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GLOBAL DISCONTINUOUS SOLUTION FOR 1D ISENTROPIC GAS
DYNAMICS SYSTEM∗
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Abstract. In this work, we study the global existence of one-dimensional isentropic gas dynamics
system. We prove a global-in-time existence result of this system in the framework of discontinuous
non-decreasing solutions considering bounded initial data. We remark that this result allows us to
give a global meaning to the gas dynamics system in distributional sense, considering discontinuous
solutions with vacuum.
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1. Introduction

1.1. Main results. In this paper, we present, relying on the existence result
done in [6] and considering some monotonicity assumptions on the initial data, the
global existence of a discontinuous solution of the following 1D isentropic gas dynamics
system

∂tρ+∂x(ρu) = 0 in (0,T )×R,

∂t(ρu)+∂x
(
ρu2 +p(ρ)

)
= 0 with p(ρ) = (γ−1)2

4γ ργ in (0,T )×R,

u(0,x) =u0(x) and ρ(0,x) =ρ0(x)>0 for x∈R,

(1.1)

where ρ is the density, u is the speed and p(ρ) is the pressure given by a simple power
law for an exponent γ>1. First, we assume the following conditions

u0,ρ0∈L∞(R) and u0±ρθ0 are non-decreasing functions with θ= γ−1
2 . (1.2)

Note that, the previous assumptions mean that the Riemann invariants u±ρθ, corre-
sponding to the isentropic gas dynamics equations, are initially supposed to be bounded
and non-decreasing. This shows that u0±ρθ0 belong to L∞(R)∩BV (R) as well as u0
and ρθ0. Therefore, ρ0∈L∞(R) but not necessarily in BV (R) since it can be zero. Re-
ferring to these assumptions, we can also see that u0 is non-decreasing. However, there
is no reason for ρ0 to be non-decreasing here. For example, we can choose the initial
data as in Figure 1.1.

We will prove the following result.
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Figure 1.1. Example of initial data.

Theorem 1.1. Assume (1.2) is verified, with ρ0>0 and T >0. Then system (1.1)
has a solution (u,ρ)∈ (L∞

(
(0,T )×R

)
)2 in distributional sense, namely

∂tρ+∂x(ρu) = 0 in D′((0,T )×R),

∂t(ρu)+∂x

(
ρu2 + (γ−1)2

4γ ργ
)

= 0 in D′((0,T )×R),

u(0, ·) =u0(·) and ρ(0,·) =ρ0(·) in D′(R).

Moreover, we have ρ>0,

u,ρθ ∈L∞
(
(0,T )×R

)
∩L∞

(
(0,T );BV (R)

)
∩C
(
[0,T );L1

loc(R)
)
, (1.3)

and the functions u(t,·)±ρθ(t,·) are non-decreasing for all 0≤ t<T .

Remark 1.1 (Vacuum case). System (1.1) is automatically satisfied whenever ρ= 0
on a subset ω⊂ (0,T )×R, and the function u can be chosen locally arbitrarily in ω. So,
in vacuum state (ρ= 0), we do not have uniqueness of the solution.

The proof of this theorem arises directly from the global existence result of Lip-
schitz continuous viscosity solution proved in [6] and recalled below in Theorem 2.1.
After regularizing the initial data, we prove, thanks to this result, that the diagonal
system corresponding to system (1.2) has a unique Lipschitz continuous solution. This
is achieved using the theory of viscosity solutions, initially introduced by Crandall and
Lions in [2] to solve the first-order Hamilton-Jacobi equations and then extended by Ishii
and Koike in [10, 11] to the case of systems. Then, we show, thanks to the maximum
principle, that the Riemann invariants are increasing and uniformly bounded in L∞.
This allows us to obtain uniform a priori estimates on these quantities in L∞∩BV .
Finally, we go to the limit when the regularization vanishes, using some compactness
arguments and relying on L∞∩BV bounds, to get our result.

