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STATIONARY SOLUTIONS OF OUTFLOW PROBLEM FOR FULL
COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM: EXISTENCE,

STABILITY AND CONVERGENCE RATE∗

HAKHO HONG† , JONGSUNG KIM‡ , AND KWANG-IL CHOE§

Abstract. In this paper, we study the asymptotic behavior of solution to the initial boundary
value problem for the non-isentropic Navier-Stokes-Poisson system in a half line (0,∞). We consider an
outflow problem where the gas blows out the region through the boundary for general gases including
ideal polytropic gas. First, we give necessary condition for the existence of stationary solution by use
of the center manifold theory. Second, using energy method we show the asymptotic stability of the
solutions under assumptions that the boundary value and the initial perturbation is small. Third, we
prove that the algebraic and exponential decay of the solution toward supersonic stationary solution is
obtained, when the initial perturbation belongs to Sobolev space with algebraic and exponential weight
respectively.
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1. Introduction and main results
The compressible Navier-Stokes-Poisson (called NSP in the sequel for simplicity)

system may be used to simulate the transport of charged particles (e.g., electrons
and ions) under the influence of the electro-static potential force governed by the self-
consistent Poisson equation. In this paper, we consider the following compressible NSP
equations in Eulerian coordinate:

ρt+(ρu)x=0,

(ρu)t+(ρu2+p)x=ρE+µuxx,

[ρ(e+ u2

2 )]t+[ρu(e+ u2

2 )+pu]x=ρuE+κθxx+µ(uux)x,

∂xE=ρ−ρ+,

(1.1)

where the unknown functions are the density ρ(x,t)>0, the velocity u(x,t), the tem-
perature θ(x,t)>0, and the electron field E(x,t). Also, p=p(ρ,θ) is the pressure and
e=e(ρ,θ) is the internal energy, while µ>0, κ>0 and ρ+>0 denote the viscosity, the
heat-conductivity and the doping profile, respectively.

We consider the system (1.1) supplemented with the initial data and far field con-
dition {

(ρ,u,θ) |t=0=(ρ0,u0,θ0)(x), x>0,

limx→+∞(ρ,u,θ,E)(x,t)=(ρ+,u+,θ+,0),
(1.2)

and the outflow boundary condition

u |x=0=u−<0, θ |x=0=θ−, (1.3)
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where u±, θ±>0 are prescribed constants. We are interested in the large-time behavior
of solutions for the initial-boundary value problem (1.1)-(1.3) in the case of u−<0, that
is, outflow problem.

Throughout this paper, we assume that

pρ(ρ,θ)>0, eθ(ρ,θ)>0. (1.4)

Setting v=ρ−1, it is well-known that given any two variables of the thermody-
namical variables (v,p,e, θ and s), the remaining three are smooth functions of the
others, where s is entropy of gas. The second law of thermodynamics θds=de+pdv
asserts that, if we choose (v,θ) or (v,s) as the independent variables and write

(p,e,s)=(p(v,θ),e(v,θ),s(v,θ)) or (p,e,θ)=(p̃(v,s), ẽ(v,s), θ̃(v,s)) respectively. Then,
by (1.5) in [5] and (1.4), we can deduce

p̃v(v,s)=pv(v,θ)−
θ(pθ(v,θ))

2

eθ(v,θ)
<0, (1.5)

and {
ẽss(v,s)=

θ
eθ(v,θ)

>0, ẽvs(v,s)=− θpθ(v,θ)
eθ(v,θ)

,

ẽvv(v,s)=−pv(v,θ)+ θ(pθ(v,θ))
2

eθ(v,θ)
>0,

(1.6)

which means that ẽ(v,s) is convex with respect to (v,s).

Notation: Throughout this paper, O(1),c or C denote a generic positive constant
independent of t,x and ci(·, ·) or Ci(·,·)(i∈Z+) stands for generic constant that depends
only on the quantities listed in parentheses. Hk :=Hk(0,∞) denote the Sobolev space
with norm ∥·∥k and ∥·∥0=∥·∥ will be used to denote the usual L2−norm.

Now, we state the results of this paper. The stationary solution (ρ̂, û, θ̂,Ê)(x) of the
problem (1.1)-(1.3) must satisfy the system (1.7):

(ρ̂û)x=0, x>0,

(ρ̂û2+ p̂)x= ρ̂Ê+µûxx,

[ρ̂û(ê+
û2

2
)+ p̂û]x= ρ̂ûÊ+κθ̂xx+µ(ûûx)x,

Êx= ρ̂−ρ+
(û, θ̂)(0)=(u−,θ−), lim

x→∞
(ρ̂, û, θ̂,Ê)(x)=(ρ+,u+,θ+,0),

(1.7)

where p̂=p(ρ̂, θ̂), ê=e(ρ̂, θ̂).

Theorem 1.1 (Existence of stationary solution). Let ρ+>0, θ±>0, u−<0. The
necessary condition for the existence of a solution to the system (1.7) is

ρ̂(x)û(x)=ρ+u+= ρ̂(0)u−, ∀x>0. (1.8)

If u+≥0, then there is no stationary solution for the system (1.7).
If u+<0 and (1.4) holds, then there exists a positive constant δ0 and a local manifold

M⊂Mδ0 :={(u,θ)∈ (−∞,0)×(0,∞) |0< |(u−u+,θ−θ+)|≤ δ0} such that if (u−,θ−)∈
M, then the system (1.7) has a unique solution (ρ̂, û, θ̂,Ê)(x) satisfying

|∂kx(ρ̂−ρ+,û−u+, θ̂−θ+,Ê)|≤Cδexp(−ĉx), k=0,1,2,·· · , (1.9)
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where δ= |(u−−u+,θ−−θ+)| and C,ĉ are positive constants independent of x,δ.

Remark 1.1. If δ ̸=0, then Ê cannot vanish. Compared with the previous results
(see [17]), Ê ̸=0 is a fundamental difference, and the stationary solution of the system
(1.7) converges to the spatial asymptotic state with an exponential rate even for the
case M+=1, where M+ denotes the Mach number at far field x=∞ defined by

M+=
|u+|√

pρ(ρ+,s+)
.

Next, we state the result for the stability toward the stationary solution for the
problem (1.1)-(1.4).

Theorem 1.2 (Asymptotic stability of solution). Let ρ±>0,u±<0,θ±>0. Sup-

pose that there exists the solution (ρ̂, û, θ̂,Ê)(x) to the system (1.7) satisfying (1.9). In
addition, suppose that the initial data (ρ0,u0,θ0) satisfies

(ρ0− ρ̂,u0− û,θ0− θ̂)∈H1(0,∞), u0(0)=u−, θ0(0)=θ−. (1.10)

Then, there is a positive constant ε0 such that if

∥(ρ0− ρ̂,u0− û,θ0− θ̂)∥1+∥E(·,0)− Ê∥+δ≤ε0, (1.11)

where δ= |(u−−u+,θ−−θ+)|, then the problem (1.1)-(1.4) has a unique global solution
(ρ,u,θ,E)(x,t) satisfying

(ρ− ρ̂,u− û,θ− θ̂)∈C([0,∞);H1(0,∞)), E− Ê∈C([0,∞);L2(0,∞)),

ρx,Ex∈L2(0,∞;L2(0,∞)), ux,θx∈L2(0,∞;H1(0,∞)).

Moreover, the solution (ρ,u,θ,E)(x,t) tends time-asymptotically to the stationary solu-

tion (ρ̂, û, θ̂,Ê)(x) in the sense that

lim
t→∞

sup
x∈(0,∞)

|(ρ,u,θ,E)(x,t)−(ρ̂, û, θ̂,Ê)(x)|=0.

Theorem 1.3 (Convergence rate of solutions). Let ρ±>0,u±<0,θ±>0. Suppose

that there exists the solution (ρ̂, û, θ̂)(x) to the (1.7) satisfying (1.9) for the case of
M+>1. If (1.10) and (1.11) hold, we have

(1) exponential decay of solutions if (ρ− ρ̂,u− û,θ− θ̂,E− Ê)(·,0)∈L2
ς,exp(0,∞), there

is a constant β>0 depending on the ς such that the solution (ρ,u,θ)(x,t) to the
problem (1.1)-(1.4) satisfies

sup
x∈(0,∞)

|(ρ,u,θ,E)(x,t)−(ρ̂, û, θ̂,Ê)(x)|≤Ce−βt.

