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1. Introduction
In this paper we consider a hydrodynamic model arising from the isothermal viscous

plasma, which is governed by the following Navier-Stokes-Poisson (NSP) system
ρεt +∇·(ρεuε) = 0,
(ρεuε)t+∇·(ρεuε⊗uε+T iρεI) =ρε∇φε+µ′ε∆u

ε+(µ′ε+ν′ε)∇∇·uε,
λε∆φ

ε+e−φ
ε

=ρε.
(1.1)

Notice that T×R+ ={(x,y)|x∈R/Z,0≤y<+∞} denoting the periodic spatial domain
and uε(t,x,y) = (uε1,u

ε
2)(t,x,y). The above unknowns ρε(t,x,y),uε(t,x,y),φε(t,x,y) with

(t,x,y)∈R+×T×R+ are the density of the flow, the velocity and electric potential,
respectively. Let T i denote the average temperature of the ions, and the small parameter
λε for the squared scaled Debye length. Another two small parameters µ′ε and ν′ε are
the constant viscosity coefficient satisfying µ′ε>0 and µ′ε+ν′ε>0.

In this paper we intend to investigate a limit behaviour of the NSP system as the
small parameters go to zero with the following Dirichlet boundary condition for both
the velocity and the electric potential:

uε|y=0 = 0, φε|y=0 =φb(x), (1.2)

where φb(x) is smooth and compactly supported. The initial data is denoted as

(ρε,uε,φε)(0,x,y) = (ρε0,u
ε
0,φ

ε
0)(x,y). (1.3)

For our purpose, we assume the small parameters µ′ε,ν
′
ε and λε satisfy that

µ′ε=µε2, ν′ε=νε2, λε=ε2. (1.4)

Formally, letting ε= 0, we immediately obtain the following Euler equations{
ρt+∇·(ρu) = 0,
ut+u ·∇u+(T i+1)∇ lnρ= 0,

(1.5)
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with the following relation

ρ=e−φ. (1.6)

The Euler system (1.5) is well-posed only with the boundary condition

u2|y=0 = 0. (1.7)

There is a loss of boundary condition in the tangential velocity u1 as ε tends to 0, which
naturally leads to the appearance of boundary layer for the velocity near the boundary.
Due to the boundary condition (1.2), we would reckon that the solution of (1.5) satisfies
φ|y=0 =φb through the relation (1.6). However, the solution to system (1.5) and (1.7)
cannot hold ρ|y=0 =e−φb in general. Hence we expect the formation of a boundary layer
for the density to correct this boundary condition.

The asymptotic behaviour as the small parameters go to zero for this NSP system
associated with the Navier-slip type boundary condition for the velocity u and the
Dirichlet boundary condition for the electric potential have been well studied in [15,16],
in which the leading order for the asymptotic expansion of the velocity in the weak layer
form:

uε=uE+εU(t,y,
x3

ε
)+ ·· · .

Compared with the boundary layer for the Navier-slip type boundary condition
(see [22]), the boundary layer for the nonslip boundary condition is much stronger. In
1904, Prandtl introduced the boundary layer theory in [27] and the Prandtl boundary
layer equation as following

∂tu+u∂xu+v∂yu+∂xP =∂2
yu,

∂xu+∂yv= 0,
u|y=0 =v|y=0 = 0, limy→∞u(t,x,y) =U(t,x),

(1.8)

which can be derived from the incompressible Navier-Stokes equation with nonslip
boundary condition as the leading order of the asymptotic approximation near the
boundary. Then much research interest has been focused on this crucial equation.
Olĕınik in [24–26] proved the local existence results under the monotonicity assumption
through Crocco transform. Later, Alexandre et al. in [1] studied the local well-posedness
of the Prandtl Equation (1.8) with the uniform outflow U = 1. More precisely, under
the strictly monotonic assumption of the initial data in the normal direction, they es-
tablished the local-in-time well posedness of the nonlinear Prandtl equation in Sobolev
space by means of the weighted energy method and the Nash-Moser-Hörmander itera-
tion scheme. Meanwhile, Masmoudi and Wong in [23] proved the local existence and
uniqueness for the two dimensional Prandtl system (1.8) using a new nonlinear en-
ergy estimate under the Olĕınik’s monotonicity assumption without the Crocco trans-
form or any change of variables. For some other research developments on the well-
posedness of the Prandtl Equation (1.8) in different functional spaces the readers can
also see [3, 7, 9, 18, 19, 28] and the references therein. In addition, some excellent insta-
bility results around the shear flow can be found in [6, 8, 10].

