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NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL
EQUATIONS BASED ON GAUSSIAN MIXTURE∗

LEI LI† , JIANFENG LU‡ , JONATHAN C. MATTINGLY§ , AND LIHAN WANG¶

Abstract. We develop in this work a numerical method for stochastic differential equations (SDEs)
with weak second-order accuracy based on Gaussian mixture. Unlike conventional higher order schemes
for SDEs based on Itô-Taylor expansion and iterated Itô integrals, the scheme we propose approximates
the probability measure µ(Xn+1 |Xn =xn) using a mixture of Gaussians. The solution at the next
time step Xn+1 is drawn from the Gaussian mixture with complexity linear in dimension d. This
provides a new strategy to construct efficient high weak order numerical schemes for SDEs.

Keywords. Gaussian mixture; stochastic differential equation; second-order scheme; weak con-
vergence.

AMS subject classifications. 60H35; 65C30; 65L20.

1. Introduction
Stochastic differential equations (SDEs) [23] have been used to model a wide range

of phenomena, such as stock prices of financial derivatives [4, 11], and physical systems
in contact with heat bath [5, 12, 30]. SDEs have recently also been used for analyzing
stochastic gradient descent (SGD) in machine learning [7,9,13]. The SDEs are dynamical
systems with noise [6, 23] that often represent interactions that are not included in
the model but affect the dynamics. For example, in the Langevin equations [5, 24],
one considers the evolution of a subsystem, while the rest of the system, consisting of
potentially large degrees of freedom, is regarded as a heat bath. The interaction between
the heat bath and the subsystem is modelled by noise and dissipation terms.

We will consider general SDEs driven by white noise [6,24] and in particular SDEs
in Itô sense [23, Chap. 5]:

dX(t) = b(X(t))dt+σ(X(t))dW, X(0) =x, (1.1)

where X ∈Rd, W is a standard m-dimensional Brownian motion, b :Rd→Rd is the
drift, and σ :Rd→Rd×m is the diffusion matrix. We are interested in its numerical
approximations, and depending on whether our goal is to approximate the sample paths
or the distributions, the numerical methods can be classified into strong schemes and
weak schemes [6, 10]. The weak schemes approximate the distributions, and we refer
the readers to Section 2.2 for more details. Indeed, weak schemes attempt to match the
moments of the iterated Itô integrals, and therefore, the key question for designing weak
schemes is how to approximate these moments efficiently. The classical Euler-Maruyama
scheme (3.1) is known to be a weak first-order scheme. In applications, schemes with
higher order accuracy are often desired. The weak second-order schemes, however,
are not trivial for SDEs. The traditional second-order schemes, based on Itô-Taylor
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expansion [10, 20], involve evaluations of the spatial derivatives of drift and diffusion
coefficients, as well as iterated Itô integrals. The weak second-order schemes date back
to Milstein and Talay [18,28]. The Talay-Tubaro expansion can also yield a weak second-
order approximation [29]. In [25,26], Runge-Kutta methods that achieve arbitrary weak
order for scalar noise and weak second-order for general noise are developed. Runge-
Kutta schemes can avoid approximating some derivatives of the drift and the diffusion
coefficients directly (see for example the Talay-Tubaro scheme), and lead to better
stability. A weak trapezoidal second-order method has been developed in [2], which is
derivative free and no evaluation of iterated Itô integrals is needed. However, it leverages
the structure of a particular, but common, class of equations. In [1], higher order
convergence for a class of SDEs is achieved based on solving modified SDEs. In [21,22],
another class of higher order schemes were developed which are often referred to as Lie
splitting methods. Like the current methods, they strive for a level of weak accuracy
by deriving a condition which guarantees that certain terms vanish in an expansion of
the difference of the true density and that of the numerical method.

As will be discussed in Section 2.2, one may approximate the conditional distribu-
tion µ(Xn+1 |Xn=xn) with asymptotic weak local error O(h3) to achieve global weak
second-order accuracy, where {Xn}’s are the numerical solutions and h is the step size.
In this work, we propose a novel Gaussian mixture method to achieve O(h3) weak local
error in which Xn+1 can be sampled from one of a mixture of Gaussians. Our ansatz
is inspired by the expansion of the solution using commutators. Our Gaussian particle
ansatz has two attractive properties:

• Since only one of the Gaussians in the mixture is chosen in each step, the cost
in each step is minimal and the simulation is fast: we only need to generate d
scalar random variables (with three possible values only) to generate an initial
point, and then generate a d-dimensional multi-variate normal variable whose
mean and covariance matrix are related with the d scalar random variables
and obtained by solving an ODE (see Remark 4.4 for some comments on the
number of random variables needed). In this sense, the method we construct
in this paper can be considered as a random mixture of Euler-Maruyama steps
that produces a higher order method, and it is simple to implement.

• Secondly, our scheme does not need the spatial derivatives of the coefficients,
which is useful in several contexts.

Numerical simulations show that our Gaussian mixture method is indeed weak second-
order for reasonable values of the step size. This agrees with our theoretical results
that our methods are asymptotically second-order as the step size goes to zero. For
related works about using Gaussian approximations for general distributions, see [3,14].
In [3], Gaussian processes based on a variational approach are used to approximate
posterior measure in path space. In [15], Gaussian approximation is used to approximate
transition paths in Langevin dynamics.

This work is primarily interested with accuracy considerations. This is reflected in
the use of essentially forward-Euler like steps to builds the Gaussian Mixture. It is easy
to imagine replacing these with an implicit step to address stability concerns.

The rest of the paper is organized as follows. In Section 2, we give a brief intro-
duction to SDEs and the basic setup of our problem. In particular, the concept and
criteria for weak accuracy using test functions with bounded derivatives are introduced.
In Section 3, we introduce the idea of Gaussian mixtures for high order weak accuracy
and develop an algorithm for one-dimensional SDEs with weak second-order accuracy,
where the mean and variance of the Gaussian are computed either based on some ODEs
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or construction. In Section 4, we generalize the algorithm for 1D SDEs to SDEs in
multi-dimensions. The number of Gaussian beams are exponential in the dimension d,
but we only need d discrete random variables to determine which beam we choose, so
the complexity is linear in d. In Section 5, we perform several numerical examples to
see how our algorithm performs regarding different aspects.

2. Preliminaries
In this section, we collect some definitions and notations related to SDEs. Moreover,

the notion of weak convergence is introduced in detail, which lays the foundation of our
construction of Gaussian mixture methods in later sections.

2.1. Notations and assumptions. For the convenience of later discussions, we
introduce for any integer k the following set of functions

Ckb =
{
f ∈Ck :‖f‖Ck := sup

x∈Rd

∑
|α|≤k

|Dαf |<∞
}
. (2.1)

Here the subscript b is used to remind the reader that the functions are bounded in value
and all their derivatives up to the specified order. We use Ex to denote the expectation
under the law of the process X(t) with X(0) =x. The notation N (m,Λ) denotes the
normal distribution with mean m and covariance matrix Λ.

We list out the following assumptions, which will be used throughout this work:

Assumption 2.1. The diffusion matrix

Λ(x) :=σ(x)σT (x) (2.2)

is uniformly positive definite. In other words,

inf
x∈Rd

minλ(Λ(x))≥σ2
0>0

for some σ0>0, where λ(Λ) is the set of eigenvalues of Λ.

Assumption 2.2. The coefficients are smooth in the sense that b,σ∈C6
b .

Note that Assumption 2.2 implies that the coefficients are Lipschitz continuous, i.e.
there exists a constant K>0 such that for all x,y∈Rd,

|b(x)−b(y)|+ |σ(x)−σ(y)|≤K|x−y|. (2.3)

It is well known that Assumption 2.2 ensures the existence of strong solutions to (1.1)
[23] and that the moments of the solution are bounded:

sup
0≤t≤T

Ex|X(t)|2m≤C(x,T ).

