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ASYMPTOTIC ANALYSIS OF
THE BOLTZMANN EQUATION WITH VERY SOFT POTENTIALS

FROM ANGULAR CUTOFF TO NON-CUTOFF∗
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Abstract. Our focus is the Boltzmann equation in a torus under very soft potentials around
equilibrium. We analyze the asymptotics of the equation from angular cutoff to non-cutoff. We first
prove a refined decay result of the semi-group stemming from the linearized Boltzmann operator. Then
we prove the global well-posedness of the equations near equilibrium, refined decay patterns of the
solutions. Finally, we rigorously give the asymptotic formula between the solutions to cutoff and non-
cutoff equations with an explicit convergence rate.
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1. Introduction

Grad’s angular cutoff assumption plays an important role in the study of Boltz-
mann equation throughout the history. A relatively satisfactory mathematical theory
has been established for the cutoff case. We review some relevant results in the near-
equilibrium framework, i.e., a small perturbation around global Maxwellians. Inde-
pendently, Caflisch [7] and Ukai-Asano [20] constructed global classical solutions near-
equilibrium for the inhomogeneous Boltzmann equation with a soft potential γ >−1
(see below for the meaning of parameter γ). Guo [12] extended the result to the full
range γ>−3.

Without Grad’s cutoff assumption, Pao in [17, 18] studied the spectrum of the lin-
earized Boltzmann operator. In the seminal work [1], the authors proved some entropy
dissipation formula, which accelerates the study of non-cutoff Boltzmann equation. In
the near-equilibrium framework, two groups independently built the well-posedness the-
ory by introducing some implicit anisotropic norms, see Alexandre-Morimoto-Ukai-Xu-
Yang [4] and Gressman-Strain [10].

Now that the well-posedness theory has been established for both cutoff and non-
cutoff Boltzmann equations, it is natural to consider the relation between them. In
the near-equilibrium framework, the analysis of linearized Boltzmann operator plays a
central role. The asymptotic analysis of the linearized Boltzmann operator from cutoff
to non-cutoff is given in [14]. Understandably, the analysis relies on keeping the angular
cutoff threshold as a parameter and getting some estimates uniformly with respect to
it. As an application of the analysis, in the moderately soft potential case −2s≤γ<0,
different decay patterns are connected in [14] for the semi-groups generated by the cutoff
and non-cutoff linearized Boltzmann operators. In this work, we consider the very soft
potential case −3<γ<−2s, and discover the role of cutoff threshold in the asymptotic
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process from cutoff to non-cutoff.

1.1. The Boltzmann equation. To go further, we introduce the Boltzmann
equation and its linearized counterpart.

1.1.1. The Boltzmann collision operator. The Boltzmann collision operator
Q is a bilinear operator acting only on the velocity variable v, given by,

Q(g,h)(v) :=

∫
S2×R3

B(v−v∗,σ)(g′∗h
′−g∗h)dσdv∗.

Here the standard shorthand h=h(v), g∗=g(v∗), h
′=h(v′), g′∗=g(v′∗) is used, where

v′=
v+v∗

2
+
|v−v∗|

2
σ, v′∗=

v+v∗
2
− |v−v∗|

2
σ, σ∈S2. (1.1)

The Boltzmann collision kernel B(v−v∗,σ) is always assumed to depend only on
|v−v∗| and cosθ := v−v∗

|v−v∗| ·σ. By some symmetrization, we can assume that B(v−v∗,σ)

is supported in the set 0≤θ≤ π
2 . The collision kernels studied in this work satisfy the

following conditions.
For the non-cutoff collision kernel, we assume that

• The cross-section B(v−v∗,σ) takes a product form of

B(v−v∗,σ) = |v−v∗|γb(cosθ),

where −3<γ<0 and b is a nonnegative function satisfying that

K−1θ−1−2s≤ sinθb(cosθ)≤Kθ−1−2s, with 0<s<1, K≥1.

The parameters γ and s verify that γ+2s<0.
Note that we impose γ+2s<0, which represents very soft potential. For moderately

soft potential −2s≤γ<0, some asymptotic analysis has been done in [14].
The Cauchy problem of the non-cutoff Boltzmann equation in a periodic box reads:{

∂tF +v ·∇xF =Q(F,F ), t>0,x∈T3,v∈R3;

F |t=0 =F0.
(1.2)

Here F (t,x,v)≥0 is the density function of particles which at time t≥0, position x∈
T3 := [−π,π]3, move with velocity v∈R3.

For the cutoff collision kernel, we assume that

• The cross-section Bε(v−v∗,σ) takes a product form of

Bε(v−v∗,σ) = |v−v∗|γbε(cosθ),

where bε= b
(
1−φ(sin θ

2/ε)
)
, where 0<ε≤

√
2
2 and φ is a function defined by

(1.18), which has support in [0,4/3] and equals to 1 on [0,3/4].

The angular cutoff Boltzmann collision operator and its associated equation are
defined by

Qε(g,h)(v) :=

∫
S2×R3

Bε(v−v∗,σ)(g′∗h
′−g∗h)dσdv∗,
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and {
∂tF +v ·∇xF =Qε(F,F ), t>0,x∈T3,v∈R3;

F |t=0 =F0.
(1.3)

We mention that the solutions to (1.2) and (1.3) have the fundamental physical
properties of conserving total mass, momentum and kinetic energy, that is, for all t≥0,∫

T3×R3

F (t,x,v)φ(v)dxdv=

∫
T3×R3

F (0,x,v)φ(v)dxdv, φ(v) = 1,vj ,|v|2, j= 1,2,3.

