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COMPLETE MONOTONICITY-PRESERVING NUMERICAL
METHODS FOR TIME FRACTIONAL ODES∗

LEI LI† AND DONGLING WANG‡

Abstract. The time fractional ODEs are equivalent to convolutional Volterra integral equations
with completely monotone kernels. We introduce the concept of complete monotonicity-preserving
(CM-preserving) numerical methods for fractional ODEs, in which the discrete convolutional kernels
inherit the CM property as the continuous equations. We prove that CM-preserving schemes are at
least A(π/2) stable and can preserve the monotonicity of solutions to scalar nonlinear autonomous
fractional ODEs, both of which are novel. Significantly, by improving a result of Li and Liu (Quart.
Appl. Math., 76(1):189-198, 2018), we show that the L1 scheme is CM-preserving. The good signs of
the coefficients for such class of schemes ensure the discrete fractional comparison principles, and allow
us to establish the convergence in a unified framework when applied to time fractional sub-diffusion
equations and fractional ODEs. The main tools in the analysis are a characterization of convolution
inverses for completely monotone sequences and a characterization of completely monotone sequences
using Pick functions due to Liu and Pego (Trans. Amer. Math. Soc. 368(12): 8499-8518, 2016). The
results for fractional ODEs are extended to CM-preserving numerical methods for Volterra integral
equations with general completely monotone kernels. Numerical examples are presented to illustrate
the main theoretical results.

Keywords. Fractional ODEs; complete monotonicity; convolution inverse; Pick function; conver-
gence.
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1. Introduction

Fractional differential equations have received various applications in engineering
and physics due to their nonlocal nature and their ability for modeling long-tail mem-
ory effects [1–3]. Compared to classical integer differential equations, time fractional
differential equations, including fractional ODEs and PDEs, have two typical charac-
teristics. Firstly, the solutions of fractional equations usually have low regularity at the
initial time [1,2,4]. Secondly, the solutions of fractional equations usually have algebraic
decay rate for dissipative problems which leads to the so-called long-tail effect, while
the solutions of classical integer equations usually have exponential decay for such prob-
lems [5–7]. Because of the slow long-time decay rate of the solutions of time fractional
equations, they are more advantageous than the integer order differential equations in
describing many models with memory effects.

These two features of time fractional order differential equations bring new chal-
lenges to their numerical solutions. The low regularity of the solutions at the initial
time often leads to convergence order reduction in the numerical solutions. Several
technologies are developed to recover the high convergence order of numerical solutions,
including adding starting weights [8], correction in initial steps [9, 10] or non-uniform
grid methods [4,11–13]. For the numerical solutions that can accurately preserve the cor-
responding long term algebraic decay rate of the solutions of continuous equations, [14]
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and [5] made some first attempts for linear fractional PDEs and for nonlinear fractional
ODEs respectively.

We consider the Caputo fractional ODE of order α∈ (0,1) for t 7→u(t)∈Rd

Dαc u(t) =f(t,u(t)), t>0, (1.1)

with initial value u(0) =u0, where Dαc u(t) := 1
Γ(1−α)

∫ t
0

u′(s)
(t−s)α ds stands for the Caputo

fractional derivatives and f(·, ·) is some given function. It is well known that under some
suitable regularity assumptions the Caputo fractional ODE is equivalent to Volterra
integral equation of the second class (see, for example, [15, Lemma 2.3])

u(t) =u0 +J αt f(·,u(·)) :=u0 +
1

Γ(α)

∫ t

0

f(s,u(s))

(t−s)1−α ds, t>0, (1.2)

where

J αt g(t) = (kα ∗(θg))(t) =
1

Γ(α)

∫ t

0

g(s)

(t−s)1−α ds with kernel kα(t) =
tα−1
+

Γ(α)

denotes the Riemann-Liouville fractional integral of order α. Here, θ is the standard
Heaviside function and t+ =θ(t)t. In [16], a generalized definition of Caputo derivative
based on convolution groups was proposed, and it has further been generalized in [17]
to weak Caputo derivatives for mappings into Banach spaces. The generalized defini-
tion, though appearing complicated, is theoretically more convenient, since it allows
one to take advantage of the underlying group structure. In fact, making use of the
convolutional group structure (see [16] for more details), it is straightforward to con-
vert a differential form like (1.1) into the Volterra integral like (1.2) even when f is a
distribution.

It is noted that the standard kernel function kα(t) completely determines the basic
properties of the Volterra integral Equation (1.2) and also those of the fractional ODE
(1.1). Therefore, when we construct the numerical methods for Equation (1.1) or (1.2),
it’s very natural and interesting to take into account some important properties of the
kernel function. The standard kernel function kα(t) represents a very important and
typical class of completely monotonic (CM) functions. Therefore, from the viewpoint
of structure-preserving algorithms, it is quite natural to require that the corresponding
numerical methods can share this CM characteristic at the discrete level. This motives
us to introduce the CM-preserving numerical methods for Volterra integral Equations
(1.2), in which the discrete kernel function in the corresponding numerical methods is a
CM sequence. See the exact definition and some more explanations below in Section 2.

For a class of Volterra equations with completely monotonic convolution kernels,
Xu in [18,19] studied the time discretization method based on the backward Euler and
convolution quadrature and established the stability and convergence in L1(0,∞;H)∩
L∞(0,∞;H) norm, where H is a real Hilbert space. These nice works emphasize the
qualitative characteristics of the solutions in the sense of average over the whole time
region, which is quite different from the pointwise properties we will establish next.

We now briefly review some basic notations for the CM functions and CM sequences
and some related results which will be used in our later analysis, see the details in [20].
A function g : (0,∞)→R is called CM if it is of class C∞ and satisfies that

(−1)ng(n)(t)≥0 for all t>0,n= 0,1,.... (1.3)
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The CM functions appear naturally in the models of relaxation and diffusion processes
due to the fading memory principle and causality [21]. In the linear viscoelasticity, a
fundamental role is played by the interconversion relationships, which is modeled by
a convolution quadrature with completely monotone kernels [22]. The CM functions
also play a role in potential theory, probability theory and physics. Very recently, the
authors in [23] concerned with a class of stochastic Volterra integro-differential problem
with completely monotone kernels, and use the approach to control a system whose
dynamic is perturbed by the memory term. We say a sequence v= (v0,v1,. ..) is CM if

((I−E)jv)k≥0, for any j≥0,k≥0 (1.4)

where (Ev)j =vj+1. This is a discrete analogue of (1.3), which means that the finite
difference of any order of v is a nonnegative and nonincreasing sequence. A sequence is
CM if and only if it is the moment sequence of a Hausdorff measure (a finite nonnegative
measure on [0,1]) [24]. Another description we use heavily in this paper is that a
sequence is CM if and only if its generating function is a Pick function and analytic,
nonnegative on (−∞,1) (see Lemma 2.2 below for more details).

In this paper, we aim to introduce the concept of CM-preserving schemes for time-
fractional ODEs and study its various properties and generalizations. We first of all
improve a result in [25] to show that the L1 scheme on uniform time stepping meshes
(see Section 2 for more details on various definitions and properties on CM sequences,
such as the definition of the convolution inverse) is CM-preserving.

Theorem 1.1 (Informal version of Theorem 2.1 and Proposition 2.4). A sequence
a= (a0, ·· ·) with a0>0 is CM if and only if its convolution inverse ω=a(−1) satisfies
that ω0>0, that the sequence (−ω1,−ω2,·· ·) is CM and that ω0 +

∑∞
j=1ωj≥0. Conse-

quently, the L1 scheme (on uniform mesh) is CM-preserving.

Of course, there are many other CM-preserving schemes as we will discuss later.
This result also tells us that the CM-preserving schemes have nice sign properties for
the coefficients: all aj for j≥0 are nonnegative and all ωj for j≥1 are nonpositive.
These allow us to establish some comparison principles and good stability properties
of the schemes (see Section 2.1 for more details). In fact, by a deep characterisation
of CM sequences using Pick functions in [26], we can show a much better result: all
CM-preserving schemes are at least A(π/2) stable.

Theorem 1.2 (Informal version of Theorem 3.1 and Corollary 3.1). Consider a CM-
preserving scheme for (1.1). The complement of the numerical stability region is a
bounded set in the right half complex plane. The stability region contains the left
half plane excluding {0}, and also the small wedge region conducts vertex at {0} with
asymptotic angle ±απ/2. Consequently, for Dαc u=λu, the CM-preserving schemes
are unconditionally stable when |arg(λ)|≥π/2, while stable for h small enough when
|arg(λ)|> πα

2 .

Note that the branch cut of the arg(·) function in this paper is taken to be the
negative real axis and thus the range is (−π,π]. It is a curious question whether the
numerical solutions are monotone. The monotonicity of numerical solutions is very
important for proving stability of some fractional PDEs using discretized sequence to
approximate. In fact, for autonomous scalar ODEs, we are able to show this.

Theorem 1.3 (Informal version of Theorem 4.1). Consider applying CM-preserving
schemes to fractional ODEs Dαc u=f(u) for f :R→R. If f(·) is C1 and non-increasing,
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or f(·) is C1 with M := sup|f ′(u)|<∞, then for suitably chosen h0, when h≤h0, {un}
is monotone.

By the good signs of the the sequence a and ω, we are able to establish the con-
vergence of the numerical solutions to fractional ODEs for CM-preserving schemes in a
unified framework.

Theorem 1.4 (Informal version of Theorem 5.2). Consider applying CM-preserving
schemes to fractional ODEs Dαc u=f(t,u), where u : [0,T ]→Rd. If f(t,·) satisfies (x−
y) ·(f(t,x)−f(t,y))≤0 or is Lipschitz continuous, then,

lim
h→0

sup
n:nh≤T

‖u(tn)−un‖= 0. (1.5)

We also apply similar techniques to Volterra convolutional integral equations and
obtain similar results, which we do not list here.

The rest of this paper is organized as follows. In Section 2, we first provide the mo-
tivations for CM-preserving numerical schemes for fractional ODEs and then give the
exact definition. In Subsection 2.1, we show that the condition for the inverse of a CM
sequence in [25] is in fact both necessary and sufficient. Some favorable properties such
as discrete fractional comparison principles for CM-preserving numerical schemes are
derived. Four concrete numerical schemes, including the Grünwald-Letnikov formula,
numerical method based on piecewise interpolation, convolutional quadrature based on
θ-method and the L1 scheme are shown to be CM-preserving for fractional ODEs in
Subsection 2.2. In Section 3, we study the stability region for general CM-preserving
schemes and prove they are A(π/2)-stable. The new results allow us to apply CM-
preserving schemes to linear systems where the eigenvalues may have non-zero imaginary
parts but still maintain numerical stability. The monotonicity of numerical solutions ob-
tained by CM-preserving numerical methods for scalar nonlinear autonomous fractional
ODEs is proved in Section 4, which is fully consistent with the continuous equations. In
Section 5, we first derive the local truncation error and convergence of CM-preserving
schemes for fractional ODEs. Then we apply CM-preserving schemes to time fractional
sub-diffusion equations, in which we are able to establish the convergence of the numer-
ical methods in time direction in a unified framework due to the nice sign properties of
the CM-preserving schemes. This new class of numerical methods for fractional ODEs
are directly extended to convolutional Volterra integral equations involving general CM
kernel functions in Section 6. Several numerical examples and concluding remarks are
included in Section 7.

2. CM-preserving numerical schemes for fractional ODEs
Let us consider the fractional ODE (1.1) of order α∈ (0,1), subject to u(0) =u0>0.

