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LOVÁSZ EXTENSION AND GRAPH CUT∗
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Abstract. A set-pair Lovász extension is established to construct equivalent continuous optimiza-
tion problems for graph k-cut problems.
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1. Introduction
Motivated by the need of practical application in e.g., machine learning and big

data, it is not only natural but also imperative for applied mathematicians to plug into
valuable subjects that have emerged from well-established mathematics such as analytic
techniques, topological views and algebraic structures. As many problems in network
science and combinatorial optimization can be translated into graph partitioning prob-
lems which are usually NP-hard, well-established methods in continuous optimization
should be helpful in searching for approximate solutions from a practical viewpoint.
Along this direction, there have been various ways to solve combinatorial optimization
problems by means of continuous optimization methods, including continuous reformu-
lations [6, 16,19] and continuous relaxations [2, 12,17].

As a well-known continuous reformulation, the Lovász extension [16] provides a
both explicit and equivalent continuous optimization problem for a discrete optimization
problem. However, the original Lovász extension deals with set-functions which admit
only one input set and thus correspond to so-called 2-cut problems, for instance, the
Cheeger cut problem [5]. Therefore it is not straightforward to apply the original Lovász
extension into general k-cut problems, such as the dual Cheeger cut [4,21]. Accordingly,
we ask

Question 1.1. How to write down a both explicit and equivalent continuous optimiza-
tion problem for a graph k-cut problem?

Let us introduce some notations first. G= (V,E) is an unweighted and undirected
graph with vertex set V ={1,2, ·· · ,n} and edge set E, and wij the weight of the edge
i∼ j. For two disjoint subsets A and B of V , let E(A,B) denote the set of edges
that cross A and B. For S⊂V , let Sc=V \S be the complement of S. The edge
boundary of S is ∂S=∂Sc=E(S,Sc). The amount of edge set E(A,B) is denoted
by |E(A,B)|=

∑
i∈A
∑
j∈Bwij , and the volume of S is defined to be vol(S) =

∑
i∈S di,

where di=
∑n
j=1wij is the degree of the vertex i.

Definition 1.1 (dual Cheeger cut [4, 21]). The dual Cheeger problem is devoted to
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solving

h+(G) = max
S1∩S2=∅,S1∪S2 6=∅

2|E(S1,S2)|
vol(S1∪S2)

, (1.1)

and we call h+(G) the dual Cheeger constant.

To say the least, before we discuss Question 1.1, the following specific question
needs to be solved in the first place.

Question 1.2. Is there an explicit and equivalent continuous optimization for a graph
3-cut problem like the dual Cheeger cut (1.1)?

The convex extension and some other continuous representations for solving integer
programming [6, 19] may provide some answers to both Questions 1.1 and 1.2. In this
work, we propose a set-pair Lovász extension which not only provides a complete answer
to Question 1.2 (even works for a series of graph 3-cut problems), but also enlarges
the feasible region of resulting equivalent continuous optimization problems from the
first quadrant Rn+ \{0} (see Theorem 2.1) to the entire space Rn \{0} (see Theorem
1.3) for graph 2-cut problems like the Cheeger cut (see Theorem 1.9). This enlarged
feasible region may have some advantages in designing solution algorithms. Indeed,
without additional boundary constraints on Rn \{0}, the Dinkelbach-type scheme like
the inverse power method [20] can be applied directly with a good performance (see
e.g. [9, 10,13] for details).

Definition 1.2 (set-pair Lovász extension). Let V ={1,. ..,n}. For x∈Rn, let
σ :V ∪{0}→V ∪{0} be a bijection such that |xσ(1)|≤ |xσ(2)|≤ ···≤ |xσ(n)| and σ(0) = 0,
where x0 := 0. One defines the sets

V ±σ(i) :={j∈V :±xj> |xσ(i)|}, i= 0,1,. ..,n−1. (1.2)

Let

P2(V ) ={(A,B) :A,B⊂V with A∩B=∅}. (1.3)

Given f :P2(V )→ [0,+∞), the set-pair Lovász extension of f is a mapping from Rn to
R defined by

fL(x) =

n−1∑
i=0

(|xσ(i+1)|−|xσ(i)|)f(V +
σ(i),V

−
σ(i)). (1.4)

Theorem 1.3. Assume that f,g :P2(V )→ [0,+∞) are two set-pair functions with
g(A,B)>0 whenever A∪B 6=∅. Then there hold both

min
(A,B)∈P2(V )\{(∅,∅)}

f(A,B)

g(A,B)
= inf
x6=0

fL(x)

gL(x)
, (1.5)

and

max
(A,B)∈P2(V )\{(∅,∅)}

f(A,B)

g(A,B)
= sup
x6=0

fL(x)

gL(x)
. (1.6)

A similar deduction to that for Theorem 1.3 leads to
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Proposition 1.1. Assume that f,g :P2(V )→ [0,+∞) are two set-pair functions sat-
isfying f(∅,V ) =f(V,∅) = 0 and g(A,B)>0 whenever (A,B) /∈{(∅,∅),(∅,V ),(V,∅)},
then there hold both

min
(A,B)∈P2(V )\{(∅,∅),(∅,V ),(V,∅)}

f(A,B)

g(A,B)
= inf
x nonconstant

fL(x)

gL(x)
, (1.7)

and

max
(A,B)∈P2(V )\{(∅,∅),(∅,V ),(V,∅)}

f(A,B)

g(A,B)
= sup
x nonconstant

fL(x)

gL(x)
. (1.8)

Theorem 1.3, Proposition 1.1 and their applications listed below show a natural
answer to Question 1.2.

Theorem 1.4.

1−h+(G) = inf
x6=0

I+(x)

‖x‖
, (1.9)

where

‖x‖=

n∑
i=1

di|xi|, (1.10)

I+(x) =
∑
i<j

wij |xi+xj |. (1.11)

Definition 1.3 (max 3-cut [11]). The max 3-cut problem is to determine a graph
3-cut by solving

hmax,3(G) = max
A,B,C

2(|E(A,B)|+ |E(B,C)|+ |E(C,A)|)
vol(V )

, (1.12)

and the associate (A,B,C) is called a max 3-cut, where the subsets A,B,C satisfy A∩
B=B∩C=C∩A=∅ and A∪B∪C=V .

Theorem 1.5.

hmax,3(G) = sup
x6=0

I(x)+ Î(x)

vol(V )‖x‖∞
, (1.13)

where

I(x) =
∑
i<j

wij |xi−xj |, (1.14)

Î(x) =
∑
i<j

wij ||xi|−|xj ||, (1.15)

‖x‖∞= max{|x1|,. .., |xn|}. (1.16)
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Definition 1.4 (ratio max 3-cut I). The first ratio max 3-cut problem is to determine
a graph 3-cut by solving

hmax,3,I(G) = max
A,B,C

2(|E(A,B)|+ |E(B,C)|+ |E(C,A)|)
vol(A)+vol(B)

, (1.17)

where A∩B=B∩C=C∩A=∅ and A∪B∪C=V .

Theorem 1.6.

1−hmax,3,I(G) = inf
x 6=0

I+(x)−2Î(x)

‖x‖
.

Definition 1.5 (ratio max 3-cut II). The second ratio max 3-cut problem is to deter-
mine a graph 3-cut by solving

hmax,3,II(G) = max
A,B,C

2(|E(A,B)|+ |E(B,C)|+ |E(C,A)|)
max{vol(A∪B),vol(C)}

, (1.18)

where A∩B=B∩C=C∩A=∅ and A∪B∪C=V .