Let us mention that, in the absence of vacuum, i.e. when the system is strictly
hyperbolic everywhere, one can use the theory of symmetric hyperbolic systems devel-
oped by Friedrichs-Lax-Kato [8, 12, 13] to construct smooth solutions; for instance, see
Majda [20]. Always in the case where ρ0>0, Lax showed in [14] a global existence and
uniqueness result of Lipschitz-continuous solution under some monotonicity assumptions
on the initial data similar to those considered in (1.2). This result was then extended
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by T. T. Li, proved in [15, pp. 35-41] for C1 solutions. In this paper we were able to
establish a global existence result with vacuum, considering less regularity (namely L∞

solution) which makes it possible to produce discontinuous solutions. In connection to
Theorem 1.1, let us also mention the work of Lions et al. [19] where the existence of
an entropy solution was obtained for ρ0≥0 with u0, ρ0∈L∞(R) and γ>1, using a ki-
netic formulation developed in [17,18]. This extended previous results of DiPerna [3–5],
showing the global existence of L∞ entropy solution, in some special cases of behavior
law concerning the pressure. The proof of DiPerna is inspired by the idea of Tartar [24]
and relies on a compensated compactness argument based on the representation of the
weak limit in terms of Young measures which must be reduced to a Dirac mass due
to the presence of a large family of entropies. Contrary to these theories, Theorem 1.1
gives here the global existence of L∞ solution without appealing to the entropy notion
nor to the kinetic formulation.

Recently, El Hajj and Monneau [6] proved a global existence result considering
continuous solutions with vacuum, relying on a new gradient entropy estimate previously
introduced in [7]. We also refer the reader to Serre [21, 22] and Grassin [9], for some
global existence results of classical solutions under some special conditions on the initial
data, by extracting a dispersive effect after some invariant transformation.

Remark 1.2.

(1) Due to the lack of uniqueness with vacuum, there is no reason that our solution as
well as that obtained by Lions et al. in [19] satisfies the adequate physical properties.
Nevertheless and even if this is not the objective of our work, it is important to
point out that it is quite possible to prove, when ρ0>0 (i.e. without vacuum) and
considering small initial data in L∞ norm, the uniqueness in a particular class of
physical solutions of semi-group type, as was done in [1]. To do this, it suffices
to combine our result with the theory of Bianchini-Bressan developed within the
framework of vanishing viscosity solutions, taking small initial data in BV norm.

(2) Let us also point out that, the result presented in Theorem 1.1 makes it possible to
give a global meaning in time to the solution of system (1.1) considering discontin-
uous initial data, included particularly in the Riemann problem with vacuum.

(3) A similar result to Theorem 1.1 can also be obtained in the case of the (3×3) gas
dynamics system with ideal gas law, following the same procedures developed here.

1.2. Organization of the paper. The paper is organized as follows: in Section
2 we recall some useful results. In particular, we recall two results: the first concerns the
global existence of Lipschitz continuous viscosity solution and the second is the Simon
compactness lemma. Then, we prove the desired result in Section 3.

2. Some useful results

First of all, we remark that system (1.1) is a diagonalizable hyperbolic system.
Indeed, in the case where ρ>0 and (ρ,u) is a smooth solution, we can check easily that
the following two variables

r1 =u+ρθ and r2 =u−ρθ with θ= (γ−1)
2 ,
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satisfy the following diagonal system
∂tr

1 + λ̃1(r1,r2)∂xr
1 = 0 in (0,T )×R,

∂tr
2 + λ̃2(r1,r2)∂xr

2 = 0 in (0,T )×R,

r1(0,x) = r10(x), r1(0,x) = r20(x) for x∈R,

(2.1)

where λ̃1 and λ̃2 are defined as follows
λ̃1(r1,r2) =

r1 +r2

2
+
γ−1

4
(r1−r2) =u+θρθ,

λ̃2(r1,r2) =
r1 +r2

2
− γ−1

4
(r1−r2) =u−θρθ.

To prove Theorem 1.1, we need to recall the existence result proved by El Hajj et al.
in [6, Theorem 1.3] for the following parabolic regularization of system (2.1), defined
for 0<η≤1, by

∂tr
1
η+ λ̃1(r1η,r

2
η)∂xr

1
η−η∂2xxr1η = 0 in (0,T )×R,

∂tr
2
η+ λ̃2(r1η,r

2
η)∂xr

2
η−η∂2xxr2η = 0 in (0,T )×R,

r1η(0,x) = r10,η(x), r1η(0,x) = r20,η(x) for x∈R.

(2.2)

where r10,η and r20,η are the regularizations of the functions r10 and r20 respectively, given
by convolution as follows

r10,η =ρ1η ?r
1
0, r20,η =ρ1η ?r

2
0,

with ρ1ε is the standard mollifier defined as

ρ1η(·) =
1

η
ρ1
(
·
η

)
, such that

∣∣∣∣∣∣∣∣
ρ1∈C∞c (R), supp

{
ρ1
}
⊆B(0,1),

ρ1>0, and

∫
R
ρ1 = 1.