Consider the implicit scheme approximating u(tn) by un (n≥1) at the uniform grids
tn=nh with step size h>0 of the following form:

(Dαhu)n :=h−α
n∑
j=0

ωj(un−j−u0) =f(tn,un) :=fn, n≥1. (2.1)

If we would like to include n= 0, (2.1) is written as

h−α
n∑
j=0

ωj(un−j−u0) =fn−f0δn,0, n≥0, (2.2)
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where δi,j = 1 if i= j and δi,j = 0 if i 6= j is the usual Kronecker function so that δn,0 is
the nth entry of the convolutional identity δd := (1,0,0,...).

Remark 2.1. Note that we understand Dαhu in (2.1) as a sequence, and thus (Dαhu)n
means the nth term in the sequence. Later, we sometimes use sloppy notations like
Dαhun or Dαhf(un) to mean the nth term of the sequence obtained by applying Dαh on
the sequence (un) or (f(un)). (It does not mean the operator acting on the constant un
or f(un).)

The convolution inverse of ω is defined by a=ω(−1) such that ω∗ω(−1) =ω(−1) ∗ω=
δd. Let us introduce generating function of a sequence v= (v0,v1,. ..), defined by

Fv(z) =

∞∑
n=0

vnz
n, z∈C. (2.3)

The generating function should be understood in the sense of analytic continuation. We
choose the continuation that has the largest possible domain in the upper half plane
and is symmetric about the real axis [27]. For example, the generating function of the
sequence (1,1,...) is given by F1(z) := 1

1−z , which is defined in the entire plane except
z= 1.

It is straightforward to verify that Fu∗v(z) =Fu(z)Fv(z). Hence, the generating
functions of a and ω are related by Fa(z) = 1

Fω(z) . By the convolution inverse, the above

numerical scheme (2.2) can be written as

un−u0 =hα[a∗(f−f0δd)]n=hα[a∗f−f0a]n=hα
n−1∑
j=0

ajfn−j , n≥1, (2.4)

Hence, {a} given in the numerical scheme can be regarded as some integral discretization
of the fractional integral.

Following [8], we define

Definition 2.1. We say discretization (2.2) or (2.4) is consistent if hαFa(e−h) =
1+o(1), h→0+.

Since the kernel kα(t) =
tα−1
+

Γ(α) involved in the Riemann-Liouville fractional integral

is a typical CM function, from the structure-preserving algorithm point of view, it is
natural to desire that the corresponding numerical methods can inherit this key property
at the discrete level. We are then motivated to define the following:

Definition 2.2. We say a consistent (in the sense of Definition 2.1) numerical
method given in (2.1) for the time fractional ODEs is CM-preserving if the sequence
a=ω(−1) is a CM sequence.

2.1. General properties of CM-preserving schemes. The CM-preserving
numerical schemes have many favorable properties, and we now investigate these prop-
erties. We first of all introduce the concept of Pick functions. A function f :C+→C
(where C+ denotes the upper half plane, not including the real line) is Pick if it is
analytic such that Im(z)>0⇒ Im(f(z))≥0. Throughout this paper, Im(z) and Re(z)
denote the imaginary and real parts of z, respectively. We have the following observa-
tion.

Lemma 2.1. If F (z) is a Pick function and Im(F (z)) achieves zero at some point in
C+, then F (z) is a constant.
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Let v= ImF (z). Then v is a harmonic function and v≥0. If v achieves the minimum
0 inside the domain, then it must be a constant by the maximal principle. Then, by
Cauchy-Riemann equation, Re(F (z)) is also constant and the result follows.

Now, we can state some properties of sequences in terms of the generating functions,
for which we omit the proofs.

Lemma 2.2.
(1) ([28, Corollary VI.1].) Assume Fv(z) is analytic on ∆ :={z : |z|<R,z 6= 1,|arg(z−

1)|>θ}, for some R>1,θ∈ (0, π2 ). If Fv(z)∼ (1−z)−β as z→1,z∈∆ for β 6=
0,−1,−2,−3, ·· ·, then vn∼ 1

Γ(β)n
β−1, n→∞.

(2) limn→∞vn= limz→1−(1−z)Fv(z).

(3) ([26].) A sequence v is CM if and only if the generating function Fv(z) =
∑∞
j=0vjz

j

is a Pick function that is analytic and nonnegative on (−∞,1).

In [25], Li and Liu have proved that for a given CM sequence a with a0>0, the
inverse sequence ω=a−1 has very nice sign consistency condition:

(i): ω0>0, ωj≤0 for j≥1; (ii): ω0 +

∞∑
j=1

ωj≥0. (2.5)

When ‖a‖`1 =∞, the last inequality becomes equality, which is the case for schemes of
time fractional ODEs.

According to this result, one is curious about the converse of the result: given ω=
(ω0,ω1, ·· ·) with ω0>0, the sequence (−ω1,−ω2, ·· ·) to be CM and that ω0 +

∑∞
j=1ωj≥

0, can we have the convolutional inverse a=ω−1 to be also a CM sequence? This
is particularly interesting regarding L1 scheme (see Section 2.2 for more details). In
L1 scheme, we get a discrete convolutional scheme ω, which is an approximation for
the Caputo fractional derivative. By taking the inverse of a=ω(−1), we then get a
corresponding discrete convolutional scheme which is an approximation for the fractional
integral, and what we need to do is verify that a is a CM sequence.

In this subsection, we would like to establish our first main result, i.e., the converse
of the Theorem 2.3 in [25] is also correct, that is, to establish a sufficient and necessary
condition for the convolutional inverse of a CM sequence. As an application of this
result, we will show in Section 2.2 that the well known L1 scheme is CM-preserving.

Theorem 2.1. The sequence a= (a0, ·· ·) with a0>0 is CM if and only if its convo-
lution inverse ω=a−1 satisfies that ω0>0, that the sequence (−ω1,−ω2,·· ·) is CM and
that ω0 +

∑∞
j=1ωj≥0. Moreover, ω0 +

∑∞
j=1ωj =‖a‖−1

`1 .

Proof. The “⇒” direction has been proved in Theorem 2.3 in [25]. We now prove
the reverse direction.

Define the generating function for sequence (−ω1,−ω2,·· ·) by

G(z) =

∞∑
j=0

(−ωj+1)zj =

∞∑
j=1

(−ωj)zj−1. (2.6)

Hence, one has Fω(z) =ω0−zG(z). By Lemma 2.2, G(z) is a Pick function that is
nonnegative and analytic on (−∞,1). We now investigate the generating function of a:

Fa(z) =F−1
ω (z) =

1

ω0−zG(z)
.
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To do this, for ε>0 we consider an auxiliary function given by

Hε(z) =
1

ε
+

z

ε+ω0−z(ε+G(z))
=

ε+ω0−zG(z)

ε(ε+ω0−z(ε+G(z)))
. (2.7)

Since both G(z) and ε+G(z) are nonnegative on (−∞,1), one finds that

ε+ω0−z(ε+G(z))>0, ε+ω0−zG(z)>0

for z≤0. For z∈ (0,1), it is then clear

ε+ω0−z(ε+G(z))>ε+ω0−(ε+G(1)) =ω0−G(1)≥0.

Similarly

ε+ω0−zG(z)≥ ε+ω0−G(z)>0.

Hence, Hε(z) is nonnegative on (−∞,1). The argument here also justifies that Aε(z) :=
ε+ω0−z(ε+G(z)) is never zero on (−∞,1). Moreover, for z∈C+, the phase of ε+G(z)
is in (0,π), and thus z(ε+G(z)) cannot be a real positive number. Hence, Aε(z) is never
zero in the upper half plane so that Hε(z) is analytic on C+∪(−∞,1). Moreover,

z

ε+ω0−z(ε+G(z))
=
z(ε+ω0)−|z|2

(
ε+G(z)

)
|ε+ω0−z(ε+G(z))|2

.

It follows from Im(z)>0⇒ Im(G(z))≥0 that Im
(
G(z)

)
≤0 for Im(z)>0. We find that

Hε(z) is a Pick function. Hence, the sequence(
1

ε
,a0(ε),a1(ε),·· ·

)
(2.8)

corresponding to the generating function Hε(z) is CM.
By the definition (Equation (1.4)), (a0(ε),a1(ε), ·· ·) is also CM. This sequence

corresponds to the generating function

Fa(ε)(z) =
1

ω0 +ε−z(ε+G(z))
, (2.9)

which must be Pick and nonnegative on (−∞,1) by Lemma 2.2 (3). We first note that
Fa(z) = 1

ω0−zG(z) is analytic in C+∪(−∞,1) by similar argument. Then, taking ε→0+,

as the pointwise limit of Fa(ε)(z), Fa(z) must also be Pick and nonnegative on (−∞,1).
Hence, (a0,a1,·· ·) is CM by Lemma 2.2 (3).

Regarding the equality ω0 +
∑∞
j=1ωj =‖a‖−1

`1 , we just note Fa(z) =F−1
ω (z), take

z→1− and apply the monototone convergence theorem due to signs of aj ’s and ωj ’s.

With results in Lemma 2.2 and Theorem 2.1, we are able to establish a series of
basic properties of CM-preserving schemes. The first result is as follows.

Proposition 2.1. If the discretization is CM-preserving with a0>0, then

aj∼
1

Γ(α)
jα−1, j→∞, hα

n∑
j=1

aj≤C(nh)α, ∀n. (2.10)
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Moreover, the convolutional inverse ω satisfies: ω0>0 and ωj≤0 for all j= 1,2,·· · and
ω0 +

∑∞
j=1ωj = 0. The generating function is given by Fω(z) = (1+o(1))(1−z)α, z→1

so that ωj∼ 1
Γ(−α)j

−1−α, j→∞.

Definition 2.1 directly means Fa(z) = (1+o(1))(1−z)−α as z→1−. The generating
function of the sequence {An :=

∑n
j=0aj}∞n=0 is (1−z)1−α(1+o(1)). Moreover, since

Fa(z) is a Pick function with a0>0, then Fa(z) is analytic in C+ without zeros in the
upper half plane. The claims then follow directly from Lemma 2.2 and Theorem 2.1.
We omit the details.

This good sign invariant property in the coefficients of {ωj} plays a key role in
energy methods for numerical analysis [5, 29,30]. One obvious observation is

Proposition 2.2. Assume the scheme for the discrete Caputo operator Dαh in (2.1)
is CM-preserving. Consider that E(·) :Rd→R is a convex function. Then, we have

DαhE(un)≤∇E(un) ·Dαhun. (2.11)

For the proof, one may make use of the fact that ω0 +
∑∞
j=1ωj = 0 (due to ‖a‖`1 =∞)

to define cj =−ωj≥0 and σn :=
∑∞
j=n cj≥0, so that

(Dαhu)n=h−α

n−1∑
j=1

cj(un−uj)+σn(un−u0)

 .
The claim then follows from the convexity: ∇E(un) ·(un−uj)≥E(un)−E(uj). We
skip the details.

The sign properties also guarantee the discrete fractional comparison principles as
follows (see [30] for relevant discussions).

Proposition 2.3. Let Dαh be the discrete Caputo operator defined in (2.1) and the
corresponding numerical schemes are CM-preserving. Assume three sequences u,v,w
satisfy u0≤v0≤w0.
(1) Suppose f(s,·) is non-increasing and the following discrete implicit relations hold

Dαhun≤f(tn,un), Dαhvn=f(tn,vn), Dαhwn≥f(tn,wn).