(2) algebraic decay of solutions if (ρ− ρ̂,u− û,θ− θ̂,E− Ê)(·,0)∈L2
ς (0,∞), then the so-

lution (ρ,u,θ)(x,t) to the problem (1.1)-(1.4) satisfies

sup
x∈(0,∞)

|(ρ,u,θ,E)(x,t)−(ρ̂, û, θ̂,Ê)(x)|≤C(1+ t)−
ς
2 ,

where ς >0 and

L2
ς,exp(0,∞) :={f ∈L2

loc(0,∞);

∫ ∞

0

eςxf2(x)dx<∞},

L2
ς (0,∞) :={f ∈L2

loc(0,∞);

∫ ∞

0

(1+x)ςf2(x)dx<∞}.
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Remark 1.2. In the case of isentropic gas, similar results as in Theorem 1.2 and
Theorem 1.3 were recently obtained by [31] and [16].

Related results: From a physical point of view, the motion of the ion-dust plasma
([10, 19]), the self-gravitational viscous gaseous stars [4] and the charged particles in
semiconductor devices [22] can be governed by the NSP system. In recent years, there
have been a great number of mathematical studies about the compressible NSP system.
In what follows, we only mention some of them related to our interest. Recently, the
global existence and convergence rates for the three-dimensional NSP system around
a non-vacuum constant state were studied through carrying out the spectrum analysis
by [13,14,20,21,34] etc. The pointwise estimate of the solution for the multi-dimensional
NSP system was discussed in [30]. In addition, the global strong solution to the one-
dimensional non-isentropic NSP system with large data for density-dependent viscosity
was established by [27] and nonexistence was discussed in [3]. The above works show that
the momentum of the NSP system decays at a slower rate than that of the compressible
Navier-Stokes system in the absence of the electric field. This fully demonstrates that
the electric field could affect the large-time behavior of the solution.

For the Cauchy problem of the NSP system, the large-time behavior around non-
linear wave patterns began to be studied (see [2, 8, 9, 26]). For the multi-dimensional
isentropic NSP system, the stability of stationary states was studied by Tan-Wang-
Wang [26] and Cai-Tan [2] in the case with non-flat doping profile and with an external
force, respectively, under the assumption in that the gas states at far fields ±∞ are
equal. For the one dimensional two-fluid NSP system with different gas states at far
fields, the stability of rarefaction waves was studied by Duan-Liu [8] and Duan-Liu-Yin-
Zhu [2] in isothermal and non-isentropic cases, respectively, with the nontrivial electric
potential.

Another interesting and challenging problem is to study the stability of the NSP
system on half space with different gas states at boundary and far field. In general, it
is well known that the large-time behavior of solutions to the NSP system in the half
space is much more complicated than that for the corresponding Cauchy problem due
to boundary effect.

Recently, the mathematical studies to clarify the stability of nonlinear wave pat-
terns for outflow and inflow problem on the compressible NSP system was begun
(see [6, 7, 11, 12, 16, 31–33]). Duan-Yang [7] first proved the stability of rarefaction
wave and boundary layer for outflow problem on the two-fluid isentropic NSP system.
Later, for outflow problem on the two-fluid isentropic NSP system, Zhou-Li [33] showed
convergence rate toward stationary solutions and Yin-Zhang-Zhu [32] proved the stabil-
ity of the superposition of stationary solutions and rarefaction wave. Also, for outflow
problem on the two-fluid non-isentropic NSP system, Cui-Gao-Yin-Zhang [6] proved the
stability and convergence rate toward stationary solutions. Recently, for inflow problem
on the two-fluid non-isentropic NSP system, Hong-Shi-Wang [12] proved the stability
of stationary solutions. One important point used in [6,7,12,32,33] was that the large-
time behavior of the electric field was trivial and hence the two-fluids indeed had the
same asymptotic profiles which were constructed from Navier-Stokes equations without
any force under the assumptions that all physical parameters in the model must be
unity, which was obviously impractical since ions and electrons generally had different
masses. On the other hand, for outflow problem on the unipolar isentropic NSP system
with doping profile, Jiang-Lai-Yin-Zhu [16] and Wang-Zhang-Zhang [31] studied the
existence, stability and convergence rate of stationary solutions. Recently, Hong [11]
obtained the stability result for inflow problem on the unipolar non-isentropic NSP sys-
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tem with doping profile. However, to the best of our knowledge, there is little research
about the stability of nonlinear wave patterns for the outflow problem on the unipolar
non-isentropic NSP system with doping profile which is of interest in our paper.

Here, we briefly review some main difficulties. For the outflow problem of the sin-
gle quasineutral Navier-Stokes system (1.1)1-(1.1)3 with E=0, there have been many
mathematical studies about the existence, stability and convergence rate of the sta-
tionary solutions, please refer to [5, 15, 17, 18, 23–25, 28, 29] and the references therein.
Compared to the Navier-Stokes model in [17], our problem is more general and more
complex for the electric field is taken into account. For instance, in order to obtain the
existence of stationary solutions, we have to introduce the new variable to deduce the
stationary equations to a 4×4 system of autonomous ordinary differential equations,
and examine dynamics around an equilibrium by applying the manifold theory (see Sec-
tion 2). Next, to deduce our results desired for the stability of the stationary solutions
by the elementary energy method as in [17], it is sufficient to deduce certain uniform
(with respect to the time t) a priori estimates on the perturbations (φ,ψ,ζ,χ) around
stationary solutions. In the first step of a priori estimates, comparing with [17], the
main difficulty is to control the energy form (3.4) so that we get the uniform estimate
for L2−norm of the perturbations, which is not trivial for the general gas including ideal
polytropic gas (see Section 3). Finally, the main point of the proof for the convergence
rate of the solutions is how to get the lower estimate for the term −wxG1 in weighted
energy form (4.3). To do this, we derive a lower estimate (4.9) for the leading order
term −G1

1 for Taylor expansion of the −G1 and rely on the fact that the other terms
are smaller than the leading order term (see Section 4).

The remainder of this paper consists of the following: In Section 2, we discuss the
existence of the stationary solutions and present the proof of Theorem 1.1 with the aid
of the stable manifold theory. Section 3 is devoted to showing the asymptotic stability
result (Theorem 1.2) of the stationary solutions. In Section 4, for the supersonic case, the
convergence rate mentioned in Theorem 1.3 is obtained by a time- and space-weighted
energy method.

2. The existence of stationary solutions

2.1. Reformulation of stationary problem. Integrating the first, second
and third equations in (1.7) over [x,∞) yields

ρ̂û=ρ+u+, x>0,

µûx=ρ+u+(û−u+)+(p̂−p+)+
∫ ∞

x

ρ̂Êdy, (2.1)

κθ̂x=ρ+u+

(
(ê−e+)+

1

2
(û2−u2+)− Ê1

)
+(p̂û−p+u+)−µûûx,

where p+=p(v+,θ+), e+=e(v+,θ+), Ê1(x)=−
∫∞
x
Ê(y)dy.

Integrating the first equation in (1.7) over [0,x) yields

ρ̂û= ρ̂(0)u−, x>0. (2.2)

By (2.1) and (2.2), there holds (1.8). So, if u+≥0, then there is no solution to the
system (1.7). Using ρ̂= Êx+ρ+, we have∫ ∞

x

ρ̂Êdy=−1

2
Ê2−ρ+Ê1. (2.3)
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We set û= u+

v+
v̂ (v̂= ρ̂−1, v+=ρ−1

+ ), û1= ûx. Then, we have from (2.1) and (2.3)



v̂x=
u+

µv+
(v̂−v+)+ v+

µu+
(p̂−p+)− v+

2µu+
Ê2− 1

µu+
Ê1,

θ̂x=
u+
κv+

(ê−e+)−
u3+
2κv3+

(v̂−v+)2+
u+
κv+

p+(v̂−v+)

+
u+
2κv+

v̂Ê2+
u+
κv2+

Ê1(v̂−v+),

Êx=
1
v̂ −

1
v+
, (Ê1)x= Ê.

(2.4)

Also, we have

(v̂, θ̂)(0)=(v−,θ−) with v−=
u−
u+

v+, (v̂, θ̂,Ê,Ê1)(∞)=(v+,θ+,0,0). (2.5)

To discuss the solvability of the system (2.4), (2.5) near the infinity asymptotic
state (v+,θ+,0,0), we need to introduce the stationary perturbation variables given by

(ṽ, θ̃,Ẽ,Ẽ1) :=(v̂, θ̂,Ê,Ê1)−(v+,θ+,0,0).

