]

(3.2) T (z) =
〈

Tr
(

1
zI − Φ

)〉
.

It turns out that the periods of T (z)dz, thought of as a meromorphic differ-
ential on y2 = W ′

tree(z)2 +fn−1(z), are related to the Ni’s and bi’s as follows:
the Ni’s are the periods of T (z)dz on the A-cycles and the bi’s are the periods
of T (z)dz on the B-cycles (for an appropriate choice of basis). The bi’s mea-
sure the relative theta angle of U(Ni) and U(Ni+1). Moreover, one can show
that in the N = 1 branch with confinement index t, T (z) dz = t T̃ (z) dz,
where T̃ (z) dz is the generating function for chiral operators in a Coulomb
vacuum (which have t = 1) of a U(N

t
) theory [8]. The fact that the two

generating functions are related by a multiplication by t has an important
consequence: all confining vacua with confinement index t are obtained from
Coulomb vacua by using the multiplication map by t [10, 8]. The definition
and discussion of the multiplication map is given in Appendix B. We also
discuss this further in Section 4.1 where, for the specific case of t = 2, the
multiplication map will be shown to coincide with the Belyi extending map
α2 of [15].
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3.2.2. Holomorphic invariants. In cases when the rank of the low
energy gauge group is too high, i.e., when the degree of the tree level super-
potential is large, there is always at least one Ni which is equal to 1. The
precise condition is deg W ′(z) > N/2: when this condition is satisfied, the
confinement index is always one. One might naively think that there is only
one branch since we have exhausted the standard order parameters. How-
ever, it is possible to show that there are many branches, all of them having
Coulomb vacua. This is the problem that motivated the search for non-
conventional order parameters in [8]. It turns out that the discussion that
follows also applies for superpotentials of any degree.

The new non-conventional order parameters proposed in [8] are obtained
by studying relations between the vacuum expectation values of different
chiral operators that can be defined in the theory. The expectation values
of chiral operators become holomophic functions on the moduli space of
vacua due to supersymmetry. It turns out that, at least in the examples
considered in [8], these functions satisfy different polynomial constraints in
different branches. The problem of whether the existence of these relations
was the reason for the existence of the different branches or viceversa was
left as an open question. For the purposes of this paper, we take the former
as the correct point of view. In fact, we will see that in the mathematical
literature the refined valency list for trees gives very similar information as
the relations between holomorphic functions found in [8].

The chiral operators of relevance are TrΦrWαW α, whose appropriately
normalized vacuum expectation value is denoted by tr = −(1/32π2)〈TrΦr

WαW α〉. In terms of the reduced Seiberg–Witten curve y2 = F2n(z), they
can be computed as12

(3.3) tr =
1

2πi

∮

∞
zr y(z) dz .

The relations introduced in [8] to distinguish between different branches are
polynomial equations in the tr’s.

The different branches that these relations distinguish are determined
by the distribution of double zeroes of the curve (2.6) in the two factors of
P 2

N(z) − 4Λ2N , i.e., by the pair (s+, s−). In other words, if we start with the

12 Strictly speaking, the curve needed for the computation is given by the matrix
model curve of the Dijkgraaf–Vafa correspondence. However, in cases when none of
the Ni are zero, the matrix model curve is the same as the reduced Seiberg–Witten
curve.
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factorization problem P 2
N(z) − 4Λ2N = F (z)H2(z), we get

(3.4)
PN(z) − 2ΛN = R̃N−2s−(z)H̃2

s−
(z),

PN(z) + 2ΛN = RN−2s+(z)H2
s+(z).

In order to derive the relations it is convenient to write
(3.5)

y(z) =
√

R̃N−2s−(z)RN−2s+(z) =
Hs+(z)RN−2s+(z)

H̃s−(z)

√
1 − 4ΛN

H2
s+

(z)RN−2s+(z)
.

Since the integral defining the tr’s is around infinity, the computation
can be carried out by expanding the square root. It is easy to see that
if 0 ≤ r ≤ s+ + s− − 2 then only the leading term in the expansion
contributes. It turns out that in order to distinguish different values of
(s+, s−) all that is needed are relations between those (restricted) tr’s.
Using the fact that Λ does not appear, by matching dimensions (which
for tr is 3 + r) and by matching the charge under the U(1)Φ symmetry
(which for tr is r), one concludes that the polynomials must be homo-
geneous in the number of Φ’s and the number of WαW α. Consider for
example, the case when s− = 1 and s+ = 3. Then one can show that
t0t2 − t21 = 0.

We will see in the next section that (s+, s−) gives some information about
the refined valency list of a dessin. However, the refined valency list contains
more information. In Section 5.2, we will show by means of examples that
the extra information of the refined valency list can be obtained if one keeps
the next to leading order term in the expansion of the square root. In other
words, in the expansion

(3.6)

√
1 − 4ΛN

H2
s+

(z)RN−2s+(z)
= 1 − 2ΛN

H2
s+

(z)RN−2s+(z)
+ O(Λ2N/z2N),

the first term gives information about (s+, s−), whereas the second encodes
the whole refined valency list. It would be interesting to find a combinatorial
meaning of the higher order terms. It is important to mention that the extra
relations we find distinguish the isolated point where the dessin appears from
its neighbouring points in the N = 1 branch.
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4. Cross fertilization

Before we discuss some examples to illustrate our ideas, we would like
to exhibit part of the dictionary between the mathematical and physical
descriptions. First, we show how the multiplication map [10] can be inter-
preted as an example of a Belyi extending map [20]; we also show that the
information about the refined valency list of trees, described in Section 2.7,
can be recovered by studying the holomorphic invariants. Most importantly,
we give a combinatorial interpretation of the confinement index introduced
in [8]. We then speculate on the relation between the classification of dessins
and the study of phases of gauge theories in four dimensions and formulate
a few precise conjectures.

4.1. Multiplication map as a Belyi extending map

Consider a tree with N edges. The Belyi map has the form (2.12)

βN(z) = 1 − P 2
N(z)

4Λ2N
.

The dessin corresponds to a rigid polynomial equation, which is a special
point in the parameter space of the non-rigid factorization problem

(4.1) P 2
N(z) − 4Λ2N = F2n(z) H2

N−n(z) .

The multiplication map [10] (with multiplication factor 2) guarantees that,
if PN(z) satisfies the non-rigid factorization equation (4.1), one solution to
the factorization equation

P 2
2N(z) − 4Λ4N = F2n(z) H̃2

2N−n(z)

is given by (see Appendix B for details)

(4.2) P2N(z) = 2Λ2N T2

(
PN(z)
2ΛN

)
,

where T2(x) = 2x2 − 1 is a Chebyshev polynomial of the first kind. Since
PN(z) gives rise to a Belyi map, P2N(z) as defined in (4.2) also leads to a
Belyi map β2N whose inverse image of the interval [0, 1] leads to a dessin
with 2N edges. Therefore, by applying the multiplication map, we get a new
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Belyi map of the form

(4.3)

β2N = 1 − P 2
2N(z)
4Λ4N

= 1 −
(

2
P 2

N(z)
4Λ2N

− 1
)2

=
P 2

N(z)
Λ2N

(
1 − P 2

N(z)
4Λ2N

)
= 4 βN(1 − βN)

≡ α2 ◦ βN ,

with α2(y) = 4y(1 − y). We thus find that this map coincides with the Belyi
extending map mentioned in Section 3.1, which relates the monodromy group
to the cartographical group.

In [20] the author gives a prescription to draw the dessin associated
with any Belyi extending map starting from the original dessin. Roughly,
the procedure consists in drawing on IP1 the pre-image through the Belyi
extending map of the [0, 1] segment; then, one substitutes this new drawing
in place of each segment of the original dessin. Let us apply this to our
example. The map α2 is of degree two, so it covers [0, 1] twice and we expect
it to double the number of edges of the dessin. More precisely, the critical
point y = 1/2 is mapped by α2 to the vertex z = 1 of the [0, 1] segment.
Therefore, we infer the following rule to draw the dessin obtained through
the Belyi extending map α2:

One could check that for generic t the multiplication map by t is a
Belyi extending map that substitutes to each edge in the original graph
a branchless tree of length t . Naively, the dessins with confinement index
2 or higher would appear to be “scaled up” versions of smaller dessins.
Indeed, this is what one gets if one applies the multiplication map to the
rigid factorizations that lead to the dessins.

However, from the gauge theory point of view, one can also apply the
multiplication map to the non-rigid problem (4.1) and then impose the con-
straints that leads to a rigid factorization problem. In other words, if FR/NR

is the set of rigid/non-rigid factorizations and if M is the multiplication map
acting on the factorizations F ,

(4.4) M(FR) ⊂ (M(FNR))R ,

where the last subscript R indicates that the factorizations are restricted to
be rigid. This shows that the multiplication map is more than an operation
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to get new Belyi maps from old ones. Starting from a point in the moduli
space of a U(N) gauge theory which is not an isolated singularity (so that
there is no associated dessin), one can apply the multiplication map by t
and sometimes obtain a singular point in the moduli space of the U(tN)
theory where one can obtain a dessin. We will discuss such examples in
Section 5. Moreoever, we will also see in Section 4.3, that applying the mul-
tiplication map to non-rigid factorizations is what allows us to prove that
the confinement index is a Galois invariant.

4.2. Refined valency lists from (refined) holomorphic invariants

We have already mentioned in Section 2.7 that while solving the non-rigid
problem (1.2) it is convenient to classify the solutions in terms of integers
(s+, s−), where s± refers to the number of double roots in either of the
two factors (P (z) ± 2ΛN). We would now like to relate these numbers to
the refined valency list introduced in Section 2.7. From the definitions one
can check that a given dessin with refined valency lists V + = {u+

k } and
V − = {u−

k } will appear in an N = 1 branch whose (s+, s−) values are
given by13

(4.5) s± =
∞∑

k=1

k u±
2k .