Then, un≤vn≤wn.

(2) Assume f is Lipschitz continuous in the second variable with Lipschitz constant L.
If

Dαhun≤f(tn,un), Dαhvn=f(tn,vn), Dαhwn≥f(tn,wn),

then for step size h with hαLa0<1, un≤vn≤wn.

(3) Assume f(t,·) is nondecreasing and Lipschitz continuous in the second variable with
Lipschitz constant L. If for h with hαLa0<1,

un≤u0 +hα
n−1∑
j=0

ajf(tn−j ,un−j),vn=v0 +hα
n−1∑
j=0

ajf(tn−j ,vn−j),

wn≥w0 +hα
n−1∑
j=0

ajf(tn−j ,wn−j),

then un≤vn≤wn.
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The proof is similar to the ones in [30], and we give some brief proofs in the Ap-
pendix.

2.2. Four CM-preserving numerical schemes. In this subsection, we iden-
tify several concrete CM-preserving numerical schemes. We need to verify that the
sequence a={aj} is a CM sequence. One can either check this directly using definition
(Equation (1.4)), use Theorem 2.1 or check if the generating function Fa(z) is a Pick
function or not and the non-negativity on (−∞,1) according to Lemma 2.2.

2.2.1. The Grünwald-Letnikov (GL) scheme. Consider the Grünwald-
Letnikov (GL) scheme for approximating the Riemann-Liouville fractional derivative [2],
whose generating function is Fω(z) = (1−z)α, where we recall that the branch cut for
the mapping w 7→wα is taken to be the negative real axis. Hence,

Fa(z) = (1−z)−α. (2.12)

It is easy to verify that Fa(z) is a Pick function and analytic, positive on (−∞,1).
Hence, a is a CM sequence and the scheme (2.1) with {ωj} given by the GL scheme is
CM-preserving.

2.2.2. The L1 scheme. The L1 scheme, which was independently developed
and analyzed in [31] and [32], can be seen as the fractional generalization of the backward
Euler scheme for ODEs. On the uniform grid tn=nh for n= 0,1,..., the L1 scheme for
n≥1 is given by

Dαc u(tn) =
1

Γ(1−α)

n−1∑
j=0

∫ tj+1

tj

u′(s)

(tn−s)α
ds

≈ 1

Γ(1−α)

n−1∑
j=0

u(tj+1)−u(tj)

h

∫ tj+1

tj

1

(tn−s)α
ds

=

n−1∑
j=0

bj
u(tn−j)−u(tn−j−1)

hα

=
1

hα

b0un−bn−1u0 +

n−1∑
j=1

(bj−bj−1)un−j

 , (2.13)

where the coefficients bj = ((j+1)1−α−j1−α)/Γ(2−α), j= 0,1,2,...,n−1. It can be
written in the discrete convolution form

Dαh (un) :=
1

hα

n−1∑
j=0

ωjun−j−σnu0

=
1

hα

n∑
j=0

ωj(un−j−u0),

where

ω0 =
1

Γ(2−α)
, σn= bn−1 =

1

Γ(2−α)

(
n1−α−(n−1)1−α) ,

ωj =
1

Γ(2−α)

(
(j+1)1−α−2j1−α+(j−1)1−α) , j≥1.

(2.14)

One can check that the coefficients {ωj} satisfy the sign consistency condition given in
(2.5) (with the last inequality being an equality). Moreover, σn=−

∑∞
j=nωj .
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The L1 scheme is among the most popular and successful numerical approximations
for Caputo derivatives, and is very easy to implement with acceptable precision. In [33],
Jin et.al. strictly analyzed the convergence for both smooth and non-smooth initial data
and established the optimal first order convergence rate for non-smooth data. In [9],
Yan et.al. further provided a correction technique, in which the convergence rate for
non-smooth data can be improved to (2−α)-th order. From (2.13) we can see that if
we consider the partition in a non-uniform grid with hj = tj+1− tj , we can get a similar
numerical scheme. This provides a good basis for various numerical approximations for
Caputo derivatives on non-uniform grids, see [4, 11–13].

As an application of Theorem 2.1, we show that the L1 scheme with uniform mesh
size is a CM-preserving scheme.

Proposition 2.4. For the sequence ω={ωj} defined in (2.14), the convolutional
inverse a=ω(−1) is a CM sequence. Hence, the L1 scheme is CM-preserving.

Proof. As pointed out in (2.5), one can directly check that ω0>0, ωj<0 for j≥1
and ω0 +

∑∞
j=1ωj = 0. We now verify that the sequence (−ω1,−ω2, ·· ·) given in (2.14)

is CM. In fact, from (2.13) we know that the sequence b= (b0,b1,b2,·· ·) is the integral

for the CM function t−α

Γ(1−α) on uniform mesh. That is

bj =

∫ tj+1

tj

t−α

Γ(1−α)
dt, (2.15)

so it is a CM sequence. Then, ωj = bj−bj−1, j= 1,2, ·· · . By the definition of CM
sequence (Equation (1.4)), we find (−ω1,−ω2, ·· ·) = (I−E)b is also a CM sequence.
Hence, by Theorem 2.1, the convolution inverse of ω is a CM sequence.

Lastly, it is well known that L1 scheme is consistent and thus

Fa(z)∼ (1−z)−α, z→1.

In fact, this can also be proved by the aysmptotic behavior of ωj . We omit the details.
This means that L1 scheme is CM-preserving.

Remark 2.2. Because of the low regularity of the solutions of the time fractional dif-
ferential equations near the initial time, one can use the non-uniform step size schemes,
which can gain more advantages in long time computation. See [4, 11, 12, 34] for rele-
vant discussions. One may be curious about whether the variable step size L1 scheme
is also CM-preserving? For non-uniform step size, hj is no longer a constant and the
weight ωj will also depend directly on the step size hj . We believe the definitions of
CM sequences and CM-preserving schemes should be given suitably to be consistent
with the time-continuous cases. We do not have clear answers yet and there is no doubt
that these are very interesting questions that deserve further study.

2.2.3. A scheme based on piecewise interpolation. Another scheme is the
one in [30]. Consider the discretization of the Volterra integral form (1.2) by approx-
imating f with piecewise constant functions, where the sequence a is obtained from
discretizing the integral directly. More precisely, due to homogeneity,

an=h−α
∫ tn+1

tn

kα(s)ds=

∫ n+1

n

kα(s)ds.

And it can be explicitly obtained

a= (a0,a1,...,an,....) =
1

Γ(1−α)
(1,2α−1,...,(n+1)α−nα,...).
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Since tα−1 is completely monotone, the sequence is as well. Hence, the scheme (2.1)
with {ωj}=a(−1) is CM-preserving for (1.1).

2.2.4. A class of convolutional quadrature schemes. Consider the convo-
lutional quadrature (CQ) proposed by Lubich [8, 35]. The linear multistep method for
ODE u′(t) =f(t,u(t)) reads

k∑
j=0

αjun+j−k =h

k∑
j=0

βjfn+j−k.

Let ρ(z) =
∑k
j=0αjz

j ,σ(z) =
∑k
j=0βjz

j denote the generating polynomials. The corre-
sponding reflected polynomials [36]

ρ̆(z) =zkρ(z−1) =α0z
k+ ·· ·+αk−1z+αk,

σ̆(z) =zkσ(z−1) =β0z
k+ ·· ·+βk−1z+βk.

(2.16)

The generating function in CQ approximating the Riemann-Liouville fractional integral
[8, 35] can be written

Fa(z) =K(δ(z)) = (δ(z))−α,

where K is the Laplace transform of the standard kernel kα(t) and δ(z) = ρ̆(z)/σ̆(z).
Note that the GL scheme can be seen as the fractional generation of backward Euler
method. In this scheme, we have ρ(z) =z−1 and σ(z) =z, and that δ(z) = ρ̆(z)/σ̆(z) =
1−z, which yields that Fa(z) = (δ(z))−α= (1−z)−α. This is completely consistent with
the formula in (2.12). The θ-method with parameter θ(θ≥1) for ODEs u′(t) =f(t,u(t))
reads un+1 =un+h((1−θ)fn+θfn+1). The corresponding characteristic polynomials
ρ(z) =z−1 and σ(z) =θz+(1−θ). For any θ≥1, this method satisfies the consistent
condition: ρ(1) = 0 and ρ′(1) =σ(1) = 1, and (−∞,0]∈Sθ, where Sθ denotes the stability
region of the scheme. The generating function

δ(z) =
1−z

θ+(1−θ)z
.

It is not hard to verify that for such CQ schemes, the generating function Fa(z) is
Pick. To do that, we write

Fa(z) =

(
θ+(1−θ)z

1−z

)α
:= (G(z))α.

We claim the function G is Pick. In fact,

G(z) =
θ+(1−θ)z

1−z
=

(θ+(1−θ)z)(1− z̄)
|1−z|2

=
θ−θz̄+(1−θ)z−(1−θ)|z|2

|1−z|2
,

which implies that Im(G) = Im( z
|1−z|2 ), and the result follows. On the other hand,

lim
z→−∞

G(z) =θ−1,

which is non-negative for θ≥1. With this, when z∈ (−∞,1), G(z) = 1+(θ−1)(1−z)
1−z >0.

Hence, if θ≥1, G(z) is a Pick function that is analytic and positive on (−∞,1) and
consequently, Fa(z) is also Pick and nonnegative on (−∞,1).
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As a byproduct, we know from Lemma 2.2 that when 0≤θ<1, the correspond-
ing CQ generated by θ method is not CM-preserving. In particular, the fractional
trapezoidal method, where θ= 1/2, is not CM-preserving.

Remark 2.3. The convergence orders of the four CM-preserving schemes considered
above are no more than two (the L1 scheme is of order 2−α). One might wonder whether
there are higher order CM-preserving schemes. For example, is the (3−α)-order scheme
in [37] CM-preserving? By Theorem 2.1, the coefficients of CM-preserving schemes have
the nice sign consistency conditions presented in (2.5). But the (3−α)-order scheme
considered in [37] does not satisfy this condition, so it is not CM-preserving. For
higher-order schemes, similar difficulties can occur in the energy method, and see [5].
As is well known, there exists an order barrier (the so-called Second Dahlquist Barrier
theorem) for A-stable linear multistep methods for ODEs [38] and fractional ODEs [39].
We conjecture that the CM-preserving schemes also have some order barrier and the
theoretical proof of this conjecture will be very interesting.

2.2.5. A comment on computation of the weights. To close this section,
we now give some comments to the computation on the weights in the expansion of
Fω(z) =

∑∞
n=0ωnz

n. In general, it is not easy to evaluate the weight ωn in the fractional
formal power series of some polynomials. But in our case, the following Miller formula
is an efficient tool.

Lemma 2.3 ([40]). Let φ(ξ) = 1+
∑∞
n=1 cnξ

n be a formal power series. Then for any

α∈C, (φ(ξ))α=
∑∞
n=0v

(α)
n ξn, where the coefficients v

(α)
n can be recursively evaluated as

v
(α)
0 = 1, v(α)

n =

n∑
j=1

(
(α+1)j

n
−1

)
cjv

(α)
n−j .

Applying this lemma to the formal power series (1±ξ)α=
∑∞
n=0ωnξ

n leads to that

ω0 = 1, ωn=±
(

(α+1)

n
−1

)
ωn−1, n≥1.