(2.3)

Theorem 2.1 (Lipschitz continuous solution for diagonal system). Let T >0
and ρ1η be the mollifier defined in (2.3). Assume that (r10,r

2
0)∈ (W 1,∞(R))2 and the

functions ri0 are non-decreasing for i= 1,2 . Then we have

(i) Existence, uniqueness and bounds. System (2.2) has a unique solution

(r1η,r
2
η)∈

(
W 2,∞([0,T )×R)

)2∩(C∞([0,T )×R))
2
, satisfying the following L∞ estimates

‖riη(t,·)‖L∞(R)≤‖ri0‖L∞(R) for i= 1,2, and 0<t<T, (2.4)

max
i=1,2

‖∂xriη(t, ·)‖L∞(R)≤max
i=1,2

‖∂xri0‖L∞(R) for i= 1,2, and 0<t<T. (2.5)

Moreover, the functions riη(t,·) are non-decreasing for i= 1,2 and 0≤ t<T .
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(ii) Convergence. For an extracted sub-sequence, (r1η,r
2
η) converges locally uniformly,

as η goes to zero, to a function (r1,r2)∈
(
W 1,∞([0,T )×R)

)2
, where (r1,r2) is a con-

tinuous viscosity solution of (2.1). Moreover, for all 0≤ t<T , the functions ri(t,·) are
non-decreasing for i= 1,2 and satisfy estimates (2.4) and (2.5).

We also need to recall the following compactness lemma.

Lemma 2.1 (Simon’s Lemma [23, Corollary 4]). Let X, B and Y be three Banach
spaces, where X ↪→B with compact embedding and B ↪→Y with continuous embedding.
If (θn)n is a sequence uniformly bounded in L∞((0,T );X) and (∂tθn)n is uniformly
bounded in Lr((0,T );Y ) where r>1, then, (θn)n is relatively compact in C((0,T );B).

The next section is reserved for the proof of Theorem 1.1.

3. Proof of Theorem 1.1 We present the proof in four steps.

Step 1. (Lipschitz continuous solution for diagonal system). For 0<ε≤1, we
consider system (2.1) with the following initial data

r10,ε=ρ1ε ?(u0 +ρθ0)+ε, r20,ε=ρ1ε ?(u0−ρθ0)−ε,

where θ= γ−1
2 and ρ1ε is the mollifier defined in (2.3). Under assumption (1.2), we

can check that these initial data satisfy the conditions of Theorem 2.1. This implies

that there exists a continuous viscosity solution (r1ε ,r
2
ε)∈

(
W 1,∞([0,T )×R)

)2
of (2.1),

satisfying following L∞ estimate

‖riε(t,·)‖L∞(R)≤‖ri0,ε‖L∞(R) for i= 1,2, and 0<t<T.

Since γ>1 and ρ0≥0, we deduce that

‖riε(t,·)‖L∞(R)≤‖u0‖L∞(R) +(‖ρ0‖L∞(R))
θ+1 for i= 1,2, and 0<t<T. (3.1)

Moreover, we know that the functions riε(t,·) are non-decreasing for i= 1,2 and t>0.
Therefore, according to (3.1) we can see that the Riemann invariants r1ε(t,·) and r2ε(t,·)
are uniformly bounded in BV (R), with

‖∂xriε(t,·)‖L1(R) ≤2‖riε(t,·)‖L∞(R)

≤2
(
‖u0‖L∞(R) +(‖ρ0‖L∞(R))

θ+1
)
∣∣∣∣∣∣ for i= 1,2, and 0<t<T. (3.2)

Since (r1ε ,r
2
ε) verify system (2.1) almost everywhere, we can also see that there exists a

positive constant µ independent of ε, such that

‖∂triε‖L∞((0,T );L1(R))≤µ for i= 1,2. (3.3)

Now, we will prove that r1ε−r2ε >0. To this end, we recall, from Theorem 2.1, that
r1ε = limη→0r