For the Prandtl boundary layer system corresponding to the compressible flow,
recently, Wang et al. have also considered the local well posedness of the compress-
ible Prandtl boundary layer equations derived from the compressible isentropic Navier-
Stokes equations with nonslip boundary condition in [30] by expanding the meth-
ods in [1]. The compressible Prandtl layer system in [30] reads as following with
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(x,y)∈T×R+. 
∂tu+u∂xu+v∂yu+∂xP = 1

ρ̄(t,x)∂
2
yu,

∂x(ρ̄u)+∂y(ρ̄v) =−ρ̄t,
u|y=0 =v|y=0 = 0, limy→∞u(t,x,y) =U(t,x),

(1.9)

with Bernoulli’s law

Ut+UUx+Px= 0. (1.10)

Compared with (1.9), the compressible Prandtl layer equations for NSP system have
some new features since the boundary layer for the density in our paper is of order
O(1), which is much stronger than that in (1.9). Once the well-posedness of the Prandtl
boundary layer equations is verified, the inviscid limit for the viscous flow associating
with the Prandtl boundary layer is another interesting problem. Recently, there is
some progress on the inviscid limit problem of incompressible Navier-Stokes equations
with nonslip boundary for specific cases, for instance, in the analytic setting [28, 29]
and the initial vorticity supported away from the boundary [20]. Guo and Nguyen
also considered the inviscid limit of the steady Navier-Stokes flows over a moving plate
using the Prandtl boundary layer expansion in [11] and one can also see [2, 12, 13, 22]
and the references therein for the relevant inviscid limit problem involving nonslip or
slip boundary effect.

For the limit behaviour of the NSP system in the whole space or specific domain
without layer effect, one can see numerous relevant results, such as [4, 5, 14, 17]. How-
ever, there are few results on the zero-viscosity limit problem for the compressible NSP
system with nonslip boundary condition, since the complicated model with the strong
boundary layer effect and the undetermined high order boundary condition, which lead
to the loss of derivatives. At present, we consider the linear stability of the linearized
system for the compressible flow (NSP) with the nonslip boundary condition using ap-
proximate expansion. Compared with [16], the main difficulty here is that the boundary
layer is a compressible Prandtl boundary layer system, which is much stronger. Hence
we should first verify the well-posedness of the boundary profile under appropriate con-
dition. Moreover, to avoid the singular effect when the normal derivatives act on the
approximate solution, we also introduce the conormal Sobolev norm. And we can prove
that the linear stability estimate for the NSP equations with Navier-slip boundary con-
dition also holds for that of the NSP equations with nonslip boundary condition.

The arrangement of the paper is as following. We will construct the approximate
solution in the second section, in which the Euler expansion and the Prandtl boundary
layer expansion with the matched condition will be given. Meanwhile, the local well-
posedness of the Prandtl boundary layer under the monotonicity assumption can be
investigated through the scheme in [30]. In the final section, we will prove the linear
stability in the conormal Sobolev space and remark some difficulties for the nonlinear
system at present.

2. Construction of the approximate solution
In this section, we will construct an approximate solution by the matched asymp-

totic expansion. In the construction of the approximate solution, the leading order of
the boundary layer expansion is a compressible Prandtl boundary layer system, which
is more complicated than the weak layer for the Navier-slip type boundary condition
and the compressible Prandtl boundary layer system in [30]. Hence the well-posedness
of the compressible Prandtl Boundary layer in our paper is also a crucial question to be
answered in this section.
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2.1. Asymptotic expansion. Let (ρa,ua,φa) denote the approximate solution
of the density, the velocity and the electric potential, respectively and they are in the
following form including the Euler terms for the outer flow and the boundary layer
profiles for the inner layer:

ρa=
K∑
i=0

εi(ρi(t,x,y)+Υi(t,x,
y

ε
)), (2.1)

ua=
K∑
i=0

εi(ui(t,x,y)+U i(t,x,
y

ε
)), (2.2)

φa=
K∑
i=0

εi(φi(t,x,y)+Φi(t,x,
y

ε
)), (2.3)

Where K is an arbitrary large integer. For simplicity, we will use z= y
ε to denote the

fast decay variable. For the boundary layer profiles (Υi,U i,Φi) above, we shall assume
that they satisfy the fast decay property with respective to z. That is,

(Υi,U i,Φi)→0, (2.4)

fast enough as z→∞.
In addition, according to the boundary condition (1.2), we require the following

matched boundary condition for each order of the approximate solution on {y=z= 0}.

ui1(t,x,0)+U i1(t,x,0) = 0, (2.5)

ui2(t,x,0)+U i2(t,x,0) = 0, (2.6)

φ0(t,x,0)+Φ0(t,x,0) =φb(t,x), (2.7)

φk(t,x,0)+Φk(t,x,0) = 0, (2.8)

for i≥0, and k≥1.
Now we substitute the approximate forms (2.1) (2.2) (2.3) into the NSP system

(1.1) and collect the terms of O(1) order. Taking limit z→∞, one has the compressible
Euler system for the leading order of the outer flow{

ρ0
t +∇·(ρ0u0) = 0,

u0
t +u0 ·∇u0 +(T i+1)∇ lnρ0 = 0,

(2.9)

with the relation φ0 =−lnρ0.
Collecting the coefficient of the order O(ε) for the outer flow, we obtain that

ρ1
t +∇·(ρ0u1)+∇·(ρ1u0) = 0,

u1
t +u0 ·∇u1 +u1 ·∇u0 +T i∇(ρ

1

ρ0 ) =∇φ1,

−e−φ0

φ1 =ρ1.