As a result, if initially F0(x,v) has the same mass, momentum and total energy as those

of the global Maxwellian µ(v) := (2π)−
3
2 e−

|v|2
2 , then for any t≥0,∫

T3×R3

(F −µ)(t)φdxdv= 0, φ(v) = 1,vj , |v|2, j= 1,2,3. (1.4)

1.1.2. The linearized Boltzmann collision operator. In the non-cutoff
case, the linearized Boltzmann operator L is defined by

Lg :=−Γ(µ1/2,g)−Γ(g,µ1/2), where Γ(g,h) :=µ−1/2Q(µ1/2g,µ1/2h). (1.5)

In the cutoff case, the linearized Boltzmann operator Lε is defined by

Lεg :=−Γε(µ1/2,g)−Γε(g,µ1/2), where Γε(g,h) :=µ−1/2Qε(µ1/2g,µ1/2h). (1.6)

The null spaces of the operators Lε and L, N (Lε) and N (L), verify

N (Lε) =N (L) =N := span{√µ,√µv1,
√
µv2,
√
µv3,
√
µ|v|2}.

If we set F =µ+µ1/2f , then (1.2) and (1.3) become{
∂tf+v ·∇xf+Lf = Γ(f,f), t>0;

f |t=0 =f0.
(1.7)

and {
∂tf+v ·∇xf+Lεf = Γε(f,f), t>0;

f |t=0 =f0.
(1.8)

We can regard (1.8) when ε= 0 as (1.7). Without loss of generality, we assume that f0
verifies ∫

T3×R3

√
µf0φdxdv= 0, φ(v) = 1,vj , |v|2, j= 1,2,3. (1.9)

By (1.4), the solutions to (1.7) and (1.8) also verify (1.9).

1.2. Problems and motivations. Our motivations originate from the following
two problems.



290 ASYMPTOTIC ANALYSIS OF THE BOLTZMANN EQUATION

1.2.1. Problem 1: longtime behavior. What is the longtime behavior of
e−L

εtf0 with f0∈N⊥ for γ∈ (−3,−2s) in the limit process that ε goes to 0?

Set f ε(t) =e−L
εtf0 and f(t) =e−Ltf0. As we know, for γ∈ (−3,−2s), both f ε and

f enjoy polynomial decay rate if f0∈L2
l for some l>0. However, their decay rates are

different. To be precise, if l=−p(γ/2+s) for some p>0, one has

|f(t)|2L2 .O(t−p). (1.10)

However, according to [19], one only has

|f ε(t)|2L2 .O(t−q), (1.11)

with q=p(1+2s/γ)<p. Let us explain a bit more how these results can be derived.
Denote by 〈f,g〉 :=

∫
R3 f(v)g(v)dv the inner product in L2 space. Previous works [3, 4,

10,11,13] show that

〈Lf,f〉+ |f |2L2
γ/2
∼|f |2L2

s+γ/2
+ |f |2Hs

γ/2
+ |(−∆S2)s/2f |2L2

γ/2
. (1.12)

From which together with spectral gap estimate 〈Lf,f〉& |f−Pf |2
L2
γ/2

, for f ∈N⊥ one

further has

〈Lf,f〉& |f |2L2
s+γ/2

. (1.13)

Here P is the projection (see (1.21) below) to the null space N . In the cutoff case as
in [12], one has for f ∈N⊥,

〈Lεf,f〉& |f |2L2
γ/2
. (1.14)

By some interpolation techniques, one can get (1.10) and (1.11) from (1.13) and (1.14)
respectively.

Recently, [14] shows that

〈Lεf,f〉+ |f |2L2
γ/2
∼|W εf |2L2

γ/2
+ |W ε((−∆S2)1/2)f |2L2

γ/2
+ |W ε(D)f |2L2

γ/2
,

where W ε is defined by

W ε(v) := (1+ |v|2)s/2φ(ε|v|)+ε−s(1−φ(ε|v|)). (1.15)

Then for f ∈N⊥, there holds

〈Lεf,f〉& |W εf |2L2
γ/2
. (1.16)

Sending ε to 0, (1.16) turns out to be (1.13). However, (1.11) does not lead to (1.10).
The mismatch here indicates the result (1.11) is not good enough when ε is very small.
This inconsistency is largely due to that like in [12] or other cutoff setting, a specified and
fixed value of the parameter ε is considered. Therefore, it is meaningful and interesting
to consider the limit process and to improve the estimate (1.11) in order to eradiate the
mismatch.
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1.2.2. Problem 2: asymptotic formula. Which kind of asymptotic formula
connects the solutions of the nonlinear Equations (1.7) and (1.8) ?

Formally when the parameter ε goes to 0, the solution f ε of (1.8) is expected to
converge to the solution f of (1.7). The motivation here is to justify this convergence
and look for an asymptotic formula to capture the error between them. Like in [14], it
is natural to conjecture

f ε−f ∼O(ε2−2s).

Obviously some uniform estimates w.r.t. ε are needed in order to rigorously derive the
above result.

1.3. Notations. We collect some function spaces and notations in this sub-
section. Most of them are standard. One may skip this part and come back when
necessary.

1.3.1. Basic notations. We denote the multi-index α= (α1,α2,α3) with
|α|=α1 +α2 +α3. We write a. b to indicate that there is a universal constant C
which is independent of a,b but may depend on the parameters γ,s and be different
across different lines, such that a≤Cb. We use the notation a∼ b whenever a. b and
b.a. The Japanese bracket 〈·〉 is defined by 〈v〉 := (1+ |v|2)

1
2 . The weight function

Wl is defined by Wl(v) := 〈v〉l. We denote C(λ1,λ2, ·· · ,λn) or Cλ1,λ2,···,λn by a con-
stant depending on parameters λ1,λ2,·· · ,λn. The notations 〈f,g〉 :=

∫
R3 f(v)g(v)dv and

(f,g) :=
∫
R3×T3 fgdxdv are used to denote the inner products for v variable and for x,v

variables respectively. As usual, 1A is the characteristic function of a set A.

1.3.2. Function spaces. For simplicity, we set ∂α :=∂αx ,∂β :=∂βv ,∂
α
β :=∂αx ∂

β
v .