1
ε,η and r2ε = limη→0r

2
ε,η , where (r1ε,η,r

2
ε,η) is the smooth solution of the

following regularized parabolic system

∂tr
i
ε,η+ λ̃i(r1ε,η,r

2
ε,η)∂xr

i
ε,η =η∂2xxr

i
ε,η for i= 1,2,

with regular initial data (r10,ε,η,r
2
0,ε,η) (see Theorem 2.1). To simplify, we set rε,η =

r1ε,η−r2ε,η and we can check that rε,η satisfies the following equation

∂trε,η =−

(
r1ε,η+r2ε,η

2

)
∂xrε,η−

γ−1

4
rε,η∂x(r1ε,η+r2ε,η)+η∂2xxrε,η.
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Using the maximum principle theorem for parabolic equations (see Lieberman [16, Th
2.10]), the η-uniform estimate (2.5) and the fact that r10,ε,η−r20,ε,η≥2ε>0, we get

r1ε,η(t, ·)−r1ε,η(t, ·)≥2εe−αt>0,

for all 0≤ t<T , with α=
γ−1

2
max
i=1,2

||∂xri0,ε||L∞(R). We pass to the limit as η→0 and we

obtain, by uniform convergence, that

r1ε(t, ·)−r1ε(t,·)≥2εe−αt>0. (3.4)

Step 2. (From (r1ε ,r
2
ε) towards (ρε,uε)). Let (r1ε ,r

2
ε) be the Lipschitz continuous

solution of system (2.1), constructed in Step 1. For θ= γ−1
2 , we use the following variable

change

uε=
r1ε +r2ε

2
and ρθε =

r1ε−r2ε
2

, (3.5)

that is possible since r1ε−r2ε >0. With a simple computation we can check that these
new variables solve (almost everywhere) the following system∂t(ρ

θ
ε)+uε∂x(ρθε)+θρθε∂xuε= 0,

∂tuε+uε∂xuε+θρθε∂x(ρθε) = 0.

According to (3.4), we know that ρε≥βε>0 (for some positive constant βε), in addition
to the fact that (r1ε ,r

2
ε)∈ (W 1,∞([0,T )×R)2, we conclude that the functions uε and ρε,

defined above, belong to W 1,∞([0,T )×R), and moreover solve the following system∂tρε+∂x(ρεuε) = 0,

∂t(ρεuε)+∂x(ρεu
2
ε+p(ρε)) = 0,

(3.6)

with the following initial data

uε(0,x) =ρ1ε ?u0(x), and ρθε(0,x) =ρ1ε ?ρ
θ
0(x)+ε, for x∈R.

Step 3. (Convergence from (ρε,uε) toward (ρ,u)). In order to fulfill the proof of
Theorem 1.1, we still have to pass to the limit in (3.6) as ε→0. Indeed, from ε-uniform
estimates (3.1), (3.2), (3.3) and according to (3.5) we deduce that there exist three
positive constants C1, C2 and C3 independent of ε, such that

‖uε‖L∞((0,T )×R) +‖ρθε‖L∞((0,T )×R)≤C1,

‖∂xuε‖L∞((0,T );L1(R)) +‖∂xρθε‖L∞((0,T );L1(R))≤C2,

‖∂tuε‖L∞((0,T );L1(R)) +‖∂tρθε‖L∞((0,T );L1(R))≤C3.

(3.7)

Using Simon’s lemma (cf. Lemma 2.1) in the particular case X=BV (K), B=Y =
L1(K) associated to the following compact embedding BV (K) ↪→Lp(K) for 1≤p<+∞
and for all compact K⊂R, we will be able to extract a subsequence (uεn ,ρ

θ
εn) that

converges towards a limit (u,ρ̃θ) strongly in C([0,T );Lp(K)), for all 1≤p<+∞, T >0
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and compact K⊂R. Thanks to estimates (3.7), we can extract a subsequence, still
denoted by (uεn ,ρ

θ
εn) , satisfying the following convergence estimates∣∣∣∣∣∣∣∣∣∣

(uεn ,ρ
θ
εn)−→ (u,ρ̃θ) strongly in C([0,T );Lp(K)), for all compact K⊂R,

(uεn ,ρ
θ
εn)−→ (u,ρ̃θ) weakly-? in L∞((0,T )×R),

(uεn ,ρ
θ
εn)−→ (u,ρ̃θ) weakly-? in L∞((0,T );BV (R)).