Theorem 1.7.

hmax,3,II(G) = sup
x 6=0

2I(x)−‖x‖+I+(x)

vol(V )‖x‖∞−min
α∈R

∑n
i=1di ||xi|−α|

. (1.19)

In order to give a complete answer to Question 1.1, we propose an isomorphism to
translate a k-cut (k>3) problem to a 3-cut one on a graph of larger size, and then still
utilize Theorem 1.3 to derive the corresponding continuous problem. We refer to Section
3.2 for this method on establishing the equivalent continuous optimization for graph k-
cut problems, by which the (relaxed) Dinkelbach iteration, as we have discussed, also
applies. On the other hand, Theorem 1.3 also works for graph 2-cut problems, although
it produces a different form from that by the original Lovaśz extension, during which
Lemma 3.1 plays a key role and translates a graph 2-cut with symmetric form into a
graph 3-cut. The main difference lies in the feasible region.

Definition 1.6 (maxcut [15]). The maxcut problem is to determine a graph cut by
solving

hmax(G) = max
S⊂V

2|∂S|
vol(V )

. (1.20)

Definition 1.7 (Cheeger cut [5]). The Cheeger problem is to determine a graph cut
by solving

h(G) = min
S⊂V,S 6∈{∅,V }

|∂S|
min{vol(S),vol(Sc)}

.

Definition 1.8 (anti-Cheeger cut [22]). The anti-Cheeger constant hanti(G) is defined
as

hanti(G) = max
S⊂V

|∂S|
max{vol(S),vol(Sc)}

. (1.21)
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The original Lovász extension (2.2) (vide post) yields the following equivalent con-
tinuous optimization problems:

hmax(G) = sup
x∈Rn+\{0}

I(x)

vol(V )max
i
xi
, (1.22)

h(G) = inf
x nonconstant in Rn+

sup
c∈R

I(x)∑n
i=1di|xi−c|

, (1.23)

hanti(G) = sup
x∈Rn+\{0}

I(x)

2vol(V )max
i
xi−min

c∈R

∑n
i=1di|xi−c|

. (1.24)

In contrast, the proposed set-pair Lovász extension is capable of enlarging the feasible
region from the first quadrant Rn+ \{0} in Equations (1.22)-(1.24) to the entire space
Rn \{0} in Equations (1.25)-(1.27).

Theorem 1.8.

hmax(G) = sup
x 6=0

I(x)

vol(V )‖x‖∞
. (1.25)

Theorem 1.9.

h(G) = inf
x nonconstant

sup
c∈R

I(x)∑n
i=1di|xi−c|

. (1.26)

Using the fact that y∈median(x) if and only if y= argminc∈R
∑n
i=1di|xi−c| (see

Lemma 2.3 in [8]), we are able to rewrite Equation (1.26) as h(G) = minx∈π I(x) with
which Chang proved that the Cheeger constant happens to be the second eigenvalue of
the graph 1-Laplacian [7], where π={x∈Rn : 0∈median(x),‖x‖= 1}. That is, the set-
pair Lovász extension of the Cheeger cut problem produces a continuous reformulation
corresponding to the graph 1-Laplacian.

Theorem 1.10.

hanti(G) = sup
x 6=0

I(x)

2vol(V )‖x‖∞−min
α∈R
‖x−α1‖

. (1.27)

Remark 1.1. Comparing (1.13) to (1.25), the continuous objective function for max
3-cut happens to only add a nonnegative term Î(x) to the numerator. Such slight formal
discrepancy may imply some deep connections between maxcut and max 3-cut which
deserves more efforts to explore.

The fractional form of the equivalent continuous optimizations in Equations (1.5)
and (1.6) implies that we can directly adopt the Dinkelbach iteration in Fractional
Programming [20] to solve them. Moreover, both the numerators and denominators
could be rewritten as the differences of two convex functions (see e.g. Equations (1.13)
and (1.27)), implying that a simple and efficient algorithm can be obtained via further
relaxing the Dinkelbach iteration by techniques in DC programming [14]. We refer
the interested readers to [8, 9] and [10] for our preliminary attempts on the Cheeger
cut, dual Cheeger cut and maxcut problems, respectively. It is noteworthy that a
simple iterative algorithm based on the continuous reformulation by the set-pair Lovász
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extension provides the best cut values for maxcut on G-set among all existing continuous
algorithms [10].

The rest of the paper is organized as follows. Section 2 collects basic properties
of the Lovász extension including both continuity and convexity, and shows that the
set-pair Lovász extension may be superior over the original one. Such superiority is
further demonstrated in Section 3 by applying it into typical graph k-cut problems.

2. Set-pair Lovász extension
Definition 2.1 (Lovász extension [16]). Let V ={1,. ..,n}⊂N. For x∈Rn, let σ :
V ∪{0}→V ∪{0} be a bijection such that xσ(1)≤xσ(2)≤···≤xσ(n) and σ(0) = 0, where
x0 := 0. One defines the sets

Vσ(i) :={j∈V :xj>xσ(i)}, i= 1,. ..,n−1, V0 =V.

Let

P(V ) ={A :A⊂V }. (2.1)

Given f :P(V )→ [0,+∞), the Lovász extension of f is a mapping from Rn to R defined
by

fLo (x) =

n−1∑
i=0

(xσ(i+1)−xσ(i))f(Vσ(i)). (2.2)

Theorem 2.1 ( [5], Theorem 1). Assume that f,g :P(V )→ [0,+∞) are two functions
with g(A)>0 whenever A 6=∅, then there hold both

min
A∈P(V )\{∅}

f(A)

g(A)
= inf
x∈Rn+\{0}

fLo (x)

gLo (x)
, (2.3)

and

max
A∈P(V )\{∅}

f(A)

g(A)
= sup
x∈Rn+\{0}

fLo (x)

gLo (x)
. (2.4)

Remark 2.1. The proof of Theorem 2.1 (see [5]) heavily depends on the non-negativity
of the terms xσ(1)f(Vσ(1)) and (xσ(i+1)−xσ(i))f(Vσ(i)) in the summation form (2.2), i=
1,. ..,n−1, thereby indicating that one needs the constraint xσ(1)≥0, i.e., x∈Rn+. The
integral form (2.5) in Proposition 2.1 also manifests clearly such dependence through
the last term. Indeed, the minor change of Equation (1.22):

−∞= inf
x 6=0

I(x)

vol(V )max
i
xi
<min
S⊂V

2|∂S|
vol(V )

≤max
S⊂V

2|∂S|
vol(V )

< sup
x 6=0

I(x)

vol(V )max
i
xi

= +∞,

shows an example in which Theorem 2.1 fails if we naively replace Rn+ \{0} by Rn \{0}
in Equations (2.3) and (2.4). Fortunately, as the fruitful results and discussions in
this section, we can enlarge the feasible region Rn+ \{0} to Rn \{0} using the proposed
set-pair analog of Lovász extension.
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Proposition 2.1 ( [1], Definition 3.1).

fLo (x) =

∫ max1≤i≤nxi

min1≤i≤nxi

f(Vt)dt+f(V ) min
1≤i≤n

xi, (2.5)

where Vt(x) ={i∈V :xi>t}.

Definition 2.2. A set-function f :P(V )→R is symmetric if f(A) =f(Ac) for any
subset A⊂V . A set-pair-function f :P2(V )→R is symmetric if f(A,B) =f(B,A) for
any (A,B)∈P2(V ).

Proposition 2.2 ( [1], Proposition 3.1). For fLo (x) by the Lovász extension, we have

(1) fLo (x+α1) =fLo (x)+αf(V ) for any α∈R.

(2) fLo (x) is one-homogeneous.

(3) (f+g)Lo =fLo +gLo , (λf)Lo =λfLo , ∀λ≥0.

(4) fLo (x) is even if and only if f is symmetric.

