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WAVE BREAKING FOR A MODEL EQUATION FOR SHALLOW
WATER WAVES OF MODERATE AMPLITUDE∗

SHAOJIE YANG†

Abstract. This paper is devoted to studying wave breaking for a model equation for shallow
water waves of moderate amplitude (also called the Constanin-Lannes equation), which was proposed
by Constantin and Lannes. We first present a blow-up criterion and the precise blow-up scenario of
strong solutions to the equation. Next, we show a sufficient condition on the initial data to guarantee
wave breaking. Moreover, the estimate of life span is given. The key of the method is to refine the
analysis on characteristics and conserved quantities to the Riccati-type differential inequality.
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1. Introduction
In this paper, we consider a model equation for shallow water waves of moderate

amplitude{
ut−utxx +ux +6uux−6u2ux +12u3ux +uxxx +14uuxxx +28uxuxx = 0,

u(0,x) =u0(x),
(1.1)

where the function u(t,x) stands for the free surface elevation, was proposed by Con-
stantin and Lannes in describing the surface water waves of moderate amplitude in the
shallow water regime [19]. The model Equation (1.1) has the following two conservation
laws

E(u) =

∫
R

(u2 +u2
x)dx

and

F (u) =

∫
R

(
1

2
u2 +u3− 1

2
u4 +

3

5
u5− 1

2
u2
x−7uu2

x

)
dx.

The study of water waves is a fascinating subject because the phenomena are famil-
iar and mathematical problems are various [41]. Since the exact governing equations for
water waves have proven to be nearly intractable (Gerstner waves being the only known
explicit solutions to the full equations [11, 25, 30, 33]), the quest for suitable simplified
model equations was initiated at the earliest stages of the development of hydrodynam-
ics. Until the early twentieth century, the study of water waves was confined almost
exclusively to linear theory. Since linearization failed to explain some important aspects,
several nonlinear models have been proposed in order to understand some important
aspects of water waves, like wave breaking or solitary waves. One of the typical models
is the Camassa-Holm (CH) equation:

ut−utxx +3uux = 2uxuxx +uuxxx. (1.2)
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The CH equation was originally implied in Fokas and Fuchssteiner in [23], but became
well-known since 1993, when Camassa and Holm [6] derived it as a model for unidi-
rectional propagation of shallow water flow over a flat bottom with a famous feature
of peaked solitons (peakons). The CH equation has been studied extensively in the
last two decades because of its many remarkable properties: infinity of conservation
laws and complete integrability [6, 23, 24], with action angle variables constructed us-
ing inverse scattering [13, 16, 20, 40], peakons [6], which describes an essential feature
of the travelling waves of largest amplitude [12, 17, 18], geometric formulations [31, 34],
well-posedness [21,22,32], orbital stability [14,15], global conservative solutions [1] and
dissipative solutions [2]. It is shown in [7–10, 35] that the blow-up occurs in the form
of breaking waves, namely, for certain initial data the solution remains bounded but its
slope becomes unbounded in finite time.

Similarly to the CH equation, the model Equation (1.1) can also capture the phe-
nomenon of wave breaking [19]. The local well-posedness for the Cauchy problem (1.1)
was first established by Constantin and Lannes [19], and then improved using Katos
semigroup approach for quasi-linear equations and an approach due to Kato by Duruk
Mutlubas [37, 38]. The well-posedness in Besov spaces and persistence properties have
been studied in [39]. The existence of weak solutions in lower order Sobolev spaces
Hs(R) with 1<s≤3/2 was obtained in [42]. Zhou [43] established the existence of a
semigroup of global solutions with nonincreasing H1(R) energy. Continuity and asymp-
totic behaviors for the model Equation (1.1) has been recently studied in [44]. The
existence and symmetry of solitary waves were shown in [26–28]. The orbital stabil-
ity of solitary waves has been proved in [36] using an approach proposed by Grillakis,
Shatah and Strauss [29].

Recently, Brandolese and Cortez [3–5] introduced a local-in-space criteria for blow-
up in the study of the CH-type equations which highlights how local structure of the
solution affects the blow-ups. For the model Equation (1.1), the convolution contains
cubic, even quartic nonlinearities which do not have a lower bound in terms of the local
terms. For this reason, the main difficulty to obtain a sufficient condition on the initial
data to guarantee wave breaking is that we here deal with higher order nonlinearities,
and analysis on characteristics and conserved quantities to the Riccati-type differential
inequality.