(2.10)

Similarly, we can obtain the outer flow system for the order O(εj),j≥1 in the following
form 

ρjt +∇·(ρ0uj)+∇·(ρju0) =f jρ ,

ujt +u0 ·∇uj+uj ·∇u0 +T i∇( ρ
j

ρ0 )

=∇φj+ 1
ρ0 [µ∆uj−2 +(µ+ν)∇∇·uj−2]+f ju,

−e−φ0

φj =ρj+f jφ,

(2.11)
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where (f jρ ,f
j
u,f

j
φ) depend on (ρk,uk,φk) and their derivatives with k≤ j−1.

Before dealing with the inner layer terms near the boundary, we first give an overall
notation that

Γf =f(t,x,y)|y=0.

We gather the O(ε−1) terms and have the equations on the inner layer terms
(Υ0,U0

2 ,Φ
0) : {

∂z[(Γρ
0 +Υ0)(Γu0

2 +U0
2 )] = 0,

(Γu0
2 +U0

2 )∂zU
0
2 +T i∂z ln(Γρ0 +Υ0) =∂zΦ

0.
(2.12)

Combining (2.12) with the matched boundary condition (2.6), one has{
(Γρ0 +Υ0)(Γu0

2 +U0
2 ) = 0,

T i∂zΥ
0 = (Γρ0 +Υ0)∂zΦ

0.
(2.13)

Hence we have

Γu0
2 +U0

2 = 0, (2.14)

since

Γρ0 +Υ0 = Γρ0eΦ0/T i

(2.15)

from the second equation of (2.13). Then using the fast decay property (2.4), we have
immediately

Γu0
2 =U0

2 = 0. (2.16)

The compressible Euler system (2.9) for the outer flow complemented with the
boundary condition Γu0

2 = 0 is locally well-posed as long as the initial data satisfy the
appropriate regularity, that is, (ρ0

0− ρ̄,u0
0)∈Hm+3+2K ,m∈N,m≥3, where the ρ̄ is a

strictly smooth function (see [21]).
From the O(1) terms for the last equation of (1.1), one has

∂zzΦ
0 +e−(Γφ0+Φ0) = Γρ0 +Υ0. (2.17)

By virtue of the equality (2.15) and the relation φ0 =−lnρ0, one can rewrite the above
Equation (2.17) as following

∂zzΦ
0 +Γρ0(e−Φ0

−eΦ/T i

) = 0. (2.18)

Obviously, it is a closed ODE for Φ0 together with the following boundary conditions
from the matched principle and the fast decay property

Φ0|z=0 =φb−φ0|y=0, Φ0|z=∞= 0. (2.19)

It is proved in many references, such as [16], that (2.18) and (2.19) admit a unique
exponentially decaying solution. Here we omit the repetition. Consequently, we have
the result for Υ0 from the relation (2.15). Until now, we have solved (ρ0,u0,φ0) and
(Υ0,U0

2 ,Φ
0).
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Now we turn to study the term U0
1 , which is a nontrivial solution compared with the

leading order terms for the case of the Navier-slip type boundary condition. Collecting
the O(1) terms from the equation of the density and the velocity, we obtain that

∂t(Γρ
0 +Υ0)+∂x((Γρ0 +Υ0)(Γu0

1 +U0
1 ))+∂z((Γρ

0 +Υ0)(Γu1
2 +U1

2 +zΓ∂yu
0
2)) = 0,

(2.20)

∂t(Γu
0
1 +U0

1 )+(Γu0
1 +U0

1 )∂x(Γu0
1 +U0

1 )

+(Γu1
2 +U1

2 +zΓ∂yu
0
2)∂zU

0
1 +(T i+1)∂x ln(Γρ0) =

µ

Γρ0 +Υ0
∂zzU

0
1 , (2.21)

T i∂z(Γρ
1 +Υ1) = (Γρ0 +Υ0)∂zΦ

1 +(Γu1
2 +U1

2 +zΓ∂yu
0
2)∂zΦ

0. (2.22)

Combining the Equations (2.20) (2.21) with the boundary condition u0
1(t,x,0)+

U0
1 (t,x,0) = 0 and the matched initial condition u0

1(0,x,y)+U0
1 (0,x, yε ) =u0(x,y), we ob-

tain a closed initial-boundary system for the unknowns (Γu0
1 +U0

1 ,Γu
1
2 +U1

2 +zΓ∂yu
0
2).

We can ensure that there is no trivial solution U0
1 = 0 for this system, but the well-

posedness is left to be considered in next subsection.
Then we collect the higher order terms O(εj−1),j≥2 of the boundary layer from

the equation of the density and the equation of the tangential velocity u1, respectively.

