
COMMUN. MATH. SCI. c© 2021 International Press

Vol. 19, No. 4, pp. 947–975

DECOHERENCE RHAPSODY IN THE PHOTOSYNTHESIS PROCESS∗

CLAUDIA NEGULESCU†

Abstract. It is said that classical theories are sometimes inappropriate to describe very efficient
biological processes in nature, which seem to be better understood via quantum mechanical models.
We are however still very far from understanding how quantum features can survive in open quantum
systems. In this paper the author shall present a simple mathematical model for the illustration of the
excitation energy transfer in photosynthesis complexes, and shall study numerically the environment-
induced decoherence effect and its influence on the emergence of classicality in nature. The model
is based on the Schrödinger equation, describing the propagation of an absorbed excitation through a
spin-chain towards a reaction center, and this in permanent interaction with a vibrational environment.
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1. Background and motivation

Biological processes present facilities and performances which are very impressive
and cannot be adequately explained with the use of only traditional (classical) ap-
proaches. A certain amount of quantum coherent properties is thought to be used by
nature in order to enhance the efficiency of the underlying processes. For example,
the property of non-locality (correlations between distant atoms/molecules) can be the
main reason for the impressive speed with which our brain treats information, or for the
quasi-perfect efficiency of the excitation energy transfer in photosynthesis complexes.
The question which arises immediately is: How can quantum features survive in an open
quantum system subject to a permanent environmental disorder or noise?

The goal of the present paper is to give firstly a simple overview of the thematic
of open quantum systems (embedded in an external environment) and also the related
decoherence phenomenon, and secondly to model mathematically some efficient energy
transfer phenomena occurring in nature. A better understanding of how nature transfers
so efficiently excitations through a given network is an essential step in several domains,
as information processing, neural science, light-harvesting techniques, etc.

Quantum decoherence is a typical quantum-mechanical effect and is considered
nowadays to be the key concept in the description of the transition from the quantum
to the classical world [4, 5, 7, 16,21,23]. Let us explain now this effect a little bit more.

Some of the main distinctive characteristics of quantum mechanics (with no ana-
logue in classical mechanics) are:

• discreteness (some dynamical variables, as for example the energy, were found
to take only discrete values, contrary to the predictions of classical mechanics);

• wave-particle dualism (quantum particles display inseparable wave-like and
particle-like properties, for example on one hand diffraction and interference,
on the other hand mass, velocity and energy are associated to the particle);
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• tunneling (phenomenon in which a particle penetrates a potential energy barrier
higher than the total energy of the particle);
• coherence.

Coherence is probably one of the most striking illustrations with far-reaching repercus-
sions. It is related to concepts like entanglement, superposition, measurement problem,
decoherence, openness of quantum systems, pure/mixed states, etc. In this paper we
shall deal with this type of illustration of quantum mechanics, in particular with its “dis-
appearance” (called decoherence), phenomenon which is still badly understood today,
however of paramount importance for the understanding of several events in nature.

The axioms of quantum mechanics allow superposition states, meaning normalized
sums of admissible wave functions are once more admissible wave functions. It is then
possible to construct non-localized states that lack a classical interpretation, for in-
stance, by summing two states localized far apart from each other. The observable
mark of such a quantum mechanical superposition state is the presence of interference
fringes in the probability distribution associated to the superposition state [8]. We stress
that this phenomenon does not have a classical explanation: classically, a probability
distribution corresponding to the free evolution of a single particle follows the free Li-
ouville equation, so, by linearity, two colliding probability densities sum up without
creating an interference pattern.

Nonetheless, at human scale no quantum superposition states are revealed and in
general quantum effects are difficult to observe, so the question arises, on why and how
does the interference pattern disappear. Such a phenomenon is called decoherence and
its explanation lies in the fact that macroscopic objects undergo a continuous interaction
with an external environment (such as air molecules, fields), which causes the loss of the
phase relations between the different states in the superposition. Thus, the state of the
system becomes a statistical mixture in which the quantum effects are “suppressed”.
In this sense, the system loses its quantum nature and its state admits a classical
interpretation.

We remark that the transition from the quantum to the classical regime due to
decoherence is different from the semi-classical limit, where the classical behaviour is
recovered by exploiting the smallness of Planck’s constant (see [2,21] for more details).

Understanding the emergence of decoherence is important not only for the better
comprehension of quantum mechanics (quantum measurement problem, emergence of
classical mechanics from the quantum one, relation with the arrow of time), but also
for applications. For example, in quantum computation (QC), electron spin resonance
(ESR), and nuclear magnetic resonance (NMR) it is of central importance to preserve
the quantum behaviour, so decoherence is not desired and efforts are made in order
to avoid or control it [26, 28]. Biological processes, as for example the photosynthesis
system or some brain mechanisms like sensory perception, consciousness, memory, as
well as the magnetic orientation of migrant birds, seem to use quantum mechanics (in
particular coherence) in order to enhance the efficiency of the underlying processes
or simply to enable these ones. Given the complexity of biological systems and the
enormous sensitivity of quantum states to external perturbations, a natural question
arises then: “How can this be? Why does decoherence not destroy immediately the nice
quantum properties ?” It is believed that even if quantum coherence and entanglement
in living systems are limited to very short time intervals, it is sufficient to generate a clear
benefit in the above mentioned processes [10, 14, 17, 19]. Thus a better understanding
of how biological systems achieve to preserve quantum coherence in ambient conditions



C. NEGULESCU 949

is an essential step towards a lot of practical applications.

In this paper we are interested in modelling the transfer of energy (photons), har-
vested via the photosynthesis antennae and propagated towards the reaction centre,
where the photosynthesis reaction takes place. In particular, we are interested in the
dynamics of a single excitation through a chain of two-level systems (standing for the
chlorophyll molecules) and coupled to a bath of vibrational environments. Special at-
tention shall be payed to the influence of the environment on the perfect excitation
energy transfer through the chain (decoherence). Such models can be useful also for
the modelling of the firing in a neural network, as well as for information processing.
Indeed, one of the main considerations for the design of a quantum computer is an
infrastructure which can rapidly and robustly transport qubits between different sites
where qubit-operations can be performed. This infrastructure can be thought to be a
sort of quantum-channel, for example composed of two-level systems like spin-particles,
and permitting the propagation of the quantum information (excitation transfer).

The present paper was thought to introduce the unfamiliar reader to this field and to
provide the main ideas underlying the excitation energy transfer in the photosynthesis
process. A further objective is to lay the foundations for preparing a second paper,
whose aim shall be to study in more details the mathematical model presented here,
in order to better understand the performances of the excitation energy transfer in
photosynthesis, despite the openness of the quantum system. The literature is full of
papers in this domain, of all kind, however a simple introduction was missing, as well as
a detailed discussion about the relation to classical models. This first paper aims also
to thwart this shortcoming.

The outline of this paper is the following. Section 2 is thought to be an introduction
to the main quantum mechanical concepts, in order to acquaint the unfamiliar reader
with the somehow hardly accessible subject of this paper. Section 3 presents in a very
concise manner some simple decoherence models, introduced in literature. Section 4 is
the main part of this work, concerning the mathematical modelling of the excitation
energy transfer in an environmental embedded spin-chain. The related numerical in-
vestigations are presented in Section 5. At the end the author exposes in Section 6
a classical counterpart of the quantum mechanical model presented here, for a more
classical description of the energy transfer.

2. Quantum states, superpositions, pure/mixed states
Let us start with a small prelude of some quantum mechanical notion. We do

not intend here to give a detailed introduction to quantum mechanics or to introduce
exhaustively the mathematical tools needed for its description. Very nice textbooks
exist for this and we refer the interested reader to the references [3,8,12]. Nevertheless
we need to give some short definitions, useful for a better comprehension of the coming
study. This shall be done in a very short manner. The reader acquainted with this
theory may skip this part.