With this formula and the property for the generating functions Fv(−1)(z) =
(Fv(z))

−1 given in Lemma 2.2, We can easily calculate the weight coefficients for the
schemes given in this section.

3. Stability regions for CM-preserving schemes
It is a fundamental problem to study the stability and stability regions of numerical

schemes. For the convolution quadrature approximating fractional integral based on
linear multistep methods developed by Lubich [35, 39], the stability regions were fully
identified due to the inherent advantages of this kind of algorithm. The L1 scheme can
be seen a fractional generalization of backward Euler method of ODEs, which has been
studied in various ways due to its ease of implementation, good numerical stability and
acceptable computational accuracy [4,9,11,12,33]. The stability analysis for L1 scheme
is slightly more difficult. The generating function of ω for L1 scheme is given by

Fω(z) =

∞∑
n=0

ωnz
n=

(
1

z
−2+z

)
Liα−1(z), (3.1)

where Lip(z) stands for the polylogarithm function defined by Lip(z) =
∑∞
k=1

zk

kp . The
Lip(z) function is well defined for |z|<1 and can be analytically continued to the split
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complex C\ [1,∞). Jin et.al. [33] proved the stability domain SL1 for L1 scheme is
A(π/4)-stable by analyzing the function Fω(z) directly. See the definition below in
(3.5). Since L1 scheme can be seen as a fractional extension of the backward Euler
scheme for classical ODEs and the backward Euler is A-stable, the above results in [33]
are not satisfactory and should be able to be improved. In [41], Jin et.al. further proved
the L1 scheme is A((1−α/2)π)-stable, that is fractional A-stable, by making use of a
very elaborate expansion formula for the polylogarithm function.

In the following, we study the stability domain of general CM-preserving schemes
and prove that they are at least A(π/2) stable. The results will allow us to apply
CM-preserving schemes to time fractional advection-diffusion equations, in which the
eigenvalues of the space semi-discrete system lie in the left half complex plane but with
nonzero imaginary part. For the linear scalar test fractional ODE:

Dαc u(t) =λu(t) (3.2)

subject to u(0) =u0 and λ∈C, the true solution can be expressed as u(t) =Eα(λtα)u0,

where Eα(z) =
∑∞
k=0

zk

Γ(kα+1) is the Mittag-Leffler function. It is proved in [42] that the

solution satisfies that u(t)→0 as t→+∞ whenever

λ∈S∗ :={z∈C;z 6= 0,|arg(z)|> (πα)/2}. (3.3)

Recall that the function z 7→arg(z) we use here has branch cut at the negative real axis
and the range is in (−π,π]. Note that the stability region S∗ for the true solution does
not contain the point z= 0. So doesn’t the numerical stability region Sh below.

Consider applying the CM-preserving scheme with coefficients a= (a0,a1, ·· ·) to
(3.2) to obtain that

un=u0 +λhα[a∗(u−u0δd)]n, n≥0. (3.4)

Definition 3.1. The numerical stability region is defined by

Sh :={z=λhα∈C :un→0 as n→+∞}. (3.5)

The numerical method is called A(β)-stable if the corresponding stability domain Sh
contains the infinite wedge

S(β) ={z∈C;z 6= 0, |arg(−z)|<β}. (3.6)

We use arg(−z) here in order that the angle β is counted from the negative real axis.
It is easy to find that the generating function of the numerical solution sequence {u} in
(3.4) is given by

Fu(z) =u0
(1−z)−1−λhαFa(z)

1−λhαFa(z)
=u0

[
1+

z

(1−λhαFa(z))(1−z)

]
. (3.7)

On the other hand, by Proposition 2.1, for a CM-preserving scheme

Fa(z)∼ (1−z)−α, z→1. (3.8)

Hence, if we can show

F1(z) :=
z

(1−λhαFa(z))(1−z)
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is analytic in the region

∆R,θ :={z∈C : |z|≤R,z 6= 1, |arg(z−1)|>θ} (3.9)

for some R>1 and θ∈ (0, π2 ), then from Lemma 2.2 we can find that if λ 6= 0

un∼−
u0

λ
h−αn−α→0, n→+∞.

Hence, the domain

S1 :=
{
ζ ∈C,ζ 6= 0 :∃R>1,θ∈

(
0,
π

2

)
,s.t. 1−ζFa(z) 6= 0, for z∈∆R,θ

}
(3.10)

is contained in the stability region Sh, i.e., S1⊆Sh.
Let us start with region S1. For the CM scheme, we have

Lemma 3.1. Consider a scheme in (2.1) that is CM-preserving. We have

Sc1 =Fω

(
D(0,1)

)
, (3.11)

where S1 is defined in (3.10), ω=a−1 so that Fω(z) =F−1
a (z), Sc1 is the complement of

S1 and D(0,1) :={z∈C : |z|<1} is the open unit disk so that D(0,1) is the closed disk.

Proof. Since every ∆R,θ contains D(0,1)\{1} and Sc1 contains 0, we must have

Fω

(
D(0,1)\{1}

)
⊂Sc1 .

Since Fω(1) = 0 by the asymptotic behavior of Fa(z) in (3.8), we thus conclude

Fω

(
D(0,1)

)
⊂Sc1 .

On the other hand, for any ζ0 /∈Fω
(
D(0,1)

)
(thus ζ0 6= 0), we show that ζ0∈S1.

In fact, if not, for any ∆Rm,θm , there exists zm∈∆Rm,θm such that Fω(zm) = ζ0. Con-
sequently, we are able to find a sequence {zm}⊂F−1

ω (ζ0) with zi 6=zj for i 6= j, and
|zm|→1. Hence, {zm} must have a limiting point z̄. z̄ 6= 1 by (3.8). Hence, Fω(z)
must be analytic around z̄ so that Fω(z̄) = ζ0. This is a contradiction since Fω(z)−ζ0
is analytic, with zeros being isolated.

From this lemma we can see that if we can prove some properties of the image
of unit disk under the map Fω(z) =F−1

a (z) =ω0−zG(z) for z∈D(0,1), where G(z) is
defined in (2.6), we may get some information on the domain S1. With this observation,
we have

Theorem 3.1. Consider a CM-preserving scheme for (1.1). The complement of the
numerical stability region Sch :=C\Sh is a bounded set in the right half complex plane.
There exists θ0∈ (0, π2 ) such that the numerical stability region Sh contains S(π−θ0)
defined in (3.6), and also the wedge region⋃

δ≤δ0

{ζ ∈C : |ζ|≤ δ, |arg(ζ)|≥β(δ)}

for some small given positive constant δ0>0 and continuous function β : [0,δ0]→ [0,π]
such that β(δ)→ απ

2 as δ→0+. In particular, the stability region contains the left half
plane excluding {0}, i.e., Sh⊃C− \{0}, where C−={ζ ∈C : Re(ζ)≤0}.
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The proof of Theorem 3.1 relies on the following key observation of a completely
monotone sequence and its generating function:
Lemma 3.2 ([26, Theorem 1]). If a sequence {a} is CM, then there is a Hausdorff
measure µ (nonnegative, supported on [0,1]) such that

an=

∫
[0,1]

tndµ(t),

and consequently,

Fa(z) =

∫
[0,1]

1

1−zt
dµ(t), (3.12)

which is Pick, nonnegative on (−∞,1).

With the lemma, we now prove the main theorem of this part.

Proof. (Proof of Theorem 3.1.) Since a0>0, µ[0,1] =a0>0. We first show that
Sch is bounded. Fix some M>0 large. Since Fa(z)∼ (1−z)−α as z→1, for ε>0 is small

enough, in the domain B(1,ε)\ [1,∞), where B(1,ε) :={ζ ∈C : |ζ−1|<ε}, |Fa(z)|>M .
Note that on the region D(0,1)\B(1,ε), Fa(z) is an analytic function. Moreover, it
is never zero since it is a Pick function and positive on (−∞,1) as µ[0,1]>0. Hence,
|Fa(z)| has a lower bound C>0. Hence, infz∈C\(1,∞) |Fa(z)|>0 and thus {ζ : |ζ|>C1}
is contained in the stability region for some C1>0 according to Lemma 3.1.

We now prove that Sh⊃S(π−θ0) (defined in (3.6)) for some θ0∈ (0, π2 ). Consider
|z|≤R= 1+ε. If ε is very small, then Fa(z) = (1+k(ε))(1−z)−α for some function k
such that k(ε)→0 as ε→0+. Hence,

|arg(Fa(z))|≤απ
2

+h(ε), (3.13)

for some function h satisfying that h(ε)→0 as ε→0+. When z∈D(0,1)\B(1,ε), then
Re(z)≤1− 1

2ε
2<1. Using (3.12), we know that Fa(z) has positive real part, so does

Fω(z). Hence, we find that

|arg(Fω(z))|≤ π
2
−C(ε),

with C(ε)→0 as ε→0+. Choosing suitable ε, we further find

sup
z∈D(0,1)\{1}

|arg(Fω(z))|≤θ0<
π

2
. (3.14)

Lemma 3.1 then implies that the numerical stability region contains S(θ0).
Regarding the last claim, we choose ε>0 small and set Mε=

sup
z∈D(0,1)\B(1,ε)

|Fω(z)|. Then, for all ζ with |ζ|<1/Mε, Fω(z) = ζ can only be

possible for z∈B(1,ε). However, the phase of Fω(z) =F−1
a (z) in B(1,ε) is between

−(1+k(ε))πα2 and (1+k(ε))πα2 . This observation then leads to the claim regarding the
asymptotic behavior of the stability region for ζ near the origin.

As an immediate application of Theorem 3.1, we have the following.

Corollary 3.1. Consider a CM-preserving scheme for the test equation in (3.2). If
|arg(λ)|>θ0, where θ0 is defined in Theorem 3.1, the scheme is unconditionally stable.
If |arg(λ)|> πα

2 , the scheme is stable for h small enough.
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Now a natural question is that whether the CM-preserving schemes can be A(πα2 )
stable, that is, the numerical stability region contains the analytic stability region,
Sh⊃S∗, where Sh and S∗ are defined in (3.3) and (3.5) respectively. We point out that
the above conjecture cannot be true in general. As a typical example, consider

Fa(z) = (1−z)−α+C
1

1− t1z
, (3.15)

where t1 is close to 1. If the constant C is large enough, the largest phase

sup
z∈D(0,1)\{1}

arg(Fa(z))

could be close to π/2. This function, however, also gives a consistent CM-preserving
scheme.

Hence, we can only hope some special scheme, like L1 scheme, can achieve the
better stability property.

4. Monotonicity for scalar autonomous equations
It is noted that the solutions for classical first order autonomous one dimensional

ODEs u′=f(u) keep the monotonicity, due to the facts of that the solution curves never
cross the zeros of f and hence f(u) has a definite sign. In [43], the authors obtained a
similar result for one dimensional autonomous fractional ODE

Dαc u=f(u), (4.1)

where t 7→u(t)∈R is the unknown function.

Lemma 4.1 ([43]). Consider the one dimensional autonomous fractional ODEs in
(4.1). Suppose that f ∈C1(c,d) and f ′ is locally Lipschitz on (c,d). Then, the solution
u with initial value u(0) =u0∈ (c,d) is monotone on the interval of existence (0,Tmax)
(Tmax=∞ if the solution exists globally). If f(u0) 6= 0, the monotonicity is strict.

The basic idea in the proof of the above lemma is divided into two steps. First
let y(t) =u′(t) and write out the Volterra integral equations involving y. Then one can
make use of the resolvent to transform the obtained integral equation into another new
integral equation so that all the functions involved are non-negative. The positivity of
the solution in the new integral equation leads to the required monotonicity. See the
details in [43].