Though likely overly restrictive, Assumption 2.1 and Assumption 2.2 will simplify the
analysis and make the ideas more transparent. Analysis based on Assumption 2.2 has
been pursued in many works (see for example [2]). Compared with Assumption 2.2,
some authors relax the coefficients to have polynomial growth (see for example [19]).
The current results can be extended to locally Lipschitz coefficients with polynomial
growth under appropriate one-sided Lyapunov conditions or simply the arbitrary mo-
ment bounds they imply, see for instance [16].
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The generator of the diffusion process (1.1) is given by

L=

d∑
i=1

bi∂i+
∑

1≤i,j≤d

1

2
Λij∂ij . (2.4)

The evolution of the law satisfies the Fokker-Planck equation (or the forward Kolmogrov
equation)

∂tp=L∗p :=−∇·(bp)+
1

2

∑
ij

∂2ij(Λijp). (2.5)

For a smooth function φ, let us define

u(x,t) =Exφ(X(t)). (2.6)

With regularity Assumptions 2.1 and 2.2, u satisfies the backward Kolmogorov equation
(see, for example, [23, Chap. 8])

ut=Lu. (2.7)

Formally, this implies the semigroup expansion

u(x,t) =etLφ(x) =

∞∑
j=0

tj

j!
Ljφ(x). (2.8)

Given regularity assumptions on φ, the expansion can be rigorously established up to
a certain order. We cite a classical result in [8, Chap. XI] for expansion up to j= 2,
which has been modified for our purpose.

Lemma 2.1 ( [8, Theorem 11.6.4]). Under Assumptions 2.1–2.2, there exists a non-
negative non-decreasing function ρ, such that for all φ∈C∞b ,

sup
x∈Rd

∣∣∣u(x,h)−
(
φ(x)+

2∑
j=1

hj

j!
Ljφ

)∣∣∣≤ρ(‖φ‖C6)h3. (2.9)

In a numerical scheme, we generate the approximation sequences for the diffusion
process at discrete time steps. Let T >0 be the terminal time point, and N the number
of numerical steps such that

h=T/N. (2.10)

We use tn=nh (n= 0,1,. ..) to denote the time grid points, Xn the random variable gen-
erated by some numerical method to approximate X(tn), and xn a particular realization
of the random variable Xn.

2.2. Weak convergence. We only require the law of Xn to approximate the
law of the solution to (1.1). This is described by the notion of weak convergence, which
will be the focus of this section.

Definition 2.1. Fix T >0. Let N,h and Xn be given as in Section 2.1. We say
Xn converges weakly with order r>0 to X(tn) as h→0 if for any φ∈C∞b , there exist
C>0, h0>0 that are independent of h (but may depend on T and φ) such that∣∣Eφ(Xn)−Eφ(X(tn))

∣∣≤Chr, ∀1≤n≤N, whenever h∈ (0,h0). (2.11)
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Here, E represents the expectation under the law of Xn or X(tn).

Remark 2.1. Note that the test functions here have bounded derivatives, and those
used in [10, Sec. 9.7] and [19] have derivatives with polynomial growth. Test functions
with bounded derivatives induce weaker topology but are much easier to handle (see
e.g., [2]). The results can be extended to the more general setting with additional work
and assumptions to ensure boundedness of moments.

We now move on to the criteria of weak convergence. Suppose the random sequence
Xn is generated by

Xn+1 =Xn+A(Xn,ζn,h), X0 =x, (2.12)

where ζn is a random vector generated at time tn and A is a function. If {ζn}’s are i.i.d,
then {Xn} is a time-homogeneous Markov chain. (For example, in Algorithm 1 below,
ζn is a combination of the z random variable and the standard 1D normal variable ξ.)

The following proposition is standard and we provide the proof in Appendix A for
reference. We emphasize that the following two results are not new and are part of the
standard “folklore” meta-theorems in the subject. We repeat them only to make precise
the versions we need and their dependences on parameters.

Proposition 2.1. Let b and σ satisfy b,σ∈C2(r+1)
b for r>0. If there is a nonnegative

and non-decreasing function ρ such that for all φ∈C∞b , we have the local truncation
error bounded by

|Exφ(X(h))−Exφ(X1)|≤ρ(‖φ‖C2(r+1))hr+1,∀x∈Rd,

then Xn converges weakly with order r to X(tn) as h→0.

As before, Ex represents the expectation under the law of the process or Markov
chain starting at x. This proposition basically says that if the local truncation error is
O(hr+1), then the global error is of order r. We have the following trivial observation
by Lemma 2.1 and Proposition 2.1:

Corollary 2.1. Under Assumptions 2.1-2.2, if there exists ρ that is nonnegative and
non-decreasing such that ∀φ∈C∞b , we have

sup
x∈Rd

∣∣∣Ex(φ(X1))−
2∑
j=0

hj

j!
Ljφ(x)

∣∣∣≤ρ(‖φ‖C6)h3, (2.13)

then the method (2.12) is of weak second-order accuracy.

3. Weak second-order Gaussian mixture method
The Euler-Maruyama scheme [10] for SDE (1.1)

Xn+1 =Xn+b(Xn)h+σ(Xn)∆Wn (3.1)

generates Gaussian distributions for Xn+1 conditioning on Xn=xn but has only weak
first-order accuracy. It is well known that constructing a weak second-order scheme is
nontrivial, not to mention a weak second-order scheme using Gaussian approximations
for the measure µ(Xn+1|Xn=xn). In fact, as we will see, an approximation using a
single Gaussian is generally insufficient for weak second-order accuracy. Hence, we aim
to use Gaussian mixture to construct higher order schemes.
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To start with, let us recall that the law of Y (t), the weak solution of the following
SDE with additive noise, is a Gaussian distribution if Y (0) is a Gaussian random variable
independent of W :

dY (t) =µ(t)dt+σ(t)dW. (3.2)

Here, µ(t) and σ(t) only depend on time. The mean and covariance matrix of Y (t) are
given respectively by

m(t) =m0 +

∫ t

0

µ(s)ds, S(t) =S0 +

∫ t

0

σ(s)σT (s)ds. (3.3)

Conversely, if we are given some m and some positive semidefinite matrix S, we can
recover the normal distribution N (m,S) by constructing “paths” {m(t)}t∈[0,h] and

{S(t)}t∈[0,h] with m(h) =m,S(h) =S, and Ṡ being positive semi-definite so that the
solution to the SDE

dY (t) = ṁ(t)dt+

√
Ṡ(t)dW

with Y (0)∼N (m(0),S(0)), independent of W , will satisfy Y (h)∼N (m,S). Here ṁ
and Ṡ denote their respective time derivatives. Now let us consider the time-dependent
generator

L(s) = ṁ(s) ·∇x+
1

2
Ṡij(s)∂ij . (3.4)

We now assume S(0) = 0 and m(0) =x0 for some x0. By the backward equation (2.7),
we have

Eφ(Y (h)) = exp
(∫ h

0

L(s)ds
)
φ(x0) = exp

(
(m−x0)∇x+

1

2
Sij∂ij

)
φ(x0). (3.5)

Here the second equality comes from integrating L in time. Therefore, for any random
variable Y ∼N (m,S), we can express the expectation of φ as

Eφ(Y ) = exp(Lz)ϕ(z), ∀z∈Rd, (3.6)

where

Lz = (m−z)∂x+
1

2
Sij∂ij . (3.7)

We will use (3.6) to construct our scheme. In this section, we start with d= 1. Our
construction for d= 1 will be used as the building block for constructing our scheme in
higher dimensions in Section 4.

3.1. Conditions for second-order Gaussian mixtures. First of all, we claim
that using a single Gaussian distribution to approximate µ(Xn+1|Xn=xn) is generally
insufficient for weak second-order accuracy. To start with, we assume X1 generated by
(2.12) conditioning on X0 =x0 is a normal distribution with mean m(h,x0) and variance
S(h,x0):

X1 =x0 +A(x0,ξ,h)∼ ρ̃(x;h,x0) =
1√

2πS(h,x0)
exp

(
− (x−m(h,x0))2

2S(h,x0)

)
. (3.8)
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Here X1∼ ρ̃ means the law of X1 has a density ρ̃. Using (3.6), we desire

exp
(

(m(h,x0)−x0)∂x+
1

2
S(h,x0)∂xx

)
ϕ(x0) =ϕ(x0)+hLϕ(x0)+

h2

2
L2ϕ(x0)+O(h3)

(3.9)
in order to achieve global weak second-order accuracy. Clearly, we need m(h,x0)−x0 =
o(1),S(h,x0) =o(1) as h→0. Using the semigroup expansion (Lemma 2.1), we infer
that

m(h,x0) =x0 +m1(x0)h+
1

2
m2(x0)h2 +R1(h,x0)h3,

S(h,x0) =S0(x0)h+
1

2
S1(x0)h2 +R2(h,x0)h3,

where R1,R2 are bounded. Detailed calculation shows the following:

Proposition 3.1. For a general multiplicative noise (or equivalently σ(x) is not con-
stant), there exist no (m0,m1,m2,S0,S1) as functions of x0 such that the constraint
(2.13) can be satisfied.