(1) For n∈N,l∈R, the weighted Sobolev space on R3 is defined by

Hn
l :=

{
f(v)

∣∣|f |2Hnl :=
∑
|β|≤n

|∂βf |2L2
l
<∞

}
,

where |f |L2
l

:= |Wlf |L2 is the usual L2 norm with weight Wl.

(2) For n∈N,l∈R, we denote the weighted pure order-n space on R3 by

Ḣn
l :=

{
f(v)

∣∣|f |2
Ḣnl

:=
∑
|β|=n

|∂βf |2L2
l
<∞

}
. (1.17)

(3) For m∈N, we denote the Sobolev space on T3 by

Hm
x :=

{
f(x)

∣∣|f |2Hmx :=
∑
|α|≤m

|∂αf |2L2
x
<∞

}
.

(4) For m,n∈N,l∈R, the weighted Sobolev space on T3×R3 is defined by

Hm
x H

n
l :=

{
f(x,v)

∣∣‖f‖2Hmx Hnl :=
∑

|α|≤m,|β|≤n

||∂αβ f |L2
l
|2L2
x
<∞

}
.

For simplicity, we write ‖f‖Hmx L2
l

:=‖f‖Hmx H0
l

if n= 0 and ‖f‖L2
xL

2
l

:=‖f‖H0
xH

0
l

if

m=n= 0. The space Hm
x Ḣ

n
l can be similarly defined.
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1.3.3. Dyadic decomposition. Let us give a brief introduction to dyadic
decomposition. Let B4/3 :={v∈R3 : |v|≤4/3} and C :={v∈R3 : 3/4≤|v|≤8/3}. Then
one may introduce two radial functions φ∈C∞0 (B4/3) and ψ∈C∞0 (C) which satisfy

0≤φ,ψ≤1, and φ(v)+
∑
j≥0

ψ(2−jv) = 1, for all v∈R3 . (1.18)

Now define ϕ−1(v) :=φ(v) and ϕj(v) :=ψ(2−jv) for any v∈R3 and j≥0. Let Pj be the
projection operator on the region |v|∼2j defined by (Pjf)(v) :=ϕj(v)f(v). Then one
has the following dyadic decomposition

f =

∞∑
j=−1

Pjf, (1.19)

for any function defined on R3. Let us further introduce

f l=φ(ε·)f, fh= (1−φ(ε·))f, (1.20)

which stand for low velocity part |v|.1/ε and high velocity part |v|&1/ε of function f .

1.3.4. Macro-Micro decomposition. Recalling

N = span{√µ,√µv1,
√
µv2,
√
µv3,
√
µ|v|2},

we introduce the projection operator P on N as follows:

Pf = (a+b ·v+c|v|2)
√
µ, (1.21)

where for 1≤ i≤3,

a=

∫
R3

(2− |v|
2

2
)
√
µfdv; bi=

∫
R3

vi
√
µfdv; c=

∫
R3

(
|v|2

6
− 1

2
)
√
µfdv. (1.22)

Now f =Pf+(f−Pf). Usually, Pf is called the macro part, and f−Pf is called the
micro part.

1.3.5. Function spaces related to coercivity estimate. Recalling W ε

defined by (1.15), we naturally define some spaces resulting from the coercivity estimates
of Lε in Theorem 2.1. For l≥0,−l≤m≤ l, let Y ml be real spherical harmonics verifying
(−4S2)Y ml = l(l+1)Y ml . Then the operator W ε((−∆S2)1/2) is defined by: if v= rσ, then

(W ε((−∆S2)1/2)f)(v) :=

∞∑
l=0

l∑
m=−l

W ε((l(l+1))1/2)Y ml (σ)fml (r), (1.23)

where fml (r) =
∫
S2 Y

m
l (σ)f(rσ)dσ. Now we introduce

(1) Space L2
ε,l. For functions defined on R3, the space L2

ε,l with l∈R is defined by

L2
ε,l :=

{
f(v)

∣∣|f |2L2
ε,l
<∞

}
,

where

|f |2L2
ε,l

:= |W ε((−∆S2)1/2)Wlf |2L2 + |W ε(D)Wlf |2L2 + |W εWlf |2L2 .
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(2) Space Hm
x H

n
ε,l. For functions defined on T3×R3, the space Hm

x H
n
ε,l with m,n∈N

is defined by

Hm
x H

n
ε,l :=

{
f(x,v)

∣∣‖f‖2Hmx Hnε,l :=
∑

|α|≤m,|β|≤n

||∂αβ f |L2
ε,l
|2L2
x
<∞

}
.

For simplicity, we set ‖f‖Hmx L2
ε,l

:=‖f‖Hmx H0
ε,l

if n= 0 and ‖f‖L2
xL

2
ε,l

:=‖f‖H0
xH

0
ε,l

if m=

n= 0. Again, the space Hm
x Ḣ

n
ε,l can be defined accordingly.

1.4. Main results. Our first result is on the longtime behavior of e−L
εtf0 with

f0∈N⊥.

Theorem 1.1. Let ε≥0 be small enough, γ∈ (−3,−2s),N ∈N,l≥2,p>0 and f0∈N⊥.
Then f ε(t) :=e−L

εtf0 verifies the following statements.

(1) (Refined polynomial decay rates.) Assume f0∈HN
l−p(γ/2+s),let q=p(1+2s/γ).

For simplicity and clarity, denote c(f0,ε) := 2c(ε2s)
pq
p−qC(p,q,N)|f0|2HN

l−p(γ/2+s)
∼

(ε2s)
pq
p−q |f0|2HN

l−p(γ/2+s)
, where c>1 is a constant depending only on N,l, and

C(p,q,N) is an explicitly computable constant depending only on p,q,N . If
|f0|2HNl ≥ c(f0,ε), then there is a critical time t∗>0 such that |f ε(t∗)|2HNl ≤ c(f0,ε)≤
c|f ε(t∗)|2HNl and

|f ε(t)|2HNl .
|f0|2HNl

(1+C1t)p
1t≤t∗+

|f ε(t∗)|2HNl
(1+C2(t− t∗))q

1t>t∗ . (1.24)

Here C1∼|f0|2/pHNl
|f0|−2/pHN

l−p(γ/2+s)
,C2∼ ε2sq/(p−q).

