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GRADIENT-BASED ITERATIVE ALGORITHMS FOR THE TENSOR
NEARNESS PROBLEMS ASSOCIATED WITH SYLVESTER TENSOR

EQUATIONS∗

MAOLIN LIANG† AND BING ZHENG‡

Abstract. This paper is concerned with the solution of the tensor nearness problem associated
with the Sylvester tensor equation represented by the Einstein product. We first proposed a gradient-
based iterative algorithm for the Sylvester tensor equation mentioned above, and then the solution to
the tensor nearness problem under consideration can be obtained by finding the least F-norm solution
of another Sylvester tensor equation with special initial iteration tensors. It is shown that the solution
to the above tensor nearness problem can be derived within finite iteration steps for any initial iteration
tensors in the absence of roundoff errors. The performed numerical experiments show that the algorithm
we propose here is efficient.
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1. Introduction
Tensors are multi-dimensional arrays [1]. An Nth-order and I1×I2×···×IN -

dimensional tensor over the real field R, consisting of I1I2 ·· ·IN entries, can be rep-
resented as

A =(Ai1...iN ) with Ai1...iN ∈R, 1≤ ik≤ Ik, k=1,2,. ..,N.

The set of this kind of tensors is denoted by RI1×I2×···×IN . For A ∈RI1×···×IM×J1×···×JN

and B∈RJ1×···×JN×K1×···×KL , the Einstein product [2] of A and B, denoted by A ∗N
B, is defined by the operation ∗N via

(A ∗N B)i1...iMk1...kL
=

∑
j1,...,jN

ai1...iM j1...jN bj1...jNk1... kL
.

Tensor models are employed in numerous disciplines addressing the problem of finding
multilinear structure in multiway data-sets. In particular, tensor equations with Ein-
stein product model many phenomena in engineering and science, including continuum
physics and engineering, isotropic and anisotropic elasticity [3–5]. For example, by us-
ing the central difference approximation, the three-dimensional Poisson equations can
be discretized as the following multilinear system [7]

A ∗3X =B, X ∈RN×N×N ,

where tensors A ∈RN×N×N×N×N×N , B∈RN×N×N . The general form of the above
tensor equation is as follows:

A ∗M X =B, (1.1)

where A ∈RK1×···×KP×I1×···×IM and B∈RK1×···×KP×J1×···×JN are given tensors, and
X ∈RI1×···×IM×J1×···×JN is unknown. Brazell et. al [7] researched the tensor Equation
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(1.1) and the associated least-square problem by introducing the notion of inverse or
pseudo-inverse of a tensor. Recently, Sun et. al. [9] extended the inverse in [7] and
put forward the concept of Moore-Penrose inverses of tensors which provides the way
to represent the general solution of the tensor Equation (1.1) in the sense that it is
consistent (namely, there exists a tensor X ∗ satisfying (1.1)). Besides, the authors also
considered the Sylvester tensor equation

A ∗M X +X ∗N C =D , (1.2)

in which the tensors A ∈RI1×···×IM×I1×···×IM , C ∈RJ1×···×JN×J1×···×JN and D ∈
RI1×···×IM×J1×···×JN are known, and X ∈RI1×···×IM×J1×···×JN is the one to be de-
termined. Obviously, when M =N =1, this tensor equation reduces to the well-known
Sylvester matrix equation

AX+XC=D,

which arises from the finite element, finite difference or spectral method [3, 4], while
the former also play an important role in discretization of linear partial differential
equations in high dimension [5–7,9].

The purpose of this paper is to solve the following constrained minimization problem
related to the Sylvester tensor Equation (1.2):

min
A ∗MX +X ∗NC=D

∥X −X0∥, (1.3)

where X0∈RI1×···×IM×J1×···×JN is a given tensor, the symbol ∥·∥ denotes the Frobenius
norm (F-norm for short) of a tensor. This problem is a natural generalization of the
matrix nearness problem [13–16], low rank approximation problem [17–19] and tensor
completion problem [20–22] equipped with F-norm and multilinear constraints. We call
(1.3) the tensor nearness problem.

Under certain conditions, it turns out that the solution to the tensor nearness
problem (1.3) is unique. When the tensor C in (1.3) vanishes, we have proved that
the unique solution to the corresponding tensor nearness problem can be represented
by means of the Moore-Penrose inverses of the known tensors [23]. Nevertheless, it is
well-known that it is not easy to find the Moore-Penrose inverse of a tensor. In order to
address the aforementioned problem efficiently, we first consider to solve the Sylevester
tensor Equation (1.2) iteratively, and design a gradient-type algorithm for it. This
approach is derived from the ones presented in [7, 8, 10–12]. Furthermore, the solution
to the tensor nearness problem (1.3) can be gained by applying the proposed method
to another Sylvester tensor equation, see Section 4 for details. Therefore, the method
presented in this paper avoids the curse mentioned above, and thus can be regarded as a
continuation of [23]. One can also refer to [27–30] for the latest developments on tensor
equations. As far as we know, this is the first time that iterative method is considered
to solve the tensor nearness problems.