∂z[(Γρ
0 +Υ0)(Γuj2 +U j2 +zΓ∂yu

j−1
2 )]+∂x[(Γρ0 +Υ0)(Γuj−1

1 +U j−1
1 )] =F jρ . (2.23)

∂t(Γu
j−1
1 +U j−1

1 )+(Γuj2 +U j2 +zΓ∂yu
j−1
2 )∂zU

0
1

+(Γu0
1 +U0

1 )∂x(Γuj−1
1 +U j−1

1 )+(Γuj−1
1 +U j−1

1 )∂x(Γu0
1 +U0

1 )

=
µ

Γρ0 +Υ0
∂zzU

j−1
1 +F j1 . (2.24)

In addition, the terms of order O(εj),j≥1 from the equations of u2 and φ in (1.1) give
the relation between Υj and Φj :

T i∂z

(Γρj+Υj

Γρ0 +Υ0

)
=∂zΦ

j+F j2 , (2.25)

and

∂zzΦ
j−Γρ0e−Φ0

(Γφj+Φj) = (Γρj+Υj)+F jφ, (2.26)

where the terms (F jρ ,F
j
1 ,F

j
2 ,F

j
φ) only depend on the (ρk,uk,φk) and (Υk,Uk−1

1 ,Uk2 ,Φ
k)

with k≤ j−1. The above (2.23)−(2.26) satisfy the matched boundary condition (2.5)
and the following compatibility conditions

∂x(ρ0uj−1)|y=0 =F jρ |z=∞,
(∂tu

j−1
1 +u0

1∂xu
j−1
1 +uj−1

1 ∂xu
0
1)|y=0 =F j1 |z=∞,

F j2 |z=∞= 0,

−ρ0φj |y=0 =ρj |y=0 +F jφ|z=∞.

(2.27)

Actually we can derive the expansion terms ρk,uk,φk and Υk,Uk−1
1 ,Uk2 ,Φ

k order
by order. First, let us assume they are known for k≤ j−1. Now we intend to obtain
the profiles ρj ,uj ,φj and Υj ,U j−1

1 ,U j2 ,Φ
j . It follows from (2.23) that

Γuj2 +U j2 =− 1

Γρ0 +Υ0

∫ z

0

{[∂zΥ0zΓ∂yu
j−1
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+Υ0Γ∂yu
j−1
2 +∂x[(Γρ0 +Υ0)(Γuj−1

1 +U j−1
1 )]−F jρ ]}. (2.28)

Therefore, we have

Γuj2 =− 1

Γρ0

∫ ∞
0

[∂zΥ
0zΓ∂yu

j−1 +Υ0Γ∂yu
j−1
2 +∂x[(Γρ0 +Υ0)(Γuj−1

1 +U j−1
1 )]−F jρ ]

(2.29)
as z→∞. Hence we can conclude that the system (2.11) with boundary condition (2.29)
is locally well posed as long as the initial data (ρj0,u

j
0)∈Hm+3+2K−2j . Based on (2.28),

we can obtain U j2 directly.

Moreover, substituting U j2 and uj2 into the Equation (2.23) and combining with the

boundary condition (2.5), it forms a closed transport-diffusion equation on U j−1
1 , whose

well-posedness can be verified by classical local existence theory.
Now it remains to determine (Υj ,Φj). Replacing the term Γρj+Υj in (2.26) by the

Equation (2.25), we have

∂zzΦ
j−Γρ0(e−Φ0

+
1

T i
eΦ0/T i

)Φj = F̃ j , (2.30)

where F̃ j is only depending on the lower order terms. Together with the following
boundary condition

Φj |z=0 =−Γφj , Φj |z=∞= 0, (2.31)

we can obtain the exponentially decaying solution Φj for the linear ODE (2.30). Back
to the Equation (2.25), we have the term Υj .

Hence we get the high order asymptotic expansion once the local existence of the
profile U0

1 is verified in the next subsection.

2.2. Local well-posedness of the compressible Prandtl boundary layer.
We devote this subsection to determining the leading order for the boundary layer

profile. After a few changes to the equations of the leading order terms, we will find
that it is equivalent to verifying the local well-posedness of the compressible Prandtl
boundary layer. The main idea to study the well-posedness for the compressible Prandtl
layer in this section is from the references [1,30]. That is, under the strict monotonicity
assumption on the initial data, one can obtain the proper weighted energy estimate on
the linearized equations and then apply the Nash-Moser-Hörmander iteration to get the
local well-posedness of the nonlinear compressible Prandtl boundary layer equations.

In fact, there are quite a few differences between the model in [30] and in this
paper, which is caused by the density occupying the strong boundary layer in our
model. However, the corresponding appropriate linearization can help us apply the
scheme proposed in [1,30] smoothly. Hence we will omit the repetition in the following
writing. The readers who are interested in this scheme can refer to the references
mentioned above or some other relevant works.