For A⊂V , 1A is the characteristic function of A. For the set-pair case, we denote

1A,B =1A−1B , ∀(A,B)∈P2(V ). (2.6)

Accordingly, for any set-pair function f :P2(V )→ [0,+∞), the following fact can be
readily verified by Definition 1.2

fL(1A,B) =f(A,B), ∀(A,B)∈P2(V )\{(∅,∅)}. (2.7)

Particularly, the above equality is always true for any (A,B)∈P2(V ) if f(∅,∅) = 0.
Similarly, we can derive an integral form of the set-pair Lovász extension.

Proposition 2.3.

fL(x) =

∫ ‖x‖∞
0

f(V +
t (x),V −t (x))dt, (2.8)

where V ±t (x) ={i∈V :±xi>t}.

Proof. Let σ be a permutation defined in Definition 1.2. It is easy to check that
if |xσ(i)|≤ t< |xσ(i+1)| then

V ±t (x) ={i∈V :±xi>t}=V ±σ(i).

Therefore,

fL(x) =

n−1∑
i=0

(|xσ(i+1)|−|xσ(i)|)f(V +
σ(i),V

−
σ(i))

=

n−1∑
i=0

∫ |xσ(i+1)|

|xσ(i)|
f(V +

t ,V
−
t )dt

=

∫ ‖x‖∞
0

f(V +
t ,V

−
t )dt.

For simplicity, we denote by (A,B)⊂ (C,D) if A⊂C and B⊂D for (A,B),(C,D)∈
P2(V ).
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Proposition 2.4.

fL(x) =

p∑
i=1

λif(V +
i ,V

−
i ) (2.9)

whenever (V +
p ,V

−
p )⊂···⊂ (V +

0 ,V
−
0 ) (p∈N+) is a chain satisfying V +

0 ∩V
−
0 =∅,∑p

i=0λi1V +
i ,V

−
i

=x and
∑p
i=0λi=‖x‖∞, λi≥0.

Proof. Setting ti=
∑i−1
j=0λj , i= 0,. ..,p, tp+1 =‖x‖∞. Now we verify

λif(V +
i ,V

−
i ) =

∫ ti

ti−1

f(V +
t (x),V −t (x))dt, i= 0,. ..,p, (2.10)

where V ±t (x) ={i∈V | ±xi>t}. It obviously holds for the case of λi= 0, so we can
assume that λi 6= 0. Since

p∑
i=0

λi1V +
i ,V

−
i

=x (2.11)

and

(V +
p ,V

−
p )⊂···⊂ (V +

0 ,V
−
0 ),

we can assume that j∈V ±i and thus j /∈V ∓i for any 0≤ i≤p. Consider the j-th compo-
nent of (2.11) on both sides,

±
∑
V ±i 3j

λi=±
pj∑
i=0

λi=±tpj+1 =xj , (2.12)

where pj is the largest integer such that j∈V ±pj . Then

V ±t (x) =V ±i , ∀t∈ [ti−1,ti),

and ∫ ti

ti−1

f(V +
t (x),V −t (x))dt=

∫ ti

ti−1

f(V +
i ,V

−
i )dt=λif(V +

i ,V
−
i ).

Therefore

p∑
i=0

λif(V +
i ,V

−
i ) =

p∑
i=0

∫ ti

ti−1

f(V +
t (x),V −t (x))dt

=

∫ tp

0

f(V +
t (x),V −t (x))dt=fL(x).

In particular, let p=n−1, V ±i =V ±σ(i) and λi= |xσ(i+1)|−|xσ(i)|, i= 0,1,. ..,n−1,

then (2.9) returns to (1.4).

Remark 2.2. A more detailed check of the proof of Proposition 2.4 shows that, for
given x 6=0, if we assume every λi>0, then the chain (V +

p ,V
−
p )⊂···⊂ (V +

0 ,V
−
0 ) (p∈N+)

and {λi}pi=0 in Proposition 2.4 are uniquely determined by x and thus independent of f .
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That is, if there are two chains (V +
p ,V

−
p )⊂···⊂ (V +

0 ,V
−
0 ) (p∈N+), and (Ṽ +

q ,Ṽ
−
q )⊂···⊂

(Ṽ +
0 ,Ṽ

−
0 ) (q∈N+), as well as two sequences of positive numbers {λi}pi=0 and {λ̃i}qi=0,

such that V +
0 ∩V

−
0 = Ṽ +

0 ∩ Ṽ
−
0 =∅,

∑p
i=0λi1V +

i ,V
−
i

=
∑q
i=0 λ̃i1Ṽ +

i ,Ṽ
−
i

=x and
∑p
i=0λi=∑q

i=0 λ̃i=‖x‖∞, then q=p, (Ṽ +
i ,Ṽ

−
i ) = (V +

i ,V
−
i ) and λ̃i=λi, i= 0,. ..,p.

Propositions 2.3 and 2.4 provide repectively the integral (continuous) form and
chain (combinatorial) form of the set-pair Lovász extension, both of which are very
helpful.

Remark 2.3. After the submission of this paper, we became aware of the submodular
analysis involving the set-pair Lovasz extension investigated by Qi [18], in which the
chain form (Proposition 2.4) was mentioned. But our integral form (2.8) (which didn’t
appear before the present paper) is much more convenient to obtain a closed formula of
the equivalent continuous optimization for a graph cut problem. Moreover, Qi’s paper
and this paper focus on different aspects except the submodularity theorem (Theorem
2.4), and his proof of Theorem 2.4 is very different from ours.

The set-pair version of Proposition 2.2 reads as follows:

Proposition 2.5. For fL(x) by the set-pair Lovász extension, we have

(1) fL(x+αsign(x)) =fL(x)+αf(V +
0 ,V

−
0 ) for any α≥0.

(2) fL(x) is one-homogeneous.

(3) (f+g)L=fL+gL, (λf)L=λfL, ∀λ≥0.

(4) fL(x) is even if and only if f is symmetric.

Proof. We will give the proof in turn.

(1) Let x̃=x+αsign(x). Then ‖x̃‖∞=‖x‖∞+α and{
V ±t (x̃) =V ±t−α(x), if t≥α,
V ±t (x̃) =V ±0 (x), if t∈ [0,α).

According to Proposition 2.3, we have

fL(x̃) =

∫ ‖x̃‖∞
0

f(V +
t (x̃),V −t (x̃))dt

=

∫ α

0

f(V +
0 ,V

−
0 )dt+

∫ ‖x‖∞+α

α

f(V +
t (x̃),V −t (x̃))dt

=αf(V +
0 ,V

−
0 )+

∫ ‖x‖∞
0

f(V +
t (x),V −t (x))dt

=αf(V +
0 ,V

−
0 )+fL(x).

(2) For any λ>0, we have

fL(λx) =

∫ λ‖x‖∞

0

f(V +
t (λx),V −t (λx))dt

=

∫ ‖x‖∞
0

λf(V +
s (x),V −s (x))ds=λfL(x).

(3) It can be obtained directly by the linearity of integral operators.
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(4) On one hand, if fL(x) is even, then for any A,B∈P2(V ), there holds

f(A,B) =fL(1A,B) =fL(−1A,B) =fL(1B,A) =f(B,A),

due to (2.7). Hence f(A,B) is symmetric.
On the other hand, if f(A,B) is symmetric, then using Proposition 2.3 leads to

fL(x) =

∫ ‖x‖∞
0

f(V +
t (x),V −t (x))dt

=

∫ ‖x‖∞
0

f(V −t (x),V +
t (x))dt

=

∫ ‖x‖∞
0

f(V +
t (−x),V −t (−x))dt=fL(−x),

i.e., fL(x) is even.

Now we are in the position to give the proof of Theorem 1.3.