The remainder of this paper is organized as follows. Section 2 reviews some nota-
tion and definitions related to tensors. Section 3 contains the gradient-based iterative
algorithm for solving the tensor Equation (1.2) as well as its convergence analysis. It
is theoretically shown that the proposed approach is capable of finding the solution of
(1.2) within finite iteration steps for any initial iteration tensors. Especially, the least
F-norm solution of which can also be derived by choosing appropriate initial iteration
tensors. Section 4 is devoted to addressing the tensor nearness problem (1.3). Section
5 provides some numerical examples to illustrate the efficiency of the proposed iterative
algorithms. Finally, a conclusion is appended to end this paper.
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2. Preliminaries
Throughout this paper, tensors are denoted by calligraphic letters, e.g., A , B, C ;

matrices are denoted by boldface capital letters, e.g., A, B, C; vectors are denoted by
boldface lowercase letters, e.g., a, b, c; scalars are denoted by lowercase letters, e.g.,
a, b, c. For a higher-order tensor, subtensors are formed when a subset of the indices
is fixed, and a colon is used to indicate all elements of a mode. For example, for a
tensor A ∈RI×J×K , its column, row, and tube fibers are denoted by A (:,j,k), A (i,:
,k) and A (i,j,:), respectively. Moreover, the horizontal, lateral, and frontal slices are
represented by A (i,:, :), A (:,j, :) and A (:, :,k), respectively.

The following definitions and conclusions will be used later.

Definition 2.1 ([7]). For A =(Ai1...iM j1...jN )∈RI1×···×IM×J1×···×JN , its transpose,

denoted by A T , is a J1×···×JN ×I1×···×IM tensor with the entries Âi1...iN j1...jM =
Aj1...jM i1...iN .

Particularly, if A =(Ai1...iM j1...jM )∈RI1×···×IM×I1×···×IM , the trace of A , denoted
by tr(A ), is defined as tr(A )=

∑
i1,...,iM

Ai1...iM i1...iM .

By Definition 2.1, the inner product of two tensors A ,B∈RI1×···×IM×J1×···×JN is
defined by <A , B>= tr(BT ∗M A ), which induces the F-norm of a tensor, i.e., ∥A ∥=√
<A , A >. Especially, if <A , B>=0, we say that the two tensors are orthogonal

to each other. Furthermore, since

tr(BT ∗M A )=
∑

i1...iN

(BT ∗M A )i1...iN i1...iN

=
∑

i1...iN

 ∑
j1...jM

BT
i1...iN j1...jM Aj1...jM i1...iN


=
∑

i1...iN

∑
j1...jM

Bj1...jM i1...iN Aj1...jM i1...iN ,

and

tr(A T ∗M B)=
∑

k1...kN

(A T ∗M B)k1...kNk1...kN

=
∑

k1...kN

( ∑
l1...lM

A T
k1...kN l1...lM Bl1...lMk1...kN

)
=
∑

k1...kN

∑
l1...lM

Al1...lMk1...kN
Bl1...lMk1...kN

,

which deduce that

<A , B>=<B, A >. (2.1)

Moreover, by simple algebra we can obtain the following results.

Lemma 2.1. Let A ,B,C ∈RI1×···×IM×I1×···×IM and α,β∈R, then
(I) tr(α ·A +β ·B)=α · tr(A )+β · tr(B);

(II) tr(A ∗M B ∗M C )= tr(B ∗M C ∗M A )= tr(C ∗M A ∗M B).

These formulas are important to simplify the proof of the relevant conclusions in
this paper.
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Definition 2.2. For tensor A ∈RI1×···×IM×J1×···×JN , Vec(A )∈R(I1·...·IM )×J1×···×JN

is obtained by lining up all the subtensors, A (i1,. ..,iM , :,. .., :) with 1≤ ij ≤ Ij
and j=1,2,. ..,M , in a column; e.g., the k-th subblock of A is the subtensor
A (i1,. ..,iM ,:,. .., :) satisfying k=ivec(i,I), where ivec(·) is the index mapping func-
tion [24], i.e.,

ivec(i,I) := i1+
M∑
j=2

(ij−1)
j−1∏
s=1

Is and I={I1,. ..,IM}.

Specifically, if A ∈R2×2×2×J1×···×JN , then

Vec(A )=



A (1,1,1, :,. .., :)
A (2,1,1, :,. .., :)
A (1,2,1, :,. .., :)
A (2,2,1, :,. .., :)
A (1,1,2, :,. .., :)
A (2,1,2, :,. .., :)
A (1,2,2, :,. .., :)
A (2,2,2, :,. .., :)


.

We should mention that the definition of Vec is slightly different from that given in [9].

Definition 2.3 ([9]). The Kronecker product of A =(Ai1...iM j1...jN )∈
RI1×···×IM×J1×···×JN and B∈RK1×···×KP×L1×···×LQ , denoted by A ⊗B, is a ‘Kr-block
tensor’, whose (r,s)-subblock is (Ai1...iM j1...jN B) in which r=ivec(i,I) and s=ivec(j,J)
for J={J1,. ..,JN}.