Recall that uk is the number of k-valent vertices in the dessin. Clearly,
the refined valency list contains more information than just the values
of s±.

From the discussion in Section 3.2, we have seen that the set of relations
between the expectation values of chiral operators tr’s depends upon the
distribution of double roots s±, i.e., different branches are defined by the
different polynomial relations between the tr’s. These chiral ring relations
are satisfied at any generic point on that branch. However, the dessins appear
only at special points in that moduli space. A simple counting of parameters
shows that at such points there will be more relations that are not generically
satisfied. We will, in the examples to be discussed in Section 5, write down
these extra relations satisfied by the tr’s explicitly.

13 In assigning a refined valency list to a dessin, there is an overall choice of sign
in assigning +/− to the vertices. It follows that this amounts to exchanging s+ and
s−. The same choice is also present in gauge theory.
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Since the generic relations seem to distinguish branches of N = 1 vacua,
it is tempting to conjecture that these special points are isolated phases. In
other words, they are distinct phases from their neighbours in the N = 1
branch. That this is the case is easy to see in some cases where the corre-
sponding N = 1 theory becomes superconformal in the IR. Moreover, it is
believed that there is always a choice of superpotential for which the resulting
N = 1 vacuum flows to an interacting superconformal theory [8, 23, 24].

4.3. Confinement index as a Galois invariant

The physical interpretation of the confinement index t was given earlier in
this section. We also explained how t can be computed from the periods of
a particular meromorphic differential T (z)dz on the Seiberg–Witten curve.
Here, we first give a purely combinatorial description of the confinement
index t. Then, we show that this is indeed a Galois invariant.

Consider a given tree T, constructed as T= β−1([0, 1]) under a clean Belyi
map β(z) = 1 − P (z)2, where P (z) is a polynomial. Let us concentrate on
the pre-images of 0 under β. There can be vertices with any valency. In par-
ticular, there must be vertices with valence one; this is a simple consequence
of the fact that the Belyi map is clean.

The procedure for computing t is the following: circle all vertices with
odd valence. Choose any of the circled univalent vertices as the starting
point. Move from the chosen vertex to the next circled vertex, say going
clockwise around the tree, and count the number of edges between the two
circled vertices; call it h1. Move from the second circled vertex to the next
circled vertex. Again count the number of edges between the two vertices;
call it h2. The most important rule to apply when going around the tree is
that each circled vertex can be used only once as a starting point and only
once as an end point. Therefore, if the next vertex was used previously both
as an end point and as a starting point, one should skip it and go to the
next one. Continue around the tree until there are no more unused circled
vertices. The prescription makes sense because there is an even number of
odd-valent vertices14.

After completing this procedure, one is left with a list of integers L =
{h1, h2, . . . , hf}, where f is the number of odd vertices in the dessin. Then
t is simply given by the greatest common divisor of the elements of L. Two

14 That there is an even number of odd vertices is clear from the fact that β is a
polynomial of even degree.
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simple examples are shown below.

This rule works because the vertices with odd valence are precisely the
points between which one would draw the cuts in the gauge theory approach.
Then, this definition can be seen to coincide with the definition of the con-
finement index introduced in [8]. This follows from the fact that the integral
of T (z) dz between successive vertices is 1.

Having given a purely combinatorial definition of t we proceed to show
that this is indeed a Galois invariant. The proof involves concepts and ter-
minology reviewed in Appendix A.

Let us consider all possible trees with a fixed number of edges N . If N is
prime then the only possible values of t are t = 1 and t = N . The only tree
with t = N is the branchless tree which is a tree defined over Q and hence
it is its own Galois orbit15. All other trees have t = 1 , so there is nothing
further to prove.

Consider an N which is not prime. Let N = pr1
1 · · · prs

s be the prime
decomposition of N . Take any pi and consider the auxiliary polynomial
Ppi

(z). Use the multiplication map by m = N/pi to produce what we called a
non-rigid curve (for more details on the multiplication map see Appendix B)

(4.6) 1 − T 2
m(Ppi

(z)) = (1 − P 2
pi

(z))U2
m−1(P

2
pi

(z)).

This depends on the pi + 1 coefficients of Ppi
(z). As discussed in Section

2.2, the new P̃N(z) = Tm(Ppi
(z)) gives rise to a Belyi map β(z) = 1 −

P̃ 2
N(z) if and only if P̃ ′

N(z) divides the right hand side of (4.6). This is
equivalent to imposing that the right hand side of (4.6) has only N − 1
distinct roots. These conditions will give rise to polynomial equations for
the coefficients of Ppi

(z) = a0z
pi + · · · + api+1. Let the set of polynomials

that must vanish be S = {f1(a), . . . , fj(a)}. Since all Chebyshev polynomials
Tm(z), Um−1(z) have coefficients in Q it follows that f(a) ∈ Q[a0, . . . , api+1].
Therefore, there is a splitting number field KS associated to the set S. It is

15 Here, what we have in mind is the branchless tree with the simplest number
field, which in this case it is Q.
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a finite normal extension of Q and hence is left invariant by Gal(Q/Q). This
means that the solutions form full Galois orbits. From the relation between
the multiplication map and the confinement index t it follows that all such
orbits can only have values of t which are multiples of m that divide N . This
means that either t = m = N/pi or t = pim = N . As mentioned above,
there is a single tree with t = N and therefore all other orbits must have the
same value t = N/pi.

Consider now k = pipj and the polynomial Pk(z). As before, use the
multiplication map by m = N/k. Following the same procedure, we conclude
that dessins arising this way can only have values of t which are multiples
of m and that divide N . The only possibilities are t = N/k, N/pi, N/pj, N .
As before, t = N gives a single tree. We have already proven that dessins
with t = N/pi or t = N/pj can only come in full Galois orbits. Therefore,
the remaining dessins with t = N/k also arise in full Galois orbits.

One can continue this argument by induction and conclude that any two
dessins in the same Galois orbit must have the same confinement index t.
Thus, the confinement index is a Galois invariant.

4.4. Speculations about dessins and gauge theory: weak and
strong conjectures

We now have all the ingredients we need to formulate our conjectures pre-
cisely. We have already seen that there exist N = 1 branches in pure gauge
theory that are classified by order parameters such as the confinement index.
Also, as mentioned in Section 4.2 (and as we will show in some simple
examples), at the special points where the dessins appear one has extra chi-
ral ring relations. For an appropriately chosen superpotential, these points
are believed to give rise to superconformal N = 1 theories in the IR and
thus define new phases. However, it is known that for some superpotentials,
these theories might not be singular. This does not exclude the possibility
that these points might be new phases, perhaps distinguished by less exotic
behavior, such as extra massless states or smaller rank of the gauge group.

Given the earlier discussion regarding the theory of dessins and the
phases of supersymmetric gauge theory, our first conjecture should be fairly
well motivated: all points where dessins appear correspond to special phases
embedded in the N = 1 branches which we call “isolated phases”.

Our second conjecture, relating the phases to Galois orbits of dessins
has a weak and a strong form. The strong form is easily stated: all Galois
invariants are physical order parameters that can be used to distinguish the
isolated phases of supersymmetric gauge theory with a given superpotential.
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On the other hand, based on the examples we work out in Section 5, we
find that all the order parameters used to distinguish branches of gauge theo-
ries that meet a particular U(1) branch, defined below, are Galois invariants.
This is what we refer to as the weak form of the conjecture.

Some comments are in order. By a U(1) branch, we mean a branch
where the low energy group is a single U(1) ⊂ U(N). This can be called
the maximally confining branch. This branch has the same dimension as the
other branches [8]. Any generic branch meets these U(1) branches at points
where the corresponding dessin is a branchless tree with N edges.

We believe that the weak form of the second conjecture is very likely to
be correct and we provide evidence for it in the examples. The strong form
is on much less firm ground. In particular, it relies on the correctness of the
first conjecture and on assumptions that require much more study.

It would be very important to gather more evidence for the strong form
since, if true, it provides a striking connection between Grothendieck’s pro-
gram of unveiling the structure of Gal(Q/Q) via its action on dessins and
the physics problem of classifying phases of supersymmetric gauge theories.
Some of the most striking consequences would be for gauge theories with
matter where physics order parameters are scarce. Almost all known Galois
invariants would become new gauge theory order parameters. In the next
sections, we will provide some evidence in support of these conjectures.

4.4.1. A more general N = 1 viewpoint and a global N = 2 view-
point. The possibility that there is always an “extremal” superpotential
for which the N = 1 U(N) gauge theory at one of the isolated singular
points becomes superconformal in the IR motivates the following point of
view. Up to now, we have studied theories with a superpotential of a given
degree. However, if we fix U(N) and vary the degree of the superpotential,
the theories arising at the points where a dessin D appears can go from
being non-singular to singular in the IR. Let us denote by d(D), the smallest
degree of an extremal superpotential for D. It is tempting to conjecture that
two theories that arise at points corresponding to two dessins D and D′ in
the same Galois orbit will necessarily have d(D) = d(D′). In other words,
d(D) might be a Galois invariant. We leave this problem as an interesting
direction for future work.

Finally, let us comment on yet another point of view. Suppose that we set
the tree level superpotential to zero. Then we recover an N = 2 gauge theory.
The Seiberg–Witten curve of Section 2.5 becomes the curve describing the
physics in the moduli space of vacua of a single theory. The valency lists C
and V of Section 2.3 simply encode information about the masses of particles



268 Sujay K. Ashok, Freddy Cachazo, and Eleonora Dell’Aquila

in the theory. More explicitly, C determines the distribution of masses of
fundamental hypermultiplets. V determines, up to modular transformations,
the charges of the various monopoles and dyons that are massless in addition
to the U(1)N vector multiplets present at generic points. According to the
cases studied in the literature, there is reasonable evidence to suspect that
all such points are N = 2 superconformal field theories16.