States/Observables/Dynamics. A (vector) state (or wave-function) ψ is a complete
quantum mechanical description of a physical system and belongs to a complex Hilbert-
space H. It contains the maximal information one can have about the system. The
linear Schrödinger equation governs the dynamics of the wave-function, i.e.

i~∂tψ=Hψ, (2.1)

where H is the Hamiltonian (self-adjoint operator on H), corresponding to the energy of
the system. An observable is a property of a quantum system (like position, momentum,



950 DECOHERENCE RHAPSODY

energy etc.), that can be measured in experiments. It is represented by a self-adjoint
operator O :ψ∈H→Oψ∈H. The possible outcomes of a measurement of an observable
O are the points of the spectrum ofO (the eigenvalues in the case of a discrete spectrum).
The measurement process causes an abrupt change in the state of the system. For
example in the discrete spectrum case, the state ψ transforms after the measurement
into the eigenvector corresponding to the measured eigenvalue. In general, the outcome
of a measure cannot be predicted with certainty. For discrete spectra the probability of
obtaining the eigenvalue λi when the system is in the state ψ is given by |〈ψi,ψ〉|2, where
ψi is the eigenvector corresponding to the eigenvalue λi. The average or expectation
value in a series of measurements of an observable O when the system is in the state ψ
is given by 〈ψ,Oψ〉.
Superposition-principle. The Schrödinger Equation (2.1) being a linear (deterministic)
equation, any linear combination of solutions ψ=

∑
iαiψi, with αi∈C, is a new solution

of (2.1). Such a superposition state ψ describes a completely new physical state of
the system, and not merely a statistical description of the component states. All the
components ψi are simultaneously present in the state of the system. The superposition-
principle forms a spine of quantum mechanics, however remark that the superposition
states are extremely fragile and can be “destroyed” (or better delocalized) simply by a
weak interaction with the environment.

Quantum entanglement. Suppose we have a quantum system S which is composed of
two subsystems S1,S2. A state vector ψ of the whole system S is called entangled with
respect to the subsystems S1,S2 if it cannot be factorized, meaning that it cannot be
written as a tensor product of two state-vectors ψ1,ψ2 belonging to the two subsystems,
e.g. ψ 6=ψ1⊗ψ2. To give an example, let us denote the state vectors of S1 by θ and those
of S2 by φ. Then ψ := 1√

2
(θ1⊗φ1±θ2⊗φ2) are entangled (not separable) states, whereas

ψ := 1√
2
(θ1±θ2)⊗φ are not-entangled states. Entanglement suggests that nature is

essentially non-local and it is the entanglement process which is thought to be the main
quantum mechanical feature permitting to get effective quantum computation.

Pure/mixed states. The distinction between pure and mixed states is delicate to ex-
plain. A pure state is described by a wave-function ψ, whereas a mixed state cannot
be identified with a well-defined wave-function and requires the introduction of a new
concept, namely the density matrix formalism. In a mixed state we say that the system
may be with probability pi≥0 (with

∑
ipi= 1) in a state described by a wave-function

ψi. In other words, a mixed state (statistical mixture) expresses insufficient information
about the state of the system, in the sense that the system is in one of the different
states ψi (not in all of them simultaneously), however the observer does not know in
which one. In this mixed state, the expectation value of any operator O is given by∑
ipi 〈ψi,Oψi〉.

Density matrix/Reduced density matrix. The density matrix is a very useful tool permit-
ting to study composite (entangled) systems. Let us assume we have a central quantum
system of interest (A) which is in permanent interaction with its environment (E), the
observer is however only interested in the dynamics of the central system A. The prob-
lem is now, that due to the entanglement between the two subsystems A and E , one
cannot describe separately system A by means of pure wave-vectors θ. It is only the
whole system A+E which can be described via a pure state ψ, which includes all the
information about the whole (entangled) system S. The (reduced) density matrix now
comes into play.

Given a pure state of S under the form of a superposition of several basis states
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corresponding to the whole entangled system, namely ψ :=
∑
iαiψi, the corresponding

density matrix is defined as ρ := |ψ〉〈ψ|=
∑
i,jαiαj |ψi〉〈ψj |, using the bra-ket notation.

It gives the same information about the state as the wave-function ψ, and the two
representations are completely equivalent in the isolated situation. The off-diagonal
terms i 6= j embody the quantum coherence between the different basis states of the
system ⇒ occurrence of an interference pattern. It turns out that the expectation
value of the measurements of an observable O (of the system in state ψ) is given by
〈ψ,Oψ〉=Tr(ρO).

The real power of the density operator arises when we wish to know the properties
of one sub-system (A) independently of its connections to the rest of the system (the
environment E). In this case we remove the rest of the system by tracing out the
environmental degrees of freedom, creating a new object, called reduced density matrix
ρA=TrE ρ. This new operator provides an elegant way for investigating one sub-system
only. All the influences of the environment on the central system are now automatically
enclosed into this new object. Passing from an isolated quantum system to an open one,
is passing from pure states (density matrix) to mixed states (reduced density matrix).
The reduced density matrix of a mixed state corresponding to the “statistical ensemble”
{pi,〈ψi|}i is given by ρA=

∑
ipi |ψi〉〈ψi|. In this mixed state case, the average of the

measurements of an observable O is given by
∑
ipi 〈ψi,Oψi〉=Tr(ρAO).

Two-level systems. Two-level systems contain two basis states, the system space being
thus a two-dimensional complex Hilbert-space. Some standard examples are the spin
one-half particle at rest, the ammonia molecule, when only the ground and the first
excited energy levels are considered, a photon and its polarization, etc. Two-state
systems are the simplest quantum systems that can exist, they are idealizations of real
physical systems, when other degrees of freedom are ignored.

The mathematical description of two-level systems for each situation is the same.

Let {0,1}, {↑,↓} or {
(

1
0

)
,

(
0
1

)
} denote the basis set of the two-dimensional complex

Hilbert-space. A “qubit” (a vector-state of the system) is a superposition of these two
basis states, meaning

ψ=a| ↑〉+b| ↓〉 or ψ=a

(
1
0

)
+b

(
0
1

)
=

(
a
b

)
, a,b∈C.

To describe the time evolution of a qubit, we need to introduce general unitary trans-
formations (rotations) of the state. Using the vector-representation, the rotation of the
spin-state can be represented with the help of the 2×2 complex Pauli matrices

σx=

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The effects of these Hermitian, traceless matrices are the following: σx swaps the two
components of the spin (spin-flip), σz inverts the sign of the second component (phase-
shift) and finally σy is doing both (phase-shift and spin-flip).

If the spin-1/2 particle is moving, additional degrees of freedom have to be taken
into account, and one represents the wave-function of the spin-1/2 particle as a “spinor”,
namely

ψ(t,x) =ψ↑(t,x)⊗
(

1
0

)
+ψ↓(t,x)⊗

(
0
1

)
=

(
ψ↑(t,x)
ψ↓(t,x)

)
,
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living in H=L2(R;C)⊗C2 or H=L2(R;C2). The Hamiltonian operators completely
specify then the dynamics of such wave-functions.

Hamiltonians. Let us give here some simple examples of Hamiltonians describing some
typical quantum mechanical situations.

Single electron dynamics in a potential field. An electron moving in a given (or self-
consistently computed) electric potential V is described by a wave-function ψ(t,x),
solution of the Schrödinger Equation (2.1), with Hamiltonian given by

Helec :=− ~2

2m
∆+V.

Free dynamics of a spin-1/2 particle. The free dynamics of a particle with spin is
described by the spinor wave-function (ψ↑(t,x),ψ↓(t,x)) and the corresponding Hamil-
tonian

H0 :=− ~2

2m
∆⊗IdC2 +IdL2⊗ασz =

(
− ~2

2m∆+α 0

0 − ~2

2m∆−α

)
. (2.2)

Let us observe here that the two terms on the diagonal of H0 correspond to the Hamil-
tonians acting on the two uncoupled configurations, namely spin-up and spin-down.
These two configurations are separated in energy by the energy-amount of 2α. The
two spin basis states can also be seen as two energy-levels of a system, with different
energies, and no interaction or coupling between these bands is existing in this case.

Single particle entering into interaction with a spin-1/2 particle at rest. Consider
now the situation of a composed system, consisting of one particle moving on R and de-
scribed by a wave-function ψ(t,x), encountering a spin-1/2 particle localized in y0, with
whom it enters into interaction. The whole “particle-spin” system is described by the
spinor wave-function (ψ↑(t,x),ψ↓(t,x)). The Hamiltonian H=H0 +Hint is composed
of two parts, the free Hamiltonian H0 given in (2.2), describing the free independent
evolution of the particle and the spin, and the particle-spin interaction Hamiltonian
which can be, for example of the form

Hint :=βδy0⊗σy.

This interaction Hamiltonian depicts a phase+spin flip action of strength β, arising at
the moment and location when the particle encounters the spin-particle. It forces a
coupling (and energy-exchange) between the two spin-up and spin-down configurations
(energy-bands).

Hamiltonian of a quantum harmonic oscillator. In quantum mechanics, the har-
monic oscillator has the status of a single particle, subject to a quadratic potential
energy, which produces a restoring force against displacement from the equilibrium.
The associated Hamiltonian is of the form

Hosc :=− ~2

2m
∂xx+

mω2
c

2
x2,

where ωc is the frequency of oscillation. This Hamiltonian can provide a model for many
kinds of oscillating resp. vibrating systems including electromagnetic fields (photons)
resp. vibrational fields (phonons).