Remark 3.1. By the proof of Proposition (3.1) in Appendix B, if the noise is additive
(σ is independent of x), it is possible to construct an approximation with a single
Gaussian that yields global weak second-order accuracy.

The proof of Proposition 3.1 is provided in Appendix B. Proposition 3.1 is a strong
indication that no approximation with one Gaussian can reach weak second-order accu-
racy, which forces us to seek Gaussian mixtures. In the derivation below, we use R(x) to
denote a generic function with a bound that depends only on ‖·‖C6 norms of b,σ, and
φ (the test function), and its concrete meaning may change from line to line. Below, we
would first present an informal argument to derive the scheme; the rigorous analysis of
the scheme will be deferred to later sections.

As we have mentioned, considering the law of X1 given the initial position
X0 =X(0) =x0 is sufficient to determine the whole Markov chain by time homogene-
ity. Therefore, it suffices to consider that the law of X1 is given by a mixture of M
Gaussians:

X1∼
M∑
i=1

wiN (mi(h),Si(h)). (3.10)

Here we abuse notation by letting N (m,S) denote the density function of a Gaussian
with the given mean and covariance.

Let Li := (mi(h)−x0)∂x+ 1
2Si(h)∂xx. By (3.6), we have

Eφ(X1) =

M∑
i=1

wiexp(Li)φ(x0). (3.11)

Here, the dependence on x0 in the coefficients is not written out explicitly for sim-
plicity. Since after time h, the scale for a pure diffusion process is

√
h (since

E|X(t+h)−X(t)|2∼h), we expect that |mi(h)−x0|≤C
√
h and |Si(h)|≤CMh. There-

fore, by Corollary 2.1, the scheme will be of weak second-order if the following holds for
all φ∈C∞b :
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M∑
i=1

wi

(
Liφ(x0)+

1

2
L2
iφ(x0)+

1

6
L3
iφ(x0)+

1

24
L4
iφ(x0)

)
−
(
hLφ(x0)+

1

2
h2L2φ(x0)

)
=R(x0,h)h3, (3.12)

where R(h) is bounded and depends on the function φ. We stop at L4
i because of the

expectation |mi(h)−x0|≤C
√
h so Lki is of order at least O(h

k
2 ). Note that by (2.4),

Lφ(x0) = b(x0)φ′(x0)+
1

2
Λ(x0)φ′′(x0),

1

2
L2φ(x0) =

1

2

(
b(x0)(bφ′+

1

2
Λφ′′)′+

1

2
Λ(x0)(bφ′+

1

2
Λφ′′)′′

)
. (3.13)

Due to the
√
h scale in displacement, we take the following ansatz for mi(h) and Si(h):

mi(h) =x0 +mi0h
1/2 +mi1h+mi2h

3/2 +mi3h
2 +mi4h

5/2 +Ri1(h)h3,

Si(h) =Si1h+Si2h
3/2 +Si3h

2 +Si4h
5/2 +Ri2(h)h3>0. (3.14)

Substituting the ansatz (3.14) into (3.12), after a tedious but straightforward calcula-
tion, we are able to derive the following conditions:∑

i

wimi1 = b,

1

2

∑
i

wiSi1 +
1

2

∑
i

wim
2
i0 =

1

2
Λ,

∑
i

wimi3 =
1

2
bb′+

1

4
Λb′′,

1

2

∑
i

wiSi3 +
1

2

∑
i

wi(2mi0mi2 +m2
i1) =

1

2
b2 +

1

4
bΛ′+

1

2
Λb′+

1

8
ΛΛ′′,

1

2

∑
i

wimi1Si1 +
1

2

∑
i

wimi0Si2 +
1

2

∑
i

wim
2
i0mi1 =

1

2
bΛ+

1

4
ΛΛ′,

1

8

∑
i

wiS
2
i1 +

1

4

∑
i

wim
2
i0Si1 +

1

24

∑
i

wim
4
i0 =

1

8
Λ2,

All the odd powers of h1/2 vanish in
∑
i

wiLmi for any m= 1,2,3,4. (3.15)

In the above equations, functions b,Λ and their spatial derivatives are all evaluated at
point x0.

In the following Section 3.2, we consider a possible approach to satisfy these con-
straints, by choosing M = 3.

Remark 3.2. We have not yet derived a weak third-order Gaussian mixture scheme.
The number of variables and the equations grow to the point where our current methods
to solve them are unfeasible. However, we expect that a minimum of five Gaussians is
needed to reach third order, which is suggested by the second and sixth equations of
(3.15). These are constraints for φ′′ in first order and φ(4) in second order respectively
(and there will be another constraint for φ(6) in third order), which only involve the
weights wi and the leading order diffusion scaling terms mi0 and Si1.
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3.2. An ODE approach. In this section, we give a particular construction
of mi(h) and Si(h) that satisfy (3.15) which determines our numerical scheme. Our
approach is to construct ODEs for mi and Si with a certain initial condition and solve
them at time h, which has the advantage of avoiding derivative evaluations of b and Λ.

To satisfy the last condition of (3.15), we consider a “symmetric” construction. It is
convenient to relabel the Gaussians as i= 0,±1, so that N (m0(h),S0(h)) is “centralized”

and does not contribute to the odd powers of h
1
2 . The centers of the other two Gaussians

m±1(h) are placed at both sides of m0(h) with O(
√
h) distance apart, and the variance

matrices S1(h),S−1(h) are constructed similarly with each other. These two Gaussians
will contribute powers like hk/2. Moreover, we impose w1 =w−1, so that the odd powers
of h

1
2 will cancel out with each other due to symmetry.
For initial conditions, we set

mi(0) =x0 +zi
√
γhΛ(x0), Si(0) = 0,

w1 =w−1, w0 +2w1 = 1, (3.16)

where γ>0 is a parameter and

zi= i, i= 0,±1. (3.17)

This choice takes into consideration that the diffusion scale is
√
h, while transportation

scale is h. For the choice of ODE flows, we take the following ansatz, where the functions
gi are to be determined later:

ṁi(t) = b(mi(t)), (3.18a)

Ṡi(t) =gi(mi(t)). (3.18b)

Our choice in (3.18a) is natural in the sense that we expect

d

dt
EX(t) =Eb(X(t))≈ b(EX(t)),

and the approximation is exact if b is a linear function. For symmetry, we require
g1 =g−1. Clearly, the

√
h factor enters mi(h) through the initial value and then the

equation. Due to symmetries in both m±1 and S±1 and w1 =w−1, all the odd powers
of h1/2 indeed cancel out in

∑
iwiLmi .

We now find the constraints on the functions gi and the parameters so that (3.15)
can be satisfied. To start with, we have by Taylor expansion that

mi(h) =mi(0)+b(mi(0))h+
1

2
b′(mi(0))b(mi(0))h2 +O(h3). (3.19)

Hence, substituting (3.16) into (3.19), and considering our ansatz (3.14), we obtain

mi0 =zi
√
γΛ, mi1 = b(x0), mi2 =zib

′
√
γΛ, mi3 =

1

2
b′′z2i γΛ+

1

2
bb′. (3.20)

Similarly, we can find Sij ’s:

Si1 =gi(x0), Si2 =zig
′
i

√
γΛ, Si3 =

1

2
z2i g
′′
i γΛ+

1

2
g′ib. (3.21)

However, substituting (3.20) and (3.21) into (3.15) cannot uniquely determine the pa-
rameters wi, gi and γ. We further impose S01 =S11 which makes our construction of
the scheme easier for higher dimensions, which uniquely determines the solution:

γ=
3

2
, w1 =

1

6
, w0 =

2

3
,
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g0(x0) =g1(x0) =
1

2
Λ(x0),

g′0(x0) =g′1(x0) = Λ′(x0),

g′′1 (x0) = Λ′′(x0). (3.22)

Clearly, choosing the following functions will suffice:

g0(x) =g1(x) =g(x) := Λ(x)− 1

2
Λ(x0). (3.23)

Unfortunately, this choice has one issue: g0 and g1 are not always nonnegative. Indeed,
it is possible that Si(h) given by (3.18b) could be negative. To solve this issue, we simply
set Si(h) to zero if that happens. Fortunately, since g(x)≈ 1

2Λ(x0) is positive whenever
x is close to x0, Si(h) can be guaranteed to be positive whenever h is sufficiently small,
thus it can be shown that this error has a lower-order effect. Similar situation also arises
in [2].