Then, the system (2.4), (2.5) is transformed into the vector equations for (ṽ, θ̃,Ẽ,Ẽ1)

d

dx


ṽ

θ̃

Ẽ

Ẽ1

=J+


ṽ

θ̃

Ẽ

Ẽ1

+


g1(ṽ, θ̃,Ẽ)

g2(ṽ, θ̃,Ẽ,Ẽ1)
g3(ṽ)
0

 , x>0

(ṽ, θ̃)(0)=(v−−v+,θ−−θ+), (ṽ, θ̃,Ẽ,Ẽ1)(∞)=(0,0,0,0),

where J+ is the Jacobian matrix at an equilibrium point (0,0,0,0) defined by

J+=


v+
µu+

(
u2
+

v2+
+p+v

)
v+
µu+

p+θ 0 − 1
µu+

u+

κv+
(e+v +p+)

u+

κv+
e+θ 0 0

− 1
v2+

0 0 0

0 0 1 0

≡


a11 a12 0 a14
a21 a22 0 0
a31 0 0 0
0 0 1 0

 (2.6)

and gi(i=1,·· · ,4) are nonlinear terms such that

g1(ṽ, θ̃,Ẽ)=
v+
µu+

(p̂−p+−p+v ṽ−p+θ θ̃)−
v+

2µu+
Ẽ2=O(ṽ2+ θ̃2+ Ẽ2),

g2(ṽ, θ̃,Ẽ,Ẽ1)=
u+
κv+

(ê−e+−e+v ṽ−e+θ θ̃)−
u3+
2κv3+

ṽ2+
u+
2κv+

(ṽ+v+)Ẽ
2

+
u+
κv2+

Ẽ1ṽ=O(ṽ2+ θ̃2+ Ẽ2+ Ẽ1ṽ),

g3(ṽ)=
1

ṽ+v+
− 1

v+
+

ṽ

v2+
=O(ṽ2),

where p+v =pv(v+,θ+), e
+
v =ev(v+,θ+) and so on.
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2.2. Proof of Theorem 1.1. By (2.6), we have

J+−λI=


a11−λ a12 0 a14
a21 a22−λ 0 0
a31 0 −λ 0
0 0 1 −λ


and the characteristic determinant of J+ is

|J+−λI|=(−λ)

∣∣∣∣∣∣
a11−λ a12 0
a21 a22−λ 0
a31 0 −λ

∣∣∣∣∣∣−a14
∣∣∣∣∣∣
a21 a22−λ 0
a31 0 −λ
0 0 1

∣∣∣∣∣∣
=λ2

∣∣∣∣a11−λ a12
a21 a22−λ

∣∣∣∣+a14a31(a22−λ).
Assume that u+<0 and (1.4). Then, the eigenvalues λi(i=1,·· · ,4) of J+ must be

satisfied

λ4+b1λ
3+b2λ

2+b3λ+b4=0, (2.7)

where

b1=−(a11+a22)=− v+
µu+

(
u2+
v2+

+p+v

)
− u+
κv+

e+θ ,

b2=a11a22−a12a21=
1

µκ

(
u2+
v2+

+p+v

)
e+θ − 1

µκ

(
e+v +p+

)
p+θ ,

b3=−a14a31=
−1

µv2+u+
>0,

b4=a14a31a22=
1

κµv3+
e+θ >0.

From Vieta’s formula, its roots have the following properties:

λ1+λ2+λ3+λ4=−b1,
λ1λ2+λ1λ3+λ1λ4+λ2λ3+λ2λ4+λ3λ4= b2,

λ1λ2λ3+λ1λ2λ4+λ1λ3λ4+λ2λ3λ4=−b3<0,

λ1λ2λ3λ4= b4>0.

By using

λ1λ2λ3λ4>0,

λ1λ2(λ3+λ4)+(λ1+λ2)λ3λ4<0,

we obtain that (2.7) does not have any zero real root and the following possible cases :

(1) λ1<0, λ2<0, λ3>0, λ4>0

(2) λ1=a+bi, λ2=a−bi(a<0), λ3>0, λ4>0,

(3) λ1=a+bi, λ2=a−bi, λ3<0, λ4<0,

(4) λ1=a+bi, λ2=a−bi, λ3= c+di, λ4= c−di(a<0 or c<0),

(2.8)

where b ̸=0,d ̸=0 and i denotes the imaginary number.
Without the loss of generality, we can assume Reλ1<0 and Reλ2<0 due to (2.8).

Therefore, applying the center manifold theory (see [1]), we can prove Theorem 1.1 by
the same lines as in [11]. We will omit it for brevity. Thus Theorem 1.1 is proved.
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3. Asymptotic stability of stationary solutions
We can rewrite (1.1) and (1.7) as

ρt+(ρu)x=0, x>0, t>0,

ρ(ut+uux)+px=ρE+µuxx,

ρ(et+uex)+pux=κθxx+µu
2
x,

ρθ(st+usx)=κθxx+µu
2
x, s=s(ρ,θ),

Ex=ρ−ρ+

(3.1)

and 

(ρ̂û)x=0, x>0, t>0,

ρ̂ûûx+ p̂x= ρ̂Ê+µûxx, p̂=p(ρ̂, θ̂),

ρ̂ûêx+ p̂ûx=κθ̂xx+µû
2
x, ê=e(ρ̂, θ̂),

ρ̂θ̂ûŝx=κθ̂xx+µû
2
x, ŝ=s(ρ̂, θ̂),

Êx= ρ̂−ρ+.

(3.2)

Let us set the perturbation (φ,ψ,ζ,χ) as

(φ,ψ,ζ,χ)(x,t)=(ρ,u,θ,E)(x,t)−(ρ̂, û, θ̂,Ê)(x)

and the solution space X(I) as

X(I)={(φ,ψ,ζ,χ) |(φ,ψ,ζ)∈C(I;H1), χ∈C(I;L2),

(φx,χx)∈L2(I;L2), (ψx,ζx)∈L2(I;H1)}

for any interval I⊂ [0,∞).
The local existence of the solution to the outflow problem (1.1)-(1.4) can be estab-

lished by the standard iteration argument and hence will be skipped in the paper. To
prove Theorem 1.2, a crucial step is to show the following a priori estimate.

Proposition 3.1 (Priori estimate of the solution). Besides the assumptions of the
Theorem 1.2, suppose that (ρ,u,θ,E) is the solution to the problem (1.1)-(1.4) satisfying
(ϕ,ψ,ζ,χ)∈X([0,T ]). Then, there is a positive constant ε1 such that if

sup
0≤t≤T

(∥(φ,ψ,ζ)(t)∥1+∥χ(t)∥)≤ε1, and δ= |(u−−u+,θ−−θ+)|≤ε1,

for any t∈ [0,T ], it holds that

∥(φ,ψ,ζ)(t)∥21+∥χ(t)∥2+
∫ t

0

(
∥(φx,χx)(τ)∥2+∥(ψx,ζx)(τ)∥21

)
dτ

+

∫ t

0

|(φ,φx,χ)(0,τ)|2dτ ≤C
(
∥(φ,ψ,ζ)(0)∥21+∥χ(0)∥2

)
, (3.3)

where C is a positive constant independent of t,T,ε1.

We will prove Proposition 3.1 by the following four steps.

Step 1: Energy estimate.
For notational simplicity, we introduce A≲B if A≤C0B holds uniformly on the

constant C0 independent of t,x,T,ε1.
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Setting

E=(e− ê)− θ̂(s− ŝ)+ ψ2

2
+ p̂(v− v̂), (3.4)

we have (see (3.10) and (3.18) in [5])

(ρE)t+(ρuE)x+µ
θ̂

θ
ψ2
x+κ

θ̂

θ2
ζ2x=∆1x+∆2+∆3+∆4+ρψχ, (3.5)

where

∆1=µψψx+κ
ζζx
θ

−(p− p̂)ψ,

∆2=κ
θ̂xζζx
θ2

−(κθ̂xx+µû
2
x)
ζ2

θθ̂
+2µ

ζψx
θ
ûx+µρ̂ψûxx(v− v̂)−ρψ2ûx,

∆3=− ûx (p− p̂− p̃ρ(ρ̂, ŝ)(ρ− ρ̂)− p̃s(ρ̂, ŝ)(s− ŝ)),

+ ρ̂ûŝx

(
θ− θ̂− θ̃ρ(ρ̂, ŝ)(ρ− ρ̂)− θ̃s(ρ̂, ŝ)(s− ŝ)

)
+(ρ̂û−ρu)θ̂x(s− ŝ).