It would be very interesting to explore the relation between the classi-
fication of dessins into Galois orbits and the classification of such N = 2
superconformal field theories. A natural possibility, worth exploring, is that
field theories giving rise to dessins in the same Galois orbit might be dual
theories in some sense.

5. Examples: U(6) pure gauge theory

In this section, we would like to illustrate by means of examples the con-
cepts we have covered up to now. We consider pure N = 2U(6) gauge theory
broken to N = 1 by a tree level superpotential. From the general discussion
about dessins and polynomial equations, it follows that the N = 2 mod-
uli space contains an isolated singularity for every connected tree with six
edges. It turns out that all such dessins can be obtained by just using a
quartic superpotential. We discuss why higher degree superpotentials are not
needed and list all dessins with their corresponding factorization problems
in Appendix C.

Here, we restrict our study to a cubic superpotential. The dessins we
obtain are, of course, a subset of the general quartic superpotential but they
turn out to exhibit all the relevant points of the physics–mathematics dictio-
nary we have established. All U(N) gauge theories with N = 2, . . . , 6 were
studied in detail in [8] where one parameter solutions to the factorization
problem

(5.1) PN(z)2 − 4Λ2N = F4(z) H2
N−2(z)

are listed. In fact, the analysis in this section can be easily repeated for all
these cases. We choose U(6) because it is the simplest case that exhibits four
different values of the confinement index, i.e., t = 1, 2, 3, 6.

16 Of course, the point with N − 1 mutually local massless monopoles is not a
superconformal field theory. In this case one can write down, using S-duality, a
local lagrangian describing the full behavior of the theory in the IR.
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The rigid factorizations corresponding to dessins are obtained by impos-
ing suitable conditions on the solutions found in [8] along the lines we
described in Section 1. In Sections 5.1 and 5.2, we classify the dessins accord-
ing to the N = 1 branches to which they belong and specify the order
parameters that distinguish the special points where the dessins appear as
isolated phases.

From a mathematical point of view, in order to find the explicit Belyi
maps, it is not necessary to start from the non-rigid problem (5.1). Instead,
one solves the rigid problems directly. In Section 5.3, we will present the
solution to all possible rigid factorization problems that can be derived from
(5.1) along the lines of [16] by using differentiation tricks. This analysis shows
explicitly the classification of trees into distinct Galois orbits. In Section 5.4,
we will reproduce the same classification of dessins using some of the known
Galois invariants. We will find that this parallels the classification of phases
in gauge theory.

We mentioned in Section 2.7 that, both in the physics and mathemat-
ical analysis, there is the freedom to shift and scale the z variable. From
a physics perspective, it is natural [8] to shift the z variable in order to
bring the superpotential to the canonical form W ′

tree(z) = z2 − Δ and then
analyze the N = 1 branches obtained by varying Δ. However, since our pri-
mary goal is to exhibit the dessins and where they appear in the gauge
theory moduli space, in the examples that follow, we have followed the
mathematical strategy to shift and scale z to put the solution in the sim-
plest form possible, so that the number field associated to the tree is the
simplest.

5.1. U(6) gauge theory: a physicist’s point of view

Let us now review the solution of [8] in detail. We then specialize to rigid
factorizations by tuning the one free parameter available in the solutions to
(5.1).

As described in [8] one can, first of all, classify N = 1 branches by the
number of double roots in either factor (P6(z)±2Λ6). If we denote the number
of double roots in either factor as (s+, s−), in our case, these can take the
values (3, 1), (1, 3) and (2, 2). All these branches meet at vacua that have
(s+, s−) = (3, 2) or (2, 3) at which the branchless tree discussed in Section
2.7 appears. The N = 1 branches are further classified by the confinement
index and the non-conventional order parameters which we defined earlier
in Section 3.2. Let us consider each value of (s+, s−) in turn.
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5.1.1. The (3, 1) and (1, 3) confining vacua. The general factoriza-
tion problem (5.1) is solved by the polynomials17

(5.2)
P6(z) + 2ηΛ6 = ((z − a)2(z − b) − 2εΛ3)2 ≡ R2(z)

P6(z) − 2ηΛ6 = (z − a)2(z − b)((z − a)2(z − b) − 4εΛ3) ≡ S(z)

with η2 = 1 and ε2 = η. These polynomials can by obtained by the
“multiplication by 2” map acting on either of the polynomials P3(z) =
(z − a)2(z − b) ∓ 2Λ3

0:

(5.3) P6(z) = 2Λ6κ2 T2

(
P3(z)
2κΛ3

)
,

with Λ6
0 = κ2Λ6, κ4 = 1 and ε = ±κ. The various signs and phases in these

expressions are crucial so that all the N = 1 vacua are taken into account.
However, as discussed in Section 2.7, since these lead to trees in the same
equivalence class, we will drop such phase factors in what follows.

5.1.1.1. The rigid quartic factorization. If we require that the polynomial
R(z) has a double root (which is to say that its discriminant vanishes) we
get the rigid factorization

(5.4) P6(z)2 − 4Λ12 = F4(z) H2
2 (z) Q4

1(z) .

This fixes Λ to be

(5.5) Λ3 =
2
27

(a − b)3 .

Substituting this into the polynomials in (5.2) and using the shift and scaling
symmetry to set a = −5 and b = 10, we get

(5.6)
R2(z) = (z − 5)4(z + 10)2 ,

S(z) = (z + 5)2(z − 10)(z3 − 75z + 750) .

From this, we see that the polynomials that solve the equation

(5.7) P 2
6 (z) − 4(250)4 = F4(z) H2

2 (z) Q4
1(z)

17 Refer to Equation (3.47) in [8].
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are given by
(5.8)
Q1(z) = z − 5, H2(z) = (z + 5)(z + 10), F4 = (z − 10)(z3 − 75z + 750) ,

P6(z) = z6 − 150z4 + 500z3 + 5625z2 − 37, 500z − 62, 500 .

Plotting the zeroes of the polynomials leads to the tree in figure 11. Let us
make a few comments about the solution. All polynomials are defined over
Q. From the discussion in Section 2.4 about the action of the Galois group,
we see that the tree is left invariant; in other words, it is the only element
in its Galois orbit. From (5.3) we see that the tree has confinement index 2.
However, observe that the tree is not a scaled up version of a smaller tree.
This illustrates the point made in Section 4.1 and especially Equation (4.4).
One can moreover check that the combinatorial method for computing the
confinement index, as explained in Section 4.2, also gives the correct answer
t = 2.

5.1.1.2. The rigid cubic factorization. Starting from (5.1) one can also get
another rigid factorization by tuning one of the zeroes of F4(z) to coincide
with a zero of H4(z):

(5.9) P 2
6 (z) − 4Λ12 = F3(z) H2

3 (z) Q3
1(z) .

This leads to the condition a = b in (5.2). This implies that S(z) has a cubic
root at z = a. Using the shift and scale symmetry, we can set a = 0 and

Figure 11: The tree obtained in the (3, 1) confining branch with a four-valent
vertex. It has confinement index t = 2.
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Λ = 1. This leads to a very simple solution of (5.9) :

P6(z) = z6 − 4z3 + 2, H3(z) = z3 − 2, F3(z) = z3 − 4 and Q1(z) = z .

The tree associated to the factorization is drawn below in figure 12.
Note that, unlike the quartic case, the multiplication by 2 is easily under-

stood: this particular solution can also be obtained by first solving the rigid

Figure 12: Tree obtained in the (3, 1) confining branch with a trivalent vertex.
It is a scaled up dessin, obtained by applying the multiplication map on a
smaller dessin with three edges.
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factorization problem

(5.10) P 2
3 (z) − 4Λ6 = Q3

1(z) F3(z) ,

and then applying to the resulting solution the multiplication map. The
solution is once again defined over Q and the tree in figure 12 is the lone
element in its Galois orbit.

5.1.2. The (2,2) confining vacua. In this sector, the factorization prob-
lem (5.4) is solved by the polynomials18

(5.11)
P6(z) + 2Λ6 = (z2 + g − Λ2)2(z2 + g + 2Λ2) ,

P6(z) − 2Λ6 = (z2 + g + Λ2)2(z2 + g − 2Λ2) .

These polynomials are obtained by the “multiplication by 3” map; modulo
phase factors, P6(z) in (5.11) is given in terms of P2(z) = z2 + g as

(5.12) P6(z) = 2Λ6 T3

(
P2(z)
2Λ2

)
.

The trees in this branch will therefore have confinement index 3.

5.1.2.1. The rigid quartic factorization. One can set g = Λ2 to get the
quartic factorization (5.4), whereas one can rescale z to set Λ = 1. The
resulting polynomials that solve (5.4) are

(5.13)
P6(z) = z4(z2 + 3) − 2, H2(z) = (z2 + 2) ,

Q1(z) = z and F4(z) = (z2 + 3)(z2 − 1) .

Plotting the roots of the polynomials leads, this time, to the tree in figure 13.
The polynomials are defined over Q and so the tree is the only element in
its Galois orbit.

18 Refer Equation (3.50) in [8].
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Figure 13: The tree obtained in the (2, 2) confining branch with a four-valent
vertex. It has confinement index t = 3.