Proof. (Proof of Theorem 1.3.) On one hand, for any (A,B)∈P2(V )\{(∅,∅)},
we have f(A,B) =fL(1A,B) and g(A,B) =gL(1A,B) due to (2.7), and then

min
(A,B)∈P2(V )\{(∅,∅)}

f(A,B)

g(A,B)
= min

(A,B)∈P2(V )\{(∅,∅)}

fL(1A,B)

gL(1A,B)
≥ inf
x 6=0

fL(x)

gL(x)
. (2.13)

On the other hand, for any x 6=0, we have

fL(x)

gL(x)
=

∑n−1
i=0 (|xσ(i+1)|−|xσ(i)|)f(V +

σ(i),V
−
σ(i))∑n−1

i=0 (|xσ(i+1)|−|xσ(i)|)g(V +
σ(i),V

−
σ(i))

.

Let (C,D)∈{(V +
σ(i),V

−
σ(i))|0≤ i≤n−1} such that

f(C,D)

g(C,D)
= min

0≤i≤n−1

f(V +
σ(i),V

−
σ(i))

g(V +
σ(i),V

−
σ(i))

,

and thus

Πi :=g(V +
σ(i),V

−
σ(i))

(
f(V +

σ(i),V
−
σ(i))

g(V +
σ(i),V

−
σ(i))

− f(C,D)

g(C,D)

)
≥0

holds for any 0≤ i≤n−1. Accordingly, we have

fL(x)

gL(x)
− f(C,D)

g(C,D)
=

∑n−1
i=0 (|xσ(i+1)|−|xσ(i)|)Πi∑n−1

i=0 (|xσ(i+1)|−|xσ(i)|)g(V +
σ(i),V

−
σ(i))

≥0,

which directly implies

min
(A,B)∈P2(V )\{(∅,∅)}

f(A,B)

g(A,B)
=
fL(1C,D)

gL(1C,D)
≤ inf
x 6=0

fL(x)

gL(x)
. (2.14)

Combining (2.13) and (2.14) finally yields

min
(A,B)∈P2(V )\{(∅,∅)}

f(A,B)

g(A,B)
= inf
x6=0

fL(x)

gL(x)
.
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The proof for the maximum problem (1.6) is similar and thus skipped.

We omit the proof of Proposition 1.1 because it is similar to that for Theorem 1.3.
Next, we study the continuity of fL.

Theorem 2.2. fL is a Lipschitz continuous piecewise linear function.

Proof. For a mapping m :{1,2,. ..,n}→{−1,1} and a permutation σ of {1,2,. ..,n},
one defines a closed convex cone as follows

4m,σ :=
{
x∈Rn : |xσ(1)|≤ ···≤ |xσ(n)| with xσ(i)m(i)≥0

}
,

and it can be readily seen that Rn=
⋃
m,σ4m,σ.

It suffices to prove that fL is linear and Lipschitz continuous with a Lipschitz
constant 2max(A,B)∈P2(V )f(A,B) on each 4m,σ. In fact, for given m and σ and any
x∈4m,σ, we have

fL(x) =

n−1∑
i=0

(m(i+1)xσ(i+1)−m(i)xσ(i))f(V +
xσ(i)

,V −xσ(i))

=

n−1∑
i=1

xσ(i)m(i)(f(V +
xσ(i−1)

,V −xσ(i−1)
)−f(V +

xσ(i)
,V −xσ(i)))

+xσ(n)m(n)f(V +
xσ(n−1)

,V −xσ(n−1)
).

Since m(i) and f(V +
xσ(i)

,V −xσ(i)) are constants for given m and σ, fL is linear on 4m,σ.

Moreover, for any x,y∈4m,σ,

|fL(x)−fL(y)|≤
n−1∑
i=1

|xσ(i)−yσ(i)||f(V +
xσ(i−1)

,V −xσ(i−1)
)−f(V +

xσ(i)
,V −xσ(i))|

+ |xσ(n)−yσ(n)|f(V +
xσ(n−1)

,V −xσ(n−1)
)

≤2 max
(A,B)∈P2(V )

f(A,B)‖x−y‖1.

The concept of submodular function was introduced by Lovász to characterize the
convexity of its Lovász extension [16].

Definition 2.3 (submodular function [16]). A set-function f :P(V )→R is submod-
ular if and only if, for all subsets A,B⊂V ,

f(A)+f(B)≥f(A∪B)+f(A∩B).

Theorem 2.3 ( [16], Proposition 4.1). fLo is convex if and only if f is submodular.

Theorem 2.3 inspires us to consider the set-pair form of submodular function. A
kind of set-pair submodular function was proposed in [3].

Definition 2.4 (set-pair submodular function [3]). Let

P ′2(V ) ={(XI ,XO) :XI ⊂XO⊂V }.

A function p :P ′2(V )→R is submodular if

p(XI ,XO)+p(YI ,YO)≥p(XI ∩YI ,XO∩YO)+p(XI ∪YI ,XO∪YO) (2.15)
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for any (XI ,XO),(YI ,YO)∈P ′2(V ).

By taking p(XI ,XO) =f(XI ,XO \XI) and f(A,B) =p(A,A∪B), we can transform
from f :P2(V )→R to p :P ′2(V )→R and vice versa. Such f and p are said to be equiv-
alent.

Now we show necessary and sufficient conditions for the convexity of fL.

Theorem 2.4. Let f :P2(V )→ [0,+∞) is a set-pair functions satisfying f(∅,∅) = 0.
Then fL is convex if and only if ∀(A,B),(C,D)∈P2(V )

f(A,B)+f(C,D)≥f((A∪C)\(B∪D),(B∪D)\(A∪C))+f(A∩C,B∩D); (2.16)

if and only if ∀(XI ,XO),(YI ,YO)∈P ′2(V ) the equivalent function p satisifies

p(XI ,XO)+p(YI ,YO)≥p(XI ∩YI ,XO∩YO \Z)+p((XI ∪YI)\Z,(XO∪YO)\Z),
(2.17)

where Z= (XO∩YI \XI)∪(YO∩XI \YI).

Three lemmas below are needed in proving Theorem 2.4.

Lemma 2.1. For x∈Rn, N ∈N+, and N >2‖x‖∞, let

f̂N (x) = min

 ∑
(A,B)∈P2(V )

λA,Bf(A,B)

∣∣∣∣∣∣
∑
λA,B1A,B =x,∑
λA,B≤N,

λA,B≥0.

. (2.18)

Then f̂N (x) is convex.

Proof. The fact that f̂N (x) is well defined emerges from Proposition 2.4. Given
x,y∈Rn, from (2.18), we deduce

f̂N (x) =
∑

(A,B)∈P2(V )

αA,Bf(A,B)

holds for some αA,B≥0 with
∑
αA,B1A,B =x. Similarly,

f̂N (y) =
∑

(A,B)∈P2(V )

βA,Bf(A,B)

holds for some βA,B≥0 with
∑
βA,B1A,B =y.

Let λA,B = tαA,B+(1− t)βA,B with t∈ [0,1]. Immediately, we have

z := tx+(1− t)y=
∑

(A,B)∈P2(V )

λA,B1A,B

with
∑
λA,B≤N and λA,B≥0, and then

f̂N (z)≤
∑

(A,B)∈P2(V )

λA,Bf(A,B) = tf̂N (x)+(1− t)f̂N (y).

Definition 2.5. A set-pair function f :P2(V )→ [0,+∞) is said to be strictly sub-
modular if, the inequality (2.16) holds. Moreover, the equality holds if and only if
(A,B)⊂ (C,D) or (A,B)⊃ (C,D).
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Lemma 2.2. If f is strictly submodular, then f̂N (x) =fL(x) for N >c‖x‖∞ with
c>1.

Proof. Given x∈Rn, according to Lemma 2.1, there exist λA,B≥0,∀(A,B)∈
P2(V ) with

∑
λA,B1A,B =x and

∑
λA,B≤N such that

f̂N (x) =
∑

(A,B)∈P2(V )

λA,Bf(A,B).

