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REGULARIZED LEAST SQUARE KERNEL REGRESSION FOR
STREAMING DATA∗

XIAOQING ZHENG† , HONGWEI SUN‡ , AND QIANG WU§

Abstract. We study the use of kernel ridge regression (KRR) in the block-wise streaming data.
The algorithm works in an online manner: when a new data block comes in, the algorithm computes a
local estimator based on the incoming data block and updates the predictive model by weighted average
of all local estimators. Assuming the block data sizes increase at a mild rate and the regularization
parameters are selected adaptively according to the sample size of all available data at the time of
updating the model, we prove the convergence of the average KRR estimator. The rate is optimal
when the regression function can be well approximated by the reproducing kernel Hilbert space in the
L2 sense.

Keywords. Learning theory; kernel ridge regression; streaming data; online learning; adaptive
underregularization.
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1. Introduction

Data collection is usually a dynamic process and data come in as a stream. This
process may last for a long period or even look endless in the foreseeable future. In
practical applications such as business operations, technology development, or scientific
research, people may need to analyze only part of the data before the whole data are
available and gradually update the knowledge and models as more data come in.

The streaming data may be received block-wise or instance-wise. The former usually
occurs when the data are collected by different entities (e.g. different research groups
who work on the same scientific problem) or different branches of the same entity.
Instance-wise streaming data seem more common in practice and online learning by
gradient descent method has been widely studied in the machine learning literature.
However, in some scenarios it may be preferred to analyze the instance-wise streaming
data in a block-wise manner. For instance, in the dynamic pricing problems the price is
usually not updated each time when an instance of sales information becomes available
because customers may not like the price changing too frequently [1, 16]. So, there
arises a natural requirement on developing appropriate approaches to analyze block-
wise streaming data (either real or pseudo).

In this paper we study the use of kernel ridge regression (KRR) for block-wise
streaming data. To describe our approach, let us first recall the settings of regression
analysis and the kernel ridge regression for a single data set. Let X be a compact metric
space, Y ⊂R, and Z=X×Y be a probability space equipped with a Borel probability
distribution ρ which can be decomposed into the conditional probability distribution
ρ(·|x) on Y and the marginal probability distribution ρX on X, i.e., ρ(x,y) =ρ(·|x)×
ρX(x). The mean regression function
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fρ(x) =

∫
Y

ydρ(y|x),

reveals functional relation between input data x and output data y and can be used
for statistical inference and predictive analytics. Let D={(xi,yi)}Ni=1 be a sample of
i.i.d observations collected according to ρ. The purpose of regression analysis is to learn
a good estimator for fρ. Let K :X×X→R be a continuous, symmetric and positive
semi-definite function, called a Mercer kernel. The reproducing kernel Hilbert space
HK associated with the kernel K is the completion of the linear span of the set of
functions {Kx :=K(x, ·) :x∈X} with the inner product 〈·, ·〉K given by 〈Kx,Ky〉K =
K(x,y). Given a data set D and an RKHS HK , the KRR estimator for fρ is defined by

fD,λ= arg min
f∈HK

{ 1

|D|
∑

(x,y)∈D

(f(x)−y)2 +λ‖f‖2K
}
, (1.1)

where λ>0 is a regularization parameter. It has been well studied by a vast literature
in learning theory; see e.g. [4, 13] and many references therein.

Our approach for regression analysis of block-wise streaming data analysis is as
follows. Let Dt={(xt,i,yt,i)}nti=1 be a data block received at time t and composed of
nt observations. Let ft=fDt,λt be the KRR estimator obtained with the data Dt and
regularization parameter λt. The estimator that will be used for statistical inference
and forecasting at time t is defined incrementally by

F1 =f1;

Ft=
Nt−1
Nt

Ft−1 +
nt
Nt
ft, for t≥2,

(1.2)

where Nt=
∑t
s=1ns is the number of all observations available at time t. Note that

Ft=

t∑
s=1

ns
Nt
fs, for all t∈N.

We call Ft a block-wise streaming data based average kernel ridge regression (BSD-
AKRR) estimator. This approach does not need to retrieve the historical data to up-
date the estimator. It is also computationally efficient because there is no need of
communications between the incoming data block and historical ones.

Our approach is motivated by recent research on distributed kernel ridge regression
(DKRR) [9,18]. Consequently, on the one hand, both approaches share great similarities.
On the other hand, they also have some essential differences because of the incremental
feature of BSD-AKRR.

Distributed learning was extensively studied in recent years for its high efficiency
to handle big data [6–11,18]. The divide and conquer method is one of the distributed
learning strategies that does not require mutual communication between the local ma-
chines and thus is computationally efficient and privacy protecting. In the context of
regression analysis, the DKRR based on the divide and conquer strategy will first par-
tition a big data set D of N observations, which is supposed not processable by a single
machine, into m subsets, D=

⋃m
t=1Dt, to different local machines, or these subsets may

have already been naturally distributed on different local machines. Then a KRR esti-
mator ft is learned from Dt and the DKRR estimator is defined by the weighted average
FD =

∑m
t=1

nt
N ft. We see both BSD-AKRR and DKRR are based on the weighted av-

erage of local KRR estimators from subsets and do not require mutual communication
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between data blocks. Their similarity is clear and seems needless to say. At the first
glance, one may even have the illusive intuition that these two approaches are identical.