4.1. General scalar autonomous equations. In the following, motivated
by Lemma 4.1, we study the monotonicity of the solutions for one dimension (scalar)
autonomous time fractional ODEs (4.1) obtained by the CM-preserving numerical
schemes.

Theorem 4.1. Consider one dimension (scalar) autonomous time fractional ODEs
(4.1). Suppose the numerical methods given in (2.1) or (2.4) are CM-preserving.

• If f(·) is C1 and non-increasing, then for any step size h>0, the numerical
solution {un} is monotone.

• If f(·) is C1 with M := sup|f ′(u)|<∞, then when hαMa0<1, {un} is mono-
tone.

From the following proof, we can see that for the second claim, we only need M :=
sup |f ′(u)|<∞ to be bounded on the convex hull of {un} considered. The proof is
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motivated by the time-continuous version in [43]. We first prove a lemma about the
discrete resolvent.

Lemma 4.2. Suppose a={an} is completely monotone. For any λ>0, define the
sequence b= b(λ) given by

b+λ(a∗b) =λa.

Then, b is completely monotone. In particular, it is nonnegative.

Proof. The generating function is

Fb(z) =
λFa(z)

1+λFa(z)
.

Since a is completely monotone, Fa(x)≥0 for x<−1, and thus so is Fb(z).
Moreover, we claim that 1+λFa(z) is never zero in the upper half plane. Since

a0≥0, then 1+λFa(z) 6= 0 near z= 0. If it is zero somewhere, then Fa(z) is not a
constant. By Lemma 2.1, Im(F (z))>0 for z∈C+. This is a contradiction. Hence,
Fb(z) is analytic in the upper half plane. Moreover,

Fb(z) =
λFa(z)+λ2|Fa(z)|2

|1+λFa(z)|2
.

Clearly, the imaginary part of Fb(z) is nonnegative and hence it is Pick. The result
follows from Theorem 2.1.

Proof. (Proof of Theorem 4.1.) For the convenience, we denote fj :=f(uj). The
scheme is written as

un=u0 +hα
n−1∑
j=0

ajfn−j =hα[a∗(f−f0δd)]n, (4.2)

where δd= (1,0,0,. ..) is the convolutional identity. We define vn :=un+1−un,n≥0.
Then, vn satisfies

vn=hαf1an+hα
n−1∑
j=0

aj(fn+1−j−fn−j).

We now define gn−j :=
fn+1−j−fn−j
un+1−j−un−j =

fn+1−j−fn−j
vn−j

=f ′(ξn−j) for some ξ. Then, the

above equation is written as

vn=hαf1an+hα
n−1∑
j=0

ajgn−jvn−j =hαf1an+hα
n∑
j=0

aj(gn−jvn−j−δn−j,0g0v0). (4.3)

In other words, we have that v=hαf1a+hαa∗(gv−δdg0v0). Here we have made use of
the notation gv=

∑∞
j=0gjvj . Convolving this equation with b defined in Lemma 4.2, we

get that

b∗v=hαf1a∗b+hαb∗a∗(gv−δdg0v0)

=hαf1a∗b+hα
(
a− 1

λ
b

)
∗(gv−δdg0v0). (4.4)
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Consequently, it follows from (4.3) and (4.4) that vn−(b∗v)n=hαf1[a−a∗b]n+hα 1
λ [b∗

(gv−δdg0v0)]n. Hence,

vn=hαf1
1

λ
bn+bnv0 +

[
b∗
(
v−v0δ+

hα

λ
(gv−δdg0v0)

)]
n

.

Since v0 =hαf1a0, we further have

vn=hα
(
a0 +

1

λ

)
f1bn+

[
b∗
((

1+
hαg

λ

)
(v−v0δd)

)]
n

.

Hence, for n≥1,(
1−b0

(
1+

hαgn
λ

))
vn=hα

(
a0 +

1

λ

)
f1bn+

n−1∑
j=1

bj

(
1+

hαgn−j
λ

)
vn−j .

Note that b0 = λa0

1+λa0
<1. Now we discuss respectively in two cases.

Case 1: If f is non-increasing, then we have that 1−b0
(

1+ hαgn
λ

)
>0 for all n.

Fix any N >0, we can always choose λ>0 big enough such that 1+
hαgn−j

λ >0 for all
j≤n≤N . This choice will not change the value of uj and thus vn−j ; it will only change
bj . On the other hand, we know from Lemma 4.2 that bj for j≥1 are nonnegative.
With this, we can see that the sign of vn=un+1−un keeps fixed and is the same as f1

for all n≤N . Since N is arbitrary, the claim is proved.

Case 2: If f has no monotonicity, but M = sup|f ′|<∞. We consider first that 1−
b0(1+ hαgn

λ ). We can require that 1+ hαgn
λ < 1

b0
= 1+ 1

λa0
such that 1−b0

(
1+ hαgn

λ

)
>0.

Hence, we require

hαMa0<1. (4.5)

If we choose λ large enough, 1+
hαgn−j

λ >0 will also hold. Hence, the sign of vn is fixed.

Remark 4.1. If u∈Rd,d>1 is a vector, applying the CM-preserving numerical
schemes to the Equation (1.1) does not necessarily imply ‖un‖ to be monotone. See the
example in numerical experiment. However, if the system can be decomposed into d
orthogonal decoupled modes, in which the vector equation can essentially be equivalent
to a set of scalar equations and then ‖un‖ is monotone.

4.2. Linear equations with damping. If the equation in (1.1) is one di-
mensional linear equation with damping, i.e., f(u) =−λu (λ>0), the result is much
stronger. In fact, it is well known that the solution can be expressed as

u(t) =u0Eα(−λtα),

where Eα(z) =
∑∞
k=0

zk

Γ(kα+1) is the Mittag-Leffler function. We have that u(t) is strictly

monotonically decreasing and also CM due to the property of the Mittag-Leffler function
Eα(z) [20]. We can show that the corresponding numerical solution is also CM.

Theorem 4.2. If the numerical method defined in (2.4) is CM-preserving, then for the
scalar linear equations Dαc u=−λu with λ>0 and u0>0, the numerical solution {un} is
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a CM sequence. Moreover, the numerical solution goes to zero as un≤C(nh)−α, where
the constant C is independent of n.

Proof. Taking the generating functions on the both sides of (2.2), one has

Fω(z)(Fu(z)−u0(1−z)−1) =hα(Ff (z)−f0) =−λhα(Fu(z)−u0),

where Ff and Fu denote the generating functions of f = (f0,f1, ·· ·) and u= (u0,u1, ·· ·)
respectively. Then,

Fu(z) =u0
Fω(z)(1−z)−1 +λhα

Fω(z)+λhα
=u0

(
1+

(1−z)−1−1

1+λhαFa(z)

)
. (4.6)

The function

F1(z) := 1+
(1−z)−1−1

1+λhαFa(z)

is clearly analytic on (−∞,1) and nonnegative on (−∞,1) (note that Fa(x)≥0 on this
interval since a is completely monotone). Hence, we only need to check whether

G(z) :=
z

(1+λhαFa(z))(1−z)
(4.7)

is a Pick function or not. Firstly, it is clearly analytic in the upper half plane by a
similar argument in the proof of Lemma 4.2.

Since a is completely monotone, it is easy to see that

(1,0,0,·· ·)+λhα(a0,a1, ·· ·) =: (b0,b1, ·· ·)

is also completely monotone. Consequently, (b0−b1,b1−b2,·· ·) is completely monotone.
Hence, if we define

(1+λhαFa(z))(1−z) = b0−(b0−b1)z−(b1−b2)z2−···=: b0−zH(z),

then H(z) is a Pick function. Consequently,

G(z) =
z

b0−zH(z)
=
z(b0− z̄H̄(z))

|b0−zH(z)|2
.

If Im(z)>0, we find

Im(G(z)) =
1

|b0−zH(z)|2
(
b0Im(z)−|z|2ImH̄(z)

)
.

Since H is Pick, ImH̄(z) =−ImH(z)≤0. Hence, Im(G(z))>0. This shows that G is a
Pick function. Therefore, Fu(z) is also a Pick function for u0>0. This means that u is
completely monotone for u0>0 and the claim follows.

Since Fa(z) = (1+o(1))(1−z)−α as z→1, one has

Fu(z) =u0

(
1+

(1−z)−1−1

1+λhαFa(z)

)
, (4.8)

and thus

Fu(z)∼ u0

λhα
1

(1−z)1−α as z→1.



1320 COMPLETE MONOTONICITY-PRESERVING METHODS FOR FODES

Hence, taking β= 1−α in Lemma 2.2, we get that un∼ u0

λhαn
−α as n→∞, which com-

plete the proof.

Corollary 4.1. Consider Dαc u=−Au for u∈H, where H is a separable Hilbert space
and A :D(A)→H is nonnegative self-adjoint linear operator, with complete eigenvectors
(D(A)⊂H is the domain of A). If we apply the CM-preserving scheme to this equation,
then the numerical solution ‖un‖ is non-increasing.

In fact, let {uk} be the eigenvectors of A, then {uk} forms an orthogonal basis.
One can possibly expand u=

∑∞
k=1 ck(t)uk such that the equation is decoupled into

Dαc ck(t) =−λkck(t), where λk≥0 is the k-th eigenvalue of A. Consequently, one has

‖u‖2 =

∞∑
k=1

c2k(t)‖uk‖2, (4.9)

which is monotone by the conclusion from the scalar equation. If we apply the CM-
preserving scheme to this equation, then the scheme is implicitly applied for each ck(·)
and (4.9) holds for the numerical solution as well. Then, Theorem 4.2 gives the desired
result. Typical examples include:

Dαc u=−(−∆)βu,

for β∈ (0,1], and H=L2(Td), where (−∆)β denotes the fractional Laplacian.

5. Local truncation errors and convergence
Let u(·) be the exact solution of the fractional ODE in (1.1) and Dαhun be the

corresponding CM-preserving numerical scheme in (2.1). In this section, we mainly
focus on the local truncation error defined by

rn :=Dαhu(tn)−Dαc u(tn) =Dαhu(tn)−f(tn,u(tn)) (5.1)

and the convergence of the scheme.

5.1. Local truncation error. As well-known, if f(t0,u0) 6= 0, u(·) is not smooth
at t= 0. In particular, u(·) is often of the form:

u(t) =

M∑
m=1

βm
1

Γ(mα+1)
tmα+ψ(t), (5.2)

where M = b1/αc, βm are constants and ψ(·)∈C1[0,T ]. Hence, one cannot expect ‖rn‖
to be uniformly small. For example, if we apply the GL scheme to u(t) = 1

Γ(1+α) t
α
+

corresponding to f ≡1, we have

r1 =h−αω0

(
1

Γ(1+α)
hα−0

)
−1 =

1

Γ(1+α)
−1,

which does not vanish as h→0+. However, we aim to show that when n is large enough,
rn is small, which allows us to establish the convergence for the typical solutions with
weakly singularity at t= 0 in (5.2) for fractional ODEs.

Theorem 5.1. Assume that f(·,·) has certain regularity such that (5.2) holds for
t∈ [0,T ]. Let h=T/N with N ∈N. We decompose

rn= r(1)
n +r(2)

n ,
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where r
(1)
n is the truncation error corresponding to m= 1 while r

(2)
n = r

(2)
n,m+r

(2)
n,ψ corre-

sponds to m≥2 and ψ. Then, r
(1)
n is independent of h but limn→∞r

(1)
n = 0, and

sup
n:nh≤T

‖r(2)
n ‖=o(1), h→0+.