Without loss of generality, we can assume λ∅,∅ = 0.
We claim: if λA,B≥λC,D>0, then either (A,B)⊂ (C,D) or (C,D)⊂ (A,B). Sup-

pose the contrary and let

λ′A,B =λA,B−λC,D,
λ′C,D = 0,

λ′A′,B′ =λA′,B′+λC,D,

λ′C′,D′ =λC′,D′+λC,D,

λ′E,F =λE,F ,∀(E,F )∈P2(V )\{(A,B),(C,D),(A′,B′),(C ′,D′)},

where

A′= (A∪C)\(B∪D),B′= (B∪D)\(A∪C),C ′=A∩C,D′=B∩D.

Then it can be easily verified that∑
(P,Q)∈P2(V )

λ′P,Q=
∑

(P,Q)∈P2(V )

λP,Q and
∑

(P,Q)∈P2(V )

λ′P,Q1P,Q=x.

Direct calculation shows∑
(P,Q)∈P2(V )

λ′P,Qf(P,Q)−
∑

(P,Q)∈P2(V )

λP,Qf(P,Q)

=
∑

(P,Q)∈P2(V )

(λ′P,Q−λP,Q)f(P,Q)

=λC,D(−f(A,B)−f(C,D)+f(A′,B′)+f(C ′,D′))<0,

provided the strict submodularity of f . This contradicts the minimality of f̂(x). Ac-
cording to the mathematical induction we obtain (∅,∅) 6= (V +

p ,V
−
p )⊂···⊂ (V +

0 ,V
−
0 )

with

f̂N (x) =

p∑
i=0

λV +
i ,V

−
i
f(V +

i ,V
−
i ).

Moreover, we have
∑p
i=0λV +

i ,V
−
i

=‖x‖∞ via (2.12). After Proposition 2.4, f̂N (x) =

fL(x).

Lemma 2.3. The function

g(A,B) :=
√
|A|+ |B|

is strictly submodular.



774 LOVÁSZ EXTENSION AND GRAPH CUT

Proof. Given (A,B),(C,D)∈P2(V ), let A′=A\D, B′=B \C, C ′=C \B and
D′=D\A. Then

g((A∪C)\(B∪D),(B∪D)\(A∪C))+g(A∩C,B∩D)

=
√
|A′∪C ′|+ |B′∪D′|+

√
|A′∩C ′|+ |B′∩D′|

≤
√
|A′|+ |B′|+

√
|C ′|+ |D′|

≤
√
|A|+ |B|+

√
|C|+ |D|=g(A,B)+g(C,D),

where the first inequality holds since the function
√
t is strictly convex. Meanwhile, we

can easily see that the equality holds if and only if (A,B)⊂ (C,D) or (C,D)⊂ (A,B).
The proof is thus completed.

Proof. (Proof of Theorem 2.4.) Suppose that f satisfies (2.16). For any α>0,
f+αg is strictly submodular according to Lemma 2.3. Thus, by Lemma 2.2, we have

fL+αgL= (f+αg)L= f̂+αg≥ f̂ . (2.19)

Given x∈Rn, set f̂ = f̂N for fixed N >2‖x‖∞. Hence, (2.18) leads to

f̂(x) =
∑

(A,B)∈P2(V )

λA,Bf(A,B)

for some λA,B≥0 with
∑
λA,B1A,B =x,

∑
λA,B<N . Then

fL(x)+αgL(x) = f̂+αg(x)≤
∑

(A,B)∈P2(V )

λA,B(f(A,B)+αg(A,B))

= f̂(x)+α
∑

(A,B)∈P2(V )

λA,Bg(A,B)

≤ f̂(x)+α
∑

(A,B)∈P2(V )

λA,B
√
n

≤ f̂(x)+αN
√
n. (2.20)

Letting α→0 in (2.19) and (2.20) yields

fL(x) = f̂(x),

and by Lemma 2.1, f̂(x) is convex, so is fL(x).
On the other hand, if fL(x) is convex, then

f((A∪C)\(B∪D),(B∪D)\(A∪C))+f(A∩C,B∩D)

=fL(1(A∪C)\(B∪D),(B∪D)\(A∪C) +1A∩C,B∩D) [Proposition 2.4]

=fL(1A,B+1C,D)

= 2fL((1A,B+1C,D)/2) [Proposition 2.5: (2)]

≤fL(1A,B)+fL(1C,D) [convexity]

=f(A,B)+f(C,D), [Equation (2.7)]

where we have used 1A,B+1C,D =1(A∪C)\(B∪D),(B∪D)\(A∪C) +1A∩C,B∩D in the third
line. Thus, (2.16) is true.
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Finally, let XI =A, XO =A∪B, YI =C, YO =C∪D, then

Z= (XO∩YI \XI)∪(YO∩XI \YI) = (B∩C)∪(D∩A).

By taking f(A,B) =p(A,A∪B), we can translate inequality (2.17) into

f(A,B)+f(C,D) =p(XI ,XO)+p(YI ,YO)

≥p(XI ∩YI ,XO∩YO \Z)+p((XI ∪YI)\Z,(XO∪YO)\Z)

=p(A∩C,(A∩C)∪(B∩D))

+p((A∪C)\(B∪D),((A∪C)\(B∪D))∪((B∪D)\(A∪C)))

=f(A∩C,B∩D)+f((A∪C)\(B∪D),(B∪D)\(A∪C)),

which means (2.16) and (2.17) are equivalent.
Hence fL is convex if and only if either (2.16) or (2.17) holds.

Comparing (2.17) of Theorem 2.4 to (2.15) of Definition 2.4, we are able to de-
duce that the submodularity introduced in Definition 2.4 for a set-pair function fails to
ensure an extension of the equivalence stated in Theorem 2.3 between convexity and
submodularity for fLo into fL (i.e., Definition 2.4 is neither necessary nor sufficient for
fL to be convex), whereas (2.16) succeeds. In such sense, we might call the set-pair
function satisfying (2.16) or (2.17) to be submodular. However, both (2.16) and (2.17)
are not so easy-looking that we give a concise necessary condition for fL to be convex.

Definition 2.6. A set-pair-function f :P2(V )→R is partially submodular if and
only if it is submodular for each component, i.e.,

f(A,B)+f(A,D)≥f(A,B∪D)+f(A,B∩D),

f(A,B)+f(C,B)≥f(A∪C,B)+f(A∩C,B),

for all subsets A,B,C,D⊂V with A∩B=A∩D=C∩B=∅.

Corollary 2.1. If fL is convex, then f must be partially submodular.

Proof. If fL is convex, then f must satisfy (2.16). Setting C=A and D=B
respectively in (2.16), we can find that f is partially submodular.

Similar to Corollary 2.1, if p is submodular, then its equivalent function f must be
partially submodular.

Finally, we compare the set-pair Lovász extension to the original one:

(1) In contrast to the succinct integral form (2.8) of fL, the integral form (2.5) of fLo
has an extra remainder term.

(2) The original Lovász extension is unable directly to deal with graph 3-cut problems
such as the dual Cheeger-cut problem, whereas the set-pair Lovász extension works.

(3) The characterization of the convexity of fLo is easier than fL.