5.1.2.2. The rigid cubic factorization. Note that it is not possible to get
the cubic factorization equation (5.9) by tuning the available free param-
eter. Thus, we do not find any trivalent tree in this branch of the mod-
uli space. One can also show this using the combinatorial definition of the
confinement index by trying to construct a trivalent tree with six edges
and t = 3.
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5.1.3. The (2,2) coulomb vacua. The solution of the factorization
problem (5.4) in this branch is parametrized as19

(5.14)

P6(z) + 2Λ6 =
[
z2 + (1 + σ)z +

(3 + σ)(9 + 15σ − σ2 + σ3)
108

]2

[
z2 − (1 − σ)(3 − σ)2(3 + σ)

108

]

P6(z) − 2Λ6 =

[(
z +

2σ

3

)2

(1 − σ)
(
z +

2σ

3

)
+

(3 − σ)(9 − 15σ − σ2 − σ3)
108

]2

[(
z +

2σ

3

)2

− (1 + σ)(3 + σ)2(3 − σ)
108

]

with σ and Λ satisfying the constraint

(5.15) σ5(σ2 − 9)2 = 273Λ6.

5.1.3.1. The rigid quartic factorization. Requiring that the first factor in
the either of the two equations in (5.14) has a double root leads to the quartic
factorization (5.4). We get the condition

(5.16) σ2 − 25 = 0 .

For σ = 5, the polynomials that solve the Equation (5.7) are given by
(5.17)

Q1(z) = z − 2, H2(z) = z2 − 2
3
z +

128
27

,

F4 =
(

z2 +
64
9

) (
z2 − 20

3
z +

332
27

)
,

P6(z) = z6 − 8z5 +
280
9

z4 − 800
9

z3 +
560
3

z2 − 2048
9

z +
3, 839, 488

19, 683
.

Plotting the zeroes of the polynomials lead to the tree in figure 14. Since
the tree is found in the Coulomb branch, it has confinement index 1. This
can also be checked directly using the combinatorial definition: we get t =
GCD(3, 4) = 1. For σ = −5, we get an equivalent tree but reflected about

19 Refer to Equation (3.53) in [8]. We have set g → σ h, z− → z h and Λ → Λ h
in that equation.
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Figure 14: The tree obtained in the (2, 2) coulomb branch with a four-valent
vertex.

the Re (z) = 0 axis. Note that the solution in (5.17), like the ones we have
obtained earlier, are polynomials defined over Q. This is why the Galois
orbits in each case consist of only a single tree. We now discuss a set of trees
whose associated number field is non-trivial and therefore constitute a larger
Galois orbit.

5.1.3.2. The rigid cubic factorization. Requiring that the two factors in
the first of the two equations in (5.14) have a root in common leads to the
non-trivial condition20

(5.18) σ3 − 3σ2 + 3σ + 15 = 0 .

20 The similar constraint for the second equation does not change the number field
and we get the same set of trees.
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Solving for σ leads to three solutions

(5.19) σ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ(0) = (1 − 2 (2)1/3),

σ(+) = (1 + 21/3(1 − i
√

3)),

σ(−) = (1 + 21/3(1 + i
√

3)).

Substituting these results into the polynomials and plotting their roots lead
to the trees in figures 15, 16 and 17, respectively. All of these have confine-
ment index t = 1.

From the fact that all three trees are obtained from a single polynomial
(5.18) irreducible over Q, it follows that these three trees belong to the
same Galois orbit. From (5.19), we observe that unlike the earlier solutions
which were all defined over Q, the number field associated to these trees is
non-trivial.

Let us study this example in more detail. The terminology is explained
in Appendix A. By inspection of (5.19), we find that σ(0) and σ(±) belong
to the field K = Q(21/3, ω) where ω = 1

2(1 + i
√

3) (a cube root of unity).
It is easy to see that K is also the splitting field of the polynomial x3 − 2,
whose associated Galois group Gal(K/Q) is the group of permutations of
three elements, S3, which is non-abelian.

Figure 15: Tree for the case σ(0) in (5.19). It has t = 1.
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Figure 16: Tree for the case σ(−) in (5.19). It has t = 1.

Figure 17: Tree for the case σ(+) in (5.19). It has t = 1.

5.1.4. The (3, 2) and (2, 3) vacuum. If two roots of F4(z) coincide in
(5.1) we get the factorization problem

(5.20) P 2
6 (z) − 4Λ12 = F2(z)H2

5 (z) = (z2 − 4Λ2)H2
5 (z) ,



Children’s drawings from Seiberg–Witten curves 279

Figure 18: The tree obtained at the maximally confining point. It has t = 6.

where, in the second equality, we have suitably shifted and scaled z. Setting
Λ to one, (5.20) is solved by the polynomials [12]

P6(z) = 2 T6

(z

2

)
and H5(z) = U5

(z

2

)
.

Plotting the zeroes of these polynomials leads to the branchless tree discussed
in Section 2.8. In figure 18, we show the tree that arises for the particular
case of U(6). As explained in the earlier more general discussion, this is the
singularity at which the N = 1 branches meet. This is the only case we
consider that has one of the Ni = 0. Therefore, this can be explained as
the intersection of U(1) and U(1)2 branches. See Appendix C for a more
complete discussion. From the combinatorial definition of the confinement
index, the dessin has t = 6, the largest value for the case with N = 6 edges.

5.2. Classifying dessins from gauge theory

So far, we have started with the non-rigid factorization problem and tuned
the parameters to get isolated singularities where dessins appear. We have
seen how the dessins fall into different Galois orbits. We now classify them
according to the N = 1 branches to which they belong using gauge theory
order parameters. We summarize all our findings from the gauge theory point
of view in figure 19. Given that the confinement index is a Galois invariant,
we find each of the three trees with a four-valent vertex to belong to distinct
Galois orbits as shown in figure 19. Similarly, using the confinement index,
we find that the trivalent trees fall into at least two distinct Galois orbits:
the trivalent dessin with t = 2 is left invariant under the action of Gal(Q/Q).
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Figure 19: Summary of the analysis of the U(6) gauge theory and the loca-
tion of the trees in the various branches of the gauge theory moduli space.
The dotted lines indicated a coarse-grained classification of N = 1 branches
based on the (s+, s−) values. In this case, the branches are more finely dis-
tinguished by the confinement index t. Branches meet at the point where
another monopole becomes massless.

Note that in the t = 1 and t = 2 branches we have both trivalent and
quartic dessins. From our discussion about valency lists, it follows that they
are in distinct Galois orbits. However, in each case, they have the same value
of t and of (s+, s−). This is where extra gauge theory criteria are needed in
order to distinguish these isolated phases.

Let us concentrate on the pair of dessins with t = 2. A simple way to
see that these correspond to two different phases is by tracing them back to
the problem in U(3) broken to U(1) × U(2) and then “multiplying by 2”.
The trivalent dessin comes from the unique dessin with three edges. Such a
special point is where P 2

3 (z) − 1 = z3(z3 − 1). This is actually known to be
a superconformal field theory in the IR (see [13, 24] and references therein).
On the other hand, the quartic dessin comes from a generic point in the U(3)
theory and therefore it is a different phase.

This discussion proves that the two dessins are in different phases. How-
ever, we want to go further and show that even the theory corresponding
to the quartic dessin is a distinct phase from its neighbors in the t = 2
branch. Recall that in Section 4.2, we argued that there might be extra chi-
ral ring relations that characterize the corresponding special points within
each branch. Let us see this in detail in this case.
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For the quartic factorization (5.4) in the branch defined by s+ = s− = 2,
we take

(5.21) H̃2(z) = (z − c)2, R2(z) = z2 + αz + β, H2(z) = z2 + γz + δ .

where we have adopted the notations in (3.4). Using these in the definition of
the tr in Section 3.2, we find the following chiral ring relation that is satisfied
only at the special (quartic) point in the N = 1 branch:

(5.22)
4 t0 t32 − 3 t21 t22 + 4 t31 t3 − 6 t0 t1 t2 t3 + t20 t23 − 4t31 Λ6 + 6 t0 t1 t2 Λ6

− 2t20 t3 Λ6 + t20 Λ12 = 0 .

Note that this relation uses the Λ6 term in (3.6). In this polynomial, each
term has the same R-charge, or equivalently the same dimension, and also
the same QΦ. To see this, note that Λ naturally has QΦ = 1. However, in
(5.22) we have set the coupling of the cubic term in the superpotential to 1.
Such a coupling g is dimensionless, has QΦ = −3 and shows up in (5.22) in
the combination gΛ6 which then has QΦ = 3.

Our new relation (5.22) is not satisfied at any other point in the t = 2
branch apart from the special point under consideration. At any other point
in the same branch one can show that all tr’s with r = 0, . . . , 5 are indepen-
dent. In other words, one can at most find a relation similar to (5.22), which
gives t6 in terms of the other six. Assuming that our conjectures about the
physical order parameters being Galois invariants are correct, this concludes
our discussion of the trees from the physics point of view as we have, using
purely gauge theory criteria, managed to classify the dessins into distinct
Galois orbits.

5.3. U(6) gauge theory: a mathematician’s point of view

We now exhibit how a mathematician would tackle the same problem of
classifying dessins into Galois orbits. We start with a particular valency list
and find all solutions to the associated polynomial equations using differen-
tiation methods. In the end, one generically finds a polynomial that factors
over Q. Each factor corresponds to a different Galois orbit.

For the U(6) gauge theory perturbed by a cubic superpotential, there
are three distinct valency lists possible for the rigid factorization problem:
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• Consider the branchless tree shown in figure 18. From the valency list, one
gets the polynomial equation

(5.23) P 2
6 (z) − 4 = F2(z)H2

5 (z) = (z2 − 4)H2
5 (z) ,

where, in the second equality, we have suitably shifted and scaled z. In
Appendix A of [16], we have already shown how to obtain the solution to
this equation using the differentiating trick. The solutions are Chebyshev
polynomials. Plotting the roots of the polynomials, we get back the tree
in figure 18.