The form of the energy spectrum suggests a different and complementary inter-
pretation of the harmonic oscillator, in terms of annihilation and creation operators,
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defined as

a :=
1√

2mωc~
(mωcx+ ip), a† :=

1√
2mωc~

(mωcx− ip). (2.3)

Using these so-called “ladder”-operators, the Hamiltonian of the quantum harmonic
oscillator can be rewritten as

Hosc=~ωc(a†a+
1

2
Id).

This operator yields the energy levels of the harmonic oscillator, the corresponding
eigenstates forming a ladder of even and odd wave-functions with energy difference of
~ωc. The annihilation and creation operators correspond to the destruction and the
formation of a quantum of energy. In particular they descend and climb the energy
levels step by step, namely one has

aψn=
√
nψn−1, a†ψn=

√
n+1ψn+1,

which is why they are called ladder-operators. The two interpretations of the quantum
harmonic oscillator illustrate once again the “duality” of quantum mechanics.

3. Decoherence phenomenon

After having introduced some fundamental notion, let us try now to explain in more
details what one understands under decoherence of a quantum mechanical system.

The Schrödinger equation describes the (unitary) dynamics of an isolated system.
However systems in nature are never completely isolated. To give only one example,
at the precise moment of measurement, the system enters into interaction with the
measurement apparatus (the environment) such that it is no more isolated and the
Schrödinger equation is hence no more adequate for the exclusive description of the
system. Indeed, the interaction with the measurement apparatus singles out those states
which can be effectively measured, and excludes most other states, such as non-classical
superpositions, so classicality emerges. It was thus recognized that the openness of
quantum systems is essential for explaining how quantum systems “loose” their quantum
properties and become effectively classical. The key concept is the entanglement, namely
two entangled subsystems (central system + environment) are described by a quantum
state that cannot be splitted into two separate quantum states for each individual
system. Entangled states encapsulate quantum correlations between the two subsystems
and quantum coherence is delocalized into the whole entangled system-environment
state. So, when one observes (or measures) only the (central) system, usually this one
behaves classically, due to the “decoherence” process, which is nothing else than the
loss of quantum coherence, which leaks out into the environment. Briefly, decoherence
describes the emergence of classical mechanics from quantum mechanics by information
leakage. In fact, there is no destruction of the quantum properties, for example the
superpositions, but an extension to include also the environment, a sort of delocalization
of the quantum information. The tracing over the environment has exactly the effect of
inducing the transition ρpure→ρmixed.

The decoherence is not a spontaneous process, but is evolving continuously in time.
In the following we are going to present some simple decoherence models proposed by
the author in previous works.
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3.1. Some simple decoherence models. There are several physical sys-
tems in nature which are submitted to decoherence effects. It is hence a rather huge
(and even impossible) task to model all of these complex systems in order to study
the therein occurring decoherence. However, very often, it is enough to concentrate
on simpler models and begin by considering the interaction of a general central sys-
tem S with an environment E . The central system can be represented either by a
particle (continuous coordinates in the phase space) moving in a given potential (for
example harmonic potential), or by a spin-1/2 particle at rest (discrete coordinates,
two-level system). Likewise, concerning the environment, one can either use a collec-
tion of harmonic oscillators (oscillator-environment, vibrational models) or a collection
of spin-particles (spin-environment models) for its description. The interaction mech-
anism between central system and environment as well as the choice of the different
parameters, are fundamental to describe a well-specified physical situation. Let us now
introduce some simple decoherence models.

3.1.1. Heavy-light particle model [1, 2]. In this first example, the author
considers a central system consisting of a heavy particle, appearing initially under the
form of a superposition of two states localized in ±X0 and moving towards each other
(see Figure 3.1). This particle is imagined to be exposed during its evolution to an
environment, consisting of one (or several) light particle (the environment), coming
from infinity and interacting with the heavy particle before disappearing again at in-
finity. The effect of this scattering process is that the light particles carry away some
information about the heavy central particle (as for example of its position) and the
composite system (heavy-light particles) becomes entangled. The ensuing “delocaliza-
tion” of the phase relations of the two heavy-particle bumps into the whole composite
system induces inevitably some loss of quantum characteristics of the central system.
These quantum characteristics are visible when the two bumps (heavy particle den-
sity matrix) encounter and an interference pattern (representing the existing coherences
between the two bumps) emerges, which is damped by decoherence.

According to the principles of quantum mechanics, the time evolution of the
wave function ψε(t,X,x) representing the heavy-light quantum system, is given by the
Schrödinger equation i∂tψε = − 1

2M
∆Xψε−

1

2εM
∆xψε+

α

ε
V (x−X)ψε,

ψε(0,X,x) =ψ0
ε(X,x),

(3.1)

where we used units in which ~= 1, M is the mass and X the spatial coordinate of the
heavy particle, while εM is the mass and x the spatial coordinate of the light one. So
ε is the ratio between the mass of the light particle and the mass of the heavy one, and
the regime ε�1, which we call the small mass ratio regime, permits the study of the
decoherence without deformation.

3.1.2. Particle-spin model [6]. In contrast to the previous toy-model, the envi-
ronment is this time modelled via a collection of stationary spin-1/2 particles (two-level
systems), which enter into interaction with the central particle when this one is passing
over them (see Figure 3.2). The central system is again given initially under the form of
a superposition of two states localized in ±X0, moving towards each other. This model
is a little bit more realistic than the previous one, as it permits to handle simultaneous
particle-environment interactions, and not only successive two-body heavy-light inter-
actions. Tracing over the environment, and observing the central heavy particle, would
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Fig. 3.1. Left: The whole system, composed of a heavy-particle in a superposition state (central
system) and the environment (several light particles). Right: Interference pattern at overlap time,
damped by decoherence.

lead to similar decoherence results as in the previous section. However, tracing over
the central system, and observing the changes caused on the environment owing to the
scattering process with the heavy particle, is a different point of view of the decoher-
ence study and can be related to the Wilson cloud chamber experiment (see Figure 3.2).
In this experiment, a very energetic α-particle (central system), emitted in a radially
symmetric way by a radioactive source, ionizes atoms of a super-saturated vapor (envi-
ronment). The ionized atoms condensate and form a sequence of droplets. The tracks
one observes in real experiments look explicitly like classical particle trajectories, and
have no more quantum characteristics. This is a typical example of quantum-to-classical
transition and was studied numerically in [6]. The mathematical model employed to
describe this situation was again the Schrödinger equation, however with delta-Dirac
point interactions for the modelling of the particle-environment correlations.

Fig. 3.2. Left: Whole system, composed of a central system (continuous particle) and an envi-
ronment (collection of several non-interacting spin-1/2 particles). Right: The Wilson cloud chamber
and the observed classical trajectories [physicsopenlab.org].

3.2. Some simple models for coherence resistance. It seems that nature is
able to control the decoherence effect of the environment on the central quantum system,
in particular to slow down decoherence processes. Understanding how one can improve
the persistence of coherence of a central quantum system can be of primary importance
for quantum computation. Some ideas of how nature may control the decoherence, are:
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• Near-far, nested environments [27]. Nested (combined) environments may be
exploited to control or improve the coherence of the central system. Assuming
a tripartite system (central system + near environment + far environment)
without direct coupling between the central system and the far environment,
but with a strong coupling between the near and the far environment, this
configuration seems indeed to protect the central system against decoherence.
In other words, the coherence loss of the near environment stabilizes somehow
the coherence of the central quantum system.

• White noise [15]. Another strategy to suppress or simply slow down the deco-
herence process is to employ external uncontrollable white noise fields. Indeed,
this strategy is based on the fact, that it is possible to control disorder (the
decoherence) via much more disorder (white noise, which is the extreme of
disorder compared to colored noise).

Other coherence-control strategies are based on the Zeno effect, the dynamical decou-
pling methods, etc.

4. Energy transfer in photosynthesis processes
Technologies which make use of solar photovoltaics, capturing light (photons) with

semiconductors and transforming this energy into electric currents, exist, recall for ex-
ample the solar panels. There are however some problems with such devices, namely
the produced energy is not so easy to transport and to store, the solar panels are not
so efficient (around 20%), not so reliable (produce maximum amount of energy around
midday on sunny days), the involved materials are environmentally unfriendly and dan-
gerous, and the technology is very expensive. What we need is an efficient, clean and
trusted manner to produce and store the energy coming from the sun, for a use whenever
and wherever needed, much the same as the natural process of photosynthesis.

Photosynthesis is the process by which plants transform light energy into chemi-
cal energy. In particular they capture the sun’s energy (a broad spectrum of it) via
their leaves (chlorophyll molecules), transfer the absorbed photons (excitation trans-
fer through a network of pigments) towards a reaction centre, where these are used to
enable the photosynthesis reaction to take place, namely

6CO2 +6H2O→photons 6O2 +C6H12O6.