Due to (1.6) and the assumptions of Proposition 3.1, it is easy to check that

(φ2+ψ2+ζ2)≲E(x,t)≲ (φ2+ψ2+ζ2). (3.6)

By using (3.6), u |x=0=u−<0 and (ψ,ζ) |x=0=0, we have

∆1 |x=0=0, −(ρuE) |x=0≳φ
2(0,t). (3.7)

Noticing that χ=E− Ê=−
∫∞
x

(ρ− ρ̃)dy and

χx=φ, χt= ρ̂û−ρu=−ρψ−φû, (3.8)

and by using integration by parts, we have∫ ∞

0

ρψχdx=−
∫ ∞

0

χχtdx−
∫ ∞

0

χχxûdx

=−1

2

d

dt

∫ ∞

0

χ2dx+
u−
2
χ2(0,t)+

1

2

∫ ∞

0

ûxχ
2dx. (3.9)

After integrating (3.5) for (x,t), taking the summation of the resulting equations and
using (3.6)-(3.9) yields

∥(φ,ψ,ζ,χ)(t)∥2+
∫ t

0

∥(ψx,ζx)(τ)∥2dτ+
∫ t

0

|(φ,χ)(0,τ)|2dτ

≲∥(φ,ψ,ζ,χ)(0)∥2+
3∑
k=2

∫ t

0

∫ ∞

0

|∆k|dxdτ+
∫ t

0

∫ ∞

0

|ûx|χ2dxdτ, (3.10)

where it is essential that u−<0. Using (1.9), (ψ,ζ) |x=0=0 and

|f(x)|≤ |f(0)|+
√
x∥fx∥, ∀f ∈H1(0,∞) (3.11)

yields

|∆2|≲ δ|(ψx,ζx)|2+δ|(φ,ψ,ζ)|2exp(−ĉx)
≲ δ|(ψx,ζx)|2+δ|φ(0,τ)|2+δ∥(φx,ψx,ζx)∥2xexp(−ĉx),
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which implies∫ t

0

∫ ∞

0

|∆2|dxdτ ≲ δ
∫ t

0

∥(φx,ψx,ζx)(τ)∥2dτ+δ
∫ t

0

|φ(0,τ)|2dτ. (3.12)

By the same lines as in (3.12), we have∫ t

0

∫ ∞

0

|∆3|dxdτ ≲ δ
∫ t

0

∫ ∞

0

(
|φ|2+ |ψ|2+ |ζ|2

)
exp(−ĉx)dxdτ

≲ δ
∫ t

0

∥(φx,ψx,ζx)(τ)∥2dτ+δ
∫ t

0

|φ(0,τ)|2dτ.

Also, using (1.9) and (3.11) yields∫ ∞

0

|ûx|χ2dx≲ δ
∫ ∞

0

χ2exp(−ĉx)dx≲ δ∥χx(τ)∥2+δ|χ(0,t)|2. (3.13)

By the estimations for ∆k(k=2,3) and (3.13), we get from (3.10)

∥(φ,ψ,ζ,χ)(t)∥2+
∫ t

0

∥(ψx,ζx)(τ)∥2dτ+
∫ t

0

|(φ,χ)(0,τ)|2dτ

≲∥(φ,ψ,ζ,χ)(0)∥2+δ
∫ t

0

∥(φx,χx)(τ)∥2dτ. (3.14)

Step 2: Estimation for ∥φx(t)∥.
By the same lines as in Lemma 3.2 of [5], we have(

µφ2
x

2ρ3
+
φxψ

ρ

)
t

+

(
µuφ2

x

2ρ3
− φt
ρ
ψ

)
x

+
pρ
ρ2
φ2
x=(ρE− ρ̂Ê)

φx
ρ

+

3∑
k=1

fk, (3.15)

where

f1=−µφx
ρ3

(ρ̂xψx+ ûxxφ+ ρ̂xxψ),

f2=
φx
ρ2

(ûρ̂−ρu)ûx−
u

ρ
φxψx+

(ρu)xψ

ρ2
ρ̂x−

(ρu)x
ρ

ψx,

f3=−φx
ρ2

(
pθζx+ ρ̂x (pρ− p̂ρ)+ θ̂x (pθ− p̂θ)

)
.

By using ψ |x=0=0, u |x=0=u−<0 and (1.9), we have∫ ∞

0

(
µuφ2

x

2ρ3
− φt
ρ
ψ

)
x

dx=− µu−
2ρ3(0,t)

φ2
x(0,t)≳φ

2
x(0,t),

|f1|≲ δexp(−ĉx)
(
φ2
x+ψ

2
x+φ

2+ψ2
)
,

|f2|≲ δexp(−ĉx)
(
φ2
x+ψ

2
x+φ

2+ψ2
)
+ϵφ2

x+ϵ
−1ψ2

x,

|f3|≲ δexp(−ĉx)
(
φ2+ζ2

)
+ϵφ2

x+ϵ
−1ζ2x, ∀ϵ>0.

(3.16)

After integrating (3.15) for (x,t) and using (3.16) and pρ(ρ,θ)>0, by the same argu-
ments as in step 1, we have

∥φx(t)∥2+
∫ t

0

∥φx(τ)∥2dτ+
∫ t

0

|φx(0,τ)|2dτ ≲∥φx(0)∥2
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+∥ψ(t)∥2+
∫ t

0

∥(ψx,ζx)(τ)∥2dτ+
∫ t

0

∫ ∞

0

(ρE− ρ̂Ê)
φx
ρ
dxdτ. (3.17)

Noticing that

(ρE− ρ̂Ê)
φx
ρ

=χφx+ Ê
φφx
ρ
, χφx=(χφ)x−χ2

x

we have ∫ ∞

0

(ρE− ρ̂Ê)
φx
ρ
dx

=−
∫ ∞

0

χ2
xdx−(χφ)(0,t)+

∫ ∞

0

Ê
φφx
ρ
dx.

Therefore, using (1.9), we have∫ ∞

0

(ρE− ρ̂Ê)
φx
ρ
dx≲−∥χx(t)∥2+(χ2+φ2)(0,t)+δ∥φx(t)∥2. (3.18)

Substituting the estimations on (3.18) into (3.17) yields

∥φx(t)∥2+
∫ t

0

∥(φx,χx)∥2dτ+
∫ t

0

|φx(0,τ)|2dτ ≲∥φx(0)∥2

+

(
∥ψ(t)∥2+

∫ t

0

(χ2+φ2)(0,τ)dτ+

∫ t

0

∥(ψx,ζx)(τ)∥2dτ
)
. (3.19)

By (3.19) and (3.14), we get

∥φx(t)∥2+
∫ t

0

∥(φx,χx)∥2dτ+
∫ t

0

|φx(0,τ)|2dτ ≲∥(φ,ψ,ζ,φx,χ)(0)∥2. (3.20)

Step 3: Estimation for ∥ψx(t)∥.
Subtracting (3.2)2 from (3.1)2 and multiplying it by −ψxx

ρ yields(
ψ2
x

2

)
t

−(ψtψx)x+
µψ2

xx

ρ
=−χψxx− Ê

φψxx
ρ

+f4,

f4=uψxψxx+
(p− p̂)x

ρ
ψxx+

(ρ̂û−ρu)ûx
ρ

ψxx.

(3.21)

By using (1.9) and ψ |x=0=0, we have∫ ∞

0

(ψtψx)xdx=0,

|f4|≲ (ϵ+δ)ψ2
xx+ϵ

−1|(φx,ψx,ζx)|2+δexp(−ĉx)|(φ,ψ,ζ)|2, ∀ϵ>0.

(3.22)

It is easy to check that

−
∫ ∞

0

χψxxdx=

∫ ∞

0

χxψxdx≲∥(χx,ψx)∥2,

−
∫ ∞

0

Ê
φψxx
ρ

dx≲ δ
∫ ∞

0

exp(−ĉx)
(
φ2+ψ2

xx

)
dx≲ δ

(
φ2(0,t)+∥(φx,ψxx)∥2

)
.

(3.23)
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After integrating (3.21) for (x,t), taking the summation of the resulting equations and
using (3.22), (3.23), we have

∥ψx(t)∥2+
∫ t

0

∥ψxx∥2dτ ≲∥ψx(0)∥2

+

∫ t

0

∥(φx,ψx,ζx)∥2dτ+δ
∫ t

0

φ2(0,τ)dτ. (3.24)

Step 4: Estimation for ∥ζx(t)∥.
Subtracting (3.2)3 from (3.1)3 and using et=eθ(ρ,θ)θt−eρ(ρ,θ)(ρu)x, we have

ρeθ(ρ,θ)ζt+ρuζx−κζxx=ρeρ(ρ,θ)(ρu− ρ̂û)x
+(ûρ̂−ρu)êx−(pux− p̂ûx)+µ(u2x− û2x).

Multiplying it by − ζxx

ρeθ(ρ,θ)
yields(
ζ2x
2

)
t

−(ζtζx)x+
κζ2xx

ρeθ(ρ,θ)
=f5, (3.25)

where

f5=
ζxx

ρeθ(ρ,θ)
(ρuζx+(pux− p̂ûx)−ρeρ(ρ,θ)(ρu− ρ̂û)x)

− ζxx
ρeθ(ρ,θ)

(
(ûρ̂−ρu)êx+µ(u2x− û2x)

)
.