If c|f0|2HNl ≤ c(f0,ε), then

|f ε(t)|2HNl .
|f0|2HNl

(1+C2t)q
. (1.25)

Here C2∼|f0|2/qHNl
|f0|−2/qHN

l−p(γ/2+s)
.

(2) (Almost energy conservation in an arbitrarily large time span.) Assume
|f0|2L2 = 1 and |Pjf0|2L2 = 1−η with η sufficiently small and 2j≥ ε−1, then for t∈
[0,C−1ε2s2−jγη], there holds

|Pjf ε(t)|2L2 ≥1−2η−C exp(−C122j). (1.26)

Here C,C1 are two universal constants.

(3) (Exponential decay in an arbitrarily large time span.) Assume |f0|2L2 =
1. Fix δ>0, suppose j∈N verifies 2−jγ exp(−C122j)≤ δ and 2j≥ ε−1, denote Λ =

λε−2s2jγ , K=
|Pjf0|2L2

λ−1C(1+δ)ε2s . If K>2, then for t∈ [0,2λ−1ε2s2−jγ ln(K−1)], there

holds

|Pjf ε(t)|2L2 ≤ exp(−Λt/2)|Pjf0|2L2 . (1.27)

Here C,C1 are two universal constants and λ is the constant in (2.2).
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Some comments are in order:

Remark 1.1. If f0∈HN
−p(γ/2+s), then limε→0 c(f0,ε) = 0, which means that |f0|2HNl ≥

c(f0,ε) is valid when ε is sufficiently small. Therefore (1.24) invokes, and by sending
ε to 0, we have t∗→∞ and thus recover the well-known polynomial decay (1.10) for
solutions of the non-cutoff linearized Boltzmann equation,

|f ε(t)|2HNl .
|f0|2HNl

(1+C1t)p
. (1.28)

Remark 1.2. Note that, the critical time t∗ in (1.24) is a turning point of decay rates.
That is, before the critical time t∗, the solution decays with the rate O(t−p); after t∗,
the decay rate becomes to O(t−q). Note that t∗ is the time when |f ε(t∗)|2HNl ∼ c(f0,ε),
so it could be very large when ε is very small. In a word, the decay pattern is closely
related to the cutoff parameter ε. In previous works, see [19] for instance, under the
same assumption f0∈HN

−p(γ/2+s), since the parameter ε is fixed, in terms of large time
behavior, one has

|f ε(t)|2HNl .
|f0|2HNl

(1+C2t)q
. (1.29)

Because of the largeness of t∗ and p>q, (1.24) is more refined than (1.29). More
importantly, it reveals the role of the cut-off parameter ε, and discloses the difference
between cutoff and non-cutoff. One may see the difference clearly in Figure 1.1, where

Fig. 1.1. Comparison of different decay rates.

we set p= 2 and q= 1 with γ=−4s. We choose ε= 1/10 in order to have a relatively
visible difference. Note that the graph is drawn after taking the logarithm. Thus
negative linear relation implies polynomial decay rates. In Figure 1.1, the red solid
line represents decay of the solution f to the non-cutoff linearized Boltzmann equation.
For the solution f ε to the cutoff linearized Boltzmann equation, earlier result (1.29) is
depicted by the blue dashed line, and our result (1.24) by the green dot-and-dashed
line.
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We have two comments. First, before the critical time t∗, both f and f ε enjoy the
same faster decay rate O(t−2), while after t∗, the decay rate of f ε shifts to O(t−1).
Second, the critical time t∗ is extremely large when ε is extremely small, which demon-
strates the superiority of the dot-and-dashed line over the dashed line, and thus that of
(1.24) over (1.29).

Remark 1.3. Equation (1.26) tells us that if the initial data f0 is concentrated in
some ring around |v|∼2j and far away from origin, the L2 energy would conserve for a
very long time. On the other hand, (1.27) insures that over the long time interval, the
corresponding L2 energy decays in an exponential pattern, albeit with a very slow rate
λε−2s2jγ/2.

Our second result is concerned with the global well-posedness and the global dy-
namics of Equation (1.8). As a direct consequence, we derive the asymptotic formula
for the solutions to (1.7) and (1.8) , which solves Problem 2. We will use the following
energy functional

EN,l(f) :=

N∑
j=0

||f ||2
HN−jx Ḣjl+jγ

. (1.30)

We assume l≥2−Nγ in order to apply Lemma 2.1. For simplicity, set EN (f) :=
EN,2−Nγ(f).

Theorem 1.2. Let ε≥0 be small enough, −3<γ<−2s and δ0>0 be a sufficiently
small constant which is independent of ε. Let f0 verify (1.9) and E4(f0)≤ δ0.

(1) (Global well-posedness.) The Cauchy problem (1.8) (when ε= 0, it is understood
as (1.7)) admits a unique and global solution f ε verifying

sup
t≥0
E4(f ε(t))≤C4E4(f0), (1.31)

for some universal constant C4.

(2) (Propagation of regularity.) Fix N ≥4,l≥2−Nγ, there is a sufficiently small
constant 0<δN,l≤ δ0 such that, if E4(f0)≤ δN,l and EN,l(f0)<∞, then

sup
t≥0
EN,l(f ε(t))≤PN,l

(
EN,l(f0)

)
. (1.32)

Here δN,l could depend on N,l but is independent of ε. PN,l is an increasing function
verifying PN,l(0) = 0.