The details of the procedure outlined above are expressed more exactly in the fol-
lowing Algorithm 1 which gives the pseudocode to generate xn+1 from xn.

Algorithm 1 Gaussian mixture scheme for SDEs (ODE method in 1D)

1: Generate z such that P (z= 0) = 2
3 and P (z= 1) =P (z=−1) = 1

6 . Then, set

m(0) =xn+z

√
3

2
Λ(xn)h. (3.24)

2: Solve the ODEs

ṁ= b(m),

Ṡ=g(m(t)), (3.25)

using an ODE solver of at least second-order accuracy (for example, Runga-Kutta
methods of order k≥2) to obtain m(h), S(h). Here g(x) = Λ(x)− 1

2Λ(xn).
3: If S(h)≤0, then xn+1 =m(h). If S(h)>0, then

xn+1 =m(h)+
√
S(h)ξ, (3.26)

where ξ is a standard 1D normal variable.

Remark 3.3. One may truncate the function and consider

g0(x) =g1(x) =ψ(x;x0)(Λ(x)−Λ(x0))+
1

2
Λ(x0)

where ψ(x;x0) is some truncation function that is 1 in a neighborhood of x0 so that
g0,g1 are positive definite for all x. This approach, however, is not very convenient and
in practice the behavior is not very satisfactory.

We are now in position to present the following theorem, which tells that our scheme
is indeed of weak second-order.

Theorem 3.1. Let d= 1. Suppose Assumptions 2.1-2.2 hold., then Algorithm 1 is a
weak second-order scheme for SDE (1.1).
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Proof. It is clear that there exists h0>0 such that for h<h0,√
3
2‖Λ‖∞h+‖b‖∞h<

σ2
0

2‖Λ′‖∞
.

Consider that X(0) =X0 =x0. By construction, |mi(t)−mi(0)|≤‖b‖∞h for all t≤h,
and we have

g(mi(t))≥
1

2
Λ(x0)−‖Λ′‖∞

(
|mi(t)−mi(0)|+ |zi|

√
3

2
‖Λ‖∞h

)
>0.

Hence, Si(h)>0 for h<h0. Moreover, any reasonable numerical approximation to Si(h)
will also be positive for sufficiently small h.

By (3.23), we can conclude that for h<h0, (3.15) holds, and Si(h)>0. In other
words, (3.12) holds and∣∣∣Ex0

(φ(X1))−(φ(x0)+Lφ(x0)+
1

2
L2φ(x0))

∣∣∣≤ρ(‖φ‖C6)h3.

By Corollary 2.1, we find that our scheme constructed here is of weak second-order
if (3.25) is solved exactly. Since for any numerical solver on (3.25) that is of at least
second order, the error induced by solving (3.25) is O(h3) or smaller, and therefore the
above local estimate still holds. Our Algorithm 1 is thus of weak second order as well.

Remark 3.4. The above construction with ODE flow gives Si(h) that can be possibly
negative, though it is positive asymptotically as h→0 and when it becomes negative,
we can always fix by setting it to zero. One may desire to have a method that ensures
Si(h) to be positive. In Appendix D, we provide a direct way to construct Si’s so
that positivity can be guaranteed. However, this method involves evaluation of the
derivatives of Λ, which is oftentimes undesired.

4. Gaussian mixture for multi-dimensions
In this section, we generalize the Gaussian mixture method constructed in Section 3

to higher dimensions. We assume that we have the eigen-decomposition for Λ(x):

Λ(x) =

d∑
i=1

λi(x)vi(x)vTi (x), (4.1)

where λi(x)’s are the eigenvalues of the matrix Λ(x), and {vi} forms an orthonormal
basis of Rd.

As discussed in Section 3, we only need to focus on how to generate X1 given
X0 =x0. Again, we assume that X1 has the conditional probability measure of the
form

ρ̄=
∑
p∈P

wpN (mp(h),Sp(h)), (4.2)

for Gaussian mixture approximations. Here we use P to denote the set of indices p.
To illustrate our choice of the number of Gaussians and their initial positions, sup-

pose we have d-dimensional decoupled diffusion process (diffusion matrix is diagonal),
then we approximate each dimension using our 1D technique in Section 3 and then
get a global second-order approximation. In each dimension, we have three Gaussians,
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which means we have a total of 3d Gaussians. If the diffusion matrix is no longer di-
agonal, we can still consider using 3d Gaussians. At the first glance, the complexity is
large, but fortunately, it turns out that the complexity grows linearly with d instead of
exponentially.

We now explain our construction. Let the index set P ={−1,0,1}d, so that |P |= 3d,
and each index p∈P can be expressed as p= (z1p,·· · ,zdp) where zip∈{0,±1}. Let us
consider the Gaussians with initial centers yp, given by

yp=x0 +

d∑
i=1

zip
√
γλihvi, where γ=

3

2
. (4.3)

These formulas and γ= 3
2 are obtained from the 1D construction in Section 3. The

weight for the Gaussian with index p is

wp=

d∏
i=1

wz
i
p , 1≤p≤3d, (4.4)

with the parameters given by

w1 =w−1 =
1

6
, w0 =

2

3
. (4.5)

Remark 4.1. Another natural idea is to place the initial points at x0, x0±
√
γλihvi

and there are 2d+1 such points. After some attempts, we found that this strategy
hardly works when d is large.

With these initial positions and weights, we can easily generalize our Gaussian
mixture constructions for d= 1 to arbitrary dimensions.

4.1. The ODE approach for multi-dimensions. Following the construction
in the 1D case, we consider mp(h) and Sp(h) for p∈P given by

ṁp(t) = b(mp(t)), mp(0) =yp,

Ṡp(t) =G(mp(t)), Sp(0) = 0, (4.6)

where

G(x) = Λ(x)− 1

2
Λ(x0). (4.7)

Thanks to imposing S01 =S11 in (3.21) we are able to have a simple expression (4.7).
The algorithm can then be summarized as the following Algorithm 2.

Remark 4.2. Our algorithm requires a matrix factorization at every time step, which
is the most computationally costly step. However, as Λ(X(t)) does not change much
between consecutive time steps, one could use the matrix of vi’s as the preconditioner
for next step’s computation, which will significantly reduce the computational cost in
high dimensions.

We now establish the main result for multi-dimensions:

Theorem 4.1. Suppose the Assumptions 2.1-2.2 are satisfied, then there exists h0>0
such that when h<h0:

(i) Sp(h) is positive definite for all p∈P and for any initial position x0.
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(ii) For any test function φ∈C∞b , there exists a constant C depending on the C6

norms of φ,b,σ only, such that

|Ex0
(φ(X1))−Ex0

(φ(X(t1)))|≤Ch3, h<h0.

Consequently, the Gaussian mixture Algorithm 2 is a weak second-order scheme to
(1.1).

To prove this theorem, we first present a useful lemma, the proof of which is deferred
to Appendix C:

Lemma 4.1. For a function φ∈C∞b , we have

∑
p∈P

wpφ(yp) =φ(x0)+
d∑
i=1

w1D2
i φ(x0)γλih+

1

2

∑
i 6=j

(w1)2γ2D2
iD

2
jφ(x0)λiλjh

2

+
1

12

d∑
i=1

(w1γ2)D4
i φ(x0)λ2ih

2 +R(h)h3.

Here we use shorthand notation Di :=Dvi .

Algorithm 2 Gaussian mixture methods for SDEs (ODE method in higher D)

1: Compute the matrix eigen-decomposition

Λ(xn) =

d∑
i=1

λiviv
T
i . (4.8)

2: Generate zi,i= 1,2,. ..,d so that P (zi= 0) = 2
3 while P (zi= 1) =P (zi=−1) = 1

6 .
3: Let

m(0) =xn+

d∑
i=1

zi
√

3

2
λihvi, (4.9)

and find m(h) by solving

ṁ(t) = b(m(t))

using a method with at least second-order accuracy.

4: Find S(h) by solving

Ṡ(t) =G(m(t)), S(0) = 0.