To see the difference between BSD-AKRR and DKRR, recall that underregular-
ization has been shown essential for DKRR to achieve minimax optimal rates. By the
theory in [9, 18], the DKRR estimator FT is minimax optimal if the regularization pa-
rameters λt for all subsets Dt are chosen the same as λt=N−θ for some θ>0 depending
on the regularity of the regression function and the complexity of the kernel space, that
is, the choice of λt depends on the size N of the whole data set, not on the size nt of
the subset itself. Comparing with learning with a single data set where the optimality
requires λt=n−θt , distributed approach requires a much smaller regularization parame-
ter on the subsets to learn local estimators fs, which may result in overfitting the data.
This parameter selection strategy is called underregularization. It requires knowing the
size of the whole data to start the training process. This, however, is impractical for
streaming data. At each given time t we have no access to the future data that will be
collected after time t and hence do not know the whole data size. Even for the available
data blocks, since BSD-AKRR does not retrieve the historical data, we can only have fs
be underregularized according to the size Ns of all available data. All previous learned
estimators fs, s<t have regularization parameters selected according to Ns<Nt and
are not fully underregularized. Such an adaptive parameter selection, constrained by
the incremental feature of streaming data, makes BSD-AKRR essentially different from
DKRR.

The main purpose of this paper is to analyze the performance of BSD-AKRR from
a learning theory perspective and derive the optimal strategy for its regularization
parameters. The main contributions include three aspects:

(i) We show that BSD-AKRR does not converge if the data blocks are of equal
size. This can be illustrated both from a theoretical analysis perspective and
by a concrete counterexample.

(ii) Mild growth condition on the data block sizes can guarantee the convergence
of BSD-AKRR. The regularization parameters can be selected either locally
according to the sample size of the block to be processed or by the underregu-
larization strategy, that is, according to the total sample size of all data blocks
available at the time of processing an incoming one, while the latter may give
faster convergence rate in case the block size grows fast and the target regression
function is well approximated by HK .

(iii) It is preferred the data block grows at a steady pace for the optimal rates. If
the block growth is fluctuating and not controlled, only suboptimal convergence
can be obtained.

The rest of this paper is arranged as follows. In Section 2 we describe the as-
sumptions for our analysis and state our convergence results for growing data blocks.
Discussions and comparisons with the literature will also be presented. The proofs
will be given in Section 3 and Section 4. We close with discussions on the divergence
phenomena for equal-sized data blocks in Section 5.

2. Assumptions and main results

In this section, we describe the assumptions and main results for our error analysis
of BSD-AKRR. We will adopt the well known source condition and the integral operator
technique and perform our error analysis [3, 12].

In most real applications both the input and output values are bounded. In this
paper we focus on this situation and make the following assumption.
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Assumption 2.1. Assume that |y|≤M for some constant M>0 almost surely.

This assumption implies |fρ(x)|≤M almost surely and finite mean conditional vari-
ance, i.e.,

σ2 =E
[
(y−fρ(x))2

]
<M2.

Let L2
ρX represent the Hilbert space of square integrable functions with respect to

the marginal distribution ρX and LK : L2
ρX→L2

ρX be the integral operator associated
with the Mercer kernel K, defined by

LKf =

∫
X

K(·,t)f(t)dρX(t).

Then LK is a positive compact operator not only from L2
ρX to L2

ρX , but also from
HK to HK [12, 14]. Moreover, if ρX is non-degenerate in the sense that any open

set of X has positive measure, then the square root operator L
1/2
K is an isomorphism

from (HK , ‖·‖L2
ρX

) to HK . Therefore, for any f ∈HK there holds L
1/2
K f ∈HK and

‖L1/2
K f‖K =‖f‖L2

ρX
; for more details see e.g. [14].

The second assumption is the regularity of regression function, as measured by the
so-called source condition.

Assumption 2.2. For some 0<β≤1, there holds

fρ=LβK(gρ) with gρ∈L2
ρX , (2.1)

where LβK denotes the β-th power of LK on L2
ρX .

Since LK is a compact and positive operator, let {λs}∞s=1 be the set of positive

eigenvalues of LK and {φs}s≥1 be the corresponding unit eigenvectors, then LβK is
defined by

LβK =

∞∑
s=1

λβsφs⊗φs.

Assumption 2.2 has been widely adopted in the literature of learning theory, especially
for the analysis of KRR. Note that β= 1

2 is equivalent to fρ∈HK .
For a,b∈R, denote a∧b= min(a,b), a∨b= max(a,b), a+ =a∨0, define a

0 = +∞ if
a>0 and the real function

ϑ(t) =

{
1 if t=−1;

0 otherwise.

Let Nt=
∑t
s=1ns be the size of all data available at time t. Our main results are stated

in the following theorems.

Theorem 2.1. Under Assumption 2.1 and Assumption 2.2, if the sample sizes of
the data blocks satisfy ns≥a0sp for some absolute constants a0>0 and p>0, then by
taking λs=n−θs with some 0<θ≤ 3

4 , there exists an absolute constant C independent of
ns, λs, or Nt such that

E
[
‖Ft−fρ‖2L2

ρX

]
≤CN−(1−θ)∧

2βθp
1+p

t (log(Nt))
ϑ(p(1−2βθ))

. (2.2)
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Theorem 2.1 guarantees the convergence of the algorithm BSD-AKRR provided
that the data blocks are growing and the regularization parameters are suitably selected.
Also, note that the condition on the growth of block sizes is very mild. It can be easily
fulfilled with p= 1 even if every data block has one more data point than its precedent
block.