3. Applications to graph cut
A straightforward application of the original Lovász extension (2.2) into a graph

3-cut problem such as the dual Cheeger problem is not feasible. Instead, we will show
in this section that the set-pair Lovász extension (1.4) can succeed to find an explicit
and equivalent continuous optimization problem for graph 3-cut. To be more specific,
the set-pair Lovász extension of the five set-pair functions is summarized in Table 3.1.
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Object function Set-pair Lovász extension
F1(A,B) = |∂A|+ |∂B| FL1 (x) = I(x)
F2(A,B) = |E(A,B)| FL2 (x) = 1

2‖x‖−
1
2I

+(x)
G1(A,B) = vol(V ) GL1 (x) = vol(V )‖x‖∞
G2(A,B) = vol(A)+vol(B) GL2 (x) =‖x‖
G3(A,B) =

∑
X∈{A,B}

min
Y ∈{X,Xc}

vol(Y ) GL3 (x) = min
α∈R
‖|x|−α1‖

Table 3.1. Set-pair Lovász extension of five object functions.

The first four functions in Table 3.1 can be calculated directly according to Propo-
sition 2.3. In fact,

FL1 (x) =

∫ ‖x‖∞
0

|∂V +
t (x)|+ |∂V −t (x)|dt. (3.1)

Then substituting

|∂V +
t (x)|=

∑
i<j

wij(χxi≤t<xj +χxj≤t<xi),

|∂V −t (x)|=
∑
i<j

wij(χxi<−t≤xj +χxj<−t≤xi)

into Equation (3.1) yields

FL1 (x) =
∑
i<j

wij

∫ ‖x‖∞
0

χxi≤t<xj +χxj≤t<xi +χxi<−t≤xj +χxj<−t≤xidt

=
∑
i<j

wij

∫ ‖x‖∞
−‖x‖∞

χxi<t<xj +χxj<t<xidt

=
∑
i<j

wij |xi−xj |= I(x),

where the integral equalities hold when ‘<’ is replaced by ‘≤’.
Hereafter the endpoints of intervals in the integral form (2.8) are dropped for con-

venience. Thus, it gives the form of set-pair Lovász extension of F1 in Table 3.1.
Applying Proposition 2.3 to F2, we get

FL2 (x) =

∫ ‖x‖∞
0

F2(V +
t (x),V −t (x))dt

=

∫ ‖x‖∞
0

|E(V +
t (x),V −t (x))|dt

=

∫ ‖x‖∞
0

n∑
i=1

n∑
j=1

wijχxi>tχxj<−tdt

=

n∑
i=1

n∑
j=1

wij

∫ ‖x‖∞
0

χxi>tχxj<−tdt
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=
1

2

n∑
i=1

n∑
j=1

wijmin{xi+ |xi|, |xj |−xj}

=
1

4

n∑
i=1

n∑
j=1

wij(xi+ |xi|+ |xj |−xj−|xi+xj+ |xi|−|xj ||),

where we used the fact that min{a,b}= 1
2 (a+b−|a−b|) in the last equality. Further,

we can obtain

FL2 (x) =
1

4

∑
i<j

wij(2(|xi|+ |xj |)−
∣∣xi+xj+ |xi|−|xj |

∣∣− ∣∣xi+xj−|xi|+ |xj |
∣∣)

=
1

4

∑
i<j

wij(2|xi|+2|xj |−2max{|xi+xj |,
∣∣|xi|−|xj |∣∣})

=
1

2
‖x‖− 1

2

∑
i<j

|xi+xj |=
1

2
‖x‖− 1

2
I+(x), (3.2)

where Equation (3.2) utilizes the fact that 2max{|a|, |b|}= |a+b|+ |a−b|.
Correspondingly, the set-pair extensions of G1 and G2 in Table 3.1 can be verified

in the following way:

GL1 (x) =

∫ ‖x‖∞
0

G1(V +
t (x),V −t (x))dt= vol(V )‖x‖∞,

GL2 (x) =

∫ ‖x‖∞
0

G2(V +
t (x),V −t (x))dt

=

∫ ‖x‖∞
0

vol(V +
t (x))+vol(V −t (x))dt

=

∫ ‖x‖∞
0

n∑
i=1

diχ|xi|>tdt=‖x‖.

Now, let us focus on G3. Direct calculation shows

GL3 (x) =

∫ ‖x‖∞
0

G3(V +
t (x),V −t (x))dt

=

∫ ‖x‖∞
0

min{vol(V +
t (x)),vol(V +

t (x)c)}+min{vol(V −t (x)),vol(V −t (x)c)}dt

=

∫ ‖x‖∞
0

min{vol(V +
t (x)),vol(V +

t (x)c)}+min{vol(V +
−t(x)c),vol(V +

−t(x))}dt

=

∫ ‖x‖∞
−‖x‖∞

min{vol(V +
t (x)),vol(V +

t (x)c)}dt.

Let σ be a permutation of {1,2,. ..,n} such that xσ(1)≤xσ(2)≤···≤xσ(n). Then there
exists k0∈{1,2,. ..,n} satisfying

k0−1∑
i=1

dσ(i)<
1

2
vol(V )≤

k0∑
i=1

dσ(i). (3.3)
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Consequently, it reveals that

min{vol(V +
t (x)),vol(V +

t (x)c)}=

{
vol(V +

t (x)), if t<xσ(k0),

vol(V +
t (x)c), if t≥xσ(k0),

(3.4)

and

GL3 (x) =

∫ xσ(k0)

xσ(1)

vol(V +
t (x)c)dt+

∫ xσ(n)

xσ(k0)

vol(V +
t (x))dt

=

k0−1∑
i=1

(xσ(i+1)−xσ(i))
i∑

j=1

dσ(j) +

n−1∑
i=k0

(xσ(i+1)−xσ(i))
n∑

j=i+1

dσ(j)

=

k0−1∑
j=1

dσ(j)

k0−1∑
i=j

(xσ(i+1)−xσ(i))+

n∑
j=k0+1

dσ(j)

j−1∑
i=k0

(xσ(i+1)−xσ(i))

=

n∑
i=1

dσ(i)|xσ(i)−xσ(k0)|=‖x−xσ(k0)1‖.

On the other hand, ‖x−α1‖ is convex in α and satisfies

pα :=−
n∑
i=1

dσ(i)sign(xσ(i)−α)∈∂α‖x−α1‖

and then {
pα≤

∑k0−1
j=1 dσ(j)−

∑n
j=k0

dσ(j)≤0, if α<xσ(k0),

pα≥
∑k0
j=1dσ(j)−

∑n
j=k0+1dσ(j)≥0, if α>xσ(k0).

This implies that ‖x−α1‖ is decreasing with respect to α in (−∞,xσ(k0)) and increasing
in (xσ(k0),+∞). Thus, we obtain that

xσ(k0)∈argmin
α∈R

‖x−α1‖.

Therefore,

GL3 (x) =‖x−xσ(k0)1‖= min
α∈R
‖x−α1‖. (3.5)

3.1. Graph 3-cut problems. It is straightforward to utilize the proposed set-
pair Lovász extension to deal with the combination optimizations in a set-pair form,
for example, the dual Cheeger and max 3-cut problems. Now, we are in a position to
answer Question 1.2.