By using (1.9) and ζ |x=0=0, we have∫ ∞

0

(ζtζx)xdx=0,

|f5|≲ (λ+δ)ζ2xx+λ
−1|(φx,ψx,ζx)|2+δexp(−ĉx)|(φ,ψ,ζ)|2, ∀λ>0.

(3.26)

After integrating (3.25) for (x,t), using (3.26) and eθ(ρ,θ)>0, we have

∥ζx(t)∥2+
∫ t

0

∥ζxx∥2dτ ≲∥ζx(0)∥2+
∫ t

0

∥(φx,ψx,ζx)∥2dτ+δ
∫ t

0

φ2(0,τ)dτ. (3.27)

The proof of Proposition 3.1: By (3.14) and (3.20), we get

∥(φ,ψ,ζ,φx,χ)(t)∥2+
∫ t

0

∥(φx,ψx,ζx,χx)∥2dτ

+

∫ t

0

|(φ,φx,χ)(0,τ)|2dτ ≲∥(φ,ψ,ζ,φx,χ)(0)∥2. (3.28)

By (3.28), (3.24) and (3.27), we get (3.3) which completes the proof of Proposition 3.1.

4. Convergence rate for supersonic stationary solution
In this section, we show the convergence rate stated in Theorem 1.3 by using a time-

and space-weighted energy method.
The a priori estimate is obtained in the weighted Sobolev space Xω(0,T ) defined

by

Xω(0,T ) :={(φ,ψ,ζ,χ)∈X([0,T ]) |
√
ω(φ,ψ,ζ,χ)∈C([0,T ];L2(0,∞))}.
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For a weight function ω(x) :=(1+x)α or ω(x)=eαx, we use the notation

|f |2,ω :=
(∫ ∞

0

ω(x)f2(x)dx

) 1
2

, ∥f∥a,α := |f |2,(1+x)α , ∥f∥e,α := |f |2,eαx .

To prove Theorem 1.3, it’s enough to show the following the weighted norm esti-
mates (see [17]).

Proposition 4.1. Suppose that the same assumptions as in Theorem 1.3 hold.

(1) exponential decay. Suppose that (ρ,u,θ,E) is the solution to the outflow problem
(1.1)-(1.4) satisfying (φ,ψ,ζ,χ)∈Xeςx(0,T ) for certain positive constants ς >0 and
T >0. Then there exist positive constants ε1,α(<ς),β(≪α) such that

if sup
t∈[0,T ]

(∥(φ,ψ,ζ)(t)∥1+∥χ(t)∥)+δ≤ε1,

then the following weighted estimates are satisfied:

eβt
(
∥(φ,ψ,ζ)(t)∥21+∥(φ,ψ,ζ,χ)(t)∥2e,α

)
≤C

(
∥(φ,ψ,ζ)(0)∥21+∥(φ,ψ,ζ,χ)(0)∥2e,α

)
, (4.1)

where C is a positive constant independent of t,x,T,ε1.

(2) algebraic decay. Suppose that (ρ,u,θ,E) is the solution to the outflow problem
(1.1)-(1.4) satisfying (φ,ψ,ζ,χ)∈X(1+x)ς (0,T ) for certain positive constants ς >0
and T >0. Then there exist positive constants ε1 such that

if sup
t∈[0,T ]

(∥(φ,ψ,ζ)(t)∥1+∥χ(t)∥)+δ≤ε1,

then the following weighted estimates are satisfied:

(1+ t)ς∥(φ,ψ,ζ,χ)(t)∥21≤C
(
∥(φ,ψ,ζ)(0)∥21+∥(φ,ψ,ζ,χ)(0)∥2a,ς

)
, (4.2)

where C is a positive constant independent of t,x,T,ε1.

In the remainder of this section, we will prove Proposition 4.1. As in Section 3, we
denote A≲B if A≤C0B holds uniformly on the constant C0 independently of t,x,T,ε1.

Step 1: Weighted energy estimates.
Suppose that η(t) and ω(x) is the weight function like (1+ t)β (or eβt) and (1+x)α

(or eαx, α≤ ĉ
2 , where ĉ is the positive number in (1.9)), respectively.

Setting w(x,t)=η(t)ω(x), we get from (3.5)

(wρE)t+{w(ρuE −∆1)}x−wxG1+w

(
µ
θ̂

θ
ψ2
x+κ

θ̂

θ2
ζ2x

)
=wtρE −wxG2+w(∆2+∆3)+wρψχ, (4.3)

where

G1=ρuE+(p− p̂)ψ, G2=µψψx+κ
ζζx
θ
.

Using (3.7) yields ∫ ∞

0

{w(ρuE −∆1)}xdx≳η(t)φ2(0,t). (4.4)
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We estimate G1.
Using ẽv(v,s)=−p and ẽs(v,s)=θ (see (1.5) in [5]), we obtain from (3.4)

E=
1

2

(
ψ2+ ẽvv(v̂, ŝ)ϕ

2+2ẽvs(v̂, ŝ)ϕϑ+ ẽss(v̂, ŝ)ϑ
2
)
+O(1)(|ϕ|3+ |ϑ|3), (4.5)

where ϑ=s− ŝ, Using (4.5) and

p− p̂= p̃v(v̂, ŝ)ϕ+ p̃s(v̂, ŝ)ϑ+O(1)(|ϕ|2+ |ϑ|2),

we can rewrite G1 as

G1=
ρu

2

(
ψ2+ ẽvv(v̂, ŝ)ϕ

2+2ẽvs(v̂, ŝ)ϕϑ+ ẽss(v̂, ŝ)ϑ
2
)

+ψ (p̃v(v̂, ŝ)ϕ+ p̃s(v̂, ŝ)ϑ)+O(1)(|ϕ|3+ |ϑ|3)+O(1)(|ϕ|2+ |ϑ|2)|ψ|
=G1

1+G
1
2+G

1
3,

and

G1
1=

ρ+u+
2

(
ψ2+ ẽvv(v+,s+)ϕ

2−2ẽvs(v+,s+)ϕϑ+ ẽss(v+,s+)ϑ
2
)

+ψ (p̃v(v+,s+)ϕ+ p̃s(v+,s+)ϑ) ,

G1
2=

ρu

2

(
ψ2+ ẽvv(v̂, ŝ)ϕ

2+2ẽvs(v̂, ŝ)ϕϑ+ ẽss(v̂, ŝ)ϑ
2
)

− ρ+u+
2

(
ψ2+ ẽvv(v+,s+)ϕ

2+ ẽvs(v+,s+)ϕϑ+ ẽss(v+,s+)ϑ
2
)

+ψ ((p̃v(v̂, ŝ)− p̃v(v+,s+))ϕ+(p̃s(v̂, ŝ)− p̃s(v+,s+))ϑ) ,
G1

3=O(1)(|ϕ|3+ |ϑ|3)+O(1)(|ϕ|2+ |ϑ|2)|ψ|.

By using (1.6), (1.5) and p̃s(v,s)=
θpθ(v,θ)
eθ(v,θ)

(see (1.5) in [5]), we rewrite G1
1 as

G1
1=

ρ+u+
2

f(ϕ,ψ,ϑ)

f(ϕ,ψ,ϑ) :=

(
ψ2+b1ϕ

2−2b2ϕϑ+b3ϑ
2− 2b1

ρ+u+
ϕψ+

2b2
ρ+u+

ϑψ

)
,

(4.6)

where

b1=−p̃v(v+,s+)>0, b2=
θ+pθ(v+,θ+)

eθ(v+,θ+)
, b3=

θ+
eθ(v+,θ+)

>0. (4.7)

The A corresponding to the f(ϕ,ψ,ϑ) is as the following:

A :=

 b1 − b1
ρ+u+

−b2
− b1
ρ+u+

1 b2
ρ+u+

−b2 b2
ρ+u+

b3

.
If all principal minors ∆̄i(i=1,2,3) of A are positive, the matrix A is positive. Noticing
that

M+=
|u+|√

−v2+p̃v(v+,s+)
>1⇄

b1
(ρ+u+)2

<1,
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and by using (4.7) and (1.4), we compute ∆̄i(i=1,2,3) as follows:

∆̄1= b1=−p̃v(v+,s+)>0, ∆̄2= b1−
b21

(ρ+u+)2
>0,

∆̄3=detA=(b1b3−b22)
(
1− b1

(ρ+u+)2

)
=−θ+pv(v+,θ+)

eθ(v+,θ+)

(
1− b1

(ρ+u+)2

)
>0.