In Theorem 2.1 the convergence is stated with regularization parameter λs chosen
locally according to the sample size ns of the data block Ds, not the total sample size Ns
available at s. In other words, no underregularization has been implemented. In Theo-
rem 2.2 below we consider the convergence of BSD-AKRR with underregularizaiton.

Theorem 2.2. Under Assumption 2.1 and Assumption 2.2, if the sample sizes of the
data blocks satisfy ns≥a0sp for some absolute constants a0>0 and p>0, then by taking
λs=N−θs with some 0<θ≤ p

p+1 ∧
1
2β , there exists a constant C independent of the total

sample size Nt at time t such that

E
[
‖Ft−fρ‖2L2

ρX

]
≤CN−(1−θ)∧ζ1∧ζ2t (log(Nt))

ϑ(1−p)
, (2.3)

where ζ1 = 1−2(1−β)θ−
(

2−p
2(p+1) ∨0

)
, and ζ2 = 2βθ(1− 2βθ

p+1 ).

If p≥2 and β≥ 1
2 , we see ζ1≥1−θ and ζ2≥ 2βθp

p+1 . The convergence rate in Theorem

2.2 becomes O(N
−(1−θ)∧ζ2
t ) and is faster than that given by Theorem 2.1, indicating

that underregularization helps improving the learning performance when the sample
sizes of the incoming data blocks increase fast and HK contains fρ. At the same time,
we notice that if p<2 and β≤ 1

2 , since ζ1<1−θ, the rate in Theorem 2.2 may be slower,
indicating underregularization may not always help.

Recall that when β> 1
2 and the effective dimension of HK satisfies

N (λ) = Trace
(
(λI+LK)−1LK

)
=O(λ−α), (2.4)

then KRR can reach minimax optimal rate of O(|D|−
2β

2β+α ) [2, 3]. Since all kernels

satisfy (2.4) with α= 1, the rate O(|D|−
2β

2β+1 ) corresponds to the capacity-independent
optimal rate. When β< 1

2 , the capacity-independent optimal rate was proved by the
leave-one-out analysis [17]. Notice that, however, neither Theorem 2.1 nor Theorem 2.2

is able to give the optimal rate O(N
− 2β

2β+1

t ). A plausible explanation is that, when the
data blocks do not increase at a steady pace, the magnitude of future data blocks may
blow up and result in insufficient underregularization of early data blocks. To avoid
this, we place an upper bound on ns to control the growing speed of the data blocks so
that their size increases at a steady pace. Theorem 2.3 below shows that optimal rates
become obtainable.
Theorem 2.3. Under Assumption 2.1 and Assumption 2.2, if the sample sizes of the
data blocks satisfy a1s

p≤ns≤a2sp for some absolute constants 0<a1<a2 and p>0,
then by taking λs=N−θs with some 0<θ≤ 3p

4(p+1) , there exists a constant C independent

of the total sample size Nt at time t such that

E
[
‖Ft−fρ‖2L2

ρX

]
≤CN−(1−θ)∧(2βθ)t . (2.5)

If in addition β> 1
6 and p≥ 4

6β−1 then by taking θ= 1
2β+1 we have

E
[
‖Ft−fρ‖2L2

ρX

]
=O

(
N
− 2β

2β+1

t

)
. (2.6)
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We see from (2.5) that, by imposing an upper bound on ns, the convergence rate
of BSD-AKRR is further improved. The estimation (2.6) verifies that the capacity-
independent optimal rate is achieved when β> 1

6 , with suitable adaptive underregular-
ization choice of the parameters λs according to all available sample size Ns up to time
s. The facts nt

Nt−1
=O( 1

t )→0 and nt
nt−1
→1 as t→∞ indicate that, to obtain sharp

convergence rates, it is preferred that the data blocks are asymptotically of equal size
and none of them dominates.

In all three theorems, the choice for the parameter θ implies that the algorithm fails
to converge if the block data sizes are equal (p= 0) or diminishes (p<0). This delivers a
message to practitioners: if an incoming data block is not sufficiently large, one should
wait for more data to form a large data block and update the model because otherwise
the learning performance may not improve. It should be emphasized that data block
growth requirement for convergence guarantee is not only due to technical difficulty,
but is an inherent feature of blockwise data processing. If all blocks are of equal size,
we can show the divergence of BSD-AKRR both from a theoretical perspective and by
an illustrative counter example. See Section 5 for details.

2.1. Connections and comparisons with distributed learning

Although our result for the block wise streaming data is essentially different from
the distributed learning, it is still interesting to make some comparisons between them.
In the literature of distributed kernel regression [5,7,9,10,18], assuming the whole data
are known and randomly split into multiple subsets and the regularization parameter
is selected appropriately according to the sample size of the whole data, the minimax

optimal rate of O(|D|−
2β

2β+α ) was proved for β≥ 1
2 while a suboptimal rate O(|D|−

2β
1+α )

was obtained for β< 1
2 . Moreover, for the best rates, the number of subsets is restricted

to be O(|D|
2β−1
2β+α ) if β> 1

2 and O(1) if β≤ 1
2 . This is equivalent to requesting that the

sample size of each subset must be larger thanO(|D|
α+1
2β+α ) for β> 1

2 andO(|D|) for β≤ 1
2 .