The rest of this paper is organized as follows. In Section 2, we present a blow-up
criterion and the precise blow-up scenario of strong solutions to (1.1). In Section 3, we
show a sufficient condition on the initial data to guarantee wave breaking.

2. Blow-up criterion and scenario
In this section, we present a blow-up criterion and the precise blow-up scenario of

strong solutions to (1.1). First, we recall the local well-posedness.

Theorem 2.1 ( [37]). Let u0∈Hs(R),s> 3
2 be given. Then there exists T >0, depend-

ing on u0, such that there is a unique solution u to the Cauchy problem (1.1) satisfying

u∈C([0,T );Hs(R))∩C1([0,T );L2(R)).

Moreover, the map u0∈Hs(R)→u is continuous from Hs(R) to C([0,T );Hs(R))∩
C1([0,T );L2(R)).

Next, motivated by the method in Ref. [21], we can obtain the following blow-up
criterion. The proof is similar to that of the method in Ref. [21], so we omit it.

Theorem 2.2. Let u0∈Hs(R) with s> 3
2 , and T >0 be the maximal existence time



SHAOJIE YANG 1801

of Cauchy problem (1.1). If T <∞, then∫ T

0

‖∂xu(τ)‖L∞dτ =∞.

Finally, using the the classical energy method, we can obtain the following precise
blow-up scenario. It is shown that the solution to the model Equation (1.1) can only
have singularities which correspond to wave breaking.

Theorem 2.3. Let u0∈Hs(R) with s> 3
2 , and T >0 be the maximal existence time

of Cauchy problem (1.1). Then the solution u blows up in finite time if and only if

lim
t↑T−

{
sup
x∈R

ux(t,x)

}
=∞.

Proof. By a density argument, we just need to consider the case of s≥3, here
assume s= 3.

Differentiating (1.1) with respect to x, and multiplying the result by ux, then inte-
grating over R, we get

1

2

d

dt
‖ux‖2H1 =−3

∫
R
u3
xdx+21

∫
R
uxu

2
xxdx−6

∫
R
u2uxuxxdx+12

∫
R
u3uxuxxdx

≤21

∫
R
ux(u2

x +u2
xx)dx+3

∫
R
u2(u2

x +u2
xx)dx+6

∫
R
u3(u2

x +u2
xx)dx. (2.1)

Let us assume that there exists M>0 such that

ux(t,x)≤M

for all (t,x)∈ [0,T )×R. Note that ‖u‖H1 =‖u0‖H1 , then it follows from (2.1) that

d

dt
‖u‖2H2 ≤42

∫
R
ux(u2

x +u2
xx)dx+6

∫
R
u2(u2

x +u2
xx)dx+12

∫
R
u3(u2

x +u2
xx)dx

≤(42M+6‖u‖2L∞+12‖u‖3L∞)

∫
R
u2
x +u2

xxdx

≤C(M+‖u‖2H1 +‖u‖3H1)‖u‖2H2

≤C(M+‖u0‖2H1 +‖u0‖3H1)‖u‖2H2 . (2.2)

Taking advantage of Gronwall’s inequality yields

‖u(t)‖2H2 ≤‖u(0)‖2H2eC(M+‖u0‖2H1+‖u0‖3H1 )t. (2.3)

Differentiating (1.1) with respect to x, and multiplying the result by uxxx, then inte-
grating over R, we get

d

dt

∫
R

(u2
xx +u2

xxx)dx

=−15

∫
R
uxu

2
xxdx+2

∫
R

(−6u2ux +12u3ux)xuxxxdx+70

∫
R
uxu

2
xxxdx

≤C(M+M2 +‖u‖2L∞+‖u‖4L∞)

∫
R
u2
xx +u2

xxxdx+CM

∫
R
u4
xdx

≤C(M+M2 +‖u‖2H1 +‖u‖4H1)

∫
R
u2
xx +u2

xxxdx+CM‖ux‖3L2‖uxx‖L2



1802 WAVE BREAKING FOR WAVES OF MODERATE AMPLITUDE

≤C(M+M2 +‖u0‖2H1 +‖u0‖3H1 +‖u0‖4H1)

∫
R
u2
xx +u2

xxxdx, (2.4)

where we used the Sobolev’s embedding and the the interpolation inequality ‖f‖L4 ≤
C‖f‖

3
4

L2‖fx‖
1
4

L2 . Taking advantage of Gronwall’s inequality in (2.4) yields∫
R
(u2

xx +u2
xxx)dx≤ eC(M+M2+‖u0‖2H1+‖u0‖3H1+‖u0‖4H1 )t

∫
R

(u2
0xx +u2

0xxx)dx,

which together with (2.3) yields

‖u(t)‖2H3 ≤3‖u(0)‖2H3eC(M+M2+‖u0‖2H1+‖u0‖3H1+‖u0‖4H1 )t.