From the definition of the Kronecker product of tensors, it has the following basic
properties:

Lemma 2.2 ([9, 25]). Let A ∈RI1×···×IM×I1×···×IM , B∈RI1×···×IM×J1×···×JN ,
C ∈RJ1×···×JN×J1×···×JN and D ∈RI1×···×IM×J1×···×JN . Then

(I) (B+D)T =BT +DT .

(II) (A ⊗B)⊗C =A ⊗(B⊗C ).

(III) (A ⊗B)∗N (D⊗C )=(A ∗M D)⊗(B ∗N C ).

(IV) Vec(A ∗M B ∗N C )=(C T ⊗A )∗N Vec(B).

Definition 2.4 ([7]). Define the transformation ψ from the tensor space
RI1×···×IM×J1×···×JN to the matrix space R(I1·...·IM )×(J1·...·JN ) as

ψ : CI1×···×IM×J1×···×JN −→C(I1·...·IM )×(J1·...·JN )

Ai1...iM j1...jN −→Aivec(i,I), ivec(j,J).

Obviously, the transformation ψ is a bijection, which provides a way to unfold one
tensor. For example, if A ∈R3×3×3×3, each frontal slice A (:,:,k,l) with k,l=1,2,3 is
a 3×3 matrix. If we partition the modes of the tensor A from the middle, then the
vector vec(A (:,:,k,l)) corresponds to the [k+3(l−1)]-th column of the unfolding matrix
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A=ψ(A ), that is,

A=



A1111 A1121 A1131 A1112 A1122 A1132 A1113 A1123 A1133

A2111 A2121 A2131 A2112 A2122 A2132 A2113 A2123 A2133

A3111 A3121 A3131 A3112 A3122 A3132 A3113 A3123 A3133

A1211 A1221 A1231 A1212 A1222 A1232 A1213 A1223 A1233

A2211 A2221 A2231 A2212 A2222 A2232 A2213 A2223 A2233

A3211 A3221 A3231 A3212 A3222 A3232 A3213 A3223 A3233

A1311 A1321 A1331 A1312 A1322 A1332 A1313 A1323 A1333

A2311 A2321 A2331 A2312 A2322 A2332 A2313 A2323 A2333

A3311 A3321 A3331 A3312 A3322 A3332 A3313 A3323 A3333


.

From the definition of ψ, one can observe that the entry Ai1...iM j1...jN of the tensor
A ∈RI1×···×IM×J1×···×JN is exactly the (ivec(i,I), ivec(j,J))-element of the image matrix
ψ(A ). Thus, the identity tensor of size I1×···×IM ×I1×···×IM , denoted by I ,
consists of the entries

Ii1...iM j1...jM =

M∏
k=1

δikjk with δikjk =

{
1, if ik= jk,
0, if ik ̸= jk.

For ease of reading, we recall the concept of the Moore-Penrose of tensors [9, 23].

Definition 2.5. Let A ∈CI1×···×IM×J1×···×JN , then the tensor X ∈
CJ1×···×JN×I1×···IM , satisfying the following tensor equations

(1) A ∗N X ∗M A =A , (2) X ∗M A ∗N X =X ,

(3) (A ∗N X )H =A ∗N X , (4) (X ∗M A )H =X ∗M A ,

is called the Moore-Penrose inverse of the tensor A , denoted by A †.

In addition, for tensor A ∈RI1×···×IM×J1×···×JN , its range space is defined by

R(A )={ Y | Y =A ∗N X , ∀ X ∈RJ1×···×JN }.

3. Iterative algorithm for the Sylvester tensor Equation (1.2)
In order to solve the tensor nearness problem (1.3), we, in this section, present the

gradient-based iterative algorithm for solving the Sylvester tensor Equation (1.2), and
then analyze its convergence.

The iterative algorithm for solving the tensor Equation (1.2) is described as below:

Algorithm 3.1

Step 1: Input A ∈RI1×···×IM×I1×···×IM , C ∈RJ1×···×JN×J1×···×JN ,
D ∈RI1×···×IM×J1×···×JN , and an initial tensor X (1)∈RI1×···×IM×J1×···×JN .

Step 2: Compute R(1)=D−A ∗M X (1)−X (1) ∗N C , and
P(1)=A T ∗M R(1)+R(1) ∗N C T .

Step 3: Compute X (k+1)=X (k)+
∥R(k)∥2

∥P(k)∥2
P(k).

Step 4: Compute R(k+1)=D−A ∗M X (k+1)−X (k+1) ∗N C , and

P(k+1)=A T ∗M R(k+1)+R(k+1) ∗N C T +
∥R(k+1)∥2

∥R(k)∥2
P(k).

If R(k+1)=0, or R(k+1) ̸=0, P(k)=0, stop; otherwise, goto Step 3.
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In what follows, we show that the sequence {X (k)} generated by Algorithm 3.1
converges to a solution of (1.2) within finite iteration steps in the absence of roundoff
errors for any initial iteration tensor X (1). For ease of expression, denote

α(k) :=
∥R(k)∥2

∥P(k)∥2
, β(k+1) :=

∥R(k+1)∥2

∥R(k)∥2
.