5: If S(h) is not positive definite, then set all negative eigenvalues to zero (keeping the
same eigenvectors) and obtain S̃(h). Sample xn+1∼N (m(h),S̃(h)). In other words,

xn+1 =m(h)+

d∑
i=1

√
µ+
i ξiui

where S(h) =
∑d
i=1µiuiu

T
i with {ui}di=1 being orthonormal, µ+

i = max(µi,0) and
{ξi} are i.i.d standard 1D normal variables.
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Remark 4.3. Here Dviφ(x) :=vi(x0) ·∇φ(x), so we have D2
viφ=vi ·∇(vi ·∇φ(x)) =

vi⊗vi :∇2φ(x). The function inside is vi(x0) ·∇φ(x). In other words, we allow φ to
change for x 6=x0 but vi is frozen to be its value at x0.

Proof. (Proof of Theorem 4.1.)

(i). To prove this claim, we find that for all p∈P ,

|mp(t)−mp(0)|≤‖b‖∞h, ∀t∈ [0,h]. (4.10)

Hence,

minλ(G(mp(t)))≥
1

2
minλ(Λ(x0))−‖Λ(mp(t))−Λ(x0)‖2

≥ 1

2
minλ(Λ(x0))− sup

x∈Rd

‖Λ′‖2
(
|mp(t)−mp(0)|+

√
3

2
max
1≤i≤d

λih
)
.

Recall that we use λ(M) to represent the set of eigenvalues of matrix M . If h is
sufficiently small, minλ(G(mp(t))) is positive for all p∈P for t≤h. By Equation (4.6),
minλ(Sp(h)) is positive for all p.

(ii). Noticing that ∂ijklφ is a symmetric tensor on any indices, we find (the Einstein
summation convention is used)

Ex0
(φ(X1)) =

∑
p∈P

wp

(
φ+

1

2
∂i∂jφSp,ij(h)+

1

8
∂ijklφSp,ijSp,kl

)∣∣∣
x=mp(h)

+R(h)h3

=
∑
p∈P

wp

[
φ+bi∂iφh+

1

2
(biφijbj+bi(∂ibj)∂jφ)h2 +

1

2
∂ijφGijh

+
1

4

(
2∂ijkφbkGij+∂ijφ∂kGijbk

)
h2 +

1

8
∂ijklφGijGklh

2
]∣∣∣
x=mp(0)

+R(h)h3.

Using Lemma 4.1, we are able to compute the sums. For example, we find:∑
p∈P

wp
1

2
∂ijφGijh

∣∣∣
x=mp(0)

=
1

4
hλmD

2
mφ+

h2

4

∑
m6=n

w1D2
mD

2
nφγλmλn

+
1

2
h2w1

(
D2
mΛij∂ijφ+2DmΛijDm∂ijφ

)
γλm

+
1

4
h2w1D4

mφγλ
2
m+R(h)h3.

Here, we used (4.7) and identities like

D2
m∂ijφ

1

2
Λij =

1

2
D2
mD

2
nφλn.

Noting

γ= 3/2, w1γ= 1/4,

we have after some computation:

Ex0
(φ(X1)) =φ(x0)+Ah+Bh2 +R(h)h3, (4.11)
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where

A= bi∂iφ+
1

2
λmD

2
mφ,

and

B=
1

8

∑
m 6=n

D2
mD

2
nφλmλn+

1

8
D4
mφλ

2
m+

1

4
D2
m(bi∂iφ)λm

+
1

2
(bi∂ijφbj+bi∂ibj∂jφ)+

1

8
(D2

mΛij∂ijφ+2DmΛijDm∂ijφ)λm

+
1

4
dbk∂kD

2
mφλm+

1

4
∂ijφbk∂kΛij .

Again, by the eigen-decomposition Λ =
∑d
i=1λiviv

T
i , we find

Lφ(x0) = bi∂iφ+
1

2
Λij∂ijφ|x=x0 =A. (4.12)

Similarly, we find

1

2
L2φ(x0) =

1

2

(
bk∂kbi∂iφ+bkbi∂ikφ+

1

2
bk∂kΛij∂ijφ+

1

2
bkΛij∂ijkφ

)
+

1

4
Λkl
(
∂k∂lbi∂iφ+2∂kbi∂ilφ+bi∂iklφ+

1

2
∂k∂lΛij∂ijφ

+∂kΛij∂ijlφ+
1

2
Λij∂ijklφ

)
,

which equals to B. Together with (i), Corollary 2.1 gives the claim.

Remark 4.4. For the multi-dimensional Algorithm 2, though we have exponentially
many Gaussians, the complexity is just linear in d. In fact, one needs the number of
random variables to grow at least linearly in d to get a weak second-order scheme for
general SDEs [18,19,28].

4.2. Efficiency of the Monte Carlo method. For the multi-dimensional
Algorithm 2, though we have exponentially many Gaussians, we see that the complexity
is just linear in d, which means our algorithm has good computational efficiency. Since
we only care about the distributions, we often use Monte Carlo methods [17, 27] to
generate a large number of samples and use the empirical measure to approximate the
probability measure. As we know, the error and efficiency of Monte Carlo methods
depend on the variance. The variance of the Euler-Maruyama scheme (3.1) is Λ(xn)h,
where xn is the value of the scheme at tn. For the same reason, if we can show that
the variance of Algorithm 2 after one step is proportional to h, then the Monte Carlo
method based on our algorithm is as efficient as the Monte Carlo method based on the
Euler-Maruyama method (3.1).

In this section, we compute the second moment

M2 :=E
(
|Xn+1−xn|2 |Xn=xn

)
(4.13)

and show that it is indeed O(h) despite us having exponentially many Gaussians. For
the notational convenience, we define the matrix norm

||Λ||tr = sup
x∈Rd

tr(|Λ(x)|), (4.14)
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where |Λ(x)|=
∑d
i=1 |λi(x)|vi(x)vTi (x) if Λ(x) is given by (4.1).

Proposition 4.1. There exists h0>0 such that when h<h0

M2≤3‖Λ‖trh,

for Algorithm 2.

Proof. By (4.2), direct computation shows that

M2 =

∫
R
||x−xn||2ρ̄(x)dx=

∑
p∈P

wp
(
tr(Sp(h))+‖mp(h)−xn‖2

)
≤
∑
p∈P

wp tr(Sp(h))+2h2‖b‖2∞+2
∑
p∈P

wp
∥∥ d∑
i=1

zip

√
3

2
λihvi

∥∥2
=
∑
p∈P

wp tr(Sp(h))+2h2‖b‖2∞+tr(Λ(xn))h. (4.15)

The first inequality in (4.15) follows from (4.9) and (4.10):

|mp(h)−xn|2 = |mp(h)−mp(0)+mp(0)−xn|2≤2(|mp(h)−mp(0)|2 + |mp(0)−xn|2)

≤2h2‖b‖2∞+2
∥∥∥ d∑
i=1

zip

√
3

2
λihvi

∥∥∥2.
For the last equality, we have by the fact that {vi}’s are orthonormal:

∑
p∈P

wp

∥∥∥ d∑
i=1

zip

√
3

2
λihvi

∥∥∥2 =
3h

2

∑
p∈P

d∑
i=1

wp|zip|2λi,

and the last equality in (4.15) follows since
∑
p∈P wp|zip|2 = 2w1 = 1

3 (see (D.7)). Now,

noticing tr(G(m(t)))≤ 3
2‖Λ‖tr, we obtain

tr(Sp(h))≤ 3

2
h‖Λ‖tr, p∈P.

For Algorithm 2, when h is small enough, we have

tr(Sp(h))≤h‖Λ‖tr.

Since ‖b‖2∞h2 is in higher order, the claim follows.

5. Numerical experiments

In this section, we apply the algorithm on SDE (1.1) in Itô sense with different
choices of b and σ. Note that the Assumption 2.2 σ,b∈Cmb is only listed for convenience
of theoretical analysis. For a diffusion process starting at x0, within finite time T , the
probability density is concentrated in a finite domain and the far away behaviors of b
and σ are not important. Hence, in the simulation here, we may use unbounded b and
σ. We also check how the algorithm behaves if there are some degenerate points of Λ
(i.e. Λ is only positive semi-definite at these points).
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5.1. A 1D example with regular σ. This example is designed to test the
correctness of Algorithm 1. The dimension is d= 1 and σ2 is uniformly bounded from
below. We will also plot the empirical distribution generated by our algorithm to com-
pare with the one generated by Euler-Maruyama scheme (3.1).