(3) (Global dynamics.) Fix N ≥4,l≥2−Nγ,p>0,q=p(1+2s/γ), assume E4(f0)≤
δN,l−p(γ/2+s) and EN,l−p(γ/2+s)(f0)<∞. For simplicity and clarity, denote

c(f0,ε) := 2c(ε2s)
pq
p−qC(p,q,N)EN,l−p(γ/2+s)(f0)∼ (ε2s)

pq
p−q EN,l−p(γ/2+s)(f0),

where c>1 is a constant depending only on N,l, and C(p,q,N) is an explicitly
computable constant depending on p,q,N . If EN,l(f0)≥ c(f0,ε), there is critical
time t∗>0 such that EN,l(f ε(t∗))≤ c(f0,ε)≤ cEN,l(f ε(t∗)) and

EN,l(f ε(t)). EN,l(f0)

(1+C1t)p
1t≤t∗+

EN,l(f ε(t∗))
(1+C2(t− t∗))q

1t>t∗ . (1.33)

Here C1∼EN,l(f0)1/pEN,l−p(γ/2+s)(f0)−1/p,C2∼ ε2sq/(p−q).
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If cEN,l(f0)≤ c(f0,ε), then

EN,l(f ε(t)). EN,l(f0)

(1+C2t)q
, (1.34)

where C2∼EN,l(f0)1/qEN,l−p(γ/2+s)(f0)−1/q.

(4) (Global asymptotic formula.) Fix N ≥4,l≥2−Nγ, assume that E4(f0)≤
δN+2,l+2−2γ and EN+2,l+2−2γ(f0)<∞, then

sup
t≥0
EN,l(f(t)−f ε(t))≤C(EN+2,l+2−2γ(f0))ε4−4s, (1.35)

where f and f ε are the solutions to (1.7) and (1.8) respectively.

Some comments are in order:

Remark 1.4. We study the Boltzmann equation with and without angular cutoff
simultaneously in the near-equilibrium framework. As for the global well-posedness
(1.31) and the propagation of regularity (1.32), we only require smallness of E4(f0),
rather than smallness of EN,l(f0), which is different from and an improvement over the
results in [12] for cutoff case and [4, 10] for non-cutoff case.

Remark 1.5. As for the minimal regularity of initial datum, we only need N ≥4.
Actually, the minimal order can be improved to −3−2γ+δ for any δ>0 if one needs to
use the embedding L∞→H3/2+δ in dimension 3. Thus when γ is near −3, N ≥3+δ is
required, which means 4 is the smallest achievable integer. This issue is indicated in [10].
Note that [12] and [4] impose N ≥8 and N ≥6 respectively. Notably, very recently [9]
establishes well-posedness of Boltzmann and Landau equation in a low regularity space

containing H
3/2+δ
x L2 in our notation.

Remark 1.6. Equations (1.24) and (1.33) together show that the behavior of the
solution to the non-linear equations enjoy the same decay pattern as that for the semi-
group generated by the linearized collision operator. The global error estimate (1.35)
is also established for the solutions f ε and f . To our best knowledge, these results are
new for the very soft potentials.

1.5. Organization of the paper. In Section 2, we recall some known results
on collision operators. Section 3 is devoted to the longtime behavior of the semi-group
e−L

εt, that is, the proof of Theorem 1.1. In Section 4, we prove Theorem 1.2. In the
appendix, we list some useful results and an example of an ordinary differential equation.

2. Estimates of the collision operators
In this section, we recall from [14] some results, namely, coercivity estimate of Lε,

upper bound of Γε(g,h), and commutator estimate between Γε(g,·) and Wl.
For explicit spectral gap and coercivity estimates of the linearized Boltzmann and

Landau operators, one may refer to [6,15,16]. One may also refer to the recent work [2]
for the sharp coercivity estimate of the linearized Boltzmann operator. The following
is Theorem 1.1 in [14], which is a sharp coercivity estimate of Lε. By “sharp” we mean
the lower and upper bound share the same norm.

Theorem 2.1. There exists a constant ε0>0 such that for 0≤ ε≤ ε0 and any smooth
function f ,

〈Lεf,f〉+ |f |2L2
γ/2
∼|f |2ε,γ/2 = |W ε((−∆S2)1/2)f |2L2

γ/2
+ |W ε(D)f |2L2

γ/2
+ |W εf |2L2

γ/2
. (2.1)
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Let λ be the largest number such that the following is valid for any smooth function
f ,

〈Lεf,f〉+ |f |2L2
γ/2
≥λ|f |2ε,γ/2. (2.2)

The following is Proposition 2.4 in [14], which says that 〈Lεf,f〉 produces “strict”
coercivity in the space N⊥. This type of estimate is usually referred to as “spectral
gap” estimate.

Proposition 2.1. For any smooth function f , we have

〈Lεf,f〉≥λ|f−Pf |2ε,γ/2.
In the near-equilibrium framework, a key step is to control the non-linear term

Γ(f,f) via the linear term Lf . That is, to establish |〈Γ(f,f),f〉|. 〈Lf,f〉 under small-
ness assumption on f . For the estimate of the trilinear 〈Γ(f,f),f〉, one may refer
to [4, 5, 10].

To study the non-linear Equation (1.8), we need to control 〈Γε(g,h),f〉 in terms of
the norm | · |ε,γ/2 of the coercivity estimate in Theorem 2.1. The following upper bound
estimate of Γε is from Theorem 2.2 in [14].

Theorem 2.2. For any η>0 and smooth functions g,h and f , the following statements
are valid.

(1) If γ>−3/2, |〈Γε(g,h),f〉|. |g|L2 |h|ε,γ/2|f |ε,γ/2;

(2) If γ=−3/2, |〈Γε(g,h),f〉|. |g|L2(|W ε(D)µ1/8h|Hη + |h|ε,γ/2)|f |ε,γ/2;

(3) If −3<γ≤−3/2,

|〈Γε(g,h),f〉|. |µ1/8g|Hs1 |W ε(D)µ1/8h|Hs2 |W ε(D)f |Hs3
γ/2

+ |g|L2 |h|ε,γ/2|f |ε,γ/2,

where s1,s2 and s3 verify that s1 +s2 +s3 =−γ−3/2 if s2 +s3∈ (0,−γ−3/2] and
s1 =−γ−3/2+η if s2 =s3 = 0.