Lemma 3.1. Let {R(i)} and {P(i)} (i=1,2,. ..) be the sequences generated by Algo-
rithm 3.1. Then, for j≥2, it holds that

tr
(
R(i+1)T ∗M R(j)

)
=tr

(
R(i)T ∗M R(j)

)
−α(i) · tr

(
P(i)T ∗M P(j)

)
+ α(i) ·β(j) · tr

(
P(i)T ∗M P(j−1)

)
. (3.1)

Proof. By the Steps 3 and 4 of Algorithm 3.1, we have

R(k+1)=R(k)−α(k) ·(A ∗M P(k)+P(k) ∗N C ), (3.2)

and then

tr
(
R(i+1)T ∗M R(j)

)
= tr

(
(R(i)−α(i) ·(A ∗M P(i)+P(i) ∗N C ))T ∗M R(j)

)
= tr

(
R(i)T ∗M R(j)

)
−α(i) · tr

(
(A ∗M P(i)+P(i) ∗N C )T ∗M R(j)

)
= tr

(
R(i)T ∗M R(j)

)
−α(i) · tr

(
P(i)T ∗M (A T ∗M R(j)+R(j) ∗N C T )

)
= tr

(
R(i)T ∗M R(j)

)
−α(i) · tr

(
P(i)T ∗M (P(j)−β(j) ·P(j−1))

)
,

which implies that the equality (3.1) holds true.

The next lemma reveals the orthogonality of the sequences {R(i)} and {P(i)}
generated by Algorithm 3.1, which is similar to the classical conjugate gradient method
[26].

Lemma 3.2. Let {R(i)} and {P(i)} (i=1,2,. ..) be the sequences generated by Algo-
rithm 3.1. Then

tr
(
R(i)T ∗M R(j)

)
=0, tr

(
P(i)T ∗M P(j)

)
=0, i,j=1,2,. ..,t(t≥2), i ̸= j. (3.3)

Proof. We prove (3.3) by induction.

By (2.1), tr
(
R(i)T ∗M R(j)

)
= tr

(
R(j)T ∗M R(i)

)
, so we only consider the case:

i≥ j.

When t=2, from Algorithm 3.1, we obtain

tr
(
R(2)T ∗M R(1)

)
= tr

(
R(1)T ∗M R(1)

)
−α(1) · tr

(
(A ∗M P(1)+P(1) ∗N C )T ∗M R(1)

)
= tr

(
R(1)T ∗M R(1)

)
−α(1) · tr

(
P(1)T ∗M (A T ∗M R(1)+R(1) ∗N C T )

)
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= tr
(
R(1)T ∗M R(1)

)
−α(1) · tr

(
P(1)T ∗M P(1)

)
=0, (3.4)

and

tr
(
P(2)T ∗M P(1)

)
= tr

(
(A T ∗M R(2)+R(2) ∗N C T +β(2) ·P(1))T ∗M P(1)

)
= tr

(
R(2)T ∗M (A ∗M P(1)+P(1) ∗N C )

)
+β(2) · tr

(
P(1)T ∗M P(1)

)
= tr

(
R(2)T ∗M (R(1)−R(2)) · 1

α(1)

)
+β(2) · tr

(
P(1)T ∗M P(1)

)
=− 1

α(1)
· tr
(
R(2)T ∗M R(2)

)
+β(2) · tr

(
P(1)T ∗M P(1)

)
=0. (3.5)

Suppose that (3.3) holds for t=s, that is,

tr
(
R(s)T ∗M R(j)

)
=0, tr

(
P(s)T ∗M P(j)

)
=0, j=1,2,. ..,s−1.

In view of Lemma 3.1, when t=s+1, we have

tr
(
R(s+1)T ∗M R(s)

)
= tr

(
R(s)T ∗M R(s)

)
− α(s) · tr

(
P(s)T ∗M P(s)

)
+α(s) ·β(s) · tr

(
P(s)T ∗M P(s−1)

)
= tr

(
R(s)T ∗M R(s)

)
−α(s) · tr

(
P(s)T ∗M P(s)

)
=0, (3.6)

and

tr
(
P(s+1)T ∗M P(s)

)
= tr

(
(A T ∗M R(s+1)+R(s+1) ∗N C T +β(s+1) ·P(s))T ∗M P(s)

)
= tr

(
R(s+1)T ∗M (R(s)−R(s+1)) · 1

α(s)

)
+β(s+1) · tr

(
P(s)T ∗M P(s)

)
=− 1

α(s)
· tr
(
R(s+1)T ∗M R(s+1)

)
+β(s+1) · tr

(
P(s)T ∗M P(s)

)
=0. (3.7)

Now we consider the cases j=1,2,. ..,s−1. In fact, when j=1, similar to the proofs
of (3.4) and (3.5), we have

tr
(
R(s+1)T ∗M R(1)

)
= tr

(
(R(s)−α(s) ·(A ∗M P(s)+P(s) ∗N C ))T ∗M R(1)

