The full text of this article is unavailable through your IP address: 172.17.0.1
Contents Online
Communications in Mathematical Sciences
Volume 22 (2024)
Number 6
Stability for the 2D Micropolar equations with partial dissipation near Couette flow
Pages: 1529 – 1548
DOI: https://dx.doi.org/10.4310/CMS.2024.v22.n6.a4
Authors
Abstract
In this paper, we will apply the Fourier multiplier method to explore the stability for the 2D micropolar equations with partial dissipation near Couette flow. The difficulty will be encountered due to the facts that one order derivative of the microtation appears on the right term of velocity equations and that the velocity equations only have vertical dissipation. To overcome the difficulty, we will make use of a Fourier multiplier to grasp the enhanced dissipation created by the special structure $y\partial_x-\nu\partial_{y}^2$ and obtain some new and higher-order estimates of the solution in an elegant way. Also, a time-dependent elliptic operator $\Lambda_t^b$ which commutes with linear part of the equations will be used to make our proof more clear.
Keywords
two-dimensional micropolar equations, stability, Couette flow
2010 Mathematics Subject Classification
35B65, 35Q35, 76D03
Q. Jiu is partially supported by National Natural Sciences Foundation of China (No. 11931010).
Received 3 April 2023
Received revised 8 August 2023
Accepted 28 December 2023
Published 18 July 2024