The sun’s energy is thus transformed into a chemical energy, stored in the carbohydrate
molecule, necessary for the growth of the plant (see Figure 4.1). During this process
carbon dioxide is consumed and oxygen released, such that photosynthesis contributes
to clean and maintain the oxygen content of our Earth’s atmosphere. It is thus an
extremely important process, one of those making life possible on Earth.

Biological systems are very complex, in particular the photosynthesis process in-
volves many distinctive stages. In this paper we are only interested in the modelling
and the understanding of the efficient excitation energy transfer, from the absorption
of the photons to their delivery to the reaction center. This energy transfer in plants is
remarkably fast and efficient, in the sense that the probability of an absorbed photon,
to contribute to the charge-separation in the reaction center, is nearly 100%. A better
comprehension of this perfect efficiency would be a very important step in the domain
of information processing. Several questions arise naturally, when thinking about this
efficient energy transfer:

• What is the mechanism behind the performance of the excitation energy transfer
in photosynthesis systems?
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Fig. 4.1. The photosynthesis process in plants on the left [https://study.com] and the carbon
cycle on the right [https://quizizz.com].

• Is it an incoherent hopping of the photons from one atom to the next one (classi-
cal mechanism), or rather a coherent transfer (quantum mechanical mechanism)
or eventually an intermediate regime (environment assisted quantum transfer)?

• If the mechanism involves quantum mechanical means, how can this be, keeping
in mind that photosynthesis takes place in a warm, wet and noisy environment,
such that decoherence should immediately occur?

The consideration of such questions led to the persuasion that the “environmental as-
sisted transport” could be the most efficient one, which means that the interplay between
coherent and incoherent excitation energy transfer can enhance the transport processes
in photosynthesis devices [9, 18,24,25].

The aim of this paper is not to answer to all these questions, but rather to intro-
duce a mathematical toy-model, describing the excitation energy transfer in a chain of
atoms (two-level systems), embedded in a vibrational environment (bath of harmonic
oscillators), and to test numerically which set of parameters brings the most efficient
energy transfer. This shall permit to gain some understanding of the phenomenon and
prepare the foundations for a more detailed/far-reaching forthcoming work.

4.1. The Spin-Boson model. The enormous complexity of biological systems
necessitates for their investigation firstly the design of simplified toy-models. A sim-
ple mechanism to study the energy transfer in photosynthesis systems can be imag-
ined as follows (see Figure 4.2 and 4.3). A linear chain (network) of N interacting
two-level systems (denoted in the sequel simply by TLS) is embedded in a vibrational
environment (one phonon, described by a harmonic oscillator). The whole system,
composed of the spin-chain and the environment is represented in a simplified man-
ner in Figure 4.3. The Hilbert-space corresponding to this whole system is given by
H :=L2(R;C2)⊗L2(R;C2)⊗···⊗L2(R;C2). A general state of H is represented through
a linear combination of factorized states, namely Ψ(t,·) :=

∑
σ cσψ

1
σ(t,·)⊗···⊗ψNσ (t,·),

where cσ ∈C, ψlσ(t,·)∈L2(R;C2) and the upper indices l= 1,·· · ,N symbolize the asso-
ciation to the l-th atom.

The dynamics of the wavefunction Ψ is governed by the Schrödinger equation

i~∂tΨ(t,·) =HΨ(t,·), (4.1)
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Fig. 4.2. Left: Simplified model, composed of a central system, the dimer (a pair of two-level
systems TLS) and the environment (cavity, harmonic oscillator, heat bath). Right: Process of energy
transfer through a pigment network [www.hammiverse.com].

Fig. 4.3. Sketch of the considered spin-chain, embedded in an exterior environment. The first
TLS is initially excited, and shall be then transferred towards the receiver.

with H the Hamiltonian of the whole system, consisting of three parts corresponding
to the dynamics of the central spin-chain (S), the vibrational environment (E) as well
as the interaction between these two subsystems (I), i.e.

H=HS+HE+HI .

To specify each of these three Hamiltonians, it is useful to index an operator acting only
on the l-th two-level system by l, as for example

σzl := Πl−1
i=1Id⊗σz⊗ΠN

i=l+1Id, ∀l= 1,·· · ,N,

and to define for l<j the operator

σ+
l σ
−
j := Πl−1

i=1Id⊗σ
+⊗Πj−1

i=l+1Id⊗σ
−⊗ΠN

i=j+1Id,

where σ± :=
σx±iσy

2 are the raising (+) resp. lowering (−) operators of the corresponding
two-level atoms and Id is the identity operator on L2(R;C2). The action of this last
operator is the raising of the spin at position l and the lowering of the spin at position
j.

With this notation, let us start with the specification of HS , which represents the
free Hamiltonian of the spin-chain, meaning of the N interacting two-level systems,
given by

HS :=
~
2

N∑
l=1

ωlσ
z
l +

N−1∑
l=1

λl
(
σ+
l σ
−
l+1 +σ−l σ

+
l+1

)
,
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with λl the strength of the interaction (of dipole-dipole type) between the lth and the (l+
1)th neighbouring TLSs and ~ωl the transition energy between ground and excited state
of the l-th TLS. The term σ+

l σ
−
l+1 +σ−l σ

+
l+1 can be interpreted as a process, during which

an excitation of the l-th atom is generated at the expense of the de-excitation of the
neighbouring (l+1)-th atom and vice-versa, and all this with “probability” λl>0. The
interaction between the different two-level systems yields an entanglement between the
different atoms of the spin-chain and an ensuing delocalization of the excitation among
them (so-called Frenkel exciton). This interaction enables the physical mechanism of
“excitation energy transfer”.

The vibrational environment is represented in our model as a unique harmonic
oscillator bath, described by the Hamiltonian

HE :=~ωc
(

a†a+
1

2
Id

)
,

where ωc is the quantum harmonic oscillator’s frequency and a resp. a† are the so-called
phonon annihilation resp. creation operators defined in (2.3). A more realistic envi-
ronment has to include several harmonic oscillators (phonons), would however require
more degrees of freedom (leading to a multi-dimensional problem) and hence huge com-
putational costs. We shall thus restrict our study for the moment to an environment
consisting of only one vibrational phonon.

The interaction between the spin-chain and the environmental bath depends now
on the decoherence problem one wants to analyze. Let us treat here a pure dephasing
decoherence effect, without dissipation (no energy losses of the central system towards
the environment and vice versa), which shall destroy the phase relations between the
excited states of the different TLSs, yielding a more localized excitation and thus leading
to a more classical picture. In this case, the interaction Hamiltonian is given by the
spin-boson model

HI :=
~
2

(
a†+a

) N∑
l=1

glσ
z
l .

Let us observe here that the two operators σzl resp.
(
a†+a

)
act on different sub-systems

(degrees of freedom), in particular σzl acts on the spin (discrete degree of freedom)
of the l-th atom, whereas

(
a†+a

)
acts on the phonon representing the environment

(continuous degree of freedom). The z-components of the spins couple linearly to the
oscillator with gl being the corresponding coupling strengths, a fact which indicates that
the system-environment coupling is considered as weak. Furthermore, due to [HI ,σz] =
0, the excitation is conserved. In real life situations, both dissipation and dephasing
decoherence are present. However, the time-scale of decoherence is typically many orders
of magnitude shorter than the time-scale of the thermal relaxation, thus this model can
be regarded as a good representation of such rapid decoherence processes, during which
the amount of dissipation is negligible, but entropy is produced.

Remark 4.1. Depending on the strength of the dipole-dipole interaction as compared
to the strength of the chain-environment interaction, two kinds of situations can arise.
When the coupling with the environment is the dominant interaction, then the classical
Föster theory [11] can be applied for the description of the excitation energy transfer,
due to decoherence reasons. In this case the energy transfer manifests itself somehow
like an incoherent “hopping” of the excitation from one atom to the next one. On
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the other hand, if the TLSs interaction is the dominant one, then models based on
quantum theory have to be used [10,14,20,22]. In this case the excitation is delocalized
over several atoms and a coherent energy transfer occurs. It is this last case we shall
investigate here.

Not all 2N spin-configurations are participating in the exciton energy transfer, but
only N of them, in particular those with only one excited state in the spin-chain, and
this is due to the fact that the number of excitations is conserved in our model and that
we supposed that initially only one excitation is generated. For this reason, we shall
regroup here only the participating configurations in a spinor wave-function

Ψ∈ (L2(R;C))N , Ψ(t,·) := (ψl(t,·))Nl=1, ψl(t,·) =ψ−−···−+−···−,

where the + sign represents the excited state and the wave-function ψl corresponds to
the configuration with the excitation localized at the l-th atom.