)
=−α(s) · tr

(
P(s)T ∗M (A T ∗M R(1)+R(1) ∗M C T )

)
=−α(s) · tr

(
P(s)T ∗M P(1)

)
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=0, (3.8)

and

tr
(
P(s+1)T ∗M P(1)

)
= tr

(
(A T ∗M R(s+1)+R(s+1) ∗N C T +β(s+1) ·P(s))T ∗M P(1)

)
= tr

(
R(s+1)T ∗M (A ∗M P(1)+P(1) ∗N C )

)
=− 1

α(1)
· tr
(
R(s+1)T ∗M (R(1)−R(2))

)
=0. (3.9)

When 2≤ j≤s−1, similar to the proofs of (3.6) and (3.7), using Lemma 3.1 once again,
we can respectively deduce that

tr
(
R(s+1)T ∗M R(j)

)
=0 and tr

(
P(s+1)T ∗M P(j)

)
=0,

which, together with (3.4)-(3.9), indicates that (3.3) holds.

Lemma 3.3. Suppose that X̃ is an arbitrary solution of the tensor Equation (1.2),
then the sequences {R(k)} and {P(k)} satisfy

tr
(
(X̃ −X (k))T ∗M P(k)

)
=∥R(k)∥2, k=1,2,. ... (3.10)

Proof. We prove (3.10) by induction as well.
When k=1, it follows from Algorithm 3.1 and Lemma 3.2 that

tr
(
(X̃ −X (1))T ∗M P(1)

)
= tr

(
(X̃ −X (1))T ∗M (A T ∗M R(1)+R(1) ∗M C T )

)
= tr

(
(D−A ∗M X (1)−X (1) ∗N C )T ∗M R(1)

)
= tr

(
R(1)T ∗M R(1)

)
=∥R(1)∥2. (3.11)

Assume that (3.10) holds for k=s, then

tr
(
(X̃ −X (s+1))T ∗M P(s)

)
= tr

(
(X̃ −X (s)−α(s) ·P(s))T ∗M P(s)

)
= tr

(
(X̃ −X (s))T ∗M P(s)

)
−α(s) · tr

(
P(s)T ∗M P(s)

)
=∥P(s)∥2−α(s) · tr

(
P(s)T ∗M P(s)

)
=0.

Furthermore, we have

tr
(
(X̃ −X (s+1))T ∗M P(s+1)

)
= tr

(
(X̃ −X (s+1))T ∗M (A T ∗M R(s+1)+R(s+1) ∗N C T +β(s+1) ·P(s))

)
= tr

(
(A ∗M (X̃ −X (s+1))+(X̃ −X (s+1))∗N C )T ∗M R(s+1)

)
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= tr
(
(D−A ∗M X (s+1)−X (s+1) ∗N C )T ∗M R(s+1)

)
=∥R(s+1)∥2. (3.12)

The proof is complete.

Making use of Lemmas 3.2 and 3.3, we can prove the main result of this paper.

Theorem 3.1. If the tensor Equation (1.2) is consistent, then for any initial iteration
tensor X (1), its solution can be derived by Algorithm 3.1 within finite iteration steps.

Proof. For simplicity, denote

m := I1 · .. . ·IM , n :=J1 · .. . ·JN .

If R(k) ̸=0, k=1,2,. ..,mn, it follows from Lemma 3.3 that P(k) ̸=0, then one can
compute X (mn+1) and R(mn+1) by Algorithm 3.1. Furthermore, from Lemma 3.2 we
know that

tr
(
R(mn+1)T ∗M R(k)

)
=0 and tr

(
P(mn+1)T ∗M P(l)

)
=0,

where k,l=1,2,. ..,mn, k ̸= l. Since the sequence {R(k)} is an orthogonal basis of tensor
space RI1×···×IM×J1×···×JN , which implies that R(mn+1)=0, i.e., X (mn+1) is a solution
of (1.2).

Moreover, according to the basic properties of Algorithm 3.1 mentioned above, we
can show that the solvability of the tensor Equation (1.2) can be determined automat-
ically during the iteration process.

Theorem 3.2. The tensor Equation (1.2) is inconsistent if and only if there exists a
positive integer k0 such that R(k0) ̸=0 and P(k0)=0.

Proof. If the tensor Equation (1.2) is inconsistent, it follows that R(k) ̸=0 for
any k. Provided that P(k) ̸=0 for all positive integers k, then, from the proof of
Theorem 3.1 we know that there must exist X (k) satisfying (1.2), which contradicts
the inconsistency. Conversely, if there is a positive integer k0, such that Rk0

̸=0 but
Pk0

=0, which contradicts Lemma 3.3, so the tensor Equation (1.2) is inconsistent. The
proof is complete.

In addition, since the tensor equation is always over-determined, we are often inter-
ested in the least F-norm solution. Next we can show that the least F-norm solution of
the tensor Equation (1.2) can also be gained by means of Algorithm 3.1. We first prove
the following lemma for this aim.

Lemma 3.4. Let X ∗ be a solution of the tensor Equation (1.1), then X ∗ is the unique
least F-norm solution if X ∗∈R(A T ).