Therefore, we have shown that the boundedness of ux(t,x) from up, for (t,x)∈ [0,T )×R
ensure the boundedness of ‖u‖H3 on finite time interval, which contradicts the assump-
tion of the theorem.

On the other hand, by the Sobolev’s embedding Hs(R) ↪→L∞(R)(s> 1
2 ) , we can

see that if

lim
t↑T−

{
sup
x∈R

ux(t,x)

}
=∞,

then the solution blows up in finite time. This completes the proof of Theorem 2.3.

3. Wave breaking
In this section, we show a sufficient condition on the initial data to guarantee wave

breaking.
In order to derive condition of wave breaking, we consider the following ordinary

differential equation:
dq(t,x)

dt
=−(1+14u)

(
t,q(t,x)

)
, (t,x)∈ [0,T )×R,

q(0,x) =x, x∈R.
(3.1)

By a direct calculation, we have

dqx(t,x)

dt
=−14ux

(
t,q(t,x)

)
qx(t,x).

Furthermore,

qx(t,x) = exp

(
−
∫ t

0

14ux
(
s,q(s,x)

)
ds

)
>0, for all (t,x)∈ [0,T )×R,

which implies that the mapping q(t,·) is an increasing diffeomorphism of R. Con-
sequently, the L∞-norm of any function v(t,·)∈L∞ is preserved under the family of
diffeomorphisms q(t, ·), that is

‖v(t,·)‖L∞ =‖v(t,q(t, ·))‖L∞ , t∈ [0,T ).

Similarly,

inf
x∈R

v(t,x) = inf
x∈R

v (t,q (t,x)), sup
x∈R

v(t,x) = sup
x∈R

v (t,q (t,x))
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We are now in a position to state our wave-breaking result.

Theorem 3.1. Let u0∈Hs(R) with s> 3
2 , and T >0 be the maximal existence time

of Cauchy problem (1.1). Assume there exists a point x0∈R such that

u0,x(x0)>

√
α−1

7

∣∣u0(x0)+1
∣∣+√C0

7
,

where

C0 =
27

2
‖u0‖2H1 +

3
√

2

2
‖u0‖3H1 +

9

4
‖u0‖4H1 >0, α=

7

2

(
1−
√

3

7

)
.

Then the solution u(t,x) blows up at a time T with

T ≤ 1

7

√
u2

0,x(x0)− α−1

7
(u0(x0)+1)2−

√
7C0

.

Proof. Using p(x)
∆
= 1

2e−|x|, we can rewrite Equation (1.1) as the following form:

ut−(1+14u)ux +px ∗(2u+10u2−2u3 +3u4−7u2
x) = 0. (3.2)

Taking the space derivative in (3.2), we get

uxt−(1+14u)uxx = 7u2
x +2u+10u2−2u3 +3u4−p∗(2u+10u2−2u3 +3u4−7u2

x).
(3.3)

By the definition of q(t,x) in (3.1), we have

du
(
t,q(t,x)

)
dt

=−px ∗(2u+10u2−2u3 +3u4−7u2
x), (3.4)

dux
(
t,q(t,x)

)
dt

= 7u2
x +2u+10u2−2u3 +3u4−p∗(2u+10u2−2u3 +3u4−7u2

x). (3.5)

Let us denote

A(t,x0) =

(√
α−1

7
(u+1)−ux

)
(t,q(t,x0)),

B(t,x0) =

(√
α−1

7
(u+1)+ux

)
(t,q(t,x0))

and define the two convolution operators p+ and p− as

p+ ∗f(x) =
e−x

2

∫ x

−∞
eyf(y)dy, p− ∗f(x) =

ex

2

∫ −∞
x

e−yf(y)dy.

Then we have the relation

p=p+ +p−, px =p−−p+.