The Hamiltonian restricted to this single-excitation subspace is given by the N×N
matrix

H :=


Hosc+ε1 +γ1(x) λ1 Id 0

λ1 Id Hosc+ε2 +γ2(x) λ2 Id 0

...
. . .

...

0 0 λN−1 Id Hosc+εN +γN (x)

, (4.2)

with the harmonic oscillator operator Hosc, energy levels and coupling constants given
by

Hosc :=− ~2

2m
∂xx+

mω2
c

2
x2, εl :=

~
2

N∑
j=1

s
(l)
j ωj , γl(x) :=x

√
mωc~

2

N∑
j=1

s
(l)
j gj ,

where s
(l)
j :=±1 is the sign of the j-th atom in the l-th configuration, namely +1 for

the excited state and −1 for the ground state.

Let us first remark that the off-diagonal terms correspond to the inter-molecular
dipole-dipole interactions, permitting the coupling between the different energy-bands
of the system. Secondly, let us observe that the action of the environment on the
spin-chain can be simply interpreted as a dynamical modulation of the TLS transition
energies. In particular, this modulation shifts constantly the transition energies of
the molecules, permitting or avoiding in this manner the excitation transfer. One can
also consider much simpler models, where the quantum environment is simply replaced
by time-dependent fluctuations of the inter-molecular transition energies, fluctuations
which can be controlled from outside in order to boost the excitation energy transfer.
This is the basis of the Haken-Stobl-Reineker model [13].

To summarize, the molecular inter-coupling between the TLSs and the chain-
environment coupling are the two fundamental interaction mechanisms determining the
nature of the excitation energy transfer in photosynthesis complexes. The dynamics
of the system is now completely determined by the eigenvalues and eigenvectors of the
real and symmetric Hamiltonian matrix (4.2), or in other words by the unitary time-

evolution operator U(t) :=e−
i
~ tH .

The aim of the next section shall be to solve numerically the linear Schrödinger
Equation (4.1) with the above introduced Hamiltonian (4.2) in order to study some
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important quantities, which shall permit to evaluate the excitation energy transfer from
one part of the spin chain to the other.

One quantity of interest for the study of the transfer performances is the site
occupation probability Pl(t). The probability of the l-th two-level system to be in
the excited state at instant t, is given by

Pl(t) := ||ψl(t,·)||2L2 , ∀l= 1,·· · ,N, (4.3)

a quantity which shall permit to study the localization of the excitation.

Let us now try to quantify the quantumness of the central spin-system. Quantum
systems in contact with an environment “loose” their quantum properties and an ini-
tially pure state becomes mixed and hence more classical. This loss of purity of the
central spin-system is a consequence of the entanglement with the environment and it
is this entanglement which can be quantified by the von Neumann entropy, defined
as

S(t) :=−Tr [ρS(t) ln(ρS(t))], (4.4)

where ρS(t) is the reduced density matrix corresponding to the spin-chain. This reduced
density matrix is obtained by tracing out the environment from the full density matrix
ρ, namely

ρ(t,x,x′) := Ψ(t,x)Ψ(t,x′)
t
, ρS(t) :=

∫
R
ρ(t,x,x)dx.

For a pure state the entropy is zero (symbolizing that the maximal information is
available on the system), while it is strictly positive for a mixed state (indicating a
complete or partial ignorance about the preparation of the state). This von Neumann
entropy matches with our intuition about entropy in the classical sense, and can be seen
as a generalization to quantum mechanics. It is somehow a measure of the correlations
present between two subsystems, in our case the environment on one hand and the
spin-chain on the other hand.

5. Numerical simulation of the excitation energy transfer
Let us now investigate numerically the excitation energy transfer process in a pho-

tosynthesis complex via the model introduced above. Hence, the aim is to solve numer-
ically the full quantum mechanical dynamics

i~∂tΨ(t,·) =HΨ(t,·), t∈ [0,T?], (5.1)

with initial condition Ψini := Ψ(0,·) = (ψini+−···−,0,·· · ,0)t, describing the fact that the
first atom is initially in an excited state (has already absorbed one photon), whereas
the remaining atoms are in their ground state. Let

ψini+−···−(x) :=Ke−
(x−q0)2

4σ2 ei
p0x
~ , x∈ [−L/2,L/2], p0,q0∈R, σ>0,

with K>0 a normalization constant such that ||ψini+−···−||2L2 = 1, initial condition which
gives the probability distribution in the x-variable of the first spin. Initially, no system-
environment correlations are assumed. The evolution of the complete system (5.1) will
however lead immediately to correlations (entanglement) between the two subsystems.
Periodic boundary conditions are chosen in the x-variable, however they are of no im-
portance as the boundary is never reached during the simulation time, the vibration of
the molecules remaining close to zero.
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The numerical scheme used for the discretization of (5.1) is the Crank-Nicolson
scheme, briefly summarized here. Discretizing the time and space variables as

0 =: t0≤···≤ tk≤···tNt :=T?, tk :=k∆t, ∆t :=T?/Nt,

−L/2 =:x1≤···≤xj≤···xNx+1 :=L/2, xj :=−L/2+(j−1)∆x, ∆x :=L/Nx,

we are searching for each time-step tk for an approximation Ψk
j ∈CN of the wave-function

Ψ(tk,xj), where k= 1,·· · ,Nt and j= 1,·· · ,Nx, by solving

i~
Ψk+1−Ψk

∆t
=H

Ψk+1 +Ψk

2
, ∀k= 0,·· · ,Nt−1, (5.2)

or equivalently(
Id+

i∆t

2~
H

)
Ψk+1 =

(
Id− i∆t

2~
H

)
Ψk, ∀k= 0,·· · ,Nt−1.

We shall start this procedure from the initial condition Ψ0
j := Ψini(xj) and shall use the

boundary conditions Ψk
Nx+1 = Ψk

1 . Remark that, for simplicity reasons, we explicited
only the semi-discrete version of the Crank-Nicolson scheme. One has still to discretize
the Hamiltonian H in the x-variable, by using the standard discretization of the Lapla-
cian

− ~2

2m
∂xxΨ(tk,xj)∼−

~2

2m

(
Ψk
j+1−2Ψk

j +Ψk
j−1

(∆x)2

)
, ∀k,j.

The parameters chosen for our simulations are summarized in Table 5.1.

L 1 Nx, dx 200, 5∗10−3

T? 0.1 Nt, dt 2000, 5∗10−5

ε 10−1 ~,m ε,1
N 3,·· · ,20 λ0 20
ωc 50 ωk ω?−k, ω?= 10+ 50

2−N
gk g?−k, g?= 10+ 100

2−N σ ε/4

q0 −0.03 p0 4/(3ε)

Table 5.1. Parameters used in the numerical simulations.

Having described in detail the numerical scheme, let us pass now to the numerical
tests. For each parameter regime a different dynamical behaviour emerges, in particular
coherent dynamics, de-localization, decoherence, and so on, shall become visible.

5.1. Unperturbed, coherent excitation energy transfer. The aim is now to
study the performances of our spin-channel to transport the absorbed excitation (some
kind of information) from one end of the chain to the other end, and this for various
lengths N of the spin-chain, discussing firstly the purely quantum mechanical framework
(isolated system) and then introducing an environment to investigate its influence on
the transport. Thus let us start first by considering the quantum coherent dynamics
associated to HS only, in order to illustrate how such a “quantum” transfer looks like.
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The first test concerns a short chain of N = 3 spin-particles, with uniform coupling-
strengths λk =λ0 = 20 and no interaction with the environment (gl≡0). On the left
of Figure 5.1 we plotted the time-evolution of the occupation rate of the three possi-
ble configurations, namely ||ψj(t,·)||2L2 , for j= 1,2,3. What one observes is that ini-
tially the excitation is localized on the first atom (||ψ1(t= 0,·)||2L2 = 1), travels then in
time through the spin-chain, to attain after a time of t?= 0.011, the final spin-state
(||ψ3(t?,·)||2L2 = 1) and the process reverses. This excitation transfer occurs fully co-
herently, as one can observe immediately that the initial excitation is “dispersed” over
several spins before being refocused on the final spin, a fact which is typically considered
as a quantum mechanical feature (quantum revival). Two important remarks have to be
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Fig. 5.1. Occupation rate of the different spin-configurations, for N = 3 (left) and N = 5 (right).
Uniform coupling-strengths and no interaction with the environment.

done now. On one hand, the coherent excitation transfer is accompanied by a periodic
motion between the first and the last atom of the spin-chain, with a frequency of 1