Proof. We consider the truncation error on 1
Γ(mα+1) t

mα, which is the fractional

integral of 1
Γ((m−1)α+1) t

(m−1)α. Clearly,

Dαh
(

1

Γ(mα+1)
tmαn

)
=h(m−1)α

n∑
j=0

ωj
1

Γ(mα+1)
(n−j)mα=:h(m−1)αGn,

where Gn is nth term of the convolution between ω and { 1
Γ(mα+1)n

mα}, independent

of h. The generating function of G is given by

FG(z) =Fω(z)

∞∑
n=0

1

Γ(mα+1)
nmαzn.

By Proposition 2.1 and the asymptotic behavior of the generating function∑∞
n=0

1
Γ(mα+1)n

mαzn (see [28, Theorem VI.7] and the discussion below it), one has

FG(z) = (1+o(1))(1−z)α
[
(1+o(1))(1−z)−(mα+1)

]
, z→1.

By (2) of Lemma 2.2, we find when m= 1, limn→∞Gn= limz→1−(1−z)FG(z) = 1. We

define r
(1)
n to be the local truncation error corresponding to m= 1:

r(1)
n :=β1Gn−β1→0, n→∞. (5.3)

We now consider that m≥2. Using the first of Lemma 2.2,

Gn= (1+%n)
1

Γ((m−1)α+1)
n(m−1)α,

where %n are bounded and %n→0 as n→∞. Hence, the truncation error corresponding
to m≥2 is given by

r(2)
n,m :=βm

%n
Γ((m−1)α+1)

(nh)(m−1)α. (5.4)

If N =T/h is big enough, this term is uniformly small. For n≤
√
N , it is controlled by

(
√
Nh)(m−1)α while for large n, it is controlled by T (m−1)α supn≥

√
N |%n|→0 as N→∞.

Now, consider the local truncation error for ψ, which is C1[0,T ]. To do this, we
adopt some well-known consistent scheme for smooth functions, for example, the GL
scheme [8]

∂αhψ(tn) :=h−α
n∑
j=0

ω̄j(ψ(tn−j)−ψ(0)).

where ω̄j are the coefficients for GL scheme. Then,

r
(2)
n,ψ := [Dαhψ(tn)−∂αhψ(tn)]+[∂αhψ(tn)−Dαc ψ(tn)] =:Rn,1 +Rn,2. (5.5)
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By the well-known truncation error for GL for ψ∈C1[0,T ], we have that
supn:nh≤T ‖Rn,2‖≤Chα, see for example [44]. We now consider the first term Rn,1.
It is in fact

Rn,1 =h−α
n∑
j=0

γj(ψ(tn−j)−ψ(0)),

with γj =ωj− ω̄j = ςj(1+j)−1−α. By the asymptotic behavior in Proposition 2.1, ςj is
bounded and goes to zero as j→∞. Fix ε>0. We discuss in three cases.

Case 1: n≤h(α−1)/2. We can control directly

‖Rn−1‖≤h−α
n∑
j=0

|γj |‖ψ′(ξn−j)‖tn−j≤Ch−α(nh)

n∑
j=0

|γj |≤Ch(1−α)/2.

Case 2: h(α−1)/2<n≤ εN . Then, we can estimate directly that

‖Rn,1‖≤h−α
∥∥∥∥∥∥
n∑
j=0

γj(ψ(tn−j)−ψ(tn))

∥∥∥∥∥∥+h−α‖ψ(tn)−ψ(0)‖|
n∑
j=0

γj |.

The first term is controlled by h−α
∑n
j=0h(1+j)−α≤C(nh)1−α. The second term is

controlled due to
∑∞
j=0γj = 0 by

h−α(nh)

∣∣∣∣∣∣
∞∑

j=n+1

γj

∣∣∣∣∣∣≤Cnh1−αn−α≤C(nh)1−α.

Hence, in this case ‖Rn−1‖ is controlled by ε1−αT 1−α.

Case 3: n≥ εN . We split the sum as

Rn,1 =h−α
bεNc∑
j=0

γj(ψ(tn−j)−ψ(tn))+h−α
bεNc∑
j=0

γj(ψ(tn)−ψ(0))

+h−α
n∑

j=bεNc+1

γj(ψ(tn−j)−ψ(0)).

The first term is controlled directly by Ch−α
∑
j≤bεNc jh(1+j)−1−α≤C(εNh)1−α. Note

that
∑∞
j=0γj = 0, the second and third can be estimated as

h−α

∥∥∥∥∥∥−
∞∑

j=bεNc+1

γj(ψ(tn)−ψ(0))+

N∑
j=bεNc+1

γj(ψ(tn−j)−ψ(0))

∥∥∥∥∥∥
≤Ch−α

∞∑
j=bεNc+1

|ςj |(1+j)−1−α≤CT−αε−α sup
j≥bεNc

|ςj |.

This goes to zero as h→0+. Hence, limh→0 supn:nh≤T ‖Rn,1‖≤C(T )ε1−α. Since ε is
arbitrary, the limit must be zero.

Combining all the results, the claims are proved.
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5.2. Convergence. The CM-preserving schemes have very good sign properties
for the weight coefficients ωj , which allow us to prove stability and also convergence.
As pointed out in Section 2.1, if the scheme is CM-preserving so that {a} is completely
monotone with a0>0, then

(i): ω0>0, ωj≤0 for j≥1; (ii): ω0 +

∞∑
j=1

ωj≥0. (5.6)

We now conclude the convergence:

Theorem 5.2. Assume that f(·,·) has certain regularity such that (5.2) holds for
t∈ [0,T ]. If f(t,·) satisfies (x−y) ·(f(t,x)−f(t,y))≤0 or is Lipschitz continuous, then,

lim
h→0

sup
n:nh≤T

‖u(tn)−un‖= 0. (5.7)

Proof. Define en=u(tn)−un. Then, we have

Dαhen=f(tn,u(tn))−f(tn,un)+rn,

where rn is the local truncation error defined in (5.1). Taking inner product on both
sides with en yields that

Dαh‖en‖≤‖rn‖+η‖en‖,

where η= 0 if f(t, ·) satisfies (x−y) ·(f(t,x)−f(t,y))≤0 and η=L be the Lipschitz
constant if f is Lipschitz. Hence, we have

‖en‖≤ηhα
n−1∑
j=0

aj‖en−j‖+hα
n−1∑
j=0

aj‖rn−j‖, n≥1.

We claim that

εh := sup
n:nh≤T

hα
n−1∑
j=0

aj‖rn−j‖=o(1), h→0+. (5.8)

We now do the same decomposition in Theorem 5.1 as ‖rn−j‖≤‖r(1)
n−j‖+‖r(2)

n−j‖. By
this decomposition, the summation is controlled by

hα
n−1∑
j=0

aj‖r(1)
n−j‖+hα

n−1∑
j=0

aj‖r(2)
n−j‖.

Let’s separately estimate each term in the above equation. For the second term, we
have

hα
n−1∑
j=0

aj‖r(2)
n−j‖≤C(nh)α sup

j
‖r(2)
j ‖≤CT

α sup
j
‖r(2)
j ‖=o(1),h→0+,

where we have used the property hα
∑n−1
j=0 aj≤C(nh)α, see Proposition 2.1. The first

term can be controlled by splitting technique as

hα
n−N1∑
j=0

aj‖r(1)
n−j‖+hα

n∑
j=n−N1

aj‖r(1)
n−j‖.



1324 COMPLETE MONOTONICITY-PRESERVING METHODS FOR FODES

For any ε>0, we can pick N1 fixed such that ‖r(1)
k ‖≤ ε for all k≥N1 when N1 is big

enough due to Theorem 5.1. The sum is then controlled by

εhα
n−N1∑
j=0

aj+hαN1−α
1 ≤ εtαn−N1

+hαN1−α
1 ≤ εTα+hαN1−α

1 .

Taking h→0+, the limit is Tαε. Since ε is arbitrarily small, the claim for εh is verified.
If η= 0, the theorem is already proved. Now, we consider η=L>0. To do this, we

consider the auxiliary function v(·) which solves Dαc v=L, v(0) = 2>0. Then, repeating

what has been done, one can verify that v(tn) = 2+hαL
∑n−1
j=0 ajv(tn−j)+ ε̄h. For h small

enough, 2+ ε̄h≥1. Hence, by the comparison principle (Proposition 2.3), we find when
h is small enough,

‖en‖≤ εhv(tn) = 2εhEα(Ltαn)→0, h→0+, ∀nh≤T.

The proof is completed.

5.3. Application to fractional diffusion equations. As a typical application
to fractional PDEs, we consider the time fractional sub-diffusion equations, see [4,11,12,
37,44]. Here we follow the basic notation and idea from [11] to establish the convergence
of time semi-discretization problem using CM-preserving schemes.

Let Ω⊂Rd(d= 1,2,3) be a bounded convex polygonal domain and T >0 be a fixed
time. Consider the initial boundary value problem:

Dαc u+Lu=f(x,t) for (x,t)∈Ω×(0,T ],

u(x,t) = 0 for (x,t)∈∂Ω×(0,T ], u(x,0) =u0(x) for x∈Ω,
(5.9)

where Dαc u denotes the α order of Caputo derivative with respect to t and L is a standard
linear second-order elliptic operator:

Lu=

d∑
k=1

{−∂xk(ak(x)∂xku)+bk(x)∂xku}+c(x)u,

with smooth coefficients {ak}, {bk} and c in C(Ω̄), for which we assume that ak>0

and c− 1
2

∑d
k=1∂xkbk≥0. We also assume that for this equation there exists a unique

solution in the given domain. Different from the classical integer order equations for
α= 1, the solutions of fractional Equations (5.9) usually exhibit weak singularities at
t= 0, i.e.,

‖Dltu‖L2(Ω)≤C(1+ tα−1) for l= 0,1,2, (5.10)

where Dlt denote the classical lth order derivative with respect to time, see [4]. This low
regularity of solutions at t= 0 often leads to convergence order reduction for solution
schemes. Many efforts have been made and new techniques developed to recover the
full convergence order of numerical schemes, such as non-uniform grids [4, 11, 12], and
correction near the initial steps [44].

Consider the time semi-discretization of (5.9) in time by CM-preserving schemes

DαhUn+LUn=f(·,tn) in Ω, Un= 0 on ∂Ω, U0 =u0, (5.11)

where Un≈u(x,tn) and DαhUn=h−α
∑n
j=0ωj(Un−j−U0) for n≥1 stands for the CM-

preserving schemes with time step size h>0 as in (2.2).
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The good sign property in (5.6) for CM-preserving schemes will play a key role
to establish the stability and convergence for scheme in (5.11). By using a complex
transformation technique, the authors in [37] obtain similar conditions like in (5.6) and
establish the stability and convergence for a (3−α)-order scheme. We emphasize that
the CM-preserving schemes we present in this article naturally have this important
property.

Theorem 5.3. Let u and Un be the solutions of Equations (5.9) and (5.11) respec-

tively. Then under the conditions c− 1
2

∑d
k=1∂xkbk≥0, we have that

sup
n:nh≤T

‖u(·,tn)−Un‖≤Chα sup
n:nh≤T

n−1∑
j=1

aj‖rn−j‖→0,h→0+. (5.12)

where rn=Dαhu(·,tn)−Dαc u(·,tn) is the local truncation error.