Proof. For convenience of expression, we use the same symbol ψ to represent the
unfoldings of different tensors, e.g., A=ψ(A ), B=ψ(B) and X=ψ(X ). We prove the
conclusion by two steps:

Step (1) The tensor Equation (1.1) is equivalent to the matrix equation

AX=B with X∈Rm×n. (3.13)



2284 ITERATIVE ALGORITHMS FOR THE TENSOR NEARNESS PROBLEMS

In fact, from the definition of Einstein product, we can respectively rewrite (1.1) and
(3.13) in terms of the components as

(A ∗M X )k1...kP j1...jN =
∑

i1,...,iM

Ak1...kP i1...iM Xi1...iM j1...jN =Bk1...kP j1...jN ,

and ∑
t

AptXts=Bps.

Since ψ is a bijection, then there must exist, respectively, the unique index {k1,. ..,kP },
{i1,. ..,iM} and {j1,. ..,jN} such that ivec([k1,. ..,kP ],K)=p, ivec([i1,. ..,iM ],I)= t, and
ivec([j1,. ..,jN ],J)=s in which K={K1,. ..,KP }. Therefore, the above two systems are
equivalent.

Step (2) As is well-known [21], the least F-norm solution of matrix Equation (3.13)

is X̃=A†B∈R(AT ), where the superscript † denotes the Moore-Penrose inverse of a
matrix. In view of the uniqueness of the least F-norm solution, and together with the
fact that ψ is a bijection, we complete the proof.

Depending on the above lemma, we can prove the following theorem.

Theorem 3.3. Assume that the tensor Equation (1.2) is consistent, and let the initial
iteration tensor X (1)=A T ∗M W +W ∗N C T with arbitrary W ∈RI1×···×IM×J1×···×JN ,
or especially, X (1)=O ∈RI1×···×IM×J1×···×JN , then the solution generated by Algorithm
3.1 is the unique least F-norm solution.

Proof. From Algorithm 3.1 and Theorem 3.1, it is known that if we choose
the initial iteration tensor X (1)=A T ∗M W +W ∗N C T for some tensor W , then the
approximate solution X (k) of the tensor Equation (1.2) possesses the form X (k)=
A T ∗M H +H ∗N C T for some H ∈RI1×···×IM×J1×···×JN . Using the definition of Vec
and Lemma 2.2, we deduce that

Vec
(
X (k)

)
=Vec

(
A T ∗M H +H ∗N C T

)
=
(
I1⊗A T +C ⊗I2

)
∗N Vec(H )

∈R
(
(I1⊗A +C T ⊗I2)

T
)
, (3.14)

where I1 and I2 are the identity tensors of size J1×···×JN ×J1×···×JN and I1×
···×IM ×I1×···×IM , respectively. On the other hand, by using the properties of the
Kronecker product, one can demonstrate that (1.2) is equivalent to the tensor equation

(I1⊗A +C T ⊗I2)∗N Vec(X )=Vec(D),

which, together with (3.14) and Lemma 3.4, implies that X (k) is the least F-norm
solution of the Sylvester tensor Equation (1.2). The proof is complete.

4. Solving the tensor nearness problem
In this section, we apply Algorithm 3.1 to the solution of the tensor nearness problem

(1.3). Suppose that the tensor Equation (1.2) is consistent, i.e., its solution set, denoted
by Φ, is nonempty. It is easy to verify that the set Φ is a closed and convex set in the
tensor space RI1×···×IM×J1×···×JN , which reveals that the solution to the tensor nearness

problem is unique, denoted by X̂ for convenience.
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We should point out that the unique solution X̂ can also be derived by using
Algorithm 3.1. Actually, noting the fact that to solve the tensor nearness problem with

the given tensor X0 is equivalent to find the least F-norm solution (denoted by Ŷ ) of
the following Sylvester tensor equation

A ∗M Y +Y ∗N C = D̃ , (4.1)

where Y =X −X0 and D̃ =D−A ∗M X0−X0 ∗N C , then, it follows from Theorem

3.3 that X̂ can be obtained by applying Algorithm 3.1 to (4.1) with the initial iteration
tensor X (1)=A T ∗M W +W ∗N C T for some W ∈RI1×···×IM×J1×···×JN , or especially,
X (1)=O ∈RI1×···×IM×J1×···×JN , i.e., the null tensor with zero elements. In this case,

the nearness solution of (1.3) can be obtained by X̂ = Ŷ +X0.

5. Numerical experiments
In this section, we perform some numerical examples to illustrate the feasibil-

ity and effectiveness of the proposed algorithm in present paper. All computations
were written using MATLAB (version R2016a) on a personal computer with 2.50GHz
central processing unit (Intel(R) Core(TM) i5-3210M) and 4GB memory. Specially,
all the tensor calculations in our tests were carried out with the Tensor Toolbox
Version 2.6.1 The iterations will be terminated if the norm of the residual, i.e.,
RES=∥D−A ∗M X (k)−X (k) ∗N C ∥<ε=1.0e−10, or the number of iteration steps
exceeds the maximum kmax=1000.