• The trees shown in figures 11, 13 and 14 have the same valency list and
arise from the polynomial equation

(5.24) P6(z)2 − 4 = F4(z) H2
2 (z) Q4

1(z) .

Differentiating (5.24) we get
(5.25)

2 P6(z)P ′
6(z) = H2(z) Q3

1(z)(F ′
4(z)H2(z)Q1(z) + 2 F4(z)H ′

2(z)Q1(z)

+ 4 F4(z)H2(z)Q′
1(z)) .

Since all polynomials involved are monic, it is easy to see that this leads
to two equations
(5.26)

P ′
6(z) = 6 H2(z) Q3

1(z) ,

12 P6(z) = F ′
4(z)H2(z)Q1(z) + 2 F4(z)H ′

2(z)Q1(z) + 4 F4(z)H2(z)Q′
1(z) .

After scaling and shifting the z variable, one can write

(5.27)

H2(z) = z2 − 1, Q1(z) = z + q1,

P6(z) = z6 +
6∑

i=1

pi z6−i, F4(z) = z4 +
4∑

i=1

fi z4−i .

The first equation in (5.26) leads to linear equations for the pi, which we
can easily solve to obtain

(5.28)
p1 =

18
5

q1 , p2 =
3
2
(3q2

1 − 1) ,

p3 = 2q1(q2
1 − 3) , p4 = −9q2

1 , p5 = −6q2
1 .
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Substituting this in the second of the two equations in (5.26) leads to

(5.29)
f1 =

16
5

q1 , f2 =
1
25

(79q2
1 − 25) , f3 =

2
25

q1(7q2
1 − 55) ,

f4 =
1

100
(−75 − 718q2

1 − 35q4
1) , p6 =

1
100

(25 + 276q2
1 + 7q4

1) ,

such that q1 satisfies the equation

(5.30) q1(q2
1 − 25)(5q2

1 + 3) = 0 .

Each inequivalent solution of (5.30) leads to a dessin. Thus, each dessin has
associated to it a specific number field [15]. In (5.30), there are solutions
obtained by an overall sign flip: these do not lead to inequivalent trees.

Plotting the roots of the polynomials for each of the cases q1 =
{5, 0, i

√
3
5}, respectively, leads to the trees in figures 11, 13 and 14. Since

each of the values of q1 is a Galois orbit in itself (up to an overall sign),
the three solutions lead to dessins that belong to different Galois orbits.
Thus, they should have a different set of Galois invariants. That this is so
can be checked by computing the monodromy groups. We will postpone
further analysis to the discussion in Section 5.3.

• The trivalent trees in figures 12, 15, 16 and 17 all have the same valency
list and arise from the polynomial equation

(5.31) P 2
6 (z) − 4 = F3(z) H2

3 (z) Q3
1(z) .

Differentiating the equation as before leads to two equations
(5.32)

P ′
6(z) = 6H3(z)Q2

1(z),

12P6(z) = F ′
3(z)H3(z)Q1(z) + 2F3(z)H ′

3(z)Q1(z) + 3F3(z)H3(z)Q′
1(z) .

We can choose to parametrize the polynomials as

(5.33)

P6(z) = z6 +
6∑

i=1

piz
6−i , H3(z) = z3 +

3∑

i=1

hiz
3−i ,

Q1(z) = z , F3(z) = z3 +
3∑

i=1

fiz
3−i ,

where we have used the shift symmetry to set the constant coefficient of Q1

to be zero. We will not discuss the solution in detail here, as the analysis
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is similar to the one we did for the quartic factorization. The solution set
is parametrized by (h1, h2) that satisfy the relation

(5.34) 24 h6
1 − 156 h4

1 h2 + 450 h2
1 h2

2 − 625 h3
2 = 0 .

We find two branches of solutions:
(a) h1 = h2 = 0 : This leads to the simple solutions

(5.35) P6(z) = z6 + 2z3 +
1
2

, H3(z) = z3 + 1 , f3(z) = z3 + 2 .

The tree that corresponds to this solution is shown in figure 12.
(b) h1, h2 �= 0 : One can use the scaling symmetry to set h1 = 1 and there

are three solutions which are solutions to the cubic equation for h2 in
(5.34). These are given by
(5.36)

h2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h
(0)
2 = − 2

25
(−3 − 2 (2)1/3 + 22/3),

h
(+)
2 =

1
25

(6 + 22/3(1 − i
√

3) − 2 (2)1/3(1 + i
√

3)),

h
(−)
2 =

1
25

(6 + 22/3(1 + i
√

3) − 2 (2)1/3(1 − i
√

3)).

The three trees associated to h
(0)
2 , h

(−)
2 and h

(+)
2 are shown in the

figures 15, 16 and 17, respectively. Since h
(0)
2 , h

(±)
2 are solutions to

the polynomial equation (5.34) which is irreducible over Q, the cor-
responding dessins are part of the same Galois orbit. Moreover, the
number field is Q(21/3, w) with w3 = 1 as it should be from our dis-
cussion in Section 5.1.

For h2 = h
(0)
2 (figure 15), we present the polynomials that solve (5.32):

(5.37)

P6(z) = z6 +
6
5
z5 +

11, 250 + 7500(2)1/3 − 3750(2)2/3

31, 250
z4

+
1000 + 4500(2)1/3 − 3000(2)2/3

31, 250
z3 +

44 + 30(2)1/3 − 51(2)2/3

31, 250
,

H3(z) = z3 + z2 +
30 + 20(2)1/3 − 10(2)2/3

125
z +

2 + 9(2)1/3 − 6(2)2/3

125
,

F3(z) = z3 +
2
5
z2 +

−15 + 20(2)1/3 − 10(2)2/3

125
z +

8 − 6(2)1/3

125
.
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Figure 20: Summary of the analysis of the U(6) gauge theory and the associ-
ated dessins. We have also included the results of gauge theory analysis and
indicated the confinement index and refined valency list of each figure.

By direct computation, we have therefore classified into Galois orbits the
class of trees with six edges that we considered in Section 5.1. The results
of the mathematical analysis of the rigid factorizations are summarized in
figure 20. These coincide with the classification we obtained from the gauge
theory analysis.

5.4. Using galois invariants to classify dessins

In the previous section, we have shown explicitly how dessins are organized
into Galois orbits. We now attempt to rediscover the classification using the
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Galois invariants discussed in Section 3.1, focusing on the factorizations in
(5.24) and (5.31).

5.4.1. Quartic case. From the direct solution of the factorization prob-
lem, we see that there are three distinct Galois orbits that correspond, respec-
tively, to the three distinct trees in figures 11, 13 and 14. These three trees
can be partially distinguished by the more refined valency list introduced in
Section 2.6 for trees. Let us see this in detail.

Depending on how one distributes the roots between the two factors
(P (z) ± 2), there are two distinct possibilities:

(5.38) P6(z) − 2 =

⎧
⎨

⎩
H̃2

1 (z)Q4
1(z),

F2(z)Q4
1(z).

If we assign negative valences to each of the zeroes of the polynomials appear-
ing on the right, then, the first choice singles out the tree in figure 13 as the
only possibility. On the other hand, the second possibility is satisfied by the
trees in both figures 11 and 14. We assign signs +/− to the vertices in figure
20 to indicate these two possibilities.

In order to distinguish the remaining two dessins, we can compute the
monodromy group of the trees21. Here, we compute the monodromy groups
of the trees with the refined bi-partite structure, as in figure 8 of Section
2.6. Taking the difference of the two equations in (2.14) we find an auxiliary
polynomial equation that leads to a non-clean Belyi map, whose pre-images
of 1 are the vertices with — valency and whose pre-images of 0 are ver-
tices with + valency. The monodromy group for trees is therefore generated
by σ+/−, which correspond to the permutation of edges around the +/−
vertices, respectively.

The groups of all the trees we have encountered in the U(6) example
have been collected in Table 1. Sn is the permutation group of n elements
whereas Cn is the cyclic group of n elements. The monodromy group turns
out to be different for the trees in figures 11 and 14: for figure 11, we get the
monodromy group (S3 × S3) � C2, of order 72, whereas for figure 14, we get
the monodromy group S5, of order 120.

21 All the monodromy groups have been obtained using the GAP software down-
loaded from http://www.gap-system.org.
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Table 1: Monodromy groups for dessins
that occur in the pure U(6) gauge theory
perturbed by a cubic superpotential.

Figures Monodromy group
11 (S3 × S3) � C2
13 C2 × S4
14 S5
12 C3 × S3
15, 16, 17 S6

5.4.2. Cubic case. The discussion parallels the one for the quartic fac-
torization. The two possibilities of distributing the roots

(5.39) P6(z) − 2 =

{
F3(z)Q3

1(z),

F2(z)H̃2
2 (z),

correspond to two distinct refined valency lists that distinguishes the tree in
figure 12 from any one of the trees in figures 15, 16 or 17. In this case, no
further invariant is required to distinguish them.

Thus, we find that the classification of dessins into Galois orbits agrees
with what we obtained in Section 5.2 regarding the classification of isolated
phases in gauge theory. So far, we have only considered dessins that are trees.
We now generalize our discussion and consider more general dessins. This
will highlight some open questions related to the phases of gauge theories
with flavour.

6. Gauge theories with flavour

In this section, we turn to a discussion of gauge theories with matter. The
dessins that appear at isolated singularities in the moduli space will no longer
be trees. We will mostly focus on the curves that were discussed in [16], with
isolated Argyres–Douglas singularities in the moduli space.