In other words, if more data becomes available and the total sample size increases, one
needs to redistribute the subsets so that each subset contains sufficiently many samples.

In our results for the BSD-AKRR, since the future is not known at each point
of time s<t, the local estimators fs are not sufficiently underregularized particularly
for small s. This is probably the reason of suboptimal rate for β< 1

6 . When β> 1
6 ,

since we consider capacity-independent rate which corresponds to the worse capacity
condition α= 1, we generally should not expect our rates to be better than the capacity-
dependent ones. But we see that if α>2β and 1

6 <β<
1
2 , then 2β

2β+1 >
2β
1+α and hence

our rate in Theorem 2.3 is sharper than that obtained in the literature of distributed
kernel regression. Furthermore, at each time t we see the number of data blocks is

t=O(N
1/(p+1)
t ), which greatly relaxes the constraint on the number of subsets allowed

in distributed kernel regression. In BSD-AKRR, when more data become available,
the existing data blocks will not change in order to minimize historical data retrieval.
Instead, incoming data blocks are required to grow bigger and bigger, making BSD-
AKRR essentially different from distributed kernel regression. What is in common for
them is that convergence cannot be guaranteed if all data blocks are of certain fixed
equal size.

As both BSD-AKRR and distributed kernel regression implement block wise data
processing, such similarity allowed us to adapt the techniques developed here to dis-
tributed kernel regression after this paper was completed. We refined the learning the-
ory analysis of distributed kernel regression and obtained capacity-independent optimal
rates under relaxed restrictions. The results are reported in a recent manuscript [15],
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which has been posted on arxiv.org.

3. Error bound for local estimators
To analyze the learning performance of BSD-AKRR algorithm (1.2), we recall Ft=∑t

s=1
ns
Nt
fs and write

E
[
‖Ft−fρ‖2L2

ρX

]
=E

∥∥∥∥∥
t∑

s=1

ns
Nt

(fs−fρ)

∥∥∥∥∥
2

L2
ρX


=

t∑
s=1

n2s
N2
t

E
[
‖fs−fρ‖2L2

ρX

]
+
∑
i6=j

ninj
N2
t

〈Efi−fρ,Efj−fρ〉L2
ρX

=

t∑
s=1

n2s
N2
t

{
E
[
‖fs−fρ‖2L2

ρX

]
−‖Efs−fρ‖2L2

ρX

}
+‖EFt−fρ‖2L2

ρX

=

t∑
s=1

n2s
N2
t

E
[
‖fs−Efs‖2L2

ρX

]
+

∥∥∥∥∥
t∑

s=1

ns
Nt

(Efs−fρ)

∥∥∥∥∥
2

L2
ρX

. (3.1)

Note that∥∥∥∥∥
t∑

s=1

ns
Nt

(Efs−fρ)

∥∥∥∥∥
2

L2
ρX

≤

{
t∑

s=1

ns
Nt
‖Efs−fρ‖L2

ρX

}2

≤
t∑

s=1

ns
Nt
‖Efs−fρ‖2L2

ρX

.

Therefore we have

E
[
‖Ft−fρ‖2L2

ρX

]
≤

t∑
s=1

n2s
N2
t

E
[
‖fs−Efs‖2L2

ρX

]
+

t∑
s=1

ns
Nt
‖Efs−fρ‖2L2

ρX

. (3.2)

This tells us that to bound the error of Ft, the key is to bound the variance and bias
of all local estimators. In the sequel of this section we will focus on the estimation of

E
[
‖fs−Efs‖2L2

ρX

]
and ‖Efs−fρ‖2L2

ρX

.

For the sample subset Ds={zs,i= (xs,i,ys,i)}nsi=1, the sampling operator SDs : HK→
Rns is defined by

SDsf := (f(xs,i))
ns
i=1 for f ∈HK .

Its adjoint operator S∗Ds :Rns→HK is

S∗Dsc :=
1

ns

ns∑
i=1

ciKxs,i for c= (c1, ·· · ,cns)∈Rns .

It is proved in [12,14] that

fs= (λsI+S∗DsSDs)
−1S∗Dsys, (3.3)

where ys= (ys,1 .. .,ys,ns)∈Rns is the vector of response values on the subset Ds. The
sample limit version of fs associated with the regularization parameter λs, defined by
fλs = (λsI+LK)−1LKfρ, plays an essential role for the error analysis. In the sequel,
without loss of generality we assume 0<λs≤1, and denote that

κ
.
= sup
x∈X

√
K(x,x)<∞.

arxiv.org
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Under the assumption (2.1) we have

‖fρ−fλs‖L2
ρX

=‖λsLβK(λsI+LK)−1gρ‖L2
ρX
≤λβs ‖gρ‖L2

ρX
. (3.4)

Let ηs(z) = (fρ(x)−fλs(x))Kx and

∆s=
1

ns

∑
z∈Ds

(fρ(x)−fλs(x))Kx−LK(fρ−fλs)

be the deviation of the sample mean of ηs on the subset Ds from its expectation. Then

Efs−fλs =E
[(
S∗DsSDs +λsI

)−1
∆s

]
. (3.5)

To bound the variance and bias of fs, we need the following two lemmas.
Lemma 3.1. Assume |y|≤M almost surely, fρ=LβKgρ for some 0<β≤1 and gρ∈L2

ρX .
We have

E
[
‖∆s‖2K

]
=E

∥∥∥∥∥ 1

ns

∑
z∈Ds

ηs(z)−Eηs

∥∥∥∥∥
2

K

≤κ2‖gρ‖2L2
ρX

λ2βs n
−1
s .