Proof. (Proof of Theorem 1.4.) Applying Theorem 1.3 in the dual Cheeger cut
problem (1.1) yields

h+(G) = sup
x 6=0

2FL2 (x)

GL2 (x)
= 1− inf

x 6=0

I+(x)

‖x‖
, (3.6)

where we have used FL2 and GL2 in Table 3.1.
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Proof. (Proof of Theorem 1.5.) Since A∩B=B∩C=C∩A=∅ and A∪B∪
C=V , we can suppose that A∪B 6=∅. Then, by Theorem 1.3 and Proposition 2.5, we
have

1

2
hmax,3(G) = max

A,B,C

|E(A,B)|+ |E(B,C)|+ |E(C,A)|
vol(V )

= max
A,B,C

|E(A,B)|+ |E(A∪B,C)|
vol(V )

= max
(A,B)∈P2(V )\{(∅,∅)}

|E(A,B)|+ |∂(A∪B)|
vol(V )

= max
(A,B)∈P2(V )\{(∅,∅)}

|∂A|+ |∂B|−|E(A,B)|
vol(V )

= max
(A,B)∈P2(V )\{(∅,∅)}

F1(A,B)−F2(A,B)

G1(A,B)

= sup
x6=0

FL1 (x)−FL2 (x)

GL1 (x)
,

where FL1 and GL1 are given in Table 3.1. Thus

hmax,3(G) = sup
x 6=0

2I(x)−‖x‖+I+(x)

vol(V )‖x‖∞
. (3.7)

It follows from |a−b|+ |a+b|= 2max{|a|,|b|}= ||a|−|b||+ |a|+ |b| for any a,b∈R that

I(x) =
∑
i<j

wij |xi−xj |=
∑
i<j

wij(|xi|+ |xj |+ ||xi|−|xj ||−|xi+xj |)

=

n∑
i=1

di|xi|+
∑
i<j

wij ||xi|−|xj ||−
∑
i<j

wij |xi+xj |

=‖x‖+ Î(x)−I+(x),

and thus

2I(x)−‖x‖+I+(x) = 2Î(x)+‖x‖−I+(x) = I(x)+ Î(x).

Finally, Equation (3.7) turns out to be

hmax,3(G) = sup
x6=0

I(x)+ Î(x)

vol(V )‖x‖∞
.

Proof. (Proof of Theorem 1.6.) According to Theorem 1.3, we have

hmax,3,I(G) = max
(A,B)∈P2(V )

F1(A,B)−F2(A,B)

G2(A,B)

= sup
x6=0

‖x‖−I+(x)+2Î(x)

‖x‖
.

Proof. (Proof of Theorem 1.7.) Let

G(A,B) = min{vol(A∪B),vol((A∪B)c)}, (3.8)
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and σ be a permutation of {1,2,. ..,n} such that |xσ(1)|≤ |xσ(2)|≤ ···≤ |xσ(n)|. By Def-
inition 1.2, the set-pair Lovász extension of G(A,B) is

GL(x) =

n−1∑
i=0

(|xσ(i+1)|−|xσ(i)|)G(V +
σ(i),V

−
σ(i))

=

n−1∑
i=0

(|xσ(i+1)|−|xσ(i)|)min{vol(V +
σ(i)∪V

−
σ(i)),vol((V +

σ(i)∪V
−
σ(i))

c)}

=

n−1∑
i=0

(|xσ(i+1)|−|xσ(i)|)G3(V +
σ(i)∪V

−
σ(i),∅)

=GL3 (|x|) = min
α∈R
‖|x|−α1‖,

where |x|= (|x1|,. .., |xn|) and Equation (3.5) is applied in the last line. Finally, applying
Theorem 1.3 into Equation (1.18) leads to

hmax,3,II(G) = sup
x 6=0

2FL1 (x)−2FL2 (x)

GL1 (x)−GL(x)

= sup
x 6=0

2I(x)−‖x‖+I+(x)

vol(V )‖x‖∞−min
α∈R

∑n
i=1di ||xi|−α|

.

3.2. Graph k-cut (k>3) problems. In this section, we present a preliminary
attempt to a graph k-cut problem. The main idea is to transfer a graph k-cut problem
to a 3-cut one on a larger graph. To this end, let us start from

Pk([n]) ={(A1,. ..,Ak)
∣∣Ai∩Aj =∅,Ai⊂ [n]}, (3.9)

Hk+1([n]) ={(A1,. ..,Ak+1)
∣∣Ai∩Aj =∅,

k+1⋃
i=1

Ai= [n]}, (3.10)

where [n] ={1,2,. ..,n}. Obviously Pk([n]) is equivalent to Hk+1([n]), Pk([n])'
Hk+1([n]). Then a bijection between P2([ln]) and H3l([n]) can be obtained via

P2([ln])'H3([ln])'
l∏
i=1

H3([n])'H3l([n]). (3.11)

For a family P consisting of set-tuples, we use C(P) :={f :P→R} to denote the col-
lection of real valued functions on P, and then have the following commutative diagrams
for any k<3l:

In Figure 3.1, h1 is the natural injective mapping from H3l([n]) to Pk([n]) by choos-
ing only the last k parts from each element in H3l([n]). Therefore, given f ∈C(Pk([n])),
there exists F ∈C(P2([ln])) and an injective mapping h from P2([ln]) to Pk([n]) such
that F =f ◦h. For convenience, the set-pair Lovász extension of F is again called the
Lovász extension of f . That is, there exist F1∈C(H3l([n])) and F2∈C(

∏l
i=1H3([n]))

such that

F1 =f ◦h1, F2(

l∏
i=1

(T i0,T
i
1,T

i
2)) =F1((A0,A1,. ..,A3l−1)), (3.12)
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Pk([n]) P2([ln]) C(Pk([n])) C(P2([ln]))

H3l([n])
l∏
i=1

H3([n]) C(H3l([n])) C(
l∏
i=1

H3([n]))

h

h3

h2

h1

h∗

h∗1

h∗2

h∗3

Fig. 3.1. The commutative diagram on the right is indeed the dual diagram of the left one
in some sense.

where (T i0,T
i
1,T

i
2)∈H3([n]), i= 1,. ..,l, and Aj =

⋂l
i=1T

i
ai with (al .. .a1)3 being the

ternary representation of j for j= 0,1,. ..,3l−1. In other words, there exists an in-
jection h2 from

∏l
i=1H3([n]) to H3l([n]) such that

F2 =F1 ◦h2. (3.13)

Finally, we can take an injection h3 from P2([ln]) to H3l([n]) by

h(T1,T2) =

l∏
i=1

(T i0,T
i
1,T

i
2),

where

T ia={t∈ [n]|t+n(i−1)∈Ta}, T0 = (T1∩T2)c, a= 0,1,2. (3.14)

Thus, the correspondence is well established between the function f defined on
Pk([n]) and the function F on P2([ln]) by letting h=h1 ◦h2 ◦h3 and

F =F2 ◦h3 =F1 ◦h2 ◦h3 =f ◦h.

Applying Theorem 1.3, we are able to give an equivalent continuous optimization
for the max k-cut problem.

Definition 3.1 (max k-cut [11]). Given a connected graph G= (V,E) with V = [n], the
max k-cut problem is to determine a graph k-cut by solving

hk(G) = min
(A1,A2,...,Ak)∈Hk([n])

∑k
i=1 |∂Ai|∑k
i=1vol(Ai)

. (3.15)

We can find F,G∈C(P2([ln])) such that

F (T1,T2) =

3l−1∑
j=3l−k

|∂Aj |, and G(T1,T2) =

3l−1∑
j=3l−k

vol(Ai), (3.16)

where Aj =
⋂l
i=1T

i
ai , T

i
ai is given in Equation (3.14), and (al .. .a1)3 denotes the ternary

representation of j for j∈{0,1,. ..,3l−1}.
Let us write down the functions FL and GL explicitly. In fact,

FL(

l∏
i=1

x(i)) =

∫ ‖x‖∞
0

F (V +
t ,V

−
t )dt (3.17)
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is a continuous function defined on Rnl. Here V ±t ={(i−1)n+j|±x(i)j >t} for any

x=
∏l
i=1x

(i)∈Rnl, and x(i) = (x
(i)
1 ,. ..,x

(i)
n ).

Proposition 3.1.

FL(

l∏
i=1

x(i)) =

n∑
j=1

djzj−2

n∑
i<j

wij

3l−1∑
(al...a1)2=3l−k

z
(al...a1)3
ij ,

where

zj = min
{
t≥0

∣∣∣(al .. .a1)3<3l−k, ai=1
x
(i)
j >t

+21−x(i)
j >t

}
,

z
(al...a1)3
ij = min

{
−(−1)aαx

(α)
i′ −|x

(β)
j′ |
∣∣∣aα>0,aβ = 0,i′,j′∈{i,j}

}
+
,

z+ = max{z,0}.