The SDE we consider is as following:

dX(t) =λX(t)dt+
√
X(t)2 +4dW. (5.1)

The diffusion coefficient σ(x) =
√
x2 +4 is bounded below uniformly so that there is no

degenerate point.
To test the correctness of our algorithm, we use the test function φ(x) =x2 and

define the relative error as

E=
1

EX2(T )

∣∣∣ 1

N

N∑
k=1

(X(k),[T/h])2−EX2(T )
∣∣∣, (5.2)

where X(k) ={X(k),n}n≥0 is the sequence generated by the numerical algorithm in the
k-th experiment. Hence, X(k) is a sample path. The exact expectation Ex0X

2(T ), by
Itô’s formula [23, Chap. 4], is given by

Ex0
X2(T ) =x20 exp((2λ+1)T )+4

exp((2λ+1)T )−1

2λ+1
.

In Figure 5.1, we plot the results of the simulation for X(0) = 2,λ=−2 and T = 2.
Each error is computed using N = 108 trajectories. The “error bars” are obtained by
chopping all samples into 10 slices, with each slice containing 107 trajectories. We then
compute the relative error (5.2) in each slice, denoted by E(m) (1≤m≤10). We find the
standard deviation σE for the data {E(m)}10m=1, and use [E−1.65σE ,E+1.65σE ] as our
confidence interval. We find that our Gaussian mixture method gives weak second-order
accuracy.

2-5 2-4 2-3 2-2 2-1
10-5

10-4

10-3

10-2

10-1

100

E

h

Fig. 5.1. X(0) =2, λ=−2, T = 2. We plot the errors obtained by the Gaussian mixture method.
The vertical short segments are the “error bars” and the black dashed line indicates E=h2.

To confirm that the Gaussian mixture method gives the desired distribution, we now
plot the empirical distribution in Figure 5.2 by histcounts. All the empirical densities
are obtained by using N = 106 points, and the initial condition X(0) = 2. We take the
results obtained from Euler-Maruyama (E-M) scheme (3.1) with ∆t=h3 as the reference
density (green curves in Figure 5.2 (a) and (b)).
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In Figure 5.2 (a), we plot the empirical densities obtained by Algorithm 1 (red) and
Euler-Maruyama (black) after one step with step size ∆t=h= 1/32. At time t=h, the
reference density (green curve) has a peak at xc≈1.79 while its mean is located at the

black dot (x̄≈1.88). We also calculated the empirical skewness γ1 =E
(X(h)− x̄

σ

)3
≈

0.3695 (here only σ denotes the variance of the reference density), and the kurtosis K=

E
(X(h)− x̄

σ

)4
≈3.3078, while the accurate skewness and kurtosis are 0.3718 and 3.3153

respectively. The skewness and kurtosis for a Gaussian (Euler-Maruyama method) are
0 and 3 respectively. For Algorithm 1, these two numbers are 0.3717 and 3.1888.

In Figure 5.2 (b), we plot the empirical densities obtained by Algorithm 1 (red) and
Euler-Maruyama (black) at time t= 1 with step size ∆t=h= 1/32. We find that the
densities given by our weak second-order algorithm almost coincides with the reference
density, while the one given by E-M is worse.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p

p

t = h = 1/32

t = T = 1

(a)

(b)

x

Fig. 5.2. The green lines are the ‘accurate densities’ obtained using E-M with step size ∆t=h3.
Other curves are empirical distributions (black dashed line: E-M; red broken line: Gaussian mixture)
obtained with step size ∆t=h. (a). Empirical distributions after one step. The solid vertical line
shows the mean of the green curve while the dashed line shows the peak. Empirical skewness is 0.3695
and kurtosis is 3.3078. (b). Empirical distributions are at t= 1.

To sum up, for this example (5.1), the Gaussian mixture method has weak second-
order accuracy and is able to capture the correct distribution better.

5.2. 1D geometric Brownian motion. In this example, we consider the 1D
geometric Brownian motion

dX(t) =λX(t)dt+σX(t)dW,

which has a degenerate diffusion coefficient

σ(x) =σx.
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Again, we test the weak accuracy with test function φ(x) =x2 and define the weak
error

E=
1

EX2(T )

∣∣∣ 1

N

N∑
k=1

(X(k),[T/h])2−EX2(T )
∣∣∣.

By Itô calculus, it is straightforward to find

EX2(T ) =x20exp((2λ+σ2)T ).

In Figure 5.3, we plot the weak error of simulations for λ=−0.8,σ= 0.85,x0 = 5,T = 1
with N = 2×108. The error bars are computed by slicing the samples into 5 pieces
of equal size, and the method is the same as in Section 5.1 (confidence interval is
[E−1.65σE ,E+1.65σE ]).

For the tested parameters our Gaussian mixture method still works and is of weak
second-order. For this example, the error of Algorithm 1 scales like h2 only when h
becomes small. This can be seen in the kink in Figure 5.3 where only the left-most two
points seem to line up with the order h2 line. After further investigation, we find that
for the first three h values (h= 0.25,0.125,0.0833), there is roughly 1/6 chance that the
computed S(h) from the ODE is negative. For smaller values of h (h= 0.0625,0.05),
S(h) is always nonnegative for the samples we have. In light of this, we expect the
second-order behavior for our approach to appear in the examples with h.0.0625.
When there is a resonable chance that σ2 is degenerate, our approach seems to lose the
second-order accuracy.

0.05 0.1 0.15 0.2 0.25
10-4

10-3

10-2

10-1

E

h

Fig. 5.3. Log-Log error plot for geometric Brownian motion, with X(0) =5,λ=−0.8,σ= 0.85,T =
1. The red line with circles is the error obtained by the Gauss mixture method. The black dashed line
is E= 0.4h2 and vertical bars represent the “error bars”.

5.3. A 2D example. In this example, we consider a 2D SDE, which is a
modification of the first example in [2]:(

dX1(t)
dX2(t)

)
=

(
X1(t)
−X2(t)

)
+X1(t)

(
0
1

)
dW1(t)+σ

(
1
1

)
dW2(t), (5.3)

where W1(t) and W2(t) are independent standard Brownian motions, and σ is a positive
constant. The purpose here is to show that our Gaussian mixture method for multi-
dimensions (Algorithm 2) works for Λ(x) that has varying eigen-directions.
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We consider the solution of (5.3) at T = 1 with initial condition X1(0) =X2(0) = 1
and σ= 0.1. We will use the test function φ(x) =x22 to check the weak accuracy. By
Itô’s formula,

EX2
2 (t) =e−2t

(
EX2

2 (0)− 1

4
EX2

1 (0)− 3σ2

8

)
+
σ2

4
+e2t

(1

4
EX2

1 (0)+
σ2

8

)
.

As before, the relative error is computed as

E=
1

EX2
2 (T )

∣∣∣ 1

N

N∑
k=1

(X
(k),[T/h]
2 )2−EX2

2 (T )
∣∣∣.

In Figure 5.4, we sketch the error plots with N = 2×108 and also slice these samples
into 10 equal pieces for the “error bar” calculation (confidence interval [E−1.65σE ,E+
1.65σE ] and σE is the standard deviation for these 10 data). We find that our Gaussian
mixture method gives weak second-order accuracy for this 2D example as well.

2-5 2-4 2-3 2-2 2-1
10-4

10-3

10-2

10-1

100

E

h

Fig. 5.4. Log-log error plot of the Gaussian mixture method for the 2D example with σ= 0.1 (red
line). The black line is E= 0.5h2 while the vertical segments are the “error bars”.

5.4. A 6D example. According to Algorithm 2, the proposed Gaussian mixture
method depends explicitly on the dimension and one is surely curious with what will
happen if the dimension gets higher. In this example, we look at a 6D problem and
verify that our algorithm is still weak second-order.