(4.8)

By (4.6), (4.8), ρ+>0 and u+<0, we have

−G1
1≳
(
ϕ2+ψ2+ϑ2

)
≳
(
ϕ2+ψ2+ζ2

)
. (4.9)

Noticing that

|G1
2|≲ (|ρ−ρ+|+ |u−u+|)(ϕ2+ψ2+ϑ2)+(|v−v+|+ |s−s+|)(ϕ2+ϑ2)

≲ (|(ρ̂−ρ+,û−u+θ̂−θ+)|+ |(ϕ,ζ)|)(ϕ2+ψ2+ζ2).

and using (1.9), we have∫ ∞

0

wx|G1
2|dx≲ (ε1+δ)η(t)|(φ,ψ,ζ)|22,ωx

. (4.10)

Similarly, we have ∫ ∞

0

wx|G1
3|dx≲ε1η(t)|(φ,ψ,ζ)|22,ωx

. (4.11)

By (4.9)-(4.11), we obtain

−
∫ ∞

0

wxG
1dx≳η(t)|(ϕ,ψ,ζ)|22,ωx

. (4.12)

Similarly, it’s easy to check that∫ ∞

0

|wxG2|dx≲η(t)
(
ϵ|(ψ,ζ)|22,ωx

+ϵ−1|(ψx,ζx)|22,ωx

)
, ∀ϵ>0,∫ ∞

0

|wtρE|dx≲η′(t)|(φ,ψ,ζ)|22,ω.
(4.13)

By using (3.8) and integration by parts, we have∫ ∞

0

wρψχdx=−
∫ ∞

0

wχχtdx−
∫ ∞

0

wχχxûdx

=− 1

2

d

dt

(
η(t)

∫ ∞

0

ωχ2dx

)
+

1

2
η′(t)

∫ ∞

0

ωχ2dx

+
u−
2
η(t)χ2(0,t)+

1

2
η(t)

∫ ∞

0

(ûxω+ ûωx)χ
2dx. (4.14)

Noticing that infx∈[0,∞)(−û(x))>0, we have

−
∫ ∞

0

ûωxχ
2dx≳ |χ(t)|22,ωx

. (4.15)
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Integrating (4.3) for x,t and using (4.4), (4.12)-(4.15), we have

η(t)|Φ(t)|22,ω+
∫ t

0

η(τ)
(
|Φ(τ)|22,ωx

+ |(ψx,ζx)(τ)|22,ω+ |(φ,χ)(0,τ)|2
)
dτ

≲|Φ(0)|22,ω+
∫ t

0

(
η′(τ)|Φ(τ)|22,ω+η(τ)|(ψx,ζx)(τ)|22,ωx

)
dτ

+

∫ t

0

η(τ)

∫ ∞

0

ω
(
|ûx|χ2+ |∆2|+ |∆3|

)
dxdτ, (4.16)

where Φ=(φ,ψ,ζ,χ). Using (1.9) and (3.11), it is easy to show that if ω(x)=(1+x)α,
then ∫ ∞

0

ω|ûx|χ2dx≲ δ
∫ ∞

0

χ2(1+x)α exp(−ĉx)dx≲ δ∥χx(t)∥2+δ|χ(0,t)|2

and if ω(x)=eαx, α≤ ĉ
2 , then∫ ∞

0

ω|ûx|χ2dx≲ δ
∫ ∞

0

χ2exp(αx− ĉx)dx≲ δ∥χx(t)∥2+δ|χ(0,t)|2,

which imply that ∫ ∞

0

ω|ûx|χ2dx≲ δ∥χx(t)∥2+δ|χ(0,t)|2. (4.17)

By similar arguments as in (4.17), we have∫ ∞

0

ω(|∆2|+ |∆3|)dx≲ δ∥(φx,ψx,ζx)(t)∥2+δ|φ(0,t)|2. (4.18)

By (4.17), (4.18) and ∥·∥≲ | · |2,ω, we get from (4.16)

η(t)|Φ(t)|22,ω+
∫ t

0

η(τ)
(
|Φ(τ)|22,ωx

+ |(ψx,ζx)(τ)|22,ω+ |(φ,χ)(0,τ)|2
)
dτ ≲ |Φ(0)|22,ω

+

∫ t

0

(
η′(τ)|Φ(τ)|22,ω+η(τ)|(ψx,ζx)(τ)|22,ωx

)
dτ+δ

∫ t

0

η(τ)∥(φx,χx)(τ)∥2dτ. (4.19)

Setting ω=1 in (4.19), we get

η(t)∥Φ(t)∥2+
∫ t

0

η(τ)
(
∥(ψx,ζx)(τ)∥2+ |(φ,χ)(0,τ)|2

)
dτ

≲∥Φ(0)∥2+δ
∫ t

0

η(τ)∥(φx,χx)(τ)∥2dτ+
∫ t

0

η′(τ)∥Φ(τ)∥2dτ, (4.20)

where Φ=(φ,ψ,ζ,χ).

Step 2: Weighted estimation for ∥φx(t)∥.
By (3.15), we have(
η(
µφ2

x

2ρ3
+
φxψ

ρ
)

)
t

+

(
η(
µuφ2

x

2ρ3
− φt
ρ
ψ)

)
x

+
ηpρ(ρ,θ)

ρ2
φ2
x=η(ρE− ρ̂Ê)

φx
ρ

+G3, (4.21)
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where

G3=η(t)(f1+f2+f3)+η
′(t)

(
µφ2

x

2ρ3
+
φxψ

ρ

)
=:G3

1+G
3
2.

Using (3.16) and the assumptions of Proposition 4.1 yields∫ ∞

0

|G3
1|dx≲ (δ+ϵ)η(t)∥φx∥2+δη(t)φ2(0,t)+Cϵη(t)∥(ψx,ζx)∥2,∫ ∞

0

|G3
2|dx≲η′(t)∥(φx,ψ)∥2, ∀ϵ>0.

(4.22)

Integrating (4.21) for (x,t), and using (3.16)1, (4.22) and (3.18), we obtain

η(t)∥φx(t)∥2+
∫ t

0

η(τ)∥(φx,χx)(τ)∥2dτ+
∫ t

0

η(τ)φ2
x(0,τ)dτ

≲∥φx(0)∥2+η(t)∥ψ(t)∥2+
∫ t

0

η(τ)∥(ψx,ζx)(τ)∥2dτ

+

∫ t

0

η(τ)|(φ,χ)(0,τ)|2dτ+
∫ t

0

η′(τ)∥(φx,ψ)(τ)∥2dτ. (4.23)

By (4.20) and (4.23), we obtain

η(t)∥φx(t)∥2+
∫ t

0

η(τ)
(
∥φx,χx)(τ)∥2+φ2

x(0,τ)
)
dτ

≲∥(Φ,φx)(0)∥2+
∫ t

0

(η′(τ)
(
∥Φ(τ)∥2+∥φx(τ)∥2

)
dτ, (4.24)

where Φ=(φ,ψ,ζ,χ).

Step 3: Weighted estimation for ∥ψx(t)∥.
By (3.21), we have

1

2

(
ηψ2

x

)
t
−η(ψtψx)x+η

µψ2
xx

ρ
=−ηχψxx−ηÊ

φψxx
ρ

+G4, (4.25)

where G4=η(t)f4+
1
2η

′(t)ψ2
x. By (3.22), we have∫ ∞

0

|G4|dx≲η(t)(ϵ+δ)∥ψxx∥2+η(t)δ|φ(0,t)|2

+η(t)ϵ−1∥(φx,ψx,ζx)∥2+η′(t)∥ψx∥2, ∀ϵ>0. (4.26)

Integrating (4.25) for (x,t), and using (4.26), (3.22)1 and (3.23), we obtain

η(t)∥ψx(t)∥2+
∫ t

0

η(τ)∥ψxx(τ)∥2dτ ≲∥ψx(0)∥2+
∫ t

0

η′(t)∥ψx(τ)∥2dτ

+

∫ t

0

η(τ)∥(φx,ψx,ζx,χx)(τ)∥2dτ+δ
∫ t

0

η(τ)|φ(0,τ)|2dτ. (4.27)

Step 4: Weighted estimation for ∥ζx(t)∥.
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By (3.25), we have (
η
ζ2x
2

)
t

−η(ζtζx)x+η
κζ2xx

ρeθ(ρ,θ)
=G5, (4.28)

where G4=η(t)f5+
1
2η

′(t)ζ2x. By (3.26), we have∫ ∞

0

|G5|dx≲η(t)(ϵ+δ)∥ζxx∥2+η(t)δ|φ(0,t)|2

+η(t)ϵ−1∥(φx,ψx,ζx)∥2+η′(t)∥ζx∥2, ∀ϵ>0. (4.29)