Lemma 3.2. We have E
[
‖LK−S∗DsSDs‖

2
]
≤ κ4

ns
.

The proofs of Lemma 3.1 and Lemma 3.2 follow from standard calculations. We
omit the details.

In Proposition 3.2 and (3.12) below we state our bound for the variance of fs. We
remark that a similar bound had been proved for the case 0<β≤ 1

2 by the leave-one-out
analysis in [17]. But in our proof, the upper bound of variance holds for all β>0, and
it seems that the variance has no relation with the source condition (2.2).

Consider the leave-one-out estimate. Plugging one more i.i.d. observation zs,ns+1 =
(xs,ns+1, ys,ns+1) into the sample set Ds, for any 1≤ i≤ns+1, let

fs\i = arg min
f∈HK

{
1

ns

ns+1∑
j 6=i,j=1

(
f(xs,j)−ys,j

)2
+λs‖f‖2K

}
,

gs= arg min
f∈HK

{
1

ns

ns+1∑
j=1

(
f(xs,j)−ys,j

)2
+λs‖f‖2K

}
.

The following lemma can been proved by the similar method proposed in [17].

Lemma 3.3. For all 1≤ i≤ns+1,

‖gs−fs\i‖K ≤
κ

nsλs
|gs(xs,i)−ys,i|.

Proposition 3.1. Assume |y|≤M almost surely. There holds

E
[
‖fs−fρ‖2L2

ρX

]
≤‖fλs−fρ‖2L2

ρX

+
nsλs
ns+1

(
‖fλs‖2K−E‖gs‖2K

)
+M2

(
κ4

n2sλ
2
s

+
2κ2

nsλs

)
.
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Proof. Recall σ2 =E(fρ(x)−y)2 and E(f(x)−y)2 =E(fρ(x)−f(x))2 +σ2.

E
[
‖fs−fρ‖2L2

ρX

]
=E

[(
fs\ns+1(xs,ns+1)−ys,ns+1

)2]−σ2

=E

[
1

ns+1

ns+1∑
i=1

(
fs\i(xs,i)−ys,i

)2]−σ2

=E

[
1

ns+1

ns+1∑
i=1

(
fs\i(xs,i)−ys,i

)2− 1

ns+1

ns+1∑
i=1

(
gs(xs,i)−ys,i

)2]

+E

[
1

ns+1

ns+1∑
i=1

(
gs(xs,i)−ys,i

)2]−σ2. (3.6)

The second term of (3.6) is bounded by

E

 1

ns+1

ns+1∑
j=1

(
gs(xs,j)−ys,j

)2
=

ns
ns+1

E

[
1

ns

ns+1∑
j=1

(
gs(xs,j)−ys,j

)2
+λs‖gs‖2K

]
− nsλs
ns+1

E‖gs‖2K

≤ ns
ns+1

E

[
1

ns

ns+1∑
j=1

(
fλs(xs,j)−ys,j

)2
+λs‖fλs‖2K

]
− nsλs
ns+1

E‖gs‖2K

=‖fλs−fρ‖2L2
ρX

+
nsλs
ns+1

(
‖fλs‖2K−E‖gs‖2K)+σ2. (3.7)

By the boundedness of the output data, we have the following simpler bound,

E

 1

ns+1

ns+1∑
j=1

(
gs(xs,j)−ys,j

)2
≤ ns
ns+1

E

[
1

ns

ns+1∑
j=1

(
gs(xs,j)−ys,j

)2
+λs‖gs‖2K

]
≤M2. (3.8)

By Lemma 3.3, the first part of (3.6) can be estimated as

E

[
1

ns+1

ns+1∑
i=1

(
fs\i(xs,i)−gs(xs,i)

)(
fs\i(xs,i)+gs(xs,i)−2ys,i

)]

=E

[
1

ns+1

ns+1∑
i=1

(
fs\i(xs,i)−gs(xs,i)

)2]

+E

[
2

ns+1

ns+1∑
i=1

(
fs\i(xs,i)−gs(xs,i)

)(
gs(xs,i)−ys,i

)]

≤E

[
1

ns+1

ns+1∑
i=1

κ4

n2sλ
2
s

(
gs(xs,i)−ys,i

)2]
+E

[
2

ns+1

ns+1∑
i=1

κ2

nsλs

(
gs(xs,i)−ys,i

)2]

=

(
κ4

n2sλ
2
s

+
2κ2

nsλs

)
E

[
1

ns+1

ns+1∑
i=1

(
gs(xs,i)−ys,i

)2]
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≤M2

(
κ4

n2sλ
2
s

+
2κ2

nsλs

)
. (3.9)

Plugging estimates in (3.7) and (3.9) into (3.6), Proposition 3.1 is proved.