Note that the above result is little bit different from that in [14] in terms
of the weight on function h. More precisely, in [14], the corresponding part is
|µ1/8g|Hs1 |W ε(D)h|Hs2

γ/2
|W ε(D)f |Hs3

γ/2
. We emphasize that the weight on h can be im-

proved to µ1/8 by observing that the term comes from the velocity singularity |v−v∗|≤1,

which implies µ∗.µ
1/2
∗ µ1/4. Thanks to the existence of µ∗ in g∗, we can get some µ

power for h.
Recall Lεg=−Γε(g,µ1/2)−Γε(µ1/2,g). Then as a direct consequence of Theorem

2.2, we have

Corollary 2.1. If γ>−3, there holds

|〈Lεg,f〉|. |g|ε,γ/2|f |ε,γ/2.

The following commutator estimate between Γε(g,·) and Wl is Lemma 2.11 in [14].

Lemma 2.1. Let l≥2. There hold

(1) if γ+2≥0, |〈Γε(g,Wlh)−WlΓ
ε(g,h),f〉|. |g|L2 |Wl+γ/2h|L2 |f |ε,γ/2;

(2) if −3<γ<−2,

|〈Γε(g,Wlh)−WlΓ
ε(g,h),f〉|. |g|L2 |Wl+γ/2h|L2 |f |ε,γ/2 + |µ1/32g|Hs1 |µ1/32h|Hs2 |f |ε,γ/2,

where s1,s2∈ [0,−γ/2−1] with s1 +s2 =−γ/2−1.
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As a result of Lemma 2.1, we have

Corollary 2.2. If −3<γ<0,l≥2, there holds

|〈[Lε,Wl]g,f〉|. |g|L2
l+γ/2
|f |ε,γ/2.

3. Longtime behavior of e−L
εt

In this section, we will give the proof to Theorem 1.1. Throughout this section, we
will set f =e−L

εtf0 with f0∈N⊥. Then f verifies that f ∈N⊥ and{
∂tf+Lεf = 0;

f |t=0 =f0.
(3.1)

To deal with derivatives w.r.t. the velocity variable v, let us deviate to introduce
some notation. By binomial expansion, we have

∂αβΓε(g,h) =
∑

β0+β1+β2=β,α1+α2=α

Cβ0,β1,β2

β Cα1,α2
α Γε(∂α1

β1
g,∂α2

β2
h;β0), (3.2)

where

Γε(g,h;β)(v) :=

∫
S2×R3

Bε(v−v∗,σ)(∂βµ
1/2)∗(g

′
∗h
′−g∗h)dσdv∗. (3.3)

Here Cβ0,β1,β2

β is the combination such that β0 +β1 +β2 =β. The notation Cα1,α2
α is

similarly interpreted. We remark that Γε(g,h;β) satisfies the upper bound in Theorem
2.2 and commutator estimate in Lemma 2.1. We define

Lε,β0,β1g :=−Γε(∂β1µ
1/2,g;β0)−Γε(g,∂β1µ

1/2;β0). (3.4)

Therefore Lε,β0,β1 enjoys the same commutator and upper bound as that of Lε in Corol-
lary 2.2 and Corollary 2.1. Recalling Lεg=−Γε(µ1/2,g)−Γε(g,µ1/2), (3.2), (3.3) and
(3.4), we have

∂βLεg=Lε∂βg−
∑

β0+β1+β2=β,β2<β

Cβ0,β1,β2

β [Γε(∂β1
µ1/2,∂β2

g;β0)+Γε(∂β1
g,∂β2

µ1/2;β0)]

=Lε∂βg+
∑

β0+β1+β2=β,β2<β

Cβ0,β1,β2

β Lε,β0,β1∂β2
g, (3.5)

where we use the fact Cβ0,β1,β2

β =Cβ0,β2,β1

β in the last line.
We set to prove the following propagation result.

Proposition 3.1. Fix l≥2, suppose f ε is the solution to (3.1), then

sup
t
|f ε(t)|2HNl +λ

∫ ∞
0

|f ε(t)|2HN
ε,l+γ/2

dt. |f0|2HNl .

Proof. For simplicity, we omit the superscript ε in f ε. Start from (3.1), take inner
product with f , by the fact f ∈N⊥ and Proposition 2.1, we get

d

dt
|f |2H0 +2λ|f |2H0

ε,γ/2
≤0. (3.6)
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Fix an index β, apply Wl∂β to both sides of ∂tf+Lεf = 0, by (3.5), we have

∂tWl∂βf+Wl∂βLεf =∂tWl∂βf+Wl

∑
β0+β1+β2=β

Cβ0,β1,β2

β Lε,β0,β1∂β2
f = 0.

By introducing the commutator [Lε,β0,β1 ,Wl] and rearranging, we get

∂tWl∂βf+LεWl∂βf =
∑

β0+β1+β2=β

Cβ0,β1,β2

β [Lε,β0,β1 ,Wl]∂β2f

−
∑

β0+β1+β2=β,β2<β

Cβ0,β1,β2

β Lε,β0,β1Wl∂β2f. (3.7)

When |β|= 0, we simply have ∂tWlf+LεWlf = [Lε,Wl]f. Taking inner product with
Wlf , using (2.2), Corollary 2.2, by the basic inequality 2AB≤ηA2 +η−1B2, we have

d

dt
|f |2H0

l
+

3

2
λ|f |2H0

ε,l+γ/2
. |f |2H0

l+γ/2
. |f l|2H0

l+γ/2
+ |fh|2H0

l+γ/2
.