We start with a general discussion of the non-rigid factorization

(6.1) P 2
N(z) + BL(z) = Q2n(z)H2

N−n(z) ,

where we have exhibited the degrees of the polynomials explicitly. This curve
arises from a N = 2 U(N) gauge theory with Nf massive flavors broken to
N = 1 by a tree level superpotential

(6.2) Wtree = TrW (Φ) + Q̃
f̃
mf̃

f (Φ)Qf ,
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where f and f̃ run over the number of flavors Nf and

(6.3) W (z) =
n+1∑

k=1

gk

k
zk, mf̃

f (z) =
l+1∑

k=1

mf̃
f,kz

k−1.

The N = 1 vacua, as before, are those for which Q2n(z) = W ′(z)2 + f(z) ,
where f(z) is a polynomial such that deg (f) = deg (W ′(z))/2 − 1. m(z) is a
matrix of polynomials of size Nf × Nf .

It turns out that the only information about the superpotential Q̃
f̃
mf̃

f (Φ)
Qf which is relevant for the curve (6.1) is the polynomial [25, 26, 9]

(6.4) BL(z) = detm(z).

Clearly, plenty of choices of m(z) can lead to the same BL(z).
The particular class of dessins we are interested in arise when BL(z) has

only n + 1 distinct roots. We use our shift and scale symmetry to set BL(z)
to be of the form

(6.5) BL(z) = α zm0(z − 1)m1

n∏

j=2

(z − pj)mj .

Two natural ways of obtaining such B(z)’s are the following:

• Nf = L = deg BL(z) and mf̃
f (z) a constant diagonal mass matrix with m0

masses equal to 0, m1 masses equal to 1, and mj masses equal to pj.
• Nf = n + 1 and mf̃

f (z) a diagonal matrix with polynomial entries zm0 ,
(z − 1)m1 , and (z − pj)mj .

The former leads to a theory with unbroken N = 2 supersymmetry, if
there is no W (z). Moreover, it has a large flavor symmetry classically. The
latter, on the other hand, has a very small number of flavors and generically
no special flavor symmetry.

What we now do to obtain the Argyres–Douglas (AD) dessins studied
in [16] is to further tune the masses of the flavors and the parameters of the
superpotential to set

(6.6) HN−n(z) = Q2n(z) RN−3n(z) .

This leads to the rigid factorization problem [16]

(6.7) P 2
N(z) + BL(z) = Q3

2n(z) R2
N−3n(z) .
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We will focus on such factorizations in the rest of the section since many
explicit solutions to this class of factorization problems have already been
obtained in [16]. We will exploit these solutions to discuss some interesting
issues in gauge theory.

6.1. U(10) gauge theory with flavour

Consider the specific case of dessins arising from the factorization problem
of the second example in Section 2.3:

(6.8) P 2
10(z) + αz5(z − 1)5(z − t)5 = Q3

4(z)R2
4(z).

This problem was completely solved in [16]. There are two inequivalent solu-
tions to (6.8). Borrowing the explicit solutions from [16] one can plot the
zeroes of the polynomials as before; we have drawn the corresponding dessins
in figures 21 and 22.

It turns out that the monodromy group distinguishes between the two
dessins and therefore they belong to different Galois orbits. For the two
dessins considered here, the relations σ2

1 = 1 and σ6
0 = 1 are satisfied. Let us

denote the two monodromy groups corresponding to the two dessins by M1

and M2, respectively. In order to explicitly write down the generators, it is
useful to number the half-edges of the dessin, as in the figures 21 and 22.

From the definitions, one can check that

— M1 is generated by

(6.9)
σ1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20),

σ0 = (1, 10, 11)(2, 15, 3)(4, 5)(6, 19, 7)(8, 9)(12, 13)(14, 20, 18)(16, 17) .

It has order 30, 720 and has 84 conjugacy classes.
— M2 is generated by

(6.10)
σ1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20),

σ0 = (1, 10, 11)(2, 13, 3)(4, 19, 5)(6, 7)(8, 9)(12, 20, 18)(14, 15)(16, 17) .

It has order 30, 720 and has 63 conjugacy classes.
Since M1 �= M2, the two dessins belong to distinct Galois orbits. We

can now ask if it is possible, from the gauge theory analysis, to distinguish
between them. Note that the holomorphic invariants introduced in Section
3.2 do not give any information in this case, as it is not possible to factorize
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Figure 21: One of the two dessins arising from the factorization (6.8). Each
face is bounded by three line segments containing 1, 2 and 2 edges, respec-
tively. The figure to the right is a schematic version of the dessin, with the
edges numbered to aid the computation of the monodromy group.

Figure 22: The other dessin arising from (6.8). Each face is bounded by 1, 1
and 3 edges between trivalent vertices.
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(6.8) as P (z)±f(z), for some polynomial f(z), unlike the pure gauge theory
case. This is reflected in the fact that from the mathematical point of view,
it is not possible in general to define a refined valency list when the dessin
is not a tree.

Similarly, although the combinatorial definition of the confinement index
still makes sense, there is no sense in which confinement is a good order
parameter for gauge theories with matter. So although t might still be a
good Galois invariant, its physical interpretation is unclear. Some prelimi-
nary analysis of the phases have already been attempted in [27]. We leave a
more detailed study of theories with flavor for future work.

7. Conclusions and open questions

The central theme of this work has been the relation between dessins
d’enfants and supersymmetric gauge theory. In this section, we discuss some
of the results we have obtained and list some of the immediate questions and
future directions of research that have emerged from our analysis.

We have seen that any clean dessin with Nc edges and Nf +1 faces can be
found at an isolated singularity in the moduli space of an N = 2U(Nc) gauge
theory with Nf flavours. The particular rigid factorization of the Seiberg–
Witten curve that corresponds to the isolated singularity is determined by
the valency lists of the dessin. Typically, there are many solutions to this
factorization problem. For each such solution, the rigid curve determines a
rational Belyi map β(z) whose inverse image of the [0, 1] interval gives a
dessin D on the sphere. Such an N = 2 gauge theoretic perspective matches
very closely the mathematical point of view of obtaining and classifying
dessins into Galois orbits by direct solution of the polynomial equation.

From a physics point of view, it is also natural to study what we called
the non-rigid factorizations (1.2). The solutions to these equations are inter-
preted as the space of vacua that preserve N = 1 supersymmetry when the
N = 2 theory is perturbed by a tree level superpotential. One can asso-
ciate to these vacua disconnected graphs (which are not dessins), that come
together and join to form a dessin at any of the isolated singularities men-
tioned in the previous paragraph. The difference lies in the fact that these
are now looked upon as N = 1 vacua.

Interestingly, it is this N = 1 point of view that has a nice counterpart
in the more refined mathematical approach to the study of dessins, which is
to define a complete list of Galois invariants that distinguish the dessins that
belong to different Galois orbits. Based on the examples we have worked out,
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we have been led to conjecture a relation between the mathematical program
of classifying dessins and the physics program of classifying phases of N = 1
gauge theory. The strongest form of the conjecture states that every Galois
invariant is a physical order parameter that distinguishes different phases in
the gauge theory.

One example of a Galois invariant that might give new physical infor-
mation is the monodromy group associated to the dessins. In gauge theory,
the group usually discussed in the context of Seiberg–Witten theory is the
S-duality group: for a genus g Seiberg–Witten curve, it is an Sp(2g, ZZ) group
that acts on the Ai and Bi cycles of the Riemann surface. These cycles cor-
respond to the edges that go between the filled vertices of the dessins (the
pre-images of 0 under the Belyi map). However, in general the monodromy
group of the dessin involves action on half-edges that go between the pre-
images of 0 and 1 and involves the zeroes of P (z), apart from the zeroes of
ySW . It is therefore different from the S-duality group, but what exactly the
group signifies in the gauge theory is an open question.

In the other direction, one can ask whether the N = 1 gauge theo-
retic way of finding the dessins, first by solving a more general (non-rigid)
factorization problem and then imposing suitable constraints so that one
approaches an isolated singularity in the moduli space, is useful from a
mathematical point of view. From our proof that the confinement index is
a Galois invariant, it seems that the answer is yes. More generally, we have
seen that all the order parameters have a simple interpretation in the math-
ematical literature as Galois invariants. We believe that in this direction the
correspondence is on much firmer ground.

In Section 6, we discussed dessins that appear in the moduli space of
a U(N) gauge theory with matter. Much less is known about the possible
phases of the corresponding N = 1 vacua. We exhibited two dessins in
a U(10) theory with flavour, which, from the mathematical point of view
belong to distinct Galois orbits as they have different monodromy groups.
However, from the physics point of view, with the available order parameters,
it seems that the points where the two dessins appear describe the same
phase. By this, we mean that none of the known order parameters are of
any use to distinguish between them. If our stronger conjecture that Galois
invariants map to order parameters is correct, the monodromy group should
correspond to an order parameter in physics that can distinguish the two
special points where the dessins appear.

Many possible generalizations of our work present themselves. Since the
dessins can be drawn on any two-dimensional topological surface, it should
be possible to extend the correspondence we have found to dessins drawn on
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genus g ≥ 1 Riemann surfaces. On the gauge theoretic side, it would be very
interesting to classify the dessins that appear in the moduli spaces of more
general gauge theories, such as SO/Sp gauge groups, quiver gauge theories
with products of U(N) factors, etc.

The study of the N = 1 branches in [8] uses the Dijkgraaf–Vafa rela-
tion between gauge theory and matrix models [28, 29, 30]. In this relation,
two distinct hyperelliptic Riemann surfaces emerge [22]: the Seiberg–Witten
curve and the spectral curve of the matrix model. In the examples considered
in the text, the spectral curve was equivalent to the reduced Seiberg–Witten
curve in (1.4). However, this is not true in general as discussed in the exam-
ples in Appendix C. It is conceivable that one can tune the parameters of
the tree level superpotential so that the spectral curve develops an isolated
singularity, leading to a Belyi map. It might be very interesting to study the
dessins that arise this way.