Proposition 3.2. Under the condition that |y|≤M almost surely and 0<λs≤1,
there holds

E
[
‖fs−fλs‖2L2

ρX

]
+λsE

[
‖fs−fλs‖2K

]
≤M2(κ2 +2)2

( 1

nsλs
+

1

n2sλ
2
s

)
.

Proof. By Proposition 3.1, there holds

E
[
‖fs−fλs‖2L2

ρX

]
=E

[
‖fs−fρ‖2L2

ρX

]
+2E

[
〈fs−fλs ,fρ−fλs〉L2

ρX

]
−‖fρ−fλs‖2L2

ρX

≤M2

(
κ4

n2sλ
2
s

+
2κ2

nsλs

)
+
nsλs
ns+1

(
‖fλs‖2K−E

[
‖gs‖2K

])
+2E[〈fs−fλs ,LK(fρ−fλs)〉K ]

≤M2

(
κ4

n2sλ
2
s

+
2κ2

nsλs

)
+λs

(
‖fλs‖2K−E

[
‖fs‖2K

])
+λsE

[
‖fs‖2K

]
+2λsE[〈fs−fλs , fλs〉K ]− nsλs

ns+1
E
[
‖gs‖2K

]
− λs
ns+1

‖fλs‖2K .

≤M2

(
κ4

n2sλ
2
s

+
2κ2

nsλs

)
−λsE

[
‖fs−fλs‖2K

]
+Λ, (3.10)

where we used the fact

λs
(
‖fλs‖2K−E

[
‖fs‖2K

])
+2λsE[〈fs−fλs , fλs〉K ] =−λsE

[
‖fs−fλs‖2K

]
and

Λ =λsE
[
‖fs‖2K

]
− nsλs
ns+1

E
[
‖gs‖2K

]
.

We know from the definition of gs that λs‖gs‖2K ≤M2 and hence

Λ =λsE

{
‖fs−gs‖2K +2〈fs−gs, gs〉K +

1

ns+1
‖gs‖2K

}
≤λsE

[
‖fs−gs‖2K

]
+2M

[
λsE‖fs−gs‖2K

] 1
2

+
M2

ns+1
. (3.11)

By Lemma 3.3 and (3.8) we have

E
[
‖fs−gs‖2K

]
=E

[
1

ns+1

ns+1∑
i=1

‖fs\i−gs‖2K

]

≤ κ2

n2sλ
2
s

E

[
1

ns+1

ns+1∑
i=1

(
gs(xs,i)−ys,i

)2]≤M2κ2

n2sλ
2
s

.

Plugging this bound into (3.11) and by (3.10), we prove the desired estimation.

Note that our bound in Proposition 3.2 is independent of the source condition
in Assumption 2.2. By the fact that E

[
‖ζ−Eζ‖2

]
≤E

[
‖ζ−h‖2

]
for all vector-valued

random variables ζ and any vector h, we have

E
[
‖fs−Efs‖2L2

ρX

]
≤M2(κ2 +2)2

{
λ−2s n−2s +λ−1s n−1s

}
. (3.12)
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Now we turn to estimating the bias ‖Efs−fρ‖2L2
ρX

.

Proposition 3.3. Assume |y|≤M almost surely, fρ=LβKgρ for some 0<β≤1 and
gρ∈L2

ρX . There holds

‖Efs−fρ‖2L2
ρX

≤ (20κ4 +2)‖gρ‖2L2
ρX

{
λ2β−2s n

− 3
2

s +λ2βs

}
.

Proof. First notice that

‖Efs−fρ‖2L2
ρX

≤2‖Efs−fλs‖2L2
ρX

+2‖fλs−fρ‖2L2
ρX

.

To estimate the first term on the right-hand side, by the formula (3.5), we have

‖Efs−fλs‖2L2
ρX

=
∥∥∥E[L 1

2

K

(
S∗DsSDs +λsI

)−1
∆s

]∥∥∥2
K

≤2

∥∥∥∥E[(L 1
2

K−(S∗DsSDs)
1
2

)(
S∗DsSDs +λsI

)−1
∆s

]∥∥∥∥2
K

+2
∥∥∥E[(S∗DsSDs) 1

2

(
S∗DsSDs +λsI

)−1
∆s

]∥∥∥2
K

= 2

∥∥∥∥E[(L 1
2

K−(S∗DsSDs)
1
2

)(
S∗DsSDs +λsI

)−1
∆s

]∥∥∥∥2
K

+2

∥∥∥∥E[{(S∗DsSDs)
1
2

(
S∗DsSDs +λsI

)−1−L 1
2

K(LK +λsI)−1
}

∆s

]∥∥∥∥2
K

,

where we have used the fact that E[∆s] = 0. By the operator monotone inequality ‖Ak−
Bk‖≤‖A−B‖k for any 0<k≤1 and two positive operators A, B, and Hölder inequality,
we obtain

‖Efs−fλs‖2L2
ρX

≤2λ−2s E‖∆s‖2K×
(
E
∥∥LK−S∗DsSDs∥∥2) 1

2

+2E‖∆s‖2K

×E
∥∥∥(S∗DsSDs)

1
2

(
S∗DsSDs +λsI

)−1−L 1
2

K(LK +λsI)−1
∥∥∥2 . (3.13)

For any two positive operators A and B defined on a Hilbert Space, and λ>0, we have

A
1
2 (A+λI)−1−B 1

2 (B+λI)−1

= (A+λI)−1
(
A

1
2 (B+λI)−(A+λI)B

1
2

)
(B+λI)−1

= (A+λI)−1
(
λ
(
A

1
2 −B 1

2

)
+A

1
2

(
B

1
2 −A 1

2

)
B

1
2

)
(B+λI)−1.