Now we introduce the following new notations

u(t,x,z) := Γu0
1 +U0

1 (t,x,z), v(t,x,z) := Γu1
2 +U1

2 (t,x,z)+zΓ∂yu
0
2.

Then we can rewrite the Equations (2.20) and (2.21) as following:{
∂tu+u∂xu+v∂zu+∂xP = µ

Γρ0+Υ0 ∂
2
zu,

∂x((Γρ0 +Υ0)u)+∂z((Γρ
0 +Υ0)v) =−(Γρ0 +Υ0)t,

(2.32)
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where P (t,x) = (T i+1)lnΓρ0.
From the matched boundary condition and the fast decay property, we can easily

verify that

u|z=0 =v|z=0 = 0, lim
z→∞

u(t,x,z) =U(t,x) := Γu0
1(t,x). (2.33)

The initial data for (2.32) is

u(0,x,z) =u0
0(x,z). (2.34)

Moreover, by virtue of the leading order of the Euler expansion, one can verify that the
Bernoulli’s law

Ut+UUx+Px= 0 (2.35)

holds on the boundary {z= 0}.
Hence the Equations (2.32) together with the boundary conditions (2.33) form a

compressible Prandtl boundary layer system. Now the existence of U0
1 in the equations

(2.20) and (2.21) is turned into studying the well-posedness of the Prandtl boundary
layer system.

Notice that the difference between (1.9) and the Equations (2.32) and (2.33) is
caused by the strong boundary layer of the density and the electric potential for the
NSP system with nonslip boundary condition. If the boundary layer for the electric
potential is weak, then the boundary layer for the the density is also weak and the
compressible Prandtl boundary layer for the NSP system (1.1) is just exactly same as
the system (1.9). See that case in the following remark.

Remark 2.1. If the boundary conditions for the NSP system (1.1) are given by the
following form

uε|y=0 = 0,
∂φε

∂y
|y=0 = 0, (2.36)

then the leading order profile for boundary layer expansion of the NSP system is also a
compressible Prandtl boundary layer system, however, the boundary layer for electric
potential is weak. The well posedness of that Prandtl boundary layer system in the
Sobolev space can be investigated as in [30] under the monotonicity assumption on the
initial data.

Before the discussion on the Prandtl boundary layer system (2.32) (2.33), we first
list the assumption on the initial data as in [30].

(A1) For a fixed integer k0≥9, the initial data u0
0(x,z) satisfy the compatibility

condition (2.33);

(A2) monotone condition ∂zu
0
0≥ σ0

(1+z)(γ+2)
>0 holds for all x∈T and z≥0 with some

positive constant σ0 and a positive integer γ≥2;

(A3) ‖(1+z)γ+α2Dα(u0
0(x,z)−U(0,x))‖L2(T×R+)≤C0, where Dα=∂α1

x ∂α2
z with

|α|=α1 +α2≤4k0 +2;

(A4) ‖(1+z)γ+2+α2Dα∂zu
0
0‖L∞(T×R+)≤ 1

σ0
for |α|≤3k0.

Now we introduce (ũ, ṽ) as a smooth background state satisfying the following condi-
tions: ∂zũ>0,

∂x((Γρ0 +Υ0)ũ)+∂z((Γρ
0 +Υ0)ṽ) =−(Γρ0 +Υ0)t,

ũ|z=0 = ṽ|z=0 = 0, limz→∞ ũ=U(t,x).
(2.37)
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It follows from the first equation of the outer Euler system that, on the boundary
{z= 0},

Γρ0
t +∂x(Γρ0U(t,x))+Γρ0Γ∂zu

0
2 = Γρ0

t +∂x(Γρ0U(t,x))+Γρ0V (t,x) = 0, (2.38)

where V (t,x) denotes Γ∂zu
0
2. Hence the ṽ is expressed as an integral form

ṽ=
Γρ0V z

Γρ0 +Υ0
− 1

Γρ0 +Υ0

∫ z

0

{Υ0
t +∂x((Γρ0 +Υ0)ũ)−∂x(Γρ0U(t,x))}

=
Γρ0V z

Γρ0 +Υ0
+ v̄ (2.39)

We linearize the Prandtl boundary layer system (2.32) around the smooth state
(ũ, ṽ) and denote

uR=u− ũ, vR=v− ṽ.

Then we have 
uRt +uRũx+ ũuRx +vR∂zũ+ ṽ∂zu

R− µ
Γρ0+Υ∂

2
zzu

R=f,

∂x((Γρ0 +Υ0)uR)+∂z((Γρ
0 +Υ0)vR) = 0,

uR|z=0 =vR|z=0 = 0, limz→∞u
R= 0, uR|t=0 = 0.

(2.40)

Similar to [30], we introduce the transformation

ω(t,x,z) =
( (Γρ0 +Υ0)uR

µ∂zũ

)
z
(t,x,z), (2.41)

which also means

uR=
µ∂zũ

Γρ0 +Υ0

∫ z

0

ω(t,x,z′)dz′.