By the definition of W ε in (1.15) and interpolation, we have

|fh|2H0
l+γ/2

≤ ε2s|f |2H0
ε,l+γ/2

, (3.8)

|f l|2H0
l+γ/2

≤η|f l|2H0
l+γ/2+s

+Cη|f l|2H0
γ/2+s

≤η|f |2H0
ε,l+γ/2

+Cη|f |2H0
ε,γ/2

. (3.9)

By taking η small enough such that η�λ, when ε is small such that ε2s�λ, we have

d

dt
|f |2H0

l
+λ|f |2H0

ε,l+γ/2
. |f |2H0

ε,γ/2
. (3.10)

Making a suitable combination of (3.10) and (3.6), we have

d

dt

(
M |f |2H0 + |f |2H0

l

)
+λ
(
M |f |2H0

ε,γ/2
+ |f |2H0

ε,l+γ/2

)
≤0. (3.11)

For 0≤ i≤N , set

Vi,l(f) :=M i|f |2H0 +

i∑
j=0

Ki
j |f |2Ḣjl ,U

i,l(f) :=M i|f |2H0
ε,γ/2

+

i∑
j=0

Ki
j |f |2Ḣj

ε,l+γ/2

,

for some constants M i,Ki
j≥1 which will be determined later. For 0≤ i≤N , we proceed

to establish

d

dt
Vi,l(f)+λU i,l(f)≤0. (3.12)

Note that when i= 0, (3.12) reduces to (3.11), which has been proved. Also note
that VN,l(f)∼|f |2

HNl
and UN,l(f)∼|f |2

HN
ε,l+γ/2

. Moveover, we have VN,l(f)≥|f |2
HNl

and

UN,l(f)≥|f |2
HN
ε,l+γ/2

since M i,Ki
j≥1. So when i=N , (3.12) yields the proposition im-

mediately. In a word, it remains to derive (3.12).
We will prove (3.12) by mathematical induction. Suppose (3.12) is valid for i=k,

that is,

d

dt

Mk|f |2H0 +

k∑
j=0

Kk
j |f |2Ḣjl

+λ

Mk|f |2H0
ε,γ/2

+

k∑
j=0

Kk
j |f |2Ḣj

ε,l+γ/2

≤0, (3.13)



300 ASYMPTOTIC ANALYSIS OF THE BOLTZMANN EQUATION

we now go to prove that (3.12) is also valid for i=k+1. Start from (3.7) for |β|=k+1
and l≥2, take inner product with Wl∂βf , using (2.2), Corollary 2.2 and Corollary 2.1,
by the basic inequality 2AB≤ηA2 +η−1B2, we have

d

dt
|∂βf |2L2

l
+

3

2
λ|∂βf |2ε,l+γ/2. |f |

2
Hk+1
l+γ/2

+ |f |2Hk
ε,l+γ/2

.

Taking sum over |β|=k+1, we get

d

dt
|f |2

Ḣk+1
l

+
3

2
λ|f |2

Ḣk+1
ε,l+γ/2

. |f |2
Hk+1
l+γ/2

+ |f |2Hk
ε,l+γ/2

.

By Proposition A.2, we have for any η>0,

|f |2
Hk+1
l+γ/2

. (η+ε2s)|f |2
Hk+1
ε,l+γ/2

+Cη|f |2H0
l+γ/2

≤ (η+ε2s)|f |2
Ḣk+1
ε,l+γ/2

+Cη|f |2Hk
ε,l+γ/2

.

Taking η small enough such that η�λ, then when ε is small enough verifying ε2s�λ,
we get

d

dt
|f |2

Ḣk+1
l

+λ|f |2
Ḣk+1
ε,l+γ/2

. |f |2Hk
ε,l+γ/2

. (3.14)

Then a suitable combination of (3.13) and (3.14) will produce (3.12) for i=k+1. More
precisely, we can multiply (3.13) by a large constant and then add the resulting inequal-
ity to (3.14) to cancel the term |f |2

Hk
ε,l+γ/2

on the right-hand side.

We now prove a technical proposition regarding to the decay rate of a special type
of ordinary differential inequality.

Proposition 3.2. Let c≥1,c1,c2 and p>q be five universal and positive constants.
Consider the ordinary differential inequality:

d

dt
Y +c1Y

1+ 1
p

1 +c2Y
1+ 1

q

2 ≤0;

Y |t=0 =Y0,
(3.15)

where c−1(Y1 +Y2)≤Y ≤ c(Y1 +Y2) and Y,Y1,Y2≥0. If Y0>2c(c1/c2)
pq
p−q , let t∗ be the

time such that Y (t∗) = 2c(c1/c2)
pq
p−q , then for any t≥0,

Y (t)≤ Y0
(1+C1t)p

1t<t∗+
Y∗

(1+C2(t− t∗))q
1t≥t∗ , (3.16)

where Y∗=Y (t∗),C1 = c1
2cp (Y0

2c )1/p,C2 = c2
2cq (c1/c2)

p
p−q . Moreover, the critical time veri-

fies t∗≤ ((Y0/Y∗)
1/p−1)/C1.

If Y0≤2c(c1/c2)
pq
p−q , then for any t≥0,

Y (t)≤ Y0
(1+C2t)q

, (3.17)

where C2 = c2
2cq (Y0

2c )1/q.

Proof. It is easy to check that Y (t) is a strictly decreasing function before it

vanishes. When Y0>2c(c1/c2)
pq
p−q , since Y (t∗) = 2c(c1/c2)

pq
p−q , we have

c1(
Y (t∗)

2c
)1+

1
p = c2(

Y (t∗)

2c
)1+

1
q . (3.18)
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Since Y ≤ c(Y1 +Y2), one has max{Y1,Y2}≥ 1
2cY . Then we deduce

c1Y
1+ 1

p

1 +c2Y
1+ 1

q

2 ≥max{c1Y
1+ 1

p

1 ,c2Y
1+ 1

q

2 }

≥min{c1(
Y

2c
)1+

1
p ,c2(

Y

2c
)1+

1
q }=


c1(

Y

2c
)1+

1
p , t< t∗;

c2(
Y

2c
)1+

1
q , t≥ t∗.