Proof. Let the error en :=u(·,tn)−Un. It follows from (5.9) and (5.11) that e0 = 0
and

Dαhen+Len=Dαhu(·,tn)−f(tn,·) =Dαhu(·,tn)−Dαc u(·,tn), 1≤n≤T/h.

By the definition Dαhen=h−α
∑n
j=0ωj(e

n−j−e0) the above equation can be rewritten
as

ω0

hα
en+Len=

1

hα

n∑
j=1

(−ωj)en−j+rn, 1≤n≤T/h. (5.13)

Now we take the standard L2(Ω) inner product in (5.13) with en. Note that the condition

c− 1
2

∑d
k=1∂xkbk≥0 implies that 〈Len,en〉L2(Ω)≥0. According to sign properties in

(5.6), we get the error equation

ω0

hα
‖en‖L2(Ω)≤

1

hα

n∑
j=1

(−ωj)‖en−j‖L2(Ω) +‖rn‖L2(Ω), n≥1. (5.14)

In other words

Dαh‖en‖L2(Ω)≤‖rn‖L2(Ω), n≥1.

The remaining proof is similar as Theorem 5.2.

From the above proof we can see that once we establish the order with respect to
‖rn‖L2(Ω), we will obtain the order of convergence of the numerical scheme. Similarly,
for the fully discrete numerical schemes by applying a standard finite difference or finite
element method for spatial approximation of the time semi-discretization (5.11), we can
also obtain the corresponding convergence order.

6. Extension to Volterra integral equations
We consider the second class of Volterra integral equation

u(t) =u0 +

∫ t

0

k(t−s)f(s,u(s))ds, t>0, (6.1)

with initial value u(0) =u0. We consider discretization

un−u0 = [b∗(f−f0δn,0)]n= [b∗f−f0bn]n=

n−1∑
j=0

bjfn−j , n≥1. (6.2)
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Note that here sequence b corresponds to hαa for the fractional ODE. We do not factor

hα out because k(·) may not be homogeneous. For example, k(t) = t
−1/2
+ + t

−1/3
+ . We

define the following.

Definition 6.1. We say the discretization given in (6.2) is consistent for Volterra
integral with CM kernel if a function φ(·) with the typical regularity of f(u(t)) in (6.1)
satisfies

εh := sup
n≥1,nk≤T

∥∥∥∥∥∥
n−1∑
j=0

bjφ(tn−j)−
∫ tn

0

kα(s)φ(tn−s)ds

∥∥∥∥∥∥=o(1), h→0+.

Definition 6.2. We say a consistent (in the sense of Definition 6.1) numerical
method given in (6.2) for the convolutional Volterra integral Equation (6.1) with CM
kernel is CM-preserving if the sequence b is a CM sequence.

The main results regarding monotonicity given in Theorem 4.1 for one dimension
autonomous equations can be extended to the Volterra integral equations with more
general CM kernel functions directly. Moreover, the sign properties for the convolutional
inverse ν := b(−1) also hold except that we generally have ν0 +

∑∞
j=1νj≥0 because ‖b‖`1

may be finite. With the sign properties, analogy of Propositions 2.2 and 2.3 hold except
that we need b0L<1 to replace hαLa0<1.

Theorem 6.1. Suppose (6.1) has a locally integrable CM kernel and f(t,·) is Lipschitz
continuous. Then when applying a CM-preserving scheme, we have

lim
h→0+

sup
n:nh≤T

‖un−u(tn)‖= 0.

We sketch the proof here without listing the details. In fact, the error en=u(tn)−un
satisfies

‖en‖≤L
n−1∑
j=0

bj‖en−j‖+εh, n≤T/h.

Consider v(·) solving v(t) = 2δ+L
∫ t

0
k(t−s)v(s)ds, with δ>0. By the consistency,

v(tn) = 2δ+L

n−1∑
j=0

bjv(tn−j)+ ε̄(n,h)≥ δ+L

n−1∑
j=0

bjv(tn−j),

when h is small enough. Clearly, when h is small enough, εh<δ for any fixed δ>0. By
direct induction,

‖en‖≤v(tn), ∀n,nh≤T.

The Volterra equation is continuous in terms of the initial value if the kernel is locally
integrable. Since δ is an arbitrary positive number, limh→0 supn:nh≤T ‖en‖= 0.

Remark 6.1. When k(t) = 1
Γ(α) t

α−1
+ , the consistency in Definition 2.1 can imply

the consistency in Definition 6.1. Hence, the conclusion in Theorem 6.1 also applies to
fractional ODEs.

Typical examples for completely monotone kernel functions are including that
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• The sum of several standard kernels: k1(t) = c1kα1(t)+c2kα2(t)+ ·· ·+
cmkαm(t), where cj>0,αj ∈ (0,1) for j= 1,2,...,m.

• The standard kernel with exponential weights: k2(t) =kα(t)e−γt,γ >0.

One can easily construct CM-preserving schemes for these equations using the ones
in Section 2.2. In particular

(1) for k1(t), one can use any scheme or their linear combination in Section 2.2 to
approximate kαj and this yields a CM-preserving scheme for k1(t).

(2) for k2(t), one can take the piecewise integral as approximation as in [30]:

bn=

∫ tn+1

tn

k2(t)dt, (6.3)

where we recall tn=nh.

In addition, we can also use the CQ [8] to calculate the convolutional Volterra integral.
In general, we can approximate the convolutional integral as∫ tn

0

k(tn−s)g(s)ds≈
[
K

(
δ(z)

h

)
Fg(z)

]
n

, (6.4)

where K is the Laplacian transform of the kernel k(t), δ(z) = ρ̆(z)/σ̆(z) is the generating
function based on classical linear multistep method (ρ,σ) as in (2.16), and Fg(z) is the
generating function of (g0,g1,...). Therefore, if we can calculate K accurately and choose
(ρ,σ) appropriately then we obtain the corresponding numerical schemes. As in Section
2.2 for fractional ODEs, we can choose (ρ,σ) in two ways:

(i): σ(z) =z,ρ(z) =z−1, and δ(z) = 1−z;
(ii): σ(z) =θz+(1−θ),ρ(z) =z−1 with θ≥1, and δ(z) = 1−z

θ+(1−θ)z = 1−z
2−z , where we

take θ= 2.

For example, for k2(t) we have that

K[k2(t)](z) =L
[
kα(t)e−γt

]
(z) = (z+γ)−α.

Therefore,∫ tn

0

k2(tn−s)g(s)ds≈

[(
δ(z)

h
+γ

)−α
Fg(z)

]
n

=hα
[
(δ(z)+hγ)

−α
Fg(z)

]
n
. (6.5)

Then we get the numerical schemes for Volterra integral Equation (6.1) as

un=u0 +hα
n∑
j=1

vn−jfj , n≥1, (6.6)

where the weight coefficients {vj} derived from one of the following generating functions

(i) : (1−z+hγ)
−α

= (1+hγ)−α
(

1− 1

1+hγ
z

)−α
=

∞∑
j=0

vjz
j ;

(ii) :

(
1−z
2−z

+hγ

)−α
=

(
1+2hγ

2

)−α(1− 1+hγ
1+2hγ z

1−z/2

)−α
=

∞∑
j=0

vjz
j .

(6.7)
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We now check if the generating functions Fb(z) defined in (6.7) is a Pick function
or not and the non-negativity on (−∞,1).

For (i) in (6.7), we have that Fb(z) = (1−z+hγ)
−α

. Since γ>0, it is easy to see
Fb(z) is a Pick function and analytic, positive on (−∞,1).

For (ii) in (6.7), we have that Fb(z) =
(

1−z
2−z +hγ

)−α
. We rewrite

Fb(z) =

(
1+2hγ

2

)−α(
1−z/2
1−qz

)α
:=

(
1+2hγ

2

)−α
(H(z))α,

where q= 1+hγ
1+2hγ ∈ ( 1

2 ,1]. We now claim the function H is Pick. In fact,

H(z) =
1−z/2
1−qz

=
(1−z/2)(1−qz̄)
|1−qz|2

=
1−qz̄−z/2+q|z|2/2

|1−qz|2
,

which implies that Im(H) = (q− 1
2 )Im( z

|1−z|2 ), and the result follows by noting that

q> 1
2 . Moreover, for z∈R, the numerator becomes 1−(q+ 1

2 )z+ q
2 |z|

2. Since 1−(q+
1
2 )z+ q

2 |z|
2 = 0 has roots z1 = 2 and z2 = 1/q>1 so the numerator is positive on (−∞,1)

and the denominator is also positive on (−∞,1), so when z∈ (−∞,1), H(z)>0. Hence,
H(z) is a Pick function that is analytic and positive on (−∞,1) and consequently, Fb(z)
is also Pick and nonnegative on (−∞,1).

The weight coefficients {vj} can be recursively evaluated by the Miller formula

in Lemma 2.3. Let that
(

1− 1
1+hγ z

)−α
=
∑∞
j=0mjz

j ,
(

1− 1+hγ
1+2hγ z

)−α
=
∑∞
j=0njz

j and

(1−z/2)
α

=
∑∞
j=0pjz

j , where for coefficients mj , nj and pj can be recursively computed
by

m0 = 1,mk =− 1

1+hγ

(
1−α
k
−1

)
mk−1, k≥1,

n0 = 1,nk =− 1+hγ

1+2hγ

(
1−α
k
−1

)
nk−1, k≥1,

p0 = 1,pk =−1

2

(
1+α

k
−1

)
pk−1, k≥1.

(6.8)

Hence, the weight coefficients in schemes in (6.6) are given by

(i) :vj = (1+hγ)−αmj or (ii) :vj =

(
1+2hγ

2

)−α j∑
l=0

nj−lpl. (6.9)

Note that in the numerical scheme (6.6) for kernel k2(t), the coefficients vj depend
on the step size h explicitly. This is because the Laplacian transform of k2(t) is an
inhomogeneous function on z for γ>0, see (6.5).

7. Numerical experiments
In this section, we first perform numerical experiments to confirm the monotonicity

of numerical solutions for CM-preserving schemes applied to scalar autonomous frac-
tional ODEs or Volterra integral equations with CM kernels. In [5,29], the authors have
shown that for linear scalar fractional ODEs with damping or delay differential equa-
tions, the long-time decay rate un=O(t−αn ) as n→∞ both from theory and numerics,
by energy type methods. In this paper, we focus on the monotonicity of numerical so-
lutions for nonlinear fractional ODEs and Volterra integral equations. We also provide
numerical example on time fractional advection-diffusion equations to confirm the nice
stability of CM-preserving schemes.
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7.1. Fractional ODEs. Consider the scalar fractional ODE for α∈ (0,1],

Dαc u(t) =Au−Bu2, (7.1)

with initial value u(0) =u0, where the two constants A and B satisfying that A ·B>0.
For all orders α∈ (0,1], this equation has two particular solutions u1 = 0 and u2 = A

B .
For α= 1 has the following general solution

u(t) =
A

B+
(
A
u0
−B

)
e−At

.

We can easily see from the expression that for A,B>0, if u0>0, all the solutions
asymptotically tend to the constant A/B; while for u0<0, all the solutions will blow
up in finite time and have vertical asymptotic lines. The case for A,B<0 is similar.