Then we write (2.40) into the following form
ωt+(ωũ)x+

(
Γρ0V z

Γρ0+Υ0ω
)
z

+(v̄ω)z−2
(

1
∂zũ

∂z(
µ∂zũ

Γρ0+Υ0 )ω
)
z

−∂z( µ
Γρ0+Υ0 )ωz+[ξ

∫ z
0
ω(t,x,z′)dz′]z− µ

Γρ0+Υ0ωzz = f̃z,

−
(

2
∂zũ

∂z(
µ∂zũ

Γρ0+Υ0 )ω+ µ
Γρ0+Υ0ωz

)
|z=0 = f̃ |z=0,

ω|t=0 = 0,

(2.42)

where ξ= [−(∂t+ ṽ∂z+ ũ∂x)(Γρ0 +Υ0)+ 1
∂zũ

(∂t+ ṽ∂z+ ũ∂x)∂zũ− 1
∂zũ

∂2
zz(

µ∂zũ
Γρ0+Υ0 )] and

f̃ = Γρ0+Υ0

µ∂zũ
f.

Then comparing (2.40) with the corresponding transformed linear equation in [30],
we can conclude that the computation for dealing with (2.40) is more complicated but
it will not cause any essential difficulties to follow the programme in [30]. Consequently,
applying the similar weighted energy estimate and Nash-Moser-Hörmander iteration as
in [30], we can obtain the local existence result for the compressible Prandtl boundary
layer Equations (2.32)−(2.34).

Now we state the main result of the well-posedness of the compressible Prandtl
boundary layer system to end this subsection.
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Theorem 2.1. Given the appropriate initial data (ρ0
0,u

0
0) for the outer Euler flow (2.9)

such that it has smooth solution for 0≤ t≤T0, the density Γρ0 has both positive lower
and upper bounds and so does Γρ0 +Υ0 naturally, the Sobolev norm Hs([0,T0]×T) of
(Γρ0,U,V ) is bounded for a suitably large integer s. Moreover, the assumption (A1−A4)
on the initial data u0

0(x,z) also hold. Then there exists 0<T ≤T0, such that the initial
boundary value problem (2.32)−(2.34) has a unique classical solution (u,v) satisfying∑

|m1|+[(m2+1)/2]≤k0

‖〈z〉l∂m1

(t,x)∂
m2
z (u−U)‖L2([0,T ]×T×R+)<+∞ (2.43)

for a fixed l> 1
2 depending only on γ given in (A1)−(A4) with 〈z〉= (1+z), and∑

|m1|+[(m2+1)/2]≤k0−1

sup
z∈R+

‖∂m1

(t,x)∂
m2
z (v− Γρ0V z

Γρ0 +Υ0
)(·,z)‖L2([0,T ]×T)<+∞. (2.44)

Hence we have determined the term U0
1 to complete the construction of the approx-

imate solution. Now we summarize this section in the following theorem.

Theorem 2.2. Let m≥3,K ∈N, ρ̄ is a strictly positive smooth function. Assume the
component (ρj0,u

j
0),j≥0 of the initial data satisfying the compatibility conditions with

the boundary data and (ρ0
0− ρ̄,u0

0)∈Hm+2K+3(T×R+), (ρj0,u
j
0)∈Hm+2K+3−2j(T×

R+),j≥1. Moreover, the assumptions on the initial data in Theorem 2.1 also hold.
Then there exists T >0 and a smooth approximation solution (ρa,ua,φa) of order K in
the form (2.1)−(2.3) for the NSP system (1.1) such that

(1) (ρ0,u0) is the solution of the outer Euler system (2.9) on [0,T ] with initial data
(ρ0

0,u
0
0). Moreover, (ρ0,u0)∈C0([0,T ],Hm+2K+3(T×R+)), and φ0 =−lnρ0.

(2) (ρj ,uj ,φj)∈C0([0,T ],Hm+3(T×R+)) holds for any 1≤ j≤K.
(3) Υj ,U j ,Φj ,0≤ j≤K and their derivatives are smooth and exponentially decay with

respect to the fast decay variable z.

3. Linear stability
Based on the construction of the approximate solution for the NSP system, we will

derive the error equation, and analyze the stability of the approximate solution.
First, we denote the error terms between the solution (ρε,uε,φε) of the system (1.1)

and the approximate solution (ρa,ua,φa) as following

ρ=ρε−ρa, u=uε−ua, φ=φε−φa.