Applying it with A=S∗DsSDs , B=LK , we obtain

E
∥∥∥(S∗DsSDs)

1
2

(
S∗DsSDs +λsI

)−1−L 1
2

K(LK +λsI)−1
∥∥∥2≤4λ−2s

(
E
∥∥LK−S∗DsSDs∥∥2) 1

2

.

Plugging the estimations in Lemma 3.1 and Lemma 3.2 into (3.13) and combining it
with (3.4) lead to the desired upper bound for the bias. This proves Proposition 3.3.
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4. Learning rates of the average estimator
In this section we prove the three theorems stated in Section 2. To simplify our

notations, we use a� b to denote the relation a≤Cb with a constant C independent of ns,
λs, or Ns for all 1≤s≤ t. The notation a∼ b means a� b and b�a hold simultaneously.
We will need the fact that

t∑
s=1

sa∼ ta+1 for a>−1.

Proof. (Proof of Theorem 2.1.) Under the condition that ns≥a0sp for all
1≤s≤ t, then

Nt=

t∑
s=1

ns≥a0
t∑

s=1

sp≥ a0
1+p

t1+p. (4.1)

By the error decomposition (3.2) and λs=n−θs with 0<θ≤ 3
4 we have

E
[
‖Ft−fρ‖2L2

ρX

]
� 1

N2
t

t∑
s=1

(
n2θs +n1+θs

)
+

1

Nt

t∑
s=1

(
n
− 1

2+2(1−β)θ
s +n1−2βθs

)
� 1

N2
t

t∑
s=1

n1+θs +
1

Nt

t∑
s=1

n1−2βθs . (4.2)

By the fact ns<Ns≤Nt for all 1≤s≤ t, the first term on the right can be bounded by

1

N2
t

t∑
s=1

n1+θs ≤ 1

N2−θ
t

t∑
s=1

ns=
1

N1−θ
t

. (4.3)

Note that for any 0<α≤1, by Hölder inequality and (4.1), we have

t∑
s=1

nαs ≤

[
t∑

s=1

(
nαs
) 1
α

]α
× t1−α�N

1+αp
1+p

t

and, for any α≤0, we have

t∑
s=1

nαs �
t∑

s=1

spα� t(1+αp)∨0 (logt)
ϑ(pα)�N

1+αp
1+p ∨0
t (log(Nt))

ϑ(pα)
.

Under the condition 0<θ≤ 3
4 , we have − 1

2 ≤1−2βθ<1. Therefore, we can bound the
second term on the right of (4.2) by

1

Nt

t∑
s=1

n1−2βθs �N−(
2βθp
p+1 ∧1)

t (log(Nt))
ϑ(p(1−2βθ))

. (4.4)

Combining the estimations in (4.3) and (4.4) we have

E
[
‖Ft−fρ‖2L2

ρX

]
�N−(1−θ)∧

2βθp
1+p

t (log(Nt))
ϑ(p(1−2βθ))

.

This proves Theorem 2.1.
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Proof. (Proof of Theorem 2.2.) By the error decomposition (3.2) and λs=N−θs
we have

E
[
‖Ft−fρ‖2L2

ρX

]
� 1

N2
t

t∑
s=1

(
N2θ
s +nsN

θ
s

)
+

1

Nt

t∑
s=1

(
n
− 1

2
s N2(1−β)θ

s +nsN
−2βθ
s

)
. (4.5)

It is easy to verify that, if 0<θ≤ p
p+1 , then

1

N2
t

t∑
s=1

N2θ
s ≤

t

N2−2θ
t

� 1

N
2−2θ− 1

p+1

t

� 1

N1−θ
t

(4.6)

and

1

N2
t

t∑
s=1

nsN
θ
s ≤

1

N2−θ
t

t∑
s=1

ns=
1

N1−θ
t

. (4.7)

By ns≥a0sp,

1

Nt

t∑
s=1

n
− 1

2
s N2(1−β)θ

s � 1

N
1−2(1−β)θ
t

t∑
s=1

s−
p
2

�


N
−1+2(1−β)θ
t t1−

p
2 �N

−1+2(1−β)θ+ 2−p
2(p+1)

t , if p<2;

N
−1+2(1−β)θ
t logt�N−1+2(1−β)θ

t logNt, if p= 2;

N
−1+2(1−β)θ
t , if p>2.

(4.8)

When 0<θ≤ 1
2β . Denote ν= 1− 2βθ

p+1 , s
∗= max{1≤s≤ t :Ns≤Nν

t }. Then

1

Nt

t∑
s=1

nsN
−2βθ
s � 1

Nt

s∗∑
s=1

n1−2βθs +
1

N1+2βθν
t

t∑
s=s∗+1

ns

� 1

Nt

(
s∗∑
s=1

ns

)1−2βθ

t2βθ+N−2βθνt

�N−1+(1−2βθ)ν+ 2βθ
p+1

t +N−2βθνt

�N−2βθνt . (4.9)

Combining the estimations in (4.6)-(4.9), we obtain the desired conclusion.