As we have stressed throughout, the main objective of this article was to
provide the rudiments of a dictionary between the physics of supersymmetric
gauge theory and the mathematics related to the action of the absolute
Galois group on the children’s drawings of Grothendieck. Much more work
needs to be done to fully understand the correspondence between these two
fascinating fields of study, which we hope will lead to a deeper and fuller
understanding of the relevant physical and mathematical problems.
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Appendix A. Field theory and the absolute galois group

The main mathematical object that appears in this paper is the absolute
Galois group Gal(Q/Q). It is of central importance in many areas of mathe-
matics. Since this group is not very familiar to physicists, in this appendix
we give a short description of the definition stated in the text: Gal(Q/Q) is
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the group of automorphisms of the field Q of algebraic numbers that leaves
Q fixed.

Instead of directly studying Gal(Q/Q), which is a group that cannot even
be finitely generated, we will study the relevant concepts by first review-
ing Galois groups of finite order. Just to give an idea of the complexity
of Gal(Q/Q) it is nice to mention that mathematicians are considering the
possibility that any finite group can arise as a projection of Gal(Q/Q); this
is the so-called “Inverse Problem of Galois Theory”22.

Before going into the details about the different elements that enter in
the definition of Galois groups let us lay down some field theory basis. In
this review, we will assume familiarity with definitions of fields, rings of
polynomials and basic group theory (for a very basic introduction and more
details of the main example in this appendix see [31]).

Let us start by recalling some basic definitions. We say that a field E is
an extension of a field F , denoted by F ≤ E, if E has a subfield isomorphic
to F . Examples of fields and extensions are Q ≤ Q(21/4, i) ≤ Q. Our first
goal is to review the meaning of expressions such as Q(21/4, i).

Given a field F , a natural object to study is the ring of polynomials, F [z],
with coefficients in F . From now on we will assume that F is a field of charac-
teristic zero or a finite field. This is to avoid certain pathologies that can hap-
pen otherwise. Of course, our final target, which is Q, has characteristic zero.

An element a ∈ E is called algebraic over F if it is a zero of a polynomial
p(z) in F [z]. E is called an algebraic extension of F if all its elements are
algebraic over F . We will only consider algebraic extensions from now on. It
turns out that there exists a unique monic irreducible (over F ) polynomial
such that p(a) = 0 (since F is of characteristic zero or finite, a can only be
a zero of order one. This is an example of one of the possible pathologies
we have avoided). Since such a p(z) is unique we call it pa(z). The degree of
pa(z), deg(pa(z)) = n is also called the degree of a in F .

A special class of algebraic extensions are those with the structure of
a vector space with basis {1, a, . . . , an−1} and coefficients in F . These are
called simple extensions and are denoted by F (a). In general, if F ≤ E and
E is of finite dimension n as a vector space over F , we say that E is a finite
extension23 of degree |E : F | = n over F .

22 The more precise statement is that any simple group S might be the Galois
group of a finite normal extension of Q and hence there will be a natural restriction
map from Gal(Q/Q) onto S.

23 Quite nicely, in our case (with F = Q), all finite extensions are also simple!
This is called the primitive element theorem.
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An example is F = Q and a = 21/4. Then Q(21/4) is generated by
{1, 21/4, 21/2, 23/4} since pa(z) = z4 − 2 has degree n = 4.

Note that z4 −2 is reducible over Q(21/4), in fact, z4 −2 = (z −21/4)(z +
21/4)(z2 + 21/2). The last factor, (z2 + 21/2), is irreducible of degree 2 in
Q(21/4). So if we adjoin a root of z2 + 21/2 to Q(21/4) then z4 − 2 splits over
this new field.

The new element we need is 21/4i. However, multiplying by 2−1/4 ∈
Q(21/4) we get i. Therefore, the new field is (Q(21/4))(i) = Q(21/4, i). The
latter notation shows the fact that the order in which we adjoint 21/4 and i
to Q is irrelevant.

We have achieved our first goal: Q(21/4, i) is called the splitting field of
z4 − 2. More generally, an extension E of Q is a splitting field if there is an
irreducible polynomial in Q[z] such that E is the smallest field that contains
all its roots.

Now we need to introduce the concept of the algebraic closure of a field
F . A field K is called algebraically closed if every non-constant polynomial
in K[z] has a root in K. Such a K is called an algebraic closure of F if K
is an algebraic extension of F , and it is denoted by F . F is unique up to
isomorphisms.

The next goal is to study automorphisms of fields. Splitting fields are
important because given any one of them, say E such that F ≤ E ≤ F ,
any automorphism of F that fixes F maps E onto itself and induces an
automorphism of E leaving fixed F . Moreover, splitting fields are the only
ones with this property. The basic automorphisms are quite simple: if a
and b are roots of the same irreducible polynomial, then the map φ(a) = b
with φ(q) = q if q ∈ F is an automorphism. a and b are called conju-
gates and φ is a conjugation. Automorphisms of E that leave fixed F form
a group under composition denoted by G(E/F ). If E is a splitting field,
then G(E/F ) is called the Galois group of E over F and it is denoted
by Gal(E/F ).

Let E be a finite extension of F . The number of isomorphisms of E into
F leaving F fixed is the index {E : F} of E over F . It turns out that for the
fields we consider

(A.1) {E : F} = |E : F | = |G(E/F )|,

where |G(E/F )| is the order of the group.
The next step in any algebra book would be to define separable exten-

sions. However, over Q, all extensions are separable and we do not need to
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worry about that. A very special role is played by (separable) splitting fields
which are then called finite normal extensions24.

Now we are ready to discuss the Fundamental Theorem of Galois The-
ory. The theorem states that if E is a finite normal extension of F then
there is a one to one correspondence between intermediate extensions of F
and subgroups of Gal(E/F ). The correspondence is the following: to each
extension B of F such that B ≤ E, one associates the largest subgroup GB

of Gal(E/F ) that leaves B fixed. Moreover, B is a finite normal extension of
F if and only if GB is a normal subgroup. In fact, Gal(B/F ) is isomorphic
to the factor (or quotient) group Gal(E/F )/GB.

Let us apply this to our example E = Q(21/4, i). As discussed above, E
is the splitting field of z4 − 2. It has a basis {1, a, a2, a3, i, ia, ia2, ia3} where
a = 21/4.

Since |E : Q| = 8 we must have |Gal(E/Q)| = 8. It is a simple exercise to
exhibit the eight automorphisms of E leaving Q invariant (see section 47.2
of [31]). Studying the composition table one discovers that the group is non-
abelian. Moreover, Gal(E/Q) = D4, the dihedral group (the symmetry group
of a square). If we denote rotations by kπ/2 (with k = 0, 1, 2, 3) as ρk, mirror
images (reflections) as μi and diagonal flips as δi, then the identification with
automorphisms is collected in the table below (only the action on a and i is
needed).

ρ0 ρ1 ρ2 ρ3 μ1 δ1 μ2 δ2

a → a i a −a −i a a i a −a −i a

i → i i i i −i −i −i −i

The lattice of all subgroups of D4 is well known (see section 47.2 of [31]).
According to Galois theory there must be one and only one intermediate
extension of Q(21/4, i) for each subgroup. This gives rise to the lattice of
intermediate extensions of Q(21/4, i). Let KH denote the subfield of Q(21/4, i)
left fixed by the subgroup H of D4. For example, it is easy to check that
K{ρ0,ρ2} = Q(

√
2, i). Note that Q(

√
2, i) is also a splitting field and hence a

finite normal extension. One can easily check that {ρ0, ρ2} is indeed a normal
subgroup of D4! Likewise, consider K{ρ0,μ1} = Q(21/4). This is not a splitting
field and one can check that {ρ0, μ1} is not a normal subgroup of D4.

24 The parenthesis around “separable” are there to indicate that it can freely be
removed.
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Now we can go back to our object of interest: Gal(Q/Q). Here, we will
follow very closely an explanation given in [21] and we will illustrate the
main ideas using our example of Q(21/4, i). We have already explained the
meaning of the algebraic closure of a field. Here, Q is then the algebraic
closure of Q, the field of algebraic numbers. This is clearly a complicated
object that can be constructed as the union of all splitting fields over Q,
which as we know, are finite normal extensions of Q. Let E denote a generic
one, then

(A.2) Q =
⋃

E∈E E

where E is the set of all such extensions. For each extension E, we have the
corresponding Galois group, Gal(E/Q), of E over Q.

Consider our favorite example, E = Q(21/4, i). Its Galois group over
Q is Gal(E/Q) = D4. Consider L = Q(

√
2, i). As we saw, L ≤ E. Now,

every automorphism of E leaves L invariant. This is because L is a splitting
field. The Galois group of L over Q is then the factor group Gal(L/Q) =
Gal(E/Q)/{ρ0, ρ2}.

Now there is a natural group epimorphism ρE,L : Gal(E/Q) →
Gal(L/Q) given by the restriction map. That this is an epimorphism, i.e.,
an onto map, follows from the fact that every automorphism of L that
fixes Q can be extended to an automorphism of E in |E : L| ways. In
our example |E : L| = 2. Consider the following automorphism of L:
(
√

2, i) → (
√

2,−i). This can then be extended to E in two ways a follows:
(21/4, i) → (±21/4, i).