Using the fact that ρεn ≥0, the first estimate in (3.7) shows that ρεn is also uniformly
bounded with respect to εn and then, for an extracted sub-sequence, we can verify that

ρεn −→ρ weakly-? in L∞((0,T )×R),

for some function ρ∈L∞((0,T )×R). It remains to verify that (u,ρ) is solution of
(1.1) in the distributional sense (i.e. in D′((0,T )×R)). Indeed, for all compact K⊂
R, we have on one hand that ρεn converges to ρ weakly-? in L∞((0,T )×K) and on
the other hand uεn converges to u strongly L1((0,T )×K). This gives us a weak-?
convergence in L∞((0,T )×K) times a strong convergence in L1((0,T )×K) in the term
ρεnuεn . Hence the product ρεnuεn converges weakly in L1((0,T )×K) to ρu and then
in the distributional sense. Similarly, we can prove that ρεnu

2
εn converges to ρu2 in the

distributional sense, using the weak-? convergence in L∞((0,T )×K) of ρεn toward ρ
and the strong convergence in L2((0,T )×K) of uεn toward u, in other words the strong
convergence in L1((0,T )×K) of u2εn toward u2.
Moreover, since ρθεn converges to ρ̃θ strongly in L1((0,T )×K), then for an extracted
sub-sequence ρθεn converges to ρ̃θ almost everywhere in (0,T )×K. Therefore ρεn con-

verges to (ρ̃θ)
1
θ almost everywhere in (0,T )×K. This implies, using the dominated

convergence theorem and the fact that ρεn is uniformly bounded with respect to εn,

that ρεn converges to (ρ̃θ)
1
θ strongly in L1((0,T )×K) and in particular in D′((0,T )×R).

However, we know that ρεn converges also to ρ in D′((0,T )×R), thanks to the weak-?
convergence. Thus, ρ̃θ =ρθ in D′((0,T )×R). In the same way, we can prove that ργεn
converges to ργ strongly in L1((0,T )×K), for all T >0 and compact K⊂R. This shows
that (u,ρ) is a solution in D′((0,T )×R), to the following system∂tρ+∂x(ρu) = 0,

∂t(ρu)+∂x(ρu2 +p(ρ)) = 0.

Taking the liminf in estimates (3.7) and using the lower semi-continuity of ‖·
‖L∞((0,T )×R) and ‖·‖L∞((0,T );BV (R)) with respect to weak-? topology, we can prove that

u and ρθ satisfy (1.3).

Step 4. (Recovering the initial data). Now, we prove that the initial conditions
(u0,ρ0) coincide with (u(0, ·),ρ(0,·)). Indeed, by the ε-uniformly estimate given in (3.7),
we can prove easily that

‖uε(t,·)−ρ1ε ?u0‖L1(R) +‖ρθε(t, ·)−ρ1ε ?ρθ0−ε‖L1(R)≤C3t.

Then, for all compact K⊂R, we get

‖u(t,·)−u0‖L1(K) +‖ρθ(t, ·)−ρθ0‖L1(K)≤C3t.
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where we have used the strong convergence in C([0,T );L1(K)), This proves that u(0, ·) =
u0(·) and ρθ(0, ·) =ρθ0(·) in L1

loc(R), therefore u(0, ·)−u0(·) =ρ(0,·)−ρ0(·) = 0 almost
everywhere in R. Since the functions u(0, ·), u0(·), ρ(0, ·), ρ0(·) belong to L1

loc(R) we
deduce that u(0, ·) =u0(·) and ρ(0,·) =ρ0(·) in D′(R).

Remark 3.1. Note that, from estimate (3.7) and using the strong convergence
in C([0,T );L1

loc(R)) of uε and ρθε we can show as before that u and ρθ belong to
C([0,T );L1

loc(R)). This does not claim that ρ stays in the same space in general, except
for 0<θ≤1, i.e. 1<γ≤3. This allows us to find the result of Vasseur [25] proved when
γ= 3 in the framework of entropy solution, relying on the kinetic formulation developed
in [18]. �

REFERENCES

[1] S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann.
Math., 161(2):223–342, 2005. 1

[2] M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer.
Math. Soc., 277:1–42, 1983. 1.1

[3] R.J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math.
Phys., 91(1):1–30, 1983. 1.1

[4] R.J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Ration. Mech.
Anal., 82:27–70, 1983. 1.1

[5] R.J. DiPerna, Compensated compactness and general systems of conservation laws, Trans. Amer.
Math. Soc., 292:383–420, 1985. 1.1

[6] A. El Hajj and R. Monneau, Some uniqueness results for diagonal hyperbolic systems with large
and monotone data, J. Hyperbolic Differ. Equ., 10:461–494, 2013. 1.1, 1.1, 2

[7] A. El Hajj and R. Monneau, Global continuous solutions for diagonal hyperbolic systems with
large and monotone data, J. Hyper. Differ. Equ., 7:139–164, 2010. 1.1

[8] K. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math.,
7:345–392, 1954. 1.1