Example 5.1. Suppose the tensors A ∈R4×3×4×3, C ∈R3×3×3×3, D ∈R4×3×3×3 in
(1.2) are given as follows:

A (:,:,1,1)=


11 7 7
−2 11 −2
11 −2 7
−2 11 −2

,A (:, :,2,1)=


−2 −2 −2
3 −2 3
−2 3 −2
3 −2 3

,

A (:,:,3,1)=


3 −4 −4
−1 3 −1
3 −1 −4
−1 3 −1

,A (:, :,4,1)=


2 −9 −9
−6 2 −6
2 −6 −9
−6 2 −6

,

A (:, :,2,2)=


−16 3 3
−11 −16 −11
−16 −11 3
−11 −16 −11

,A (:,:,1,2)=


0 7 7
11 0 11
0 11 7
11 0 11

,

A (:, :,3,2)=


−11 15 15
0 −11 0

−11 0 15
0 −11 0

,A (:, :,4,2)=


−4 −2 −2
16 −4 16
−4 16 −2
16 −4 16

,

A (:, :,1,3)=


3 −3 −3
13 3 13
3 13 −3
13 3 13

,A (:, :,2,3)=


26 0 0
−4 26 −4
26 −4 0
−4 26 −4

,
1http://www.sandia.gov/tgkolda/TensorToolbox/index-2.6.html.
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A (:, :,3,3)=


−4 1 1
8 −4 8
−4 8 1
8 −4 8

,A (:,:,4,3)=


2 −8 −8

−16 2 −16
2 −16 −8

−16 2 −16

;

C (:,:,1,1)=

10 0 6
15 10 10
10 15 10

, C (:,:,2,1)=

 6 −9 17
−9 6 6
6 −9 6

,

C (:,:,3,1)=

 4 −19 −3
−14 4 4
4 −14 4

, C (:, :,1,2)=

 9 −22 −8
0 9 9
9 0 9

,

C (:,:,2,2)=

 0 −9 −3
−13 0 0
0 −13 0

, C (:,:,3,2)=

−7 −17 12
6 −7 −7
−7 6 −7

,

C (:, :,2,3)=

 5 −13 1
−5 5 5
5 −5 5

, C (:, :,1,3)=

0 −3 4
5 0 0
0 5 0

,

C (:, :,3,3)=

 0 −12 3
−1 0 0
0 −1 0

,
and the tensor D is chosen such that D =A ∗M X ∗+X ∗ ∗N C with X ∗=reshape(1 :
108, [4,3,3,3])∈R4×3×3×3.

In this case, the tensor Equation (1.2) is consistent and X ∗ is an exact solution.
Applying Algorithm 3.1 with initial iteration tensor X (1)=O ∈R4×3×3×3 to (1.2),

we obtain the least F-norm solution, denoted by X̃ , and the corresponding residual
RES=9.6392e−11 after 86 iteration steps. In addition, since the conjugate gradient
least squares algorithm (CGLS) has better performance than the bi-conjugate gradient
algorithm and the bi-conjugate residual algorithm [30], we only compared Algorithm 3.1
(denoted by T-CG) with CGLS method for the above initial iteration tensor. In Figure
5.1, we plotted their convergent curves over the norm of the residual versus iteration
number k, which imply that our method converges faster although the latter takes less
iteration steps.

X̃ (:, :,1,1)=

 42.9784 46.3496 53.2346
53.0555 68.2438 49.0433
54.4996 54.9506 59.0609
61.1020 53.8303 73.3694

,X̃ (:, :,2,1)=

 32.9897 36.6903 42.0641
38.3122 47.6399 40.5920
39.5236 41.8336 45.8862
43.1914 41.8239 53.2235

,

X̃ (:, :,3,1)=

 46.9887 50.6593 56.1705
52.7434 62.6039 54.4513
53.9760 56.1170 60.1748
57.9106 56.0063 68.1459

,X̃ (:, :,1,2)=

 37.0000 41.0000 45.0000
38.0000 42.0000 46.0000
39.0000 43.0000 47.0000
40.0000 44.0000 48.0000

,



M. LIANG AND B. ZHENG 2287

X̃ (:, :,2,2)=

 50.9990 54.9690 59.1064
52.4312 56.9640 59.8592
53.4524 57.2834 61.2886
54.7191 58.1824 62.9224

,X̃ (:, :,3,2)=

 41.0103 45.3097 47.9359
37.6878 36.3601 51.4080
38.4764 44.1664 48.1138
36.8086 46.1761 42.7765

,

X̃ (:, :,1,3)=

 73.0000 77.0000 81.0000
74.0000 78.0000 82.0000
75.0000 79.0000 83.0000
76.0000 80.0000 84.0000

,X̃ (:, :,2,3)=

 57.0144 61.4336 63.5103
51.9630 48.5042 67.9711
52.6669 59.0329 62.9594
49.9320 61.4465 55.0871

,

X̃ (:,:,3,3)=

 59.0196 63.5885 64.9782
51.8069 45.6842 70.6751
52.4051 59.6161 63.5163
48.3363 62.5345 52.4753

.
Next we consider the tensor nearness problem (1.3).
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Fig. 5.1. Convergence behavior of two algorithms for the tensor equation in Example 5.1.