Consider now Q(i) = K{ρ0,ρ1,ρ2,ρ3}. This is also a splitting field. We
then have the following sequence of finite normal extensions Q ≤ Q(i) ≤
Q(

√
2, i) ≤ Q(21/4, i). From this sequence, we can make an observation that

will be very important in the definition of Gal(Q/Q): an element (g1, g2) of
the cartesian product Gal(Q(i)/Q)×Gal(Q(

√
2, i)/Q) can be extended to an

element of Gal(Q(21/4, i)/Q) if and only if ρL,Q(i)(g2) = g1. This is because if
g ∈ Gal(Q(21/4, i)/Q) is one of the possible extensions then it has to have a
consistent action on each of the subfields.

The absolute Galois group Gal(Q/Q) can now be constructed in a very
similar way. It is a subgroup of the cartesian product of the Galois groups
of all finite normal extensions of Q

(A.3) Gal(Q/Q) <
∏

E∈E Gal(E/Q)
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consisting of all elements (gE) ∈
∏

E∈E Gal(E/Q) (this is an infinite “array”
with one entry for each E ∈ E) satisfying the constraint that ρK2,K1(gK2) =
gK1 whenever K1 ≤ K2. The identification of each g ∈ Gal(Q/Q) with the
element (gE) implies that gE is the restriction of g to E. That this set of
restrictions is consistent follows from the condition involving ρ.

Finally, the action of g on Q is determined by the action on each finite
normal extension via gE. This is the basic result we used in Section 2.4 where
we discussed the action of Gal(Q/Q) on dessins. We said that if g ∈ Gal(Q/Q)
then η acts on a dessin by acting on the coefficients of the Belyi map. In
other words, the coefficients of the Belyi map, being found as solutions to
some set of polynomial equations, belong to a splitting field E and g acts
via its restriction gE.

A.1. Glossary of terms in the text

• An algebraic number is an element a ∈ C that generates a finite extension
Q(a) ≥ Q.

• Q is the field of all algebraic numbers and it is also the algebraic closure
of Q.

• A number field is a finite algebraic extension of Q.
• A monic polynomial is one whose monomial of highest degree has coeffi-

cient 1.

Appendix B. The multiplication map as a Belyi-extending
map

It was shown in [10, 8] that once a solution to the factorization prob-
lem (1.2) is known for U(N), then it is possible to construct a solu-
tion to a similar factorization problem for U(tN). Let us first review this
construction.

Consider the factorization problem

(B.1) P 2
t (z) − 4Λ2t = F2(z)H2

t−1(z) .

The solution is given by

(B.2)
Pt(z) = 2ΛtηtTt

(
z

2ηΛ

)
, F2(z) = z2 − 4η2Λ2 ,

Ht−1(z) = ηt−1Λt−1Ut−1

(
z

2ηΛ

)
,
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where η2t = 1. Tt(z) and Ut−1(z) are the Chebyshev polynomials of the first
and second kind respectively, defined by setting z = cos θ and

(B.3) Tt(z) = cos(tθ) Ut−1(z) =
1
t

dTt

dz
(z) =

sin(tθ)
sin θ

.

This implies that they satisfy the relation

(B.4) 1 − T 2
t (z) = (1 − z2) U2

t−1(z) .

Now suppose we have a solution to the factorization problem

(B.5) P 2
N(z) − 4Λ2N

0 = F2n(z)H2
N−n(z) .

Then we can use the solution to (B.2) to construct a solution to

(B.6) P 2
tN(z) − 4Λ2tN

0 = F̃2n(z)H̃2
tN−n(z)

as follows:
(B.7)

PtN(z) = 2ΛtNηtTt

(
PN(z)
2ηΛN

)
, F̃2n(z) = F2n(z),

HtN−n(z) = ηt−1ΛN(t−1)HN−n(z) Ut−1

(
PN(z)
2ηΛN

)
, Λ2N

0 = η2 Λ2N .

This procedure to get exactly t solutions to the U(tN) theory from a given
solution of the U(N) theory was referred to as the multiplication map (by
t) in [5].

Let us now show that the multiplication by t map can be used to con-
struct new Beyi maps from old ones. The simple example of t = 2 has already
been discussed in Section 4. As discussed in that section, the main point is
to use the multiplication map to define the new Belyi map as

(B.8) β̃t(z) = 1 − P 2
tN(z)

4Λ2tN
0

,

where PtN(z) is given by the first equation in (B.7) and PN(z) gives rise to
a Belyi map

(B.9) β(z) = 1 − P 2
N(z)

4Λ2N
0

.
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We would now like to exhibit (B.8) as the composition of a Belyi-extending
map with the Belyi map (B.9). For this purpose, let us define the polynomials

(B.10) T2k(z) = Mk(z2) and T2k+1(z) = z Sk(z2) .

This follows from the form of the Chebyshev polynomials (B.3). If we now
define the Belyi-extending maps

(B.11) α2k(u) = 1−M2
k (1−u) and α2s+1(u) = 1−(1−u)S2

k(1−u) ,

one can check that

(B.12) β̃t(z) = αt(β(z))

is a Belyi map for all integer values of t. As for α2, one check that geometri-
cally, the multiplication by t replaces a given edge in a dessin by a branchless
tree of length t.

Appendix C. Complete list of trees for U(6)

In this appendix, we study the problem of realizing all possible connected
trees with six edges. Along the way, we will mention some interesting points
about the structure of N = 1 vacua from the matrix model point of view [22].

In Section 5, we studied examples a pure U(6) gauge theory deformed
by a cubic superpotential. However, a cubic superpotential does not allow
enough flexibility in the non-rigid Seiberg–Witten curve to realize all pos-
sible trees with six edges. We mentioned in the text that if we consider a
superpotential W (z) of degree n + 1, then the curve describing the N = 1
vacua of U(N) is given by

(C.1) y2 = P 2
N(z) − 4Λ2N = (W ′(z)2 + fn−1(z))H2

N−n(z)

where W ′(z) has degree n.
However, this is true only for vacua with all values of Ni different from

zero. In other words, if U(N) is classically broken to U(N1) × · · · × U(Nn).
It turns out that if n − s of the Ni’s are zero then the description of N = 1
vacua is more subtle and it was elucidated in [22] by using matrix model
techniques inspired by the Dijkgraaf–Vafa relation [13, 14, 15]. The way to
treat all cases at once is by introducing another curve, called the matrix
model curve, y2

m = W ′(z)2 + fn−1(z). Then, if U(N) is broken classically to
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U(N1) × · · · × U(Ns) the factorization problems to be solved are

(C.2)
y2 = P 2

N(z) − 4Λ2N = F2s(z)H2
N−s(z),

y2
m = W ′(z)2 + fn−1(z) = F2s(z)R2

n−s(z).

This means in particular, that the (3, 2) vacua in Section 5.1 for the
U(6) example is the intersection of the s = 2 branch with the s = 1 branch,
where the low-energy gauge groups are U(1)2 and U(1), respectively. This
intersection was studied in great generality in [24].

Note, however, that the trivalent and four-valent factorizations in U(6)
do not correspond to points, where the s = 2 branch intersects the s = 1
branch. This is because both values of Ni are nonzero. More generally, it
is clear that isolated singular points of a theory with s = p are particular
cases of those of a theory with s = n for any p < n, since the corresponding
branches can intersect.

The set of interesting values of n in the case of U(6) is n = 1, . . . , 625.
We now turn to the construction of all possible dessins associated to U(6).
It turns out that one only needs to consider a quartic superpotential, i.e.,
n = 3.

Let us prove that n = 3 suffices. Instead of starting with n = 6 and
descending all the way to n = 3 it is best to use the fact that isolated sin-
gular points give rise to all possible connected trees with six edges. These
trees must have seven vertices. All possible valency lists are the following
(6, 0, 0, 0, 0, 1), (5, 1, 0, 0, 1, 0), (5, 0, 1, 1, 0, 0), (4, 2, 0, 1, 0, 0), (4, 1, 2, 0, 0, 0),
(3, 3, 1, 0, 0, 0) and (2, 5, 0, 0, 0, 0). Recall that a valence list (u1, . . . , u6)
means that there are uk vertices with valence k. These were obtained by
requiring that the sum of all uk’s is always seven and that the sum of all
uk’s times k is always 12.

The previous valence lists lead to factorization problems of the Seiberg–
Witten curve of the form

F6(z)H6
1 (z), F5(z)Q2

1(z)H5
1 (z), F5(z)Q3

1(z)H4
1 (z),

F4(z)Q2
2(z)H4

1 (z), F4(z)Q2
1(z)H3

2 (z), F3(z)Q2
3(z)H3

1 (z),

and F2(z)Q2
5(z), respectively.

25 There is a subtlety when n = 6 which is related to the fact that trΦ7 in the
superpotential is not an independent quantity but this will not affect our discussion
(see [8] for more details).
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Figure 23: All possible dessins (and the associated factorizations) that appear
in the N = 2 moduli space of the U(6) gauge theory, apart from the ones
already discussed in the main body of the article. We have omitted the
vertices corresponding to the zeroes of P6(z).

Now we can prove our claim by simple inspection. All these factorization
problems are particular points in the space of curves (with n = 3) given by

(C.3) y2 = P 2
6 (z) − 4Λ12 = F6(z)H2

3 (z) .

It is also easy to check that F6(z)H6
1 (z), F5(z)Q2

1(z)H5
1 (z), F5(z)Q3

1(z)
H4

1 (z) and F4(z)Q2
1(z)H3

2 (z) cannot possibly be obtained from the cubic
superpotential (the n = 2 case considered in the text), while all other fac-
torizations — F4(z)Q2

2(z)H4
1 (z), F3(z)Q2

3(z)H3
1 (z) and F2(z)Q2

5(z) — were
considered in Section 5.

The inherently n = 3 factorizations give rise to only six different trees
(figure 23).
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