The SDE we consider is given by:

d


X1

X2

X3

X4

X5

X6

=


−1 1 0 0 0 −1
−1 −1 1 0 0 0
0 −1 −1 1 0 0
0 0 −1 −1 1 0
0 0 0 −1 −1 1
1 0 0 0 −1 −1




X1

X2

X3

X4

X5

X6

dt+

σ



√
0.1+X2

1 −0.1 0 0 0 −0.1

−0.1
√

0.2+X2
2 −0.1 0 0 0

0 −0.1
√

0.3+X2
3 −0.1 0 0

0 0 −0.1
√

0.4+X2
4 −0.1 0

0 0 0 −0.1
√

0.5+X2
5 −0.1

−0.1 0 0 0 −0.1
√

0.6+X2
6


d


W1

W2

W3

W4

W5

W6

 (5.4)
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We take σ= 0.7 and check the solution at t= 2. The initial condition we use is
Xi(0) = 1 for all 1≤ i≤6. The test function we use is

φ(x) =

6∑
i=1

x2i . (5.5)

By Itô’s formula

Eφ(X(T )) = (

6∑
i=1

X2
i (0))exp((−2+σ2)t)+

2.22σ2

σ2−2
(exp((−2+σ2)t)−1). (5.6)

The relative error is again defined as

E=
1

Eφ(X(T ))

∣∣∣ 1

N
φ(X(k),[T/h])−Eφ(X(T ))

∣∣∣. (5.7)

For the following log-log error plot (Figure 5.5), we choose h=
1

4k
, 1≤k≤5. The

sample size is N = 2×108 for h≥ 1

16
and 5×108 for h=

1

20
, chopped into 10 equal slices

to produce the error bars with confidence interval [E−1.65σE ,E+1.65σE ] (σE is again
the standard deviation of these 10 data). The plot demonstrates that the scheme works
in high dimensions as well.

0.05 0.1 0.15 0.2 0.25
10-4

10-3

10-2

10-1

E

h

Fig. 5.5. Log-log error plot of Gaussian mixture method (red line). The black dashed line is
E= 0.5h2 and the vertical segments indicate the “error bars”.
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Appendix A. Proof of Proposition 2.1.

Proof. Let us fix φ∈C2(r+1)
b and define

un(x) =Exφ(Xn),

u(x,t) =Exφ(X(t)).
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By the Markov property, we have

un+1(x) =Ex(Ex(φ(Xn+1)|X1)) =Ex(un(X1)). (A.1)

Similarly, we have

u(x,(n+1)h) =Ex(u(X(t1),nh)). (A.2)

Note that u satisfies the backward Kolmogorov equation

ut=Lu= b ·∇u+
1

2
Λij∂iju,

with initial condition

u(x,0) =φ(x).

By standard parabolic PDE theory, for b,σ∈C2(r+1)
b , we have

sup
0≤t≤T

‖u‖C2(r+1) ≤C(T ). (A.3)

By Equations (A.1) and (A.2), we have for all x∈Rd that

|un+1(x)−u(x,(n+1)h)|≤ |Ex(un(X1)−u(X1,nh))|
+ |Ex(u(X1,nh))−Ex(u(X(t1),nh))|.

Define

En= sup
x∈Rd

|un(x)−u(x,nh)|,

by the assumption of Proposition 2.1 on local truncation error and Equation (A.3) we
have

En+1≤ExEn+ |Ex(u(X1,nh))−Ex(u(X(t1),nh))|≤En+Chr+1,

where C= sup0≤t≤T ρ(‖u(·,t)‖C2(r+1)). This further implies that

sup
n:nh≤T

En≤C1h
r.

Appendix B. Proof of Proposition 3.1.
Proof. For the convenience of notations, we will drop the dependence on x0

so that m(h) indeed means m(h,x0) and m1 means m1(x0) and so on. Denote L1 :=
(m(h)−x0)∂x+ 1

2S(h)∂xx, and we have

Ex0
(φ(X1)) =φ(x0)+L1φ(x0)+

1

2
L2
1φ(x0)+O(h3).

It follows that

Ex0
(φ(X1)) =:φ(x0)+Bh+Ch2 +O(h3). (B.1)
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Here, B and C are the coefficients of h and h2:

B=φ′(x0)m1 +
1

2
φ′′(x0)S0,

C=
1

2

(
φ′′(x0)m2

1 +φ′(x0)m2

)
+

1

2

(1

2
φ′′(x0)S1 +φ′′′(x0)m1S0

)
+

1

8
φ(4)(x0)S2

0 .

To satisfy the condition (2.13), we need to have

B=Lφ(x0), C=
1

2
L2φ(x0). (B.2)

Recall that L= b∂x+ 1
2Λ(x)∂2x, so B=Lφ(x0) requires that for any sufficiently smooth

φ,

b(x0)φ′(x0)+
1

2
Λ(x0)φ′′(x0) =φ′(x0)m1 +

1

2
φ′′(x0)S0,

which requires

m1 = b(x0), S0 = Λ(x0). (B.3)

On the other hand, the requirement C= 1
2L

2φ(x0) can be expanded as

1

2

(
b(x0)(bφ′+

1

2
Λφ′′)′+

1

2
Λ(x0)(bφ′+

1

2
Λφ′′)′′

)∣∣∣
x=x0

=
(1

2
(φ′′m2

1 +φ′m2)+
1

2
(
1

2
φ′′S1 +φ′′′m1S0)+

1

8
φ(4)S2

0

)∣∣∣
x=x0

.

This is impossible in general. For example, the coefficient of φ′′′ on right-hand side is
1
2m1S0, or 1

2b(x0)Λ(x0) but the one on left-hand side is 1
2b(x0)Λ(x0)+ 1

4Λ(x0)Λ′(x0).
They can not balance unless the diffusion matrix Λ(x) is constant.

Appendix C. Proof of Lemma 4.1.
Proof. In this proof, we will again use R to denote a generic function that can

depend on the C6 norm of the test function but can be bounded uniformly in x0 and
h. However, its concrete meaning can change from line to line.

Clearly, due to the symmetry, we only need to prove that for all φ∈C∞b ,

∑
p∈P

wpφ(xp) =φ(x0)+

d∑
i=1

w1D2
i φ(x0)γλih+

∑
i<j

(w1)2D2
iD

2
jφ(x0)γ2λiλjh

2

+
1

12

d∑
i=1

w1D4
i φ(x0)γ2λ2ih

2 +R(x0,h)h3. (C.1)

Without loss of generality, we set x0 = 0. With Equation (4.4), it is convenient to denote
the left-hand side of (C.1) as

Td(φ) =
∑
p∈P

(

d∏
i=1

wz
i
p)φ

(
d∑
i=1

zip
√
γλihvi

)
. (C.2)

If d= 1, the claim follows from 1D Taylor expansion derived in Section 3. Assume that
the claim is valid for all d= 1,2,. ..,m, m≥1, and we want to prove for d=m+1. Define
Pm to be the index set with d=m. We find by definition:

Tm+1(φ) =w1
∑
p∈Pm

(

m∏
i=1

wz
i
p)φ

(
m∑
i=1

zip
√
γλihvi+

√
γλm+1h

)
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+w0
∑
p∈Pm

(

m∏
i=1

wz
i
p)φ(

m∑
i=1

zip
√
γλihvi)

+w−1
∑
p∈Pm

(

m∏
i=1

wz
i
p)φ(

m∑
i=1

zip
√
γλihvi−

√
γλm+1h).

For each p, we do Taylor expansion of φ about
∑m
i=1z

i
p

√
γλihvi and have

Tm+1(φ) =Tm(φ)+w1Tm(D2
m+1φ)γλm+1h+

1

12
w1Tm(D4

m+1φ)γ2λ2m+1h
2 +Rh3.

(C.3)
By the induction hypothesis, we have

Tm+1(φ) =φ(0)+

m∑
i=1

w1D2
i φγλih+

∑
i<j

(w1)2D2
iD

2
jγ

2λiλjh
2 +

1

12

m∑
i=1

w1D4
i φγ

2λ2ih
2

+w1
(
D2
m+1φ+

m∑
i=1

w1D2
iD

2
m+1φγλih

)
γλm+1h

+
1

12
w1D4

m+1φγ
2λ2m+1h

2 +Rh3.

Arranging the terms on the right-hand side, we find the claim is also true for d=m+1.

Appendix D. A variance construction approach.

D.1. The variance construction method for one dimension. Motivated
by (3.21) and (3.22), we can construct

Si(h) =
h

2
Λ(x0 +zi

√
6Λ(x0)h+hb(x0)), i=±1,

S0(h) =
1

2
hΛ(x0 +b(x0)h)− 3

8
Λ(x0)Λ′′(x0)h2 +

(3Λ(x0)Λ′′(x0)/8)2

Λ(x0 +b(x0)h)/2
h3.

We can verify that the constraints are all satisfied. The third term added is to ensure
that S0 is non-negative. Compared with the ODE flow method, the drawback of this
method is that it involves higher order spatial derivatives, such as Λ′′. In practice, one
may approximate it by finite difference 1

h2

(
Λ(x0 +h)−2Λ(x0)+Λ(x0−h)

)
.