(3.19)

Note that the last equality employs (3.18), which is also the reason of our choice of t∗.
When t<t∗, we have

d

dt
Y +c1(

Y

2c
)1+

1
p ≤0,

from which we get

Y (t)≤ Y0
(1+C1t)p

, (3.20)

with C1 = c1
2cp (Y0

2c )1/p. On the interval [t∗,∞), we have

d

dt
Y +c2(

Y

2c
)1+

1
q ≤0,

from which we get

Y (t)≤ Y (t∗)

(1+C2(t− t∗))q
, (3.21)

with C2 = c2
2cq (Y (t∗)

2c )1/q = c2
2cq (c1/c2)

p
p−q . Patching together (3.20) and (3.21), we con-

clude (3.16). Since Y (t) is a strictly decreasing function before it vanishes, we have

Y (t∗)≤ lim
t→t∗−

Y (t)≤ Y0
(1+C1t∗)p

,

which yields t∗≤ ((Y0/Y∗)
1/p−1)/C1.

When Y0≤2c( c1c2 )(1/q−1/p)
−1

, we have

c1(
Y0
2c

)1+
1
p ≥ c2(

Y0
2c

)1+
1
q . (3.22)

Similar to (3.19), we have c1Y1 +c2Y
1+ 1

q

2 ≥ c2( Y2c )
1+ 1

q and thus on the interval [0,∞),
we get

d

dt
Y +c2(

Y

2c
)1+

1
q ≤0,

which yields (3.17). The proof is complete now.

In the appendix, we give a special case of the inequality (3.15) as example A.1 which
shows the decay structure (3.16) is optimal.

With the help of Proposition 3.2, we are ready to prove the first part of Theorem
1.1, namely the refined polynomial decay rates.
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Proof. (Proof of Theorem 1.1: Refined polynomial decay rates (1.24) and
(1.25).) Let Y1 = |f l|2

HNl
,Y2 = |fh|2

HNl
, then VN,l(f)∼|f |2

HNl
∼Y1 +Y2. To be clear, we

take a universal constant c>2 such that

c−1(Y1 +Y2)≤|f |2HNl ≤V
N,l(f)≤ c

2
|f |2HNl ≤ c(Y1 +Y2).

We remark that the constant c could depend on N,l by the definition of VN,l(f). We
will use the following interpolation result:

|f |L2 ≤|f |θL2
α
|f |1−θ

L2
β
,α<0<β,0<θ<1,θα+(1−θ)β= 0. (3.23)

Fix p>0, set α=γ/2+s,θ= p
p+1 ,β=−p(γ/2+s) in (3.23), we get

|Wl∂βf
l|L2 ≤|Wl∂βf

l|p/(p+1)

L2
γ/2+s

|Wl∂βf
l|1/(p+1)

L2
−p(γ/2+s)

≤|Wl∂βf
l|p/(p+1)

L2
γ/2+s

(C|f0|2HN
l−p(γ/2+s)

)1/2(p+1). (3.24)

where the last inequality comes from Proposition 3.1. More precisely, we used

|Wl∂βf
l(t)|L2

−p(γ/2+s)
≤|f(t)|HN

l−p(γ/2+s)
≤C|f0|HN

l−p(γ/2+s)
.

Rearranging (3.24), we have

|Wl∂βf
l|2L2

γ/2+s
≥C−1/p|f0|−2/pHN

l−p(γ/2+s)
|Wl∂βf

l|2(1+1/p)
L2 . (3.25)

There is some constant C(p,n), such that (
∑n
i=1ai)

1+1/p≤C(p,n)
∑n
i=1a

1+1/p
i . Taking

sum over |β|≤N , for some constant C(p,N), we get∑
|β|≤N

|Wl∂βf
l|2L2

γ/2+s
≥C(p,N)|f0|−2/pHN

l−p(γ/2+s)
|f l|2(1+1/p)

HNl
.

Taking α=γ/2,q=p(1+2s/γ),θ= q
q+1 = −p(γ/2+s)

−p(γ/2+s)−γ/2 ,β=−p(γ/2+s) in (3.23), we
get

|Wl∂βf
h|L2 ≤|Wl∂βf

h|q/(q+1)

L2
γ/2

|Wl∂βf
h|1/(q+1)

L2
−p(γ/2+s)

. (3.26)

By a similar argument, we have∑
|β|≤N

|Wl∂βf
h|2L2

γ/2
≥C(q,N)|f0|−2/qHN

l−p(γ/2+s)
|fh|2(1+1/q)

HNl
. (3.27)

By the fact |f |2
HN
ε,l+γ/2

& |f l|2
HN
ε,l+γ/2+s

+ε−2s|f l|2
HN
ε,l+γ/2

, and the estimates (3.25) and

(3.27), we get

|f |2HN
ε,l+γ/2

≥C(p,N)|f0|−2/pHN
l−p(γ/2+s)

|f l|2(1+1/p)

HNl

+ε−2sC(q,N)|f0|−2/qHN
l−p(γ/2+s)

|fh|2(1+1/q)

HNl
. (3.28)

By (3.12) and the fact UN,l(f)≥|f |2
HN
ε,l+γ/2

, we have

d

dt
VN,l(f)+λ|f |2HN

ε,l+γ/2
≤0. (3.29)
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Plugging (3.28) into (3.29), we have

d

dt
VN,l(f)+c1Y

1+1/p
1 +c2Y

1+1/q
2 ≤0,

where c1 =λC(p,N)|f0|−2/pHN
l−p(γ/2+s)

,c2 =λε−2sC(q,N)|f0|−2/qHN
l−p(γ/2+s)

. Applying Proposi-

tion 3.2 with Y =