Applying Lemma 3.1 in Ref. [4] with M = 1,γ= 14 and K=
√

1
14 we have the following

convolution estimates

p± ∗(7u2
x−u2−2u)≥−α

2
(u+1)2 +

1

2
.
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From (3.4) and (3.5), we have

dA(t,x0)

dt

=−(7u2
x +2u+10u2−2u3 +3u4)−

(
1−
√
α−1

7

)
p− ∗(7u2

x−u2−2u)

−
(

1+

√
α−1

7

)
p+ ∗(7u2

x−u2−2u)+
(

1−
√
α−1

7

)
p− ∗(9u2−2u3 +3u4)

+
(

1+

√
α−1

7

)
p+ ∗(9u2−2u3 +3u4)

≤7A(t,x0)B(t,x0)−9u2 +2u3−3u4 +
(

1−
√
α−1

7

)
p− ∗(9u2−2u3 +3u4)

+
(

1+

√
α−1

7

)
p+ ∗(9u2−2u3 +3u4) (3.6)

and

dB(t,x0)

dt

=7u2
x +2u+10u2−2u3 +3u4 +

(
1+

√
α−1

7

)
p− ∗(7u2

x−u2−2u)

+
(

1−
√
α−1

7

)
p+ ∗(7u2

x−u2−2u)−
(

1+

√
α−1

7

)
p− ∗(9u2−2u3−3u4)

−
(

1−
√
α−1

7

)
p+ ∗(9u2−2u3−3u4)

≥−7A(t,x0)B(t,x0)+9u2−2u3 +3u4−
(

1+

√
α−1

7

)
p− ∗(9u2−2u3−3u4)

−
(

1−
√
α−1

7

)
p+ ∗(9u2−2u3−3u4). (3.7)

Taking advantage of Young’s inequality, Sobolev’s embedding inequality ‖u‖L∞ ≤√
2

2
‖u‖H1 and conservation law E=

∫
R
u2 +u2

xdx, we obtain∣∣∣∣9u2−3u3 +3u4−
(

1+

√
α−1

7

)
p∓ ∗(9u2−2u3−3u4)

−
(

1−
√
α−1

7

)
p± ∗(9u2−2u3−3u4)

∣∣∣∣
≤3(9‖u‖2L∞+2‖u‖3L∞+3‖u‖4L∞)

≤27

2
‖u‖2H1 +

3
√

2

2
‖u‖3H1 +

9

4
‖u‖4H1

≤27

2
‖u0‖2H1 +

3
√

2

2
‖u0‖3H1 +

9

4
‖u0‖4H1 =C0.

Therefore, we have

dA(t,x0)

dt
≤7AB+C0,
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and

dB(t,x0)

dt
≥−7AB−C0.

By our assumption on the initial data, it’s obvious that

A(0,x0) =

√
α−1

7
(u0(x0)+1)−u0,x(x0)<0, B(0,x0) =

√
α−1

7
(u0 +1)+u0,x(x0)>0.

Let us set

τ = sup{t∈ [0,T ) :A(·,x0)<0 and B(·,x0)>0 on [0,t]}

By continuity, τ >0. If τ <T , then at least one of the inequalities A(τ,x0)≥0 and
B(τ,x0)≤0 hold true. This contradicts the fact that on the interval [0,τ ], we have
A(τ,x0)B(τ,x0)<0, hence A(τ,x0)≤A(0,x)<0 and B(τ,x0)≥B(0,x0)>0. Thus τ =T .
This ensures that

dA(t,x0)

dt
<0,

dB(t,x0)

dt
>0,

thus,

A(t,x0)<A(0,x0)<0, B(t,x0)>B(0,x0)>0.

Set

h(t) =
√
−A(t,x0)B(t,x0),

a direct computation of the derivative of h(t) leads to

dh(t)

dt
=− AtB+ABt

2h(t)
(t,x0)

≥−(B−A)(7AB+C0)

2h(t)
(t,x0).

Using the inequality
B−A

2h
=
B+(−A)

2
√
−AB

≥1 and the fact that −7AB−C0 = 7h2−C0 =(√
7h−

√
C0

)(√
7h+

√
C0

)
≥
(√

7h−
√
C0

)2
, we have

dh

dt
≥
(√

7h−
√
C0

)2

.

Hence, the solution blows up in finite time T with

T ≤ 1

7

√
u2

0,x(x0)− α−1

7
(u0(x0)+1)2−

√
7C0

.

This completes the proof of Theorem 3.1.
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