Remark D.1. The third correction term can be thrown away if h is small enough.
For example,

h<
4infx |Λ(x)|
3‖ΛΛ′′‖∞

.

This construction gives the following Algorithm 3 to generate xn+1 given Xn=xn.
One can verify that the requirements in (3.15) are satisfied, which gives the following
theorem:

Theorem D.1. Let d= 1. Suppose Assumptions 2.1-2.2 hold, then Algorithm 3 is a
weak second-order scheme for the 1D diffusion process (1.1).

The proof is identical to that of Theorem 3.1 and is omitted here.
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Algorithm 3 Gaussian mixture scheme for SDEs (variance construction method in 1D)

1: Generate z such that P (z= 0) = 2
3 and P (z= 1) =P (z=−1) = 1

6 . Then,

m(0) =xn+z

√
3

2
Λh

If z= 0,

S(h) =
1

2
hΛ(xn+b(xn)h)− 3

8
Λ(xn)Λ′′(xn)h2 +

(3Λ(xn)Λ′′(xn)/8)2

Λ(xn+b(xn)h)/2
h3.

Otherwise,

S(h) =
h

2
Λ
(
xn+z

√
6Λ(xn)h+hb(xn)

)
.

2: Solve the ODE ṁ= b(m) with the initial value m(0) using a scheme of at least
second order to obtain m(h).

3: Sample

xn+1 =m(h)+
√
S(h)ξ, (D.1)

where ξ is a standard 1D normal variable.

D.2. The variance construction method for multi-dimensions. As before,
one may want to guarantee that Sp(h) is positive definite for p∈P . We now present a
variance construction method for Sp(h) for multi-dimensions. Consider that mp(h) and
Sp(h) are given by

ṁp= b(mp(t)), mp(0) =yp,

Sp(h) =
h

2
Λ
(
x0 +

d∑
i=1

zip
√

6λihvi+hb
)
− 3h2

8

d∑
i=1

(1−|zip|)λiD2
iΛ+Fp(h)h3,

where
∑d
i=1(1−|zip|)λiD2

iΛ can be approximated by finite difference. In particular, if

we set θ=
∑d
i=1

√
(1−|zip|)λivi, then

d∑
i=1

(1−|zip|)λiD2
iΛ≈

1

h2

(
Λ(x0 +hθ)−2Λ(x0)+Λ(x0−hθ)

)
.

Fp(h)h3 is added to ensure that Sp is positive semi-definite. Let the first two terms in
Sp be hAp and h2Bp, where Ap is positive definite and thus invertible. Then, we have

Fp=
1

4
BpA

−1
p Bp. (D.2)

We propose Algorithm 4 to generate xn+1 given Xn=xn.

Remark D.2. Notice that we need to invert a matrix to get F (h), which is not
desirable when d is large. However, similar as the 1D case, if h is small enough, F (h)h3

can be thrown away and we can still guarantee the positive definiteness.
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Algorithm 4 Gaussian mixture scheme for SDEs (variance construction method in
higher D)

1: Using some fast algorithm, decompose

Λ(xn) =

d∑
i=1

λi(xn)vi(xn)vTi (xn).

2: Generate zi,i= 1,2,. ..,d so that P (zi= 0) = 2
3 while P (zi= 1) =P (zi=−1) = 1

6 .
3: Construct the matrix

S(h) =
h

2
Λ(xn+

d∑
i=1

zi
√

6λihvi)−
3h2

8

d∑
i=1

(1−|zi|)λiD2
iΛ+F (h)h3 (D.3)

where F is constructed according to (D.2).
4: Let

m(0) =xn+

d∑
i=1

zi
√

3

2
λihvi.

and then m(h) is obtained by solving ṁ= b(m) using an ODE solver with at least
second-order accuracy (e.g. RK2, RK4).

5: Sample xn+1∼N (m(h),S(h)), or

xn+1 =m(h)+

d∑
i=1

√
µ+
i ξiui.

where S(h) =
∑d
i=1µiuiu

T
i with {ui}di=1 being orthonormal, and {ξi} are i.i.d stan-

dard 1D normal variables.

Theorem D.2. Suppose Assumptions 2.1-2.2 hold, then Algorithm 4 is a second-order
scheme for the multi-dimensional diffusion process (1.1).

Proof. Again, the idea is to check the conditions in Corollary 2.1. Our strategy
is not to verify the conditions directly, instead, we compare it to Algorithm 2, the one
using an ODE approach.

Again, we only have to check X1 given X0 =x0. Let Sop be the covariance matrix
obtained following Algorithm 2 at time h while Ssp be the covariance matrix constructed
in this section at time h for p∈P . Let Esx0

denote the expectation under the process
constructed here while Eox0

be the expectation under the process in Algorithm 2.

Consider

E=Esx0
(φ(X1))−Eox0

(φ(X1)) =:E1−E2.

Since the two algorithms only give different covariance matrices, we have by Equation
(4.2):

|E|≤
∣∣∣1
2

∑
p∈P

wp∂i∂jφ(mp(h))(Sop,ij−Ssp,ij)
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+
1

8

∑
p∈P

wp∂ijklφ(mp(h))(Sop,ijS
o
p,kl−Ssp,ijSsp,kl)

∣∣∣+R(h)h3. (D.4)

We denote

ηp= (mp(0)−x0)/
√
h=

d∑
i=1

zip

√
3

2
λivi. (D.5)

By Equation (4.6) and direction Taylor expansion on t, we find for p∈P ,

Sop =G(mp(0))h+
1

2
b(mp(0)) ·∇G(mp(0))h2 +R(h)h3

=
1

2
hΛ+ηp ·∇Gh3/2 +

1

2
(ηp)i(ηp)j∂ijGh

2 +
1

2
b ·∇Gh2 +K1

p(h)h5/2 +R(h)h3,

where K1
p(h) is a bounded function.

We do expansion on Ssp and have

Ssp =
1

2
hΛ+ηp ·∇Gh3/2 +

1

2
b ·∇Λh2 +(ηp)i(ηp)j∂ijΛh

2− 3h2

8

d∑
i=1

(1−|zip|)λiD2
iΛ

+K2
p(h)h5/2 +R(h)h3,

where K2
p is some bounded function. This implies

Sop,ij−Ssp,ij =
3h2

8

d∑
i=1

(1−|zip|)λiD2
iΛ−

1

2
(ηp)i(ηp)j∂ijΛh

2 +K3
ph

5/2 +R(h)h3. (D.6)

Hence, we can replace mp(h) with yp and throw away the terms involving ∂ijklφ in (D.4)
with introducing errors at most R(h)h3:

|E|≤
∣∣∣1
2

∑
p∈P

wp∂i∂jφ(yp)(S
o
p,ij−Ssp,ij)

∣∣∣+R(h)h3.

By (D.6) and (D.5), we find∑
p∈P

wp∂i∂jφ(yp)(S
o
p,ij−Ssp,ij)

=
h2

2
∂i∂jφ(x0)

∑
p∈P

wp
(3

8

d∑
i=1

(1−|zip|)λiD2
iΛ−

3

4

∑
m,n

zmp z
n
p

√
λmλnDmDnΛ

)
+R(h)h5/2.

We note first that∑
p∈P

wp(1−|zip|) =w0 =
2

3
,
∑
p∈P

wpz
m
p z

n
p = 2w1δmn=

1

3
δmn. (D.7)

We justify the second equality for an example. Let j∈{±1,0} be the index over the
beams in one dimension, and zj = j. Then, when m=n,

∑
p∈P

wpz
m
p z

n
p = (

1∑
j=−1

|zj |2wj)
∏
i 6=m

(

1∑
j=−1

wj) =

1∑
j=−1

|zj |2wj = 2w1.
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When m 6=n,

∑
p∈P

wpz
m
p z

n
p = (

1∑
j=−1

zjw
j)2

∏
i 6=m,i6=n

(

1∑
j=−1

wj) = (

1∑
j=−1

zjw
j)2 = 0.

Using (D.7), we find that∑
p∈P

wp∂i∂jφ(yp)(S
o
p,ij−Ssp,ij) =R(h)h5/2.

Therefore

|E|≤R(h)h5/2.

However, we know that E1 does not contain h5/2 terms while neither does E2 because
of the symmetry. Hence, |E|≤R(h)h3, which finishes the proof.
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