Proof. A direct calculation leads to

FL(

l∏
i=1

x(i)) =

∫ ‖x‖
0

F (Vt)dt=

∫ ‖x‖
0

3l−1∑
(al...a1)3=3l−k

|∂Aal...a1(t)|dt

=

∫ ‖x‖
0

2l−1∑
(al...a1)3=3l−k

|vol(Aal...a1(t))|−2|E(Aal...a1(t))|dt

=I− II,

where E(A) is the set of all edges with endpoints in A and

I =

∫ ‖x‖
0

3l−1∑
(al...a1)3=3l−k

|vol(Aal...a1(t))|dt,

II =2

∫ ‖x‖
0

3l−1∑
(al...a1)3=3l−k

|E(Aal...a1(t))|dt.

It is easy to check the first part

I =

∫ ‖x‖
0

3l−1∑
(al...a1)3=3l−k

∑
i<j

wij [1i∈Aal...a1 (t) +1j∈Aal...a1 (t)]dt

=
∑
i<j

wij

∫ ‖x‖
0

3l−1∑
(al...a1)3=3l−k

1i∈Aal...a1 (t) +1j∈Aal...a1 (t)dt

=
∑
i<j

wij

∫ ‖x‖
0

1
i∈

⋃3l−1

(al...a1)3=3l−k
Aal...a1 (t)

+1
j∈

⋃3l−1

(al...a1)3=3l−k
Aal...a1 (t)

dt

=
∑
i<j

wij (zi+zj) =

n∑
j=1

djzj ,
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and the second part

II =2

∫ ‖x‖
0

3l−1∑
(al...a1)3=3l−k

∑
i<j

wij1i,j∈Aal...a1 (t)dt

=2
∑
i<j

wij

3l−1∑
(al...a1)3=3l−k

∫ ‖x‖
0

1i,j∈Aal...a1 (t)dt

=2
∑
i<j

wij

3l−1∑
(al...a1)3=3l−k

∫ ‖x‖
0

∏
α:aα>0,
i′∈{i,j}

1
t≤−(−1)aαx(α)

i′

∏
β:,aβ=0,

j′∈{i,j}

1|x(β)

j′ |<t
dt

=2
∑
i<j

wij

3l−1∑
(al...a1)3=3l−k

z
(al...a1)3
ij .

Thus, we complete the proof.

Remark 3.1. If k= 3l−1, then

FL(

l∏
i=1

x(i)) =

n∑
j=1

dimax
s
|x(s)j |−2

n∑
i<j

wij

3l−1∑
(al...a1)3=1

z
(al...a1)3
ij .

It can be readily verified that:

Proposition 3.2.

GL(

l∏
i=1

x(i)) =

n∑
j=1

djzj = I.

Accordingly, we get

Proposition 3.3.

hk = sup
x∈Rnl\K

FL(x)

GL(x)
, (3.18)

where FL and GL are defined in Propositions 3.1 and 3.2, respectively, and K={x|zj =
0,∀j= 1,2,. ..,n}.

Remark 3.2. It should be noted that we can follow the same procedure to derive a
continuous representation of the dual Cheeger cut problem staring from the original
Lovász extension. However, it requires 2n variables while the equivalent continuous
formulation in Equation (1.4) obtained from the set-pair Lovász extension only needs n
variables, where n gives the order of graph.

3.3. Graph 2-cut problems. With the help of the following lemma, the pro-
posed set-pair Lovász extension also works for some graph 2-cut problems.

Lemma 3.1. Suppose f,g :P(V )→ [0,+∞) are two symmetric functions with g(A)>0
for any A∈P(V ). Let F (A,B) =f(A)+f(B) and G(A,B) =g(A)+g(B). Then

min
A∈P(V )

f(A)

g(A)
= min

(A,B)∈P2(V )

F (A,B)

G(A,B)
, (3.19)
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max
A∈P(V )

f(A)

g(A)
= max

(A,B)∈P2(V )

F (A,B)

G(A,B)
. (3.20)

Proof. First we prove (3.19). On one hand, let (A0,B0)∈P2(V ) be the minimizer

of f(A)+f(B)
g(A)+g(B) . Without loss of generality, we may assume f(A0)

g(A0)
≤ f(B0)

g(B0)
. Then

f(A0)+g(B0)

g(A0)+g(B0)
− f(A0)

g(A0)
=
f(B0)g(A0)−f(A0)g(B0)

g(A0)(g(A0)+g(B0))
≥0,

which follows that

min
(A,B)∈P2(V )

f(A)+f(B)

g(A)+g(B)
=
f(A0)+g(B0)

g(A0)+g(B0)
≥ f(A0)

g(A0)
≥ min
A∈P(V )

f(A)

g(A)
.

On the other hand, let A1⊂V be the minimizer of f(A)
g(A) . Then we have

min
(A,B)∈P2(V )

f(A)+f(B)

g(A)+g(B)
≤ f(A1)+f(Ac1)

g(A1)+g(Ac1)
=
f(A1)

g(A1)
= min
A∈P(V )

f(A)

g(A)
,

and hence,

min
A∈P(V )

f(A)

g(A)
= min

(A,B)∈P2(V )

f(A)+f(B)

g(A)+g(B)
.

It is also true if we replace ‘min’ by ‘max’, i.e., (3.20) holds.

Proof. (Proof of Theorem 1.8.) The proof involves F1 and G1. Let

f(A) = |∂A| and g(A) =
1

2
vol(V ).

Since f and g are symmetric functions, by Lemma 3.1 and Theorem 1.3, we have

hmax(G) = max
S∈P(V )

2|∂S|
vol(V )

= max
S∈P(V )

f(S)

g(S)
= max

(A,B)∈P2(V )

F1(A,B)

G1(A,B)

= max
(A,B)∈P2(V )\{(∅,∅)}

F1(A,B)

G1(A,B)
= sup
x 6=0

FL1 (x)

GL1 (x)
.

Accordingly, we have

hmax(G) = sup
x6=0

FL1 (x)

GL1 (x)
= sup
x 6=0

I(x)

vol(V )‖x‖∞
.

Proof. (Proof of Theorem 1.9.) Let f(A) = |∂A| and g(A) = min{vol(A),
vol(Ac)}. Since f , g are symmetric functions, by Equation (1.7), Lemma 3.1 and Propo-
sition 1.1, we have

h(G) = min
S⊂V

f(S)

g(S)
= min

(A,B)∈P2(V )\{(∅,∅),(∅,V ),(V,∅)}

F1(A,B)

G2(A,B)

= inf
x nonconstant

FL1 (x)

GL2 (x)
= inf
x nonconstant

sup
c∈R

I(x)∑n
i=1di|xi−c|

,
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where FL1 and GL2 have been presented in Table 3.1.

Proof. (Proof of Theorem 1.10.) Let

f(A) = |∂A| and g(A) = max{vol(A),vol(Ac)}. (3.21)

Since f , g are symmetric functions, by Lemma 3.1 and Theorem 1.3, we obtain

hanti(G) = max
S∈P(V )

f(S)

g(S)
= max

(A,B)∈P2(V )}

F1(A,B)

G(A,B)

= max
(A,B)∈P2(V )\{(∅,∅)}}

F1(A,B)

G(A,B)
= sup
x 6=0

FL1 (x)

GL(x)
,

where G(A,B) = 2G1(A,B)−G3(A,B), and GL= 2GL1 −GL3 . Thus,

hanti(G) = sup
x 6=0

FL1 (x)

2GL1 (x)−GL3 (x)
= sup
x 6=0

I(x)

2vol(V )‖x‖∞−min
α∈R
‖x−α1‖

.
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