2t? .
A sink is thus needed after the last atom, in order to absorb the arriving excitation.
On the other hand, the excitation energy transfer seems to be perfect (||ψ3(t?,·)||2L2 = 1)
in the mentioned time-interval of t?. In a spin chain with uniform coupling-strengths
λ0 between neighbouring atoms, this perfect transfer can only be achieved for N = 2 or
N = 3. Indeed, one can observe that for N = 5 (Right of Figure 5.1) and for N = 14, 20
(Figure 5.2) the excitation spreads out over several atoms and does not reach the final
state with probability one any more, in other words it does not any more refocus on the
last TLS. It seems moreover that the probability of the excitation to reach the final state
is reducing with the length of the spin-chain N and the time to reach this maximum
probability grows (linearly) with N , as shown in Figure 5.3. In particular one finds in
the homogeneous coupling-strength case that t?(N)∼ ~

2λ0
N+cst. The main reason

for this imperfect (coherent) excitation transfer is the dispersion of the initial excitation
over the whole spin-chain. The transfer can be however improved by manipulating the
coupling strengths, either all over the spin-chain or only at the extreme points (bound-
ary control). The manipulation which leads to a perfect excitation transfer can be found
by carrying out a spectral analysis of the Hamiltonian, in particular by determining the
eigenvalues and eigenvectors of the system, in order to understand which configuration
is the best one for a perfect excitation transfer [29]. The parameters to be chosen to
get such a perfect transfer, are obtained by asking that

e−
i
~ t
?HΨini= Ψout, Ψout(x) = (0,0,·· · ,ψout−···−+(x))t, ||ψout−···−+||2L2 = 1,
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Fig. 5.2. Occupation rate of the different spin-configurations, for N = 14 (left) and N = 20
(right). Uniform coupling-strengths and no interaction with the environment.
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Fig. 5.4. Occupation rate of diff. spin-configurations, for N = 14 (left, j= 1,2,3,4,13,14) and
N = 20 (right, j= 1,2,3,4,19,20). Modulated coupling strengths, no interaction with environment,
t?(N) = π~

2λ0
= π~

4λmax
N, λmax=λ0N/2.

meaning that the initial condition evolves during the time t? into the final state Ψout

which describes the fact that only the last spin is excited.

Let us first start with the adjustment of all spin-coupling strengths. In Figure 5.4
we plotted the density probabilities for N = 14 and N = 20 in the case of a well-defined
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Fig. 5.5. Occupation rate of diff. spin-configurations, for N = 14 (left) and N = 20 (right).
Modulated coupling-strengths, no interaction with the environment, t?(N) = π~

4λmax
N and λmax=λ0.

0 0.02 0.04 0.06 0.08 0.1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||
j(t

)|
|

L
2

2

Occupation probability ||
j
(t)||

L
2

2 , Spin-nbr.:14

j=1
j=2
j=3
j=4
j=13
j=14

0 0.02 0.04 0.06 0.08 0.1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||
j(t

)|
|

L
2

2

Occupation probability ||
j
(t)||

L
2

2 , Spin-nbr.:20

j=1
j=2
j=3
j=4
j=19
j=20

Fig. 5.6. Occupation rate of diff. spin-configurations, for N = 14 (left) and N = 20 (right). Ho-
mogeneous coupling-strengths, except for the extreme TLSs., t?(N) = 2~

λ0π
N and λ1,N−1 =N−1/6λ0.

choice of these coupling strengths, namely λl :=λ0
√
l(N− l), λ0 = 20 and l= 1,·· · ,N−1

[29]. A perfect excitation transfer can be indeed observed. The excitation travels along
the spin-chain, and due to the special structure of the coupling-strengths, refocuses at
the other end, with occupation probability one. The process then reverses, the time-
scale for an excitation to reach the final end of the chain is given by t?= π~

2λ0
. These

coupling strengths are however not so physical, as the maximum strength is given by
λmax :=λ0N/2, which is increasing with N . To be closer to reality it would be better
to fix the maximum strength to λmax and to choose λ0 := 2λmax/N . The corresponding
plots are shown in Figure 5.5. In this case, the time for the excitation to reach the
other end of the chain grows linearly with N as t?(N) = π~

4λmax
N . Remark here that

for information processing it is very important to know accurately the transfer time, in
order to read out the information at the right moment.

As a final test, we choose now homogeneous coupling strengths except for the ex-
treme sites, namely λl :=λ0 for all l= 2,·· · ,N−2, and λ1 =λN−1 =N−1/6λ0. This is
the so-called optimal coupling regime and one observes (see Figure 5.6) that an “almost”
perfect transport is achieved, in a transfer time of t?(N) = 2~

λ0π
N . These plots have to

be compared with the corresponding plots with uniform couplings, namely Figure 5.2.

The phenomenon we just observed by adjusting the coupling coefficients is called
quantum revival. The initial wave-function spreads out over the entire spin-system, how-
ever after some time the spreading is inverted and the wave-function is reconstituted
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at the last spin, reconstructing approximately the initial wave-function. The key argu-
ment for this spreading and refocusing is the dispersion relation, which defines how each
mode of the wave-packet evolves with respect to the other modes, and shows also after
which time the phases of these different modes realign. This phenomenon is common
for all dispersive systems, with discrete energy-levels, satisfying a special condition for
the spacings of the successive energy-levels, such that the phases of the different modes
realign at the last spin.

Let us summarize what we have learned from this section, where only the unper-
turbed, isolated spin-chain was considered:

• the model presented here permits a fully coherent propagation of an energy
excitation through a spin-chain;

• it does not however always allow for a perfect state transfer, because of wave-
packet dispersion;

• perfect or almost perfect transfer properties have been achieved for a specific
class of Hamiltonians, with well-engineered coupling strengths among the TLSs.
These coupling strengths can be found by performing a spectral study of the
Hamiltonian.

One could remark now that nature, through its millenary evolution, has selected the
best possible configurations and rejected the bad ones, or simply that it evolves per-
manently, adapting the coupling-strengths to the incoming light (photons). However,
one important aspect has still to be taken into account, namely the vulnerability of this
perfect transfer to uncontrolled, random external perturbations (environment) and the
ensuing decoherence.

5.2. Effect of the environment on the excitation transfer. The perfect
excitation energy transfer we observed in the last section in the case of an isolated spin-
chain, is an important step in the field of quantum information processing, for example
in the aim to exchange information between distant nodes in a computer. But any
real system is inevitably exposed to its surrounding environment, such that achieving a
perfect transfer from one end to the other one, in a non-isolated spin-network, is a more
delicate task. Nature, despite its diversity seems to be able to achieve 100% perfect ex-
citation energy transfer in real photosynthesis complexes, under each circumstance. Let
us thus explore in this section what is the effect of a vibrational (dephasing) environment
on our excitation energy transfer in the spin-chain. In particular we are interested in
the vulnerability of the almost/perfect energy transfer configurations, when introducing
random perturbations coming from the environment.

In the first test case, the author was interested in exploring the effect of a random
dephasing environment on the modulated spin-configuration, which leads in the iso-
lated case to perfect transfer. Figure 5.7 shows on the left the unperturbed occupation
probability of several spin-configurations, for N = 14, when the coupling-strengths are
modulated via the formula λl :=λ0

√
l(N− l), λ0 = 20. On the right of Figure 5.7, the

same test-case was plotted, however in the situation where the environment is perturbing
the spin-chain. A random perturbation was introduced via the chain-environment cou-
pling coefficients g̃l=γlgl, where γl is randomly chosen in [0,1] and gl is given in Table
5.1. The central spin-chain seems to be somehow slightly perturbed by the interaction
with the environment. To compare, the author tested then the robustness of the second
test-case, namely the optimal coupling regime given by λl :=λ0 for all l= 2,·· · ,N−2,
and λ1 =λN−1 =N−1/6λ0. This configuration seems to be more sensitive to the same
type of environmental perturbation, as observed in Figure 5.8. Perturbation theory
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Fig. 5.7. Left: Occupation rate of diff. spin-configurations, for N = 14 in the modulated spin-
configuration. Right: The corresponding perturbed situation.
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Fig. 5.8. Occupation rate of diff. spin-configurations, for N = 14 in the optimal coupling spin-
configuration. Right: The corresponding perturbed situation.
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Fig. 5.10. Occupation rate of different spin-configurations, for N = 14 , in the uniform coupling
regime, with an initial condition corresponding to one eigenvector of H=HS+HE . Left: Unperturbed
case. Right: Perturbed case.

Fig. 5.11. A 1D chain of N coupled masses, the first mass being excited from the exterior.

permits to gain more detailed insight in the stability properties of this mathematical
eigenvalue problem.