Integrating (4.28) for (x,t), and using (4.29), (3.26)1 and eθ(ρ,θ)>0, we obtain

η(t)∥ζx(t)∥2+
∫ t

0

η(τ)∥ζxx(τ)∥2dτ ≲∥ζx(0)∥2+
∫ t

0

η′(t)∥ζx(τ)∥2dτ

+

∫ t

0

η(τ)∥(φx,ψx,ζx,χx)(τ)∥2dτ+δ
∫ t

0

η(τ)|φ(0,τ)|2dτ. (4.30)

The proof of Proposition 4.1:
We first prove (4.1). Using (4.20), (4.24), (4.27) and (4.30), we have

η(t)
(
∥Φ(t)∥2+∥(φx,ψx,ζx)(t)∥2

)
+

∫ t

0

η(τ)
(
∥Φx(τ)∥2+∥(ψxx,ζxx)(τ)∥2

)
dτ

+

∫ t

0

η(τ)|(φ,φx,χ)(0,τ)|2dτ ≲
(
∥Φ(0)∥2+∥(φx,ψx,ζx)(0)∥2

)
+

∫ t

0

η′(τ)
(
∥Φ(t)∥2+∥(φx,ψx,ζx)(τ)∥2

)
dτ. (4.31)

Also, by using (4.19), (4.31) and ∥·∥≲ | · |2,ω, we get

η(t)
(
|Φ(t)|22,ω+∥(φx,ψx,ζx)(t)∥2

)
+

∫ t

0

η(τ)
(
|Φ(τ)|22,ωx

+ |(ψx,ζx)(τ)|22,ω
)
dτ

+

∫ t

0

η(τ)
(
∥Φx(τ)∥2+∥(ψxx,ζxx)(τ)∥2+ |(φ,φx,χ)(0,τ)|2

)
dτ

≤C1

(
|Φ(0)|22,ω+∥(φx,ψx,ζx)(0)∥2

)
+C2

∫ t

0

η′(τ)|Φ(τ)|22,ωdτ

+C3

∫ t

0

η(τ)|(ψx,ζx)(τ)|22,ωx
dτ+C4

∫ t

0

η′(τ)∥(φx,ψx,ζx)(τ)∥2dτ, (4.32)

where Φ=(φ,ψ,ζ,χ) and Ci(i=1, ·· · ,4) are positive constants independent of t,x,T,ε1.
Setting ω(x)=eαx and η(t)=eβt, we obtain from (4.32)

eβt
(
∥Φ(t)∥2e,α+∥(φx,ψx,ζx)(t)∥2

)
+(α−C2β)

∫ t

0

eβτ∥Φ(τ)∥2e,αdτ

+(1−C3α)

∫ t

0

eβτ∥(ψx,ζx)(τ)∥2e,αdτ+(1−C4β)

∫ t

0

eβτ∥Φx(τ)∥2dτ

+

∫ t

0

eβτ
(
∥(ψxx,ζxx)(τ)∥2+ |(φ,φx,χ)(0,τ)|2

)
dτ
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≤C1

(
∥Φ(0)∥2e,α+∥(φx,ψx,ζx)(0)∥2

)
. (4.33)

If we choose α and β(0<β<α<ς) satisfying

α−C2β≥0, 1−C3α≥
1

2
, 1−C4β≥

1

2
,

then (4.33) yields (4.1).
Next, we prove (4.2). Setting ω(x)=(1+x)α and η(t)=(1+ t)β , we obtain from

(4.32)

(1+ t)β
(
∥Φ(t)∥2a,α+∥(φx,ψx,ζx)(t)∥2

)
+

∫ t

0

(1+τ)β
(
α∥Φ(τ)∥2a,α−1+∥(ψx,ζx)(τ)∥2a,α

)
dτ

+

∫ t

0

(1+τ)β
(
∥Φx(τ)∥2+∥(ψxx,ζxx)(τ)∥2+ |(φ,φx,χ)(0,τ)|2

)
dτ

≲
(
∥Φ(0)∥2a,α+∥(φx,ψx,ζx)(0)∥2

)
+α

∫ t

0

(1+τ)β∥(ψx,ζx)(τ)∥2a,α−1dτ

+β

∫ t

0

(1+τ)β−1
(
∥Φ(τ)∥2a,α+∥(φx,ψx,ζx)(τ)∥2

)
dτ. (4.34)

Setting

Eα(t)
2 :=∥Φ(t)∥2a,α+∥(φx,ψx,ζx)(t)∥2,

D(t)2 :=∥Φx(t)∥2+∥(ψxx,ζxx)(t)∥2+ |(φ,φx,χ)(0,t)|2,
Dα(t)

2 :=D(t)2+α∥Φ(t)∥2a,α−1+∥(ψx,ζx)(t)∥2a,α,
(4.35)

we rewrite (4.34) as

(1+ t)βEα(t)
2+

∫ t

0

(1+τ)βDα(τ)
2dτ

≲Eα(0)
2+α

∫ t

0

(1+τ)β∥(ψx,ζx)(τ)∥2a,α−1dτ+β

∫ t

0

(1+τ)β−1Eα(τ)
2dτ. (4.36)

By the same induction argument as in Section 4 of [5], we obtain from (3.3) and (4.36)

(1+ t)kEς−k(t)
2+

∫ t

0

(1+τ)kDς−k(τ)
2dτ ≲Eς(0)

2 (4.37)

and

(1+ t)kE0(t)
2+

∫ t

0

(1+τ)kD0(τ)
2dτ ≲Eς(0)

2 (4.38)

for any ς >0 and integer k=0,1,2, ·· · , [ς]. If ς is an integer, we obtain (4.2) from (4.38)
letting k= ς.

In the case that ς is not an integer, we prove (4.2). Letting α=0 in (4.36), we have

(1+ t)βE0(t)
2≤CE0(0)

2+Cβ

∫ t

0

(1+τ)β−1E0(τ)
2dτ. (4.39)
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We estimate the second term on the right-hand side of (4.39). Letting k=[ς] in (4.37)
and noticing (4.35), we have

(1+ t)[ς]Eς−[ς](t)
2+(ς− [ς])

∫ t

0

(1+τ)[ς]Eς−[ς]−1(τ)
2dτ ≤CEς(0)2. (4.40)

Noticing that

E0(τ)
2≤Eς−[ς](τ)

2
qEς−[ς]−1(τ)

2
p ,

where p=(ς− [ς])−1, q=(1− ς+[ς])−1 and using (4.40), we have∫ t

0

(1+τ)β−1E0(τ)
2dτ

≤
∫ t

0

(1+τ)β−1−[ς]
(
(1+τ)[ς]Eς−[ς](τ)

2
) 1

q
(
(1+τ)[ς]Eς−[ς]−1(τ)

2
) 1

p

dτ

≤CEς(0)
2
q

∫ t

0

(1+τ)β−1−[ς]
(
(1+τ)[ς]Eς−[ς]−1(τ)

2
) 1

p

dτ

≤CEς(0)
2
q

(∫ t

0

(1+τ)(β−1−[ς])qdτ

) 1
q
(∫ t

0

(1+τ)[ς]Eς−[ς]−1(τ)
2dτ

) 1
p

≤CEς(0)2
(∫ t

0

(1+τ)
β−1−[ς]
1−ς+[ς] dτ

)1−ς+[ς]

. (4.41)

Letting β= ς+ 1
2 in (4.39) and (4.41), we can get (4.2).