[9] M. Grassin, Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J.,
47:1397–1432, 1998. 1.1

[10] H. Ishii, Perron’s method for monotone systems of second-order elliptic partial differential equa-
tions, Differ. Integral Equ., 5:1–24, 1992. 1.1

[11] H. Ishii and S. Koike, Viscosity solution for monotone systems of second-order elliptic PDEs,
Comm. Part. Diff. Eqs., 16:1095–1128, 1991. 1.1

[12] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech.
Anal., 58:181–205, 1975. 1.1

[13] P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,
Comm. Pure Appl. Math., 7:159–193, 1954. 1.1

[14] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock
Waves, CBMS Regional Conference Series in Mathematics, SIAM, Philadelphia, 11, 1973.
1.1

[15] T.T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Reasearch in Applied
Mathematics, Masson, Paris, Chichester, 32, 1994. 1.1

[16] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co.
Inc., River Edge, NJ, 1996. 3

[17] P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar
conservation laws and related equations, J. Amer. Math. Soc., 7:169–191, 1994. 1.1

[18] P.-L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics
and p-systems, Comm. Math. Phys., 163:415–431, 1994. 1.1, 3.1

[19] P.L. Lions, B. Perthame, and P.E. Souganidis, Existence and stability of entropy solutions for
the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,
Comm. Pure Appl. Math., 49:599–638, 1996. 1.1, 1

[20] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Vari-
ables, Appl. Math. Sci., Springer-Verlag, New York, 53, 1984. 1.1

[21] D. Serre, Solutions classiques globales des equations d’Euler pour un fluide parfait compressible,
Ann. Inst. Fourier (Grenoble), 47:139–153, 1997. 1.1

[22] D. Serre, Systems of Conservation Laws I and II: Hyperbolicity, Entropies, Shock Waves, Cam-

https://www.onacademic.com/detail/journal_1000011647899199_6a7f.html
https://doi.org/10.1090/S0002-9947-1983-0690039-8
https://link.springer.com/article/10.1007/BF01206047
https://link.springer.com/article/10.1007%2FBF00251724
https://doi.org/10.1090/S0002-9947-1985-0808729-4
https://doi.org/10.1142/S0219891613500161
https://doi.org/10.1142/S0219891610002050
https://mathscinet.ams.org/mathscinet-getitem?mr=62932
https://mathscinet.ams.org/mathscinet-getitem?mr=1687130
https://waseda.pure.elsevier.com/en/publications/perrons-method-for-monotone-systems-of-second-order-elliptic-part
https://doi.org/10.1080/03605309108820791
https://link.springer.com/article/10.1007%2FBF00280740
https://doi.org/10.1002/cpa.3160070112
https://my.siam.org/Store/Product/viewproduct/?ProductId=672
https://www.researchgate.net/publication/264959909_Global_Classical_Solutions_for_Quasilinear_Hyperbolic_Systems
https://doi.org/10.1142/3302
ttps://doi.org/10.1090/S0894-0347-1994-1201239-3 
https://link.springer.com/article/10.1007%2FBF02102014
https://doi.org/10.1002/(SICI)1097-0312(199606)49:6%3C599::AID-CPA2%3E3.0.CO;2-5
https://www.springer.com/gp/book/9780387960371
https://aif.centre-mersenne.org/item/AIF_1997__47_1_139_0/


AHMAD EL HAJJ, HASSAN IBRAHIM AND VIVIAN RIZIK 1459

bridge University Press, Cambridge, 1999. 1.1
[23] J. Simon, Compacts sets in the space Lp(0;T ;B), Ann. Mat. Pura. Appl., 4(146):65–96, 1987. 2.1
[24] L. Tartar, Compensated compactness and applications to partial differential equations, in R.J.

Knops (ed.), Res. Notes Math., Nonlinear Analysis and Mechanics: Heriot-Watt Symposium,
Pitman, Boston, IV(39):136–212, 1979. 1.1

[25] A. Vasseur, Time regularity for the system of isentropic gas dynamics with γ= 3, Comm. Part.
Diff. Eqs., 24(11–12):1987–1997, 1999. 3.1

https://doi.org/10.1017/CBO9780511612374
https://www.researchgate.net/publication/302434881_Compact_sets_in_the_space_L_p0_T_B_Ann
https://www.researchgate.net/publication/239059426_Compensated_compactness_and_applications_to_partial_differential_equations
https://doi.org/10.1080/03605309908821491