In order to investigate in more details the influence of the environment on the
excitation transfer, let us take a look at the entanglement entropy in these two cases.
The entanglement entropy is a quantity to measure the entanglement of a spin-chain
with its environment, and hence to investigate somehow the quantumness of our central
spin-system. Figure 5.9 illustrates the time-behaviour of the entropy S(t), defined in
formula (4.4), and this for two chain-lengths N = 14 and N = 20 and the two different
test-cases investigated above. What can be observed is firstly that entropy increases in
time, which is natural, as the entanglement of the system with the environment becomes
more and more important with the advance in time. Secondly, the entanglement of the
central system with the environment seems to be more important in the second test
case, namely the optimal coupling regime, a fact which was also observed above.

Entanglement with the environment is associated in general with entropy produc-
tion and thus is not expected to lead to improvements in the efficiency of the process.
However, let us come now to a situation where the environmental noise can help to en-
hance the excitation transfer. A typical example is a situation, where the excitation was
trapped at some moment in a coherent stationary state, for example in an eigenstate
of the corresponding Hamiltonian. In this case, without perturbation from outside, the
solution of the Schrödinger equation is stationary and the excitation will remain in that
state for all the times, without being able to reach the reaction center. This is illustrated
in the left plot of Figure 5.10, where the initial condition corresponds exactly to one of
the eigenvectors of the unperturbed Hamiltonian H=HS+HE , in the uniform coupling
regime. In this situation, the introduction of an interaction with the environment leads
to disorder and noise, permitting to get out of the stationary state, and the transport
of the excitation becomes possible again, as seen in the right plot of Figure 5.10.

As a conclusion of this section, the author observed that:



C. NEGULESCU 969

• the influence of the environment on a well-tailored spin-configuration can be
rather drastic in some situations and destroys the perfect excitation energy
transfer ⇒ coherence escaped into the environment;

• however in some specific situations, the environment can help and enhance the
excitation transfer, simply by destroying, via vibrations, the coherent trapping.

So, coupling of a system to its surrounding environment is not necessarily a disadvan-
tage, it can however cause damage. The interplay of an unavoidable noise and the
internal quantum coherence seems to play an important role in the optimal operation
of biological systems.

6. A classical energy-transfer model

The motion of many wave-like phenomena in nature are often well-described with
the help of classical harmonic oscillators. So, what is not so clear with the mathematical
modelling of the previous chapters, is to which extent one must evoke quantum features
to explain the excitation energy transfer in photosynthesis processes. To clarify this fact,
let us consider a classical counterpart of the quantum mechanical model introduced
above, in the aim to investigate the ability of a classical model to reproduce certain
aspects of the excitation transfer, as for example coherence, aspects often viewed as
typical quantum mechanical features.

One can consider a 1D chain of N particles, with masses {mi}Ni=1, coupled to each
other via N+1 springs of spring-constants {κj}N+1

j=1 , as illustrated in Figure 5.11. The
first mass m1 is excited via an external force term fex(t) :=α sin(ωt), and we suppose
that each mass is subject to a friction force, with friction coefficients {ηi}Ni=1 (for the
moment a standard picture of N coupled damped oscillators).

Denoting by {xi(t)}Ni=1 the displacements of the masses with respect to their equi-
librium positions, the time-evolution of these quantities is given by the following coupled
system of ODEs, coming from Newton’s laws, namely
m1x

′′

1 (t) = −κ1x1(t)−κ2 (x1(t)−x2(t))−η1x′1(t)+fex(t)

mix
′′

i (t) = −κi (xi(t)−xi−1(t))−κi+1 (xi(t)−xi+1(t))−ηix′i(t), ∀i= 2,·· · ,N−1

mN x
′′

N (t) = −κN (xN (t)−xN−1(t))−κN+1xN (t)−ηN x′N (t).

(6.1)
We recognize in this system the force exerted on particle i through the spring-coupling
with the (i−1)th particle, namely Fc,(i−1)→i :=−κi (xi(t)−xi−1(t)), as well as the dis-
sipative force acting on particle i, namely Fr,i=−ηix′i(t). This system can be rewritten
in matrix form as

X
′′
(t) =−KX(t)−RX ′(t)+S(t), (6.2)

with the position vector X(t) := (x1(t),·· · ,xN (t))t, the source vector S(t) :=
(fex(t)/m1,0,·· · ,0)t and the matrices R :=diag( η1m1

, η2m2
,·· · , ηNmN ) as well as

K:=


(κ1 +κ2)/m1 −κ2/m1 0 ·· ·

−κ2/m2 (κ2 +κ3)/m2 −κ3/m2 ·· ·
...

. . .
. . .

·· · 0 −κN/mN (κN +κN+1)/mN

.
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Let us remark here that Newton’s system (6.2) can be seen as a (slightly differing)
classical counterpart of the Schrödinger Equation (5.1). The matrix K is rather sim-
ilar to the Hamiltonian (4.2) if one does not consider the environmental influence (no
x-variable). This similarity is however rather superficial, the real link between both
systems will be detailed later (see (6.3)). The total mechanical (kinetic + potential)
energy of the system, meaning the N -coupled masses, is given by the formula

Etot(t) :=
1

2

N∑
i=1

mi [vi(t)]
2 +

1

2

N+1∑
i=1

κi [xi(t)−xi−1(t)]2,

and the rate of change of this energy in time (the power) is

dEtot(t)
dt

=
N∑
i=1

Fi(t)vi(t)+

N+1∑
i=1

κi (xi(t)−xi−1(t))(vi(t)−vi−1(t))

= −
N∑
i=1

ηi |vi(t)|2 +fex(t)v1(t),

where we used the notation vi(t) :=x′i(t) for the velocity of each mass, and Fi(t) =
miv

′
i(t) for the force exerted on this mass by the surrounding masses. Remark also that

we introduced ghost points x0≡0 and xN+1≡0 to simplify the formulae. Let us observe
here that the rate of change of the mechanical energy of the whole system is governed
by the friction energy loss and the exterior energy supply. The power administrated to
the system by the exterior force is pin(t) =fex(t)v1(t).

In order to analyze how the energy and the power is transferred from one mass to
the other, we shall associate to a mass the following local energy

e1(t) :=
1

2
m1 [v1(t)]2 +

1

2
κ1 [x1(t)−x0(t)]2 +

1

4
κ2 [x2(t)−x1(t)]2

ei(t) :=
1

2
mi [vi(t)]

2 +
1

4
κi [xi(t)−xi−1(t)]2 +

1

4
κi+1 [xi+1(t)−xi(t)]2,

eN (t):=
1

2
mN [vN (t)]2 +

1

4
κN [xN (t)−xN−1(t)]2 +

1

2
κN+1 [xN+1(t)−xN (t)]2,

as well as the following local power pi(t) =e′i(t)

p1(t) :=F1(t)v1(t)+κ1 (x1(t)−x0(t))(v1(t)−v0(t))+
1

2
κ2 (x2(t)−x1(t))(v2(t)−v1(t))

=− 1

2
κ2 (x1(t)−x2(t))(v1(t)+v2(t))−η1|v1(t)|2 +fex(t)v1(t)

pi(t) :=Fi(t)vi(t)+
κi
2

(xi(t)−xi−1(t))(vi(t)−vi−1(t))

+
κi+1

2
(xi+1(t)−xi(t))(vi+1(t)−vi(t)),

=− κi
2

(xi(t)−xi−1(t))(vi(t)+vi−1(t))− κi+1

2
(xi(t)−xi+1(t))(vi(t)+vi+1(t))

−ηi|vi(t)|2

pN (t) :=FN (t)vN (t)+
1

2
κN (xN (t)−xN−1(t))(vN (t)−vN−1(t))+κN+1xN (t)vN (t)

=− 1

2
κN (xN (t)−xN−1(t))(vN (t)+vN−1(t))−ηN |vN (t)|2.
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Energy escapes from a given oscillator via two channels, namely via the friction term
which dissipates the energy towards the exterior (the bath), as well as via the coupling
with the two neighbours. Of interest are also the mean energy and the mean power
transfer, for driving frequencies ω near one of the eigen-frequencies of the system, where
the mean is taken over a period of the excitation force, namely

(ei)k :=
1

T

∫ (k+1)T

kT

ei(t)dt, (pi)k :=
1

T

∫ (k+1)T

kT

pi(t)dt, T =
2π

ω
, k≥0.