Example 5.2. Let the tensors A , C and D in (1.2) be the same as in Example 5.1,
and assume that the given tensor X0 is as follows:

X0(:, :,1,1)=

 0 11 −10
−7 −1 −4
−4 −4 5
7 −6 −5

,X0(:,:,2,1)=

 4 −11 −12
−3 6 −20
−13 4 0
6 −6 −4

,

X0(:, :,3,1)=

 −5 11 0
−16 −2 4
33 −2 −1
−16 −8 9

,X0(:, :,1,2)=

 7 6 −4
14 −4 −11
−13 −32 9
−28 0 −10

,

X0(:,:,2,2)=

−10 5 18
−6 −8 8
−16 −4 8
−12 −4 9

, X0(:, :,3,2)=

 −7 11 4
−4 −1 0
−14 −5 −21
4 6 14

,



2288 ITERATIVE ALGORITHMS FOR THE TENSOR NEARNESS PROBLEMS

0 10 20 30 40 50 60 70 80

Iteration k

-25

-20

-15

-10

-5

0

5

10

15

lo
g(

R
E

S
)

T-CG
CGLS

Fig. 5.2. Convergence behavior of two algorithms for the tensor nearness problem in Example 5.2.

X0(:, :,1,3)=

 1 1 4
7 21 −5
−4 2 0
−16 5 −18

,X0(:, :,2,3)=

 9 4 5
2 −2 −4
−7 −2 13
−16 6 −4

,

X0(:, :,3,3)=

 0 −9 1
8 −16 −14
9 −15 −12

−19 −3 −2

.
Applying Algorithm 3.1 with X (1)=O to the tensor Equation (4.1), we obtain the

solution to the tensor nearness problem (1.3) after 79 iteration steps, i.e., X̂ .

X̂ (:, :,1,1)=

 44.1912 54.1943 43.7075
50.4602 68.6229 49.3393
48.1731 53.1240 62.4182
79.5249 53.7313 65.1154

,X̂ (:, :,2,1)=

 39.4807 25.7036 37.5108
39.1969 44.5352 36.9080
41.6060 39.9043 56.2875
45.9264 37.6248 44.2264

,

X̂ (:, :,3,1)=

 40.5057 59.6836 56.9232
41.8432 65.1252 55.9031
83.6837 59.5245 59.2572
52.0225 56.2288 71.7468

,X̂ (:, :,1,2)=

 37.0000 41.0000 45.0000
38.0000 42.0000 46.0000
39.0000 43.0000 47.0000
40.0000 44.0000 48.0000

,

X̂ (:, :,2,2)=

 41.7494 54.6924 71.7399
49.8603 58.7485 67.0232
33.7992 61.6395 66.1633
53.6123 55.2035 71.7550

,X̂ (:, :,3,2)=

 34.5193 56.2964 52.4892
36.8031 39.4648 55.0920
36.3940 46.0957 37.7125
34.0736 50.3752 51.7736

,

X̂ (:, :,1,3)=

 73.0000 77.0000 81.0000
74.0000 78.0000 82.0000
75.0000 79.0000 83.0000
76.0000 80.0000 84.0000

,X̂ (:, :,2,3)=

 66.1178 55.6214 63.4721
57.5053 53.0468 68.9621
44.5545 56.3846 70.5580
50.0412 66.5350 56.9444

,
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X̂ (:,:,3,3)=

 64.4359 52.8083 61.1574
62.3311 36.4565 60.7722
56.7895 56.3274 48.6033
36.7992 60.3013 46.4383

.
At this time, ∥X̂ −X0∥=640.2422.

Meanwhile, we compared our method with the conjugate gradient least squares
method proposed in [30] for the same initial iteration tensor as above, and described
their convergence curves in Figure 5.2, which indicate that our method has a slightly
better performance.

6. Conclusions

In this paper, we first present an iterative method for solving the Sylvester tensor
Equation (1.2), i.e., Algorithm 3.1. For any initial iteration tensor, it is shown that the
solvability of this equation can be determined automatically (see, Theorem 3.2), and
that the solution (if it exits) can be obtained within finite iteration steps in absence
of roundoff errors (see, Theorem 3.1). Particularly, the least F-norm solution of (1.2)
can also be derived by selecting appropriate initial iteration tensor (see, Theorem 3.3).
Furthermore, applying this iterative method to another Sylvester tensor equation, i.e.,
(4.1), we can obtain the unique solution to the tensor nearness problem (1.3). Many
other examples that we have tested in MATLAB confirm the theoretical results pre-
sented in this paper. Of course, for a problem with large and not sparse tensors A ,C
and D , Algorithm 3.1 may not terminate in a finite number of iteration steps because of
roundoff errors. This is an important problem which we should study in a future work.
Moreover, the approach we propose in this paper can not be directly used to solve the
Sylvester tensor Equation (1.2) when it is inconsistent, which will be considered in our
future work as well.
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