REFERENCES

[1] J. Caar, Applications of Center Manifold Theory, Springer-Verlag, 1981. 2.2
[2] H. Cai and Z. Tan, Existence and stability of stationary solutions to the compressible Navier-Stokes-

Poisson equations, Nonlinear Anal. Real World Appl., 32:260–293, 2016. 1
[3] D. Chae, On the nonexistence of global weak solutions to the Navier-Stokes-Poisson equations in

RN , Commun. Partial Differ. Equ., 35(3):535–557, 2010. 1
[4] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications Inc., New

York, N. Y. 1957. 1
[5] Y. Chen, H.H. Hong, and X. Shi, Convergence rate of stationary solutions to outflow problem for

full Navier-Stokes equations, Appl. Anal., 98(7):1267–1288, 2019. 1, 1, 3, 3, 4, 4, 4
[6] H. Cui, Z. Gao, H.Y. Yin, and P. Zhang, Stationary waves to the two-fluid non-isentropic Navier-

Stokes-Poisson system in a half line: existence, stability and convergence rate, Discrete Contin.
Dyn. Syst., 36(9):4839–4870, 2016. 1

[7] R.J. Duan and X.F. Yang, Stability of rarefaction wave and boundary layer for outflow problem on
the two-fluid Navier-Stokes-Poisson equations, Comm. Pure Appl. Anal., 12(2):985–1014, 2013.
1

[8] R.J. Duan and S.Q. Liu, Stability of rarefaction waves of the Navier-Stokes-Poisson system, J.
Differ. Equ., 258(7):2495–2530, 2015. 1

[9] R.J. Duan, S.Q. Liu, H.Y. Yin, and C.Z. Zhu, Stability of the rarefaction wave for a two-fluid
plasma model with diffusion, Sci. China Math., 59(1):67–84, 2016. 1

[10] S. Ghosh, S. Sarkar, M. Khan, and M.R. Gupta, Ion acoustic shock waves in a collisional dusty
plasma, Phys. Plasmas, 9(1):378–381, 2002. 1

[11] H.H. Hong, The existence and stability of stationary solutions of the inflow problem for full
compressible Navier-Stokes-Poisson system, Acta Math. Sci., 41(1):319-336, 2021. 1, 2.2

[12] H.H. Hong, X. Shi, and T. Wang, Stability of stationary solutions to the inflow problem for the
two-fluid non-isentropic Navier-Stokes-Poisson system, J. Differ. Equ., 265(4):1129–1155, 2018.
1

[13] L. Hsiao and H.-L. Li, Compressible Navier-Stokes-Poisson equations, Acta Math. Sci.,
30(6):1937–1948, 2010. 1

https://link.springer.com/book/10.1007/978-1-4612-5929-9
https://doi.org/10.1016/j.nonrwa.2016.04.010
https://doi.org/10.1080/03605300903473418
https://mathscinet.ams.org/mathscinet-getitem?mr=92663
https://doi.org/10.1080/00036811.2017.1419203
http://dx.doi.org/10.3934/dcds.2016009
http://dx.doi.org/10.3934/cpaa.2013.12.985
https://beta.arxiv.org/abs/1403.2520v2
https://link.springer.com/article/10.1007%2Fs11425-015-5059-4
https://doi.org/10.1063/1.1418429
https://link.springer.com/article/10.1007/s10473-021-0119-z?utm_medium=cpc&utm_campaign=Acta_Mathematica_Scientia_TrendMD_1
https://doi.org/10.1016/j.jde.2018.03.016
https://doi.org/10.1016/S0252-9602(10)60184-1


HAKHO HONG, JONGSUNG KIM, AND KWANG-IL CHOE 2215

[14] L. Hsiao, H.-L. Li, T. Yang, and C. Zou, Compressible nonisentropic bipolar Navier-Stokes-Poisson
system, Acta Math. Sci., 31(6):2169–2194, 2011. 1

[15] F.M. Huang and X. Qin, Stability of boundary layer and rarefaction wave to an outflow problem
for compressible Navier-Stokes equations under large perturbation, J. Differ. Equ., 246(10):4077–
4096, 2009. 1

[16] M. Jiang, S. Lai, H.Y. Yin, and C.J. Zhu, The stability of stationary solution for outflow problem
on the Navier-Stokes-Poisson system, Acta Math. Sci., 36(4):1098–1116, 2016. 1.2, 1

[17] S. Kawashima, T. Nakamura, S. Nishibata, and P. Zhu, Stationary waves to viscous heat-
conductive gases in the half space: existence, stability and convergence rate, Math. Model.
Meth. Appl. Sci., 20(12):2201–2235, 2010. 1.1, 1, 4

[18] S. Kawashima, S. Nishibata, and P. Zhu, Asymptotic stability of the stationary solution to the
compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240(3):483–500,
2003. 1

[19] S.K. Kundu, D.K. Ghosh, P. Chatterjee, and B. Das, Shock waves in a dusty plasma with positive
and negative dust, where electrons are superthermally distributed, Bulg. J. Phys., 38:409–419,
2011. 1

[20] H.-L. Li, A. Matsumura, and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-
Poisson system in R3, Arch. Ration. Mech. Anal., 196(2):681–713, 2010. 1

[21] H.L. Li, T. Yang, and C. Zou, Time asymptotic behavior of the bipolar Navier-Stokes-Poisson
system, Acta Math. Sci., 29(6):1721–1736, 2009. 1

[22] P.A. Markowich, C.A. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer, New
York, 1990. 1

[23] T. Nakamura and S. Nishibata, Convergence rate toward planar stationary waves for compressible
viscous fluid in multididmensional half line, SIAM J. Math. Anal., 41(5):1757–1791, 2009. 1

[24] T. Nakamura, S. Nishibata, and T. Yuge, Convergence rate of solutions toward stationary solutions
to the compressible Navier-Stokes equation in a half line, J. Differ. Equ., 241(1):94–111, 2007.
1

[25] X. Qin, Large-time behaviour of solutions to the outfow problem of full compressible Navier-Stokes
equations, Nonlinearity, 24(5):1369–1394, 2011. 1

[26] Z. Tan, Y.Z. Wang, and Y. Wang, Stability of steady states of the Navier-Stokes-Poisson equations
with non-flat doping profile, SIAM J. Math. Anal., 47(1):179–209, 2015. 1

[27] Z. Tan, T. Yang, H.J. Zhao, and Q.Y. Zou, Global solutions to the one-dimensional compressible
Navier-Stokes-Poisson equations with large data, SIAM J. Math. Anal., 45(2):547–571, 2013. 1

[28] L. Wan, T. Wang, and H.J. Zhao, Asymptotic stability of wave patterns to compressible viscous
and heat-conducting gases in the half space, J. Differ. Equ., 261(11):5949–5991, 2016. 1

[29] L. Wan, T. Wang, and Q. Zou, Stability of stationary solutions to the outflow problem for full
compressible Navier-Stokes equations with large initial perturbation, Nonlinearity, 29(4):1329–
1354, 2016. 1

[30] W.K. Wang and Z.G. Wu, Pointwise estimates of solution for the Navier-Stokes-Poisson equations
in multi-dimensions, J. Differ. Equ., 248(7):1617–1636, 2010. 1

[31] L. Wang, G.J. Zhang, and K. Zhang, Existence and stability of stationary solution to compressible
Navier-Stokes-Poisson equations in half line, Nonlinear Anal., 145:97–117, 2016. 1.2, 1

[32] H.Y. Yin, J.S. Zhang, and C.J. Zhu, Stability of the superposition of boundary layer and rarefaction
wave for outflow problem on the two-fluid Navier-Stokes-Poisson system, Nonlinear Anal. Real
World Appl., 31:492–512, 2016. 1

[33] F. Zhou and Y.P. Li, Convergence rate of solutions toward stationary solutions to the bipolar
Navier-Stokes-Poisson equations in a half line, Bound. Value Probl., 124:1–22, 2013. 1

[34] G.J. Zhang, H.L. Li, and C.J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-
Stokes-Poisson system in R3, J. Differ. Equ., 250(2):866–891, 2011. 1

https://doi.org/10.1016/S0252-9602(11)60392-5
https://doi.org/10.1016/j.jde.2009.01.017
https://doi.org/10.1016/j.jde.2009.01.017
https://doi.org/10.1016/S0252-9602(16)30058-3
https://doi.org/10.1142/S0218202510004908
https://link.springer.com/article/10.1007%2Fs00220-003-0909-2
https://link.springer.com/article/10.1007%2Fs00220-003-0909-2
http://www.bjp-bg.com/papers/bjp2011_4_409-419.pdf
http://www.bjp-bg.com/papers/bjp2011_4_409-419.pdf
https://link.springer.com/article/10.1007%2Fs00205-009-0255-4
https://doi.org/10.1016/S0252-9602(10)60013-6
https://www.springer.com/gp/book/9783211821572
https://doi.org/10.1137/090755357
https://doi.org/10.1016/j.jde.2007.06.016
https://iopscience.iop.org/article/10.1088/0951-7715/24/5/001
https://doi.org/10.1137/130950069
https://doi.org/10.1137/120876174
https://doi.org/10.1016/j.jde.2016.08.032
https://iopscience.iop.org/article/10.1088/0951-7715/29/4/1329
https://iopscience.iop.org/article/10.1088/0951-7715/29/4/1329
https://doi.org/10.1016/j.jde.2010.01.003
https://doi.org/10.1016/j.na.2016.08.001
https://doi.org/10.1016/j.nonrwa.2016.01.020
https://boundaryvalueproblems.springeropen.com/articles/10.1186/1687-2770-2013-124
https://doi.org/10.1016/j.jde.2010.07.035