In Figure (7.1), we plot the numerical solutions for α= 1 and α= 0.8, respectively.
It is clear that all the solutions are monotone and asymptotically tend to the constant
A/B= 2, and they are asymptotic stable, as expected. The order of α has a significant
impact on the decay rates of the numerical solutions. For the classical ODE with α= 1,
we can see the solutions will decay exponentially while for α∈ (0,1) the solutions will
only decay with algebraic rate, which leads to the so-called heavy tail effect for fractional
dynamics [5].
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Fig. 7.1. Left: numerical solutions for α= 1 obtained by implicit Euler method; Right: nu-
merical solutions for α= 0.8 obtained by Grünwald-Letnikov scheme. The initial values are taken as
0.5,1,1.5,3,4,5, respectively, and h= 0.05, T = 5 and A= 2,B= 1.

As pointed out in Remark 4.1, for general vector fractional ODEs in Rd with d>1,
we can not expect the monotonicity of the Euclidean norm of the numerical solutions.
Consider the fractional financial system [3]

Dαc x(t) =z(t)+(y(t)−1)x(t),

Dαc y(t) = 1−0.1y(t)−x(t)2,

Dαc z(t) =−x(t)−z(t).

The fractional financial system is dissipative and there exists a bounded absorbing
set [5]. Figure (7.2) shows that the solution doesn’t tend to an equilibrium state,
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Fig. 7.2. Left: numerical solutions for α= 0.9 obtained by Grünwald-Letnikov scheme; Right: the
L2-norm ‖Un‖, where U = (x,y,z)T . The initial values x0 = 2,y0 =−1,z0 = 1, and h= 0.05, T = 100.

and of course ‖Un‖ doesn’t have monotonicity, where U = (x,y,z)T . Numerical results
obtained by other CM-preserving schemes given in Section 2.2 are very similar, and are
not provided here.

7.2. Volterra integral equations. We study the monotonicity of numerical
solutions for Volterra integral equation with CM kernel functions obtained by CM-
preserving schemes

u(t) =u0 +

∫ t

0

k(t−s)f(u(s))ds, t>0, (7.2)

with initial value u(0) =u0. Since the CM kernel k1(t) is very similar to the standard
kernel kα(t), we will focus on the kernel k2(t) =kα(t)e−γt for γ>0 in this example. We
consider the following three examples

(a) f(u) =λu, λ is a fixed parameter;

(b) f(u) =Au−Bu2, where A,B are parameters as in Example 1;

(c) f(u) = sin(1+u2).

In this example, we take the numerical schemes given in (ii) of (6.7) for the simula-
tions for various initial values and parameters. The numerical results for scheme (i) of
(6.7) are very similar and not provided here. We take h= 0.1,T = 10 in all the following
computations. The numerical solutions for (a),(b) and (c) are reported in Figure (7.3),
Figure (7.4) and Figure (7.5) respectively. The numerical results show that both the
order α and parameter γ will impact the decay rate and equilibrium state of the solu-
tions significantly. But all numerical solutions for various initial values and parameters
remain monotonic, as our theoretical results predicted.

7.3. Application to fractional advection-diffusion equations. Consider
the time fractional periodic advection diffusion problem

0Dαt u(x,t)+dux=Duxx, t>0,x∈Ω, (7.3)

with initial value u(x,0) =u0(x) and Dirichlet or periodic boundary condition, where
constant coefficients d∈R,D>0 and Ω⊂Rn(n= 1,2,3).
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Fig. 7.3. Numerical solutions for (a) with λ=−2. Left: α= 0.9 and γ= 0,1,2,3 respectively;
Right: γ= 1 and α= 0.99,0.9,0.6,0.3 respectively.
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respectively; Right: γ= 1,α= 0.8 and u0 = 0.5,1,1.5,3,4,5 respectively.

When d= 0, the Equation (7.3) is reduced to the sub-diffusion equation, which
has been thoroughly studied both mathematically and numerically in recent years. If
u0(x)∈L2(Ω) and u(x,t) = 0 for x∈∂Ω, then it is proved in [45] that for the equation,
there exits a unique weak solution u∈C([0,∞];L2(Ω))∩C((0,∞];H2(Ω)∩H1

0 (Ω)) and
there exists a constant Cα>0 such that

‖u(·,t)‖L2(Ω)≤
Cα

1+λtα
‖u0‖L2(Ω), λ>0,t>0. (7.4)

As we have pointed out earlier in Section 1, the fractional sub-diffusion equations
have two significant differences compared to the classical diffusion equations for α=
1. The first one is that the solution of model (7.3) often exhibits weak singularity
near t= 0, i.e., ‖ 0Dαt u(·,t)‖L2(Ω)≤Cαt−α‖u0‖L2(Ω) [45]. In fact, this limited regularity
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Fig. 7.5. Numerical solutions for (c). Left: α= 0.99,0.9,0.6,0.3 and γ= 1 respectively; Right:
γ= 0,1,2,3 and α= 0.9 respectively.

makes it difficult to develop high-order robust numerical schemes and provide a rigorous
convergence analysis on [0,T ] for some T >0. Many efforts have been put on this
problem and for the linear problems this problem has been well solved. Several effective
high-order corrected robust numerical methods have been constructed and analyzed
[4, 9, 11,12,44].

The other one, which can be clearly seen from (7.4), is the long-time polynomial
decay rate of the solutions, i.e., ‖u(·,t)‖L2(Ω) =O(t−α) as t→+∞. This is essentially
different from the exponential decay of the solutions to a classical first order diffusion
equation. However, as far as we know, there is little work on studying the polynomial
rate of the solutions and characterizing their long tail effect for fractional sub-diffusion
equations from the numerical point of view. In our recent work [5], we established
the long-time polynomial decay rate of the numerical solutions for a class of fractional
ODEs by introducing new auxiliary tools and energy methods, which can also be used
to characterize the numerical long-time behavior of spatial semi-discrete PDEs as in
(7.3).

When d= 0, the eigenvalues of fractional ODEs system obtained from spatial semi-
discretization for fractional sub-diffusion equations are often negative real constants.
Therefore, any time discrete numerical methods that contain the entire negative real
half axis (−∞,0] will lead to unconditionally stable schemes.

When d 6= 0, the corresponding eigenvalues of fractional ODEs system obtained from
space semi-discretization have the form λj =xj+ iyj , where xj ,yj are real constants
and xj<0. However, the constants yj are not zeros in general. In this case, if we still
want to obtain an unconditionally stable numerical scheme in time direction, then the
stable region of this scheme must contain the whole negative semi-complex plane C−.
According to our results in this paper, the CM-preserving schemes meet this stability
requirement.

As an example, we consider the one dimension fractional advection diffusion Equa-
tion (7.3) on Ω = [0,1] with periodic boundary condition u(0,t) =u(1,t). For the space
discretization on a uniform grid {x1,x2,...,xN} with grid points xj = j∆x and mesh
width ∆x= 1/N , we use second-order central differences for the advection and diffusion
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terms. We obtain the semi-discrete system

0Dαt uj(t)+d
uj+1−uj−1

2∆x
=D

uj+1−2uj+uj−1

∆x2 , j= 1,2,...,N, (7.5)

where u0 =uN ,uN+1 =u1. For α= 1, this example has been carefully analyzed in [46,47]
and the corresponding eigenvalues can be obtained by standard Fourier analysis, which
are given by

λαj =
2D

∆x2 (cos(2πj∆x)−1)− i d
∆x

sin(2πj∆x), j= 1,2,...,N. (7.6)

We can see those eigenvalues are located on the ellipse in the left half plane C−:
(x+ 2D

∆x2 )
2

( 2D
∆x2 )

2 + y2

(− d
∆x )

2 = 1, which is centered at
(
− 2D

∆x2 ,0
)

with two radii 2D
∆x2 and d

∆x ,

respectively. The stability results obtained in this paper show that any CM-preserving
scheme is A(π/2)-stable, so it can be used to solve the advection-diffusion fractional
ODE (7.5).
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Fig. 7.6. The eigenvalues distributions in (7.6) and the numerical solutions for the semi-discrete
system (7.5) with d= 10,D= 0.1,∆x= 1/32.

As that in [47], let the initial value U(0)∈RN for the semi-discrete fractional ODEs
in (7.5) be

U(0) =

N∑
k=1

zkφk with zk =
1

N

N∑
k=1

u0(xj)
(
φk
)
j
,

where φk =
(
e2πikx1 ,e2πikx2 ,...,e2πikxN

)T ∈CN stands for the discrete Fourier modes for

k= 1,2,...,N and U(t) = (u1(t),u2(t),...,uN (t))
T

denotes the solution vector. Then the
solution is given by

U(t) =

N∑
k=1

zkEα(λkt
α)φk,
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where Eα(z) =
∑∞
k=0

zk

Γ(kα+1) is the Mittag-Leffler function.

In Figure 7.6, we plot the eigenvalues distributions and the corresponding numerical
solutions obtained by L1 scheme, which shows good numerical stability as long as the
stable region is contained in the left half complex plane. Other CM-preserving schemes
give similar numerical performances and they are not provided here. Although the stable
regions for some CM-preserving schemes have been proved in other ways, we emphasize
here that we can provide a unified framework to prove that they are all A(π/2)-stable
and thus can be used for the time fractional advection-diffusion equations.
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Appendix. Proof of Proposition 2.3. Proof.
(1) Define the sequence ξ= (ξn) by ξn :=un−vn. Then, by the linearity of Dαh ,

(Dαhξ)n≤f(tn,un)−f(tn,vn), where (·)n stands for the n-th entry of the sequence.
Multiplying the indicator function χ(ξn≥0) (i.e. the value is 1 if ξn≥0 while the value
is 0 otherwise) on both sides of the inequality yields

h−α

(
ω0ξnχ(ξn≥0) +

n−1∑
i=1

ωiξn−iχ(ξn≥0)−

(
ω0 +

n−1∑
i=1

ωi

)
ξ0χ(ξn≥0)

)
≤[f(tn,un)−f(tn,vn)]χ(ξn≥0)≤0.

We define ηn= ξn∨0 = max(ξn,0), i.e. the maximum between ξn and 0. Then,
ξnχ(ξn≥0) = ξn∨0 =ηn, ξiχ(ξn≥0)≤ ξi∨0 =ηi for any i 6=n. Since ωi≤0 and −(ω0 +∑n
i=1ωi)≤0, we then have

ω0ηn+

n∑
i=1

ωiηn−i−

(
ω0 +

n∑
i=1

ωi

)
η0

≤ω0ξnχ(ξn≥0) +

n∑
i=1

ωiξn−iχ(ξn≥0)−

(
ω0 +

n∑
i=1

ωi

)
ξ0χ(ξn≥0).

Hence, (Dαhη)n≤0. Clearly, η0 = 0, and by induction, it is easy to see ηn≤0. This means
ηn= 0 and thus ξn≤0. Similar argument applies to vn and wn, so we omit the details.

(2) The proof can be done by induction. We only compare u with v. Comparing
v with w is similar. The condition gives u0≤v0. Suppose that for n≥1 we have
shown um≤vm for all m≤n−1. We now prove un≤vn. Using again ω0>0, ωi≤0 and
−(ω0 +

∑n
i=1ωi)≤0, we have

h−αω0(un−vn)≤Dαh (u−v)n≤f(tn,un)−f(tn,vn)≤L|un−vn|.

Hence, un−vn≤a0Lh
α|un−vn|. If a0Lh

α<1, we must have un−vn≤0.

(3) The proof is similar as (2) by induction. One can in fact obtain un−vn≤
a0Lh

α|un−vn| using induction hypothesis. The argument is similar.
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