Also, we will use the norm ‖·‖ to denote ‖·‖L2(T×R+) throughout the following writing.
Then we have the equations of (ρ,u,φ)

∂tρ+(ua+u) ·∇ρ+ρ∇·(u+ua)+∇·(ρau) =εKRρ,

∂tu+(ua+u) ·∇u+u ·∇ua+T i( ∇ρρ+ρa
− ∇ρaρa

( ρ
ρa+ρ ))

=∇φ+ µε2

ρa+ρ∆u+ (µ+ν)ε2

ρ+ρa
∇∇·u+g(ρ,ρa,ua)+εKRu,

ε2∆φ=ρ−e−φa(e−φ−1)+εK+1Rφ,

(3.1)

where the reminder terms (Rρ,Ru,Rφ) satisfy

sup
[0,T ]

‖∇α(Rρ,Ru,Rφ)‖≤Cε−α2 ,

∀α= (α1,α2), |α|≤m,
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and g(ρ,ρa,ua) is given by

g(ρ,ρa,ua) =− µε2

ρa(ρ+ρa)
∆ua−

(µ+ν)ε2ρ

ρa(ρ+ρa)
∇∇·ua.

Unlike the Navier-Stokes-Poisson system with the Navier-slip type boundary condi-
tion, one can perform the nonlinear stability analysis by the energy estimate in conormal
Sobolev space using a priori estimate. For the NSP system with nonslip boundary con-
dition, the boundary layer is stronger and the high order boundary condition is also
undetermined. Hence it is difficult to close the a priori estimate in conormal Sobolev
space as in [15] because of the loss of derivatives. To overcome the loss of derivatives,
one may seek to set this question into the analytic setting as in [29], which is reason-
able, but we will meet at least two obstacles at present: (1) dealing with the nonlinear
term ρu ·∇u and the linear term ρa∇·u; (2) we can not eliminate the trace of the
t−derivatives of velocity by using Biot-Sawart law as in [20].

Therefore, we will only consider the stability of the linearized system of (3.1) around
the approximate solution (ρa,ua,φa), which is as following, taking T i= 1 without loss
of generality,

∂tρ+ua ·∇ρ+ρ∇·ua+∇·(ρau) =εKRρ,

ρa(∂tu+ua ·∇u+u ·∇ua)+(∇ρ− ρ∇ρa
ρa

)

=ρa∇φ+µε2∆u+(µ+ν)ε2∇∇·u+G(ρ,ρa,ua)+εKRu,

ε2∆φ=ρ+e−φaφ+εK+1Rφ,

(3.2)

where G(ρ,ρa,ua) is given by

G(ρ,ρa,ua) =−µε
2ρ

ρa
∆ua−

(µ+ν)ε2

ρa
∇∇·ua.

The corresponding initial boundary conditions read

ρ|t=0 =εK+1ρ0, u|t=0 =εK+1u0, (3.3)

and

u|y=0 = 0, φ|y=0 = 0. (3.4)

Now we state the main result on the stability of the linearized system (3.2)-(3.4).
Notice that the constant Ca is a universal constant depending only on the approximate
solution (ρa,ua,φa).

Theorem 3.1. Let the initial data (ρ0,u0)∈H3(T×R+) satisfy some relevant com-
patibility conditions. Assume (ρa,ua,φa) be the approximate solution of order K con-
structed in the Theorem 2.2 on [0,T ] with K ∈N,K≥4. Then the solution (ρ,u,φ) to
the system (3.2)-(3.4) is defined on [0,T ] and satisfies the estimate

‖(ρ,u,φ)‖L∞([0,T ]×T×R+)≤CaεK−3. (3.5)

Before the proof of the Theorem 3.1, we introduce some necessary preliminaries. To
deal with the boundary effect, we define the conormal functional space with the norm

‖f‖Hs
co

=
(∑
|α|≤s

‖Zαf‖2
) 1

2

,
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with α= (α0,α1,α2) and |α|=α1 +α2 +α3, and Zα=Zα0
0 Zα1

1 Zα2
2 , where

Z0 =∂t, Z1 =∂x, Z2 =ϕ(y)∂y.

Here ϕ(y) is a smooth bounded function satisfying ϕ(0) = 0,ϕ′(0) 6= 0 and ϕ(y)>0 for
y>0, for example,

ϕ(y) =
y

1+y
.

To derive the L∞-estimate in the conormal Sobolev space, the following anisotropic
Sobolev embedding inequality [22] will be used for (t,x,y)∈R+×T×R+ :

‖f‖L∞([0,T ]×T×R+)≤C(‖∂yf‖Hm0
co
‖f‖Hm0

co
+‖f‖2

H
m0
co

), (3.6)

where m0≥2. For simplicity, we will also use ‖f‖m0
to represent ‖f‖Hm0

co
, and denote

the periodic space T×R+ as Ω.
Then we devote the remaining part to proving the Theorem 3.1. For the linear

symmetrizable transport-diffusion Equations (3.2), the local well-posedness on [0,T ] is
a naturally classical result as long as the approximate solution (ρa,ua,φa) exists in the
same time interval. Now we state the following series of lemmas to conclude the proof
of the Theorem 3.1.