To illustrate the energy transfer we plotted in Figure 6.1 the dynamics of the harmonic
oscillator chain, in particular we depicted the evolution of the amplitude of the first
and 7th atom in the chain, as well as their local energies, for an excitation frequency
near resp. far from an eigenvalue of the coupled system. In this test case, the total
number of masses is N = 14, the first masses are supposed frictionless, i.e. ηi= 0 for
i= 1,·· · ,7, and the second part of the chain is assumed to absorb the incoming energy
via friction, i.e. ηi= 0.2 for i= 8,·· · ,14. The corresponding eigenfrequencies ν?=ω?/2π
belong to the set {0.3171;0.6541;0.9785;1.2908; .. .;3.1657}. What can be observed is
firstly that under the action of the external force fext(t) and after some brief transition
regime, the system asymptotically attains a stationary state where the masses execute
synchronized movements with the same frequency as the external force. The driving
force deposits energy into the system during some time-intervals, and takes out energy
during other intervals, except in the resonance regime, where the external force always
supplies the system with energy. The damping force always takes out energy from the
system. For steady-state solutions, driving and damping terms balance out. Thus, for
excitation frequencies near an eigenfrequency of the system, more energy is put into the
system, and the excitation is very well transferred from one mass to the other due to
energy-momentum matching, whereas more difficulties are encountered if the excitation
frequency is far from an eigenfrequency, as can be observed on the two plots of Figure
6.1. On Figure 6.2 are shown the corresponding mean energy and power transfers.
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Fig. 6.1. Time-evolution of the position xi(t), energy ei(t) and power pi(t) for two excitation
frequencies, near (left plot) and far from (right plot) an eigenfrequency of the system. Here N = 14,
mi= 0.1, κi= 10 and fex(t) :=sin(ωt), ω= 2πν.

One can now use this simple model to deepen the understanding of the excitation
energy transfer in photosynthesis complexes, by comparing this classical, intuitive model
with the quantum one. Several differences have to be immediately mentioned.

• Initial excitation versus permanent external excitation:
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Fig. 6.2. Time-evolution of the mean energy ei(t) and mean power pi(t) over a period T = 1/ν,
for two excitation frequencies, near and far from an eigenfrequency of the system. Here N = 14,
mi= 0.1, κi= 10 and fex(t) :=sin(ωt), ω= 2πν.

In the quantum model, the excitation was initially introduced in the model, by
stimulating the first two-level system, which has absorbed one photon (initial
condition). The system evolves then according to the free dynamics. In the
classical model, there is a permanent excitation from outside, via the external
force term fex(t), which drives the system dynamics. The question which arises
immediately is which of these two descriptions is better adapted to model the
light absorption in the photosynthesis process?

• Interaction with the environment:
In the quantum model, the interaction with the environment is of dephasing
type, no energy is lost during this interaction, the dephasing is introducing
only decoherence, via the entanglement of the spin-chain with the surround-
ings. Contrary to this, in the classical model, a friction term is added, which
dissipates the energy. As we are interested only in a dephasing-interaction with
the environment, the question which arises naturally is how one can model a
dephasing in the classical framework?

Forgetting about these two disparities, let us compare now the classical and quantum
isolated systems, in order to understand if there is some distinction, in particular we
are interested whether classical coherence is equal in this model to quantum coherence.
The two models we want to compare are the Schrödinger equation on one hand and the
coupled Newton system on the other hand, namely

i~∂tΨ(t) =HΨ(t), X
′′
(t) =−KX(t).

Supposing that the matrix K is symmetric and positive definite (which is true for
example when all the masses of the oscillator are equal), then one can find a unique
symmetric and positive definite matrix A, such that A2 =K. Thus, let us now introduce
the new complex variable

Z(t) :=X(t)+ iW (t), with AW (t) =X ′(t).

With this transformation, one obtains immediately the two systems to be compared

i~∂tΨ(t) =HΨ(t), i~Z ′(t) =~AZ(t). (6.3)
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If the coefficients (energies, masses, coupling constants) in the quantum and classical
problems are chosen such that both matrices H and ~A have the same eigenvalues,
then after a scaling of both vectors Ψ and Z one obtains the same problems. Hence we
can conclude that in the isolated framework, our quantum spin-chain problem is com-
pletely equivalent to a classical harmonic oscillator problem, so quantum and classical
coherences represent the same phenomena in this simple model. This equivalence seems
to come essentially from the correspondence between the classical and the quantum
eigenfrequencies.

In a more general framework, is there finally a difference between quantum and clas-
sical behaviours? We have seen, that if only one excitation is present in the spin-chain,
then only N single-excitation configurations contribute to the excitation dynamics, and
this situation is exactly mapped, in the isolated case, on a chain of N classical har-
monic oscillators, as proven above. In the case of multiple excitations, the number of
configurations contributing to the dynamics increases up to 2N , such that this time the
equivalent classical counterpart model needs 2N classical harmonic oscillators. It could
be hence, that the advantage of quantum mechanics in such energy excitation transfer
situations, comes not from the coherent dynamics of the excitation (which seems to be in
both quantum and classical framework equivalent), but rather from the “escaladation”
of classical harmonic oscillators needed for the same process (energy transfer).

Furthermore, if it has been observed that quantum features permit to enhance the
excitation energy transfer in photosynthesis complexes, let us give here some other hints
where to search for the reasons of such a primacy of quantum models:

• a more detailed investigation of the interaction with the environment has to be
done, as this could be the main point which brings a difference in our simple
problem. Indeed, the quantum entanglement between the central system and
the environment could have no analogue in classical mechanics. For this, the
question of how to model the dephasing effect in the classical model is of great
importance;

• more realistic environments could be modelled, for example several phonons
describing different interacting or non-interacting baths;

• a more realistic central system could be modelled, for example 2D chains per-
mitting multiple paths.

All these directions, in particular the investigation of the environmental induced de-
phasing, its influence on the excitation energy transfer and its (possible?) description
via a classical noise process, are aim of the next work. The idea is to get a better
understanding of what are the real quantum properties which permit to enhance the
excitation energy transfer, aspects which seem to be more enigmatical than initially
thought, as we have seen in this section. It can be that dephasing exhibits non-classical
attributes, depending on the nature of the system-environment interactions, attributes
which lead to the EET-enhancement.

7. Conclusions and prospects

The aim of this paper was to introduce a simple mathematical model for the de-
scription of the excitation energy transfer in photosynthesis complexes. The reasons
were:

• to provide an introduction in the math. modelling of the photosynthesis process;

• to illustrate with some simple examples how an excitation can be transferred
using the dynamics of a spin-chain Hamiltonian;
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• to prepare the mathematical formalism and techniques required for a deeper
mathematical study of the excitation energy transfer, study postponed to a
second forthcoming paper;

• to make the analogy with a simple classical harmonic-oscillator chain model.

Despite the numerous experimental and theoretical studies, we still have a lot of uncer-
tainties about how plants can transfer the absorbed photon with such a big efficiency,
and what is the mechanism behind it. One of the open questions is the role of a vibra-
tional environment on the quantum-mechanical coherent propagation of the excitation.
It seems that nature has performed, through its millenary evolution, a full optimization
of the excitation energy transfer via a tricky interplay between the coherent quantum
dynamics and the unavoidable presence of noise, induced by the environment. Organ-
isms change over time as a result of changes in the environment. These changes allow an
organism to better adapt to its environment, to survive and have more offspring. The
studies performed above provide a good example of how one could reinforce/boost the
excitation energy transfer in artificial systems, are however no evidence of how nature
proceeds. Indeed, the model presented here seems to be too simple to clearly separate
quantum and classical features in the excitation energy transfer. More realistic models
have to be investigated.

The model presented above in the framework of the excitation energy transfer in
photosynthesis complexes can be also used to describe several other energy transfer
phenomena in biological systems, as for example the firing in a neuronal network and the
ensuing decoherence due to interaction with the surrounding environment. The property
of non-locality (correlations between distant molecules) observed in the excitation energy
transfer of photosynthesis systems may be the fundamental property permitting to
explain the exceptional speed with which our brain treats information, such that the
same questions arise as for the application presented here.

Acknowledgments. The author would like to acknowledge support from the CNRS-
IEA project No295470 NASOQUAD (Numerical and Analytical Study Of QUAntum
Decoherence, 2020-2022).

REFERENCES

[1] R. Adami, M. Hauray, and C. Negulescu, Decoherence for a heavy particle interacting with a light
one: new analysis and numerics, Commun. Math. Sci., 14(5):1373–1415, 2016. 3.1.1

[2] R. Adami and C. Negulescu, A numerical study of quantum decoherence, Commun. Comput. Phys.,
12(1):85–108, 2012. 1, 3.1.1

[3] L.E. Ballentine, Quantum Mechanics. A Modern Development, World Scientific Publishing Co.,
1998. 2

[4] P. Blanchard, D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H.D. Zeh, Decoher-
ence and the Appearance of a Classical World in Quantum Theory, Springer, 1996. 1

[5] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press,
Oxford, 2007. 1

[6] R. Carlone, R. Figari, and C. Negulescu, A model of a quantum particle in a quantum environment:
a numerical study, Commun. Comput. Phys., 18(1):247–262, 2015. 3.1.2

[7] A.O. Caldeira and A.J. Leggett, Influence of damping on quantum interference: an exactly soluble
model, Phys. Rev. A, 31:1059, 1985. 1
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