Proof. (Proof of Theorem 2.3.) If ns∼sp for all 1≤s≤ t, then Ns∼sp+1.
Recalling the error decomposition (3.2) and the choice of λs=N−θs ∼s−θ(p+1) we have

E
[
‖Ft−fρ‖2L2

ρX

]

�
t∑

s=1

(
s2θ(p+1)

t2(p+1)
+
sp+θ(p+1)

t2(p+1)

)
+

t∑
s=1

(
s2(1−β)θ(p+1)−p/2

t(p+1)
+
sp−2βθ(p+1)

tp+1

)

� t1−2(1−θ)(p+1) + t−(1−θ)(p+1)



1546 REGULARIZED LEAST SQUARE KERNEL REGRESSION FOR STREAMING DATA

+

t∑
s=1

(
smax{2(1−β)θ(p+1)−p/2,θ(1+p)−1}

t(p+1)
+
smax{p−2βθ(p+1),θ(1+p)−1}

tp+1

)

� t1−2(1−θ)(p+1) + t−(1−θ)(p+1) + t2(1−β)θ(p+1)− 3p
2 + t−2βθ(p+1).

If θ≤ 3p
4(p+1) , then

1−2(1−θ)(p+1)≤−(1−θ)(p+1),

2(1−β)θ(p+1)−3p/2≤−2βθ(p+1).

Therefore,

E
[
‖Ft−fρ‖2L2

ρX

]
� t−(1−θ)(p+1) + t−2βθ(p+1).

The conclusion (2.5) follows by noting that Nt∼ tp+1. Under the assumption β> 1
6 and

p≥ 4
6β−1 , the conclusion (2.6) is an easy consequence of the choice θ= 1

2β+1 .

5. BSD-AKRR is divergent for equal-sized data blocks
When all data blocks have the equal sample size, namely, ns=n is fixed for all

1≤s≤ t and hence Ns=ns. Recalling the error decomposition (3.2) and the choice of
λs=N−θs with 0<θ< 1

2β we have

E
[
‖Ft−fρ‖2L2

ρX

]
� 1

t2

t∑
s=1

(
(ns)2θ

n2
+

(ns)θ

n

)
+

1

t

t∑
s=1

(
(ns)(2−2β)θ

n3/2
+(ns)−2βθ

)

� t

(nt)2−2θ
+

1

(nt)1−θ
+

t3/2

(nt)2βθ−2θ+3/2
+(nt)−2βθ. (5.1)

When t→∞ we see the third term on the right-hand side of (5.1) diverges for any
0<β<1. The divergence can be further illustrated as follows. Recalling the error
decomposition (3.1) implies

E
[
‖Ft−fρ‖2L2

ρX

]
≥

∥∥∥∥∥
t∑

s=1

ns
Nt

(Efs−fρ)

∥∥∥∥∥
2

L2
ρX

.

It is reasonable to assume Efs are highly correlated and hence∥∥∥∥∥
t∑

s=1

ns
Nt

(Efs−fρ)

∥∥∥∥∥
2

L2
ρX

≈
t∑

s=1

ns
Nt
‖Efs−fρ‖2L2

ρX

.

Denote g(λ) =λ2β−2n−
3
2 +λ2β . It is easy to verify that the function g reaches minimum

value at λ∗=
√
n−3/2(1−β)/β and therefore

g(λ)≥g(λ∗) =n−
3β
2

{(
1−β
β

)β−1
+
(

1−β
β

)β}
>0 (5.2)

regardless of the value of λ. In our analysis we have used Proposition 3.3 to technically
bound the bias by

t∑
s=1

ns
Nt
‖Efs−fρ‖2L2

ρX

�
t∑

s=1

g(λs).
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By (5.2), this bound never vanishes.
One may argue that the above discussion is based on upper bound analysis which

may not be sharp. We further illustrate the divergence of BSD-AKRR by a counterex-
ample. Consider Gaussian kernel K(x,x′) = exp(‖x−x′‖22) and the extreme case ns= 1.
Then for each s, Ds={(xs,ys)} contains only one data point and the kernel matrix on
the Ds is of dimension 1×1 and has entry value 1. By the representer theorem,

fs(x) = csK(xs,x) =
ys

λs+1
K(xs,x).

and hence

Efs=
1

λs+1
LKfρ.

If λs is selected according to Ns=s, then λs→0 as s→∞ and therefore∥∥∥∥∥
t∑

s=1

ns
Nt

Efs−fρ

∥∥∥∥∥
2

L2
ρX

=

∥∥∥∥∥
(

1

t

t∑
s=1

1

λs+1

)
LKfρ−fρ

∥∥∥∥∥
2

L2
ρX

−→‖LKfρ−fρ‖2L2
ρX

,

which clearly does not vanish unless LK has an eigenvalue 1 and fρ happens to be an
associated eigenfunction. If λs is selected according to ns= 1 so that λs=λ1 for all
s≥1, then ∥∥∥∥∥

t∑
s=1

ns
Nt

Efs−fρ

∥∥∥∥∥
2

L2
ρX

=

∥∥∥∥ 1

λ1 +1
LKfρ−fρ

∥∥∥∥2
L2
ρX

,

which does not vanish either.
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