Lemma 3.1. Under the assumption of Theorem 3.1, assume (ρ,u,φ) is the solution to
the problem (3.2)−(3.4) on [0,T ]. Then we have

sup
[0,T ]

‖ρ,u,φ,ε∇φ‖2 +ε2

∫ T

0

‖∇u‖2≤Caε2K . (3.7)

Proof. Calculating ρ
ρa
×(3.2)1 +u×(3.2)2, and then integrating over Ω, one has,

using integration by parts,

1

2

d

dt

∫
Ω

(
1

ρa
ρ2 +ρau

2)+µε2

∫
Ω

|∇u|2 +(µ+ν)ε2

∫
Ω

|∇·u|2

− 1

2

∫
Ω

(
ρ2(∂t+ua ·∇)

1

ρa
+u2(∂t+ua ·∇)ρa

)
+

1

2

∫
Ω

(
ρ2

ρa
∇·ua+ρau

2∇·ua)

=

∫
Ω

ρau ·∇φ+

∫
Ω

G(ρ,ρa,ua)u+

∫
Ω

ρ

ρa
εKRρ+εKuRu, (3.8)

where we used the boundary condition (3.4).
From the construction of the approximate solution, U0

2 = 0,U0
1 6= 0, one can obtain

|(∂t+ua ·∇)
1

ρa
|+ |(∂t+ua ·∇)ρa|+ |ρa∇·ua|+ |

1

ρa
∇·ua|≤Ca,

| 1

ρa
∆ua|≤

Ca
ε2
, | 1

ρa
∇∇·ua|≤

Ca
ε
.

Then we have

1

2

d

dt

∫
Ω

(
1

ρa
ρ2 +ρau

2)+µε2

∫
Ω

|∇u|2 +(µ+ν)ε2

∫
Ω

|∇·u|2

≤
∫

Ω

ρau ·∇φ+Ca

∫
Ω

(ρ2 +u2)+ε2K . (3.9)
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From the first equation of (3.2), one has∫
Ω

ρau ·∇φ=−
∫

Ω

∇·(ρau)φ

=

∫
Ω

∂tρφ+∇·(ρua)φ−εKRρφ

=

∫
Ω

(
ε2∆∂tφ−∂t(e−φaφ)−εK+1∂tRφ

)
φ

−
∫

Ω

(
ε2∆φ−(e−φaφ)−εK+1Rφ

)
ua ·∇φ−

∫
Ω

εKRρφ

≤−ε
2

2

d

dt

∫
Ω

|∇φ|2− 1

2

d

dt

∫
Ω

e−φaφ2 +Ca

∫
Ω

φ2 +ε2|∇φ|2 +ε2K . (3.10)

Substituting (3.10) into (3.9), one has

1

2

d

dt

∫
Ω

(ρ2 +u2 +φ2 +ε2|∇φ|2)+µε2

∫
Ω

|∇u|2 +(µ+ν)ε2

∫
Ω

|∇·u|2

≤Ca
∫

Ω

(ρ2 +u2 +φ2 +ε2|∇φ|2)+ε2K . (3.11)

Hence we complete the proof of the Lemma 3.1 by using Grönwall’s inequality.

For the tangential estimate, we have the following result.

Lemma 3.2. Under the assumption of Theorem 3.1, assume (ρ,u,φ) is the solution to
the problem (3.2)−(3.4) on [0,T ]. Then we have, for j= 1,2,3,

sup
[0,T ]

‖Zjρ,Zju,Zjφ,ε∇Zjφ‖2 +ε2

∫ T

0

‖∇Zju‖2≤Caε2K−2j . (3.12)

Proof. Based on the analysis in the last section, we know that the component u1

of the velocity occupies the strong boundary layer here, which will cause a singularity
of order O( 1

ε ). To overcome this difficulty in the estimate, one may use, for example,
Z=ϕ(y)∂y,

|Zjua1|≤Ca(1+ |ϕj(y)
1

εj
∂jzua1|)

≤Ca(1+ |zj∂jzua1|)
≤Ca, (3.13)

where we used the fast decay property of the boundary layer profile. Then we can prove
this lemma as in [16].

Similarly, we can obtain the following mixed normal estimate of the density ρ.

Lemma 3.3. Under the assumption of Theorem 3.1, assume (ρ,u,φ) is the solution to
the problem (3.2)−(3.4) on [0,T ]. Then we have, for j= 0,1,2

ε2 sup
[0,T ]

‖Zj∂yρ‖2 +

∫ T

0

‖Zj∂yρ‖2≤Caε2K−2−2j . (3.14)

Proof. One can refer to [16] for the process of proof, but notice the difference that
|∂yua1|≤ Ca

ε , where the results in Lemma 3.2 are also used.
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Consequently, by virtue of the anisotropic Sobolev embedding inequality (3.6) and
the facts

‖(ρ,u,φ)‖2≤εK−2, ‖∂y(ρ,u,φ)‖2≤εK−4

from Lemma 3.1−3.3, we can prove the Theorem 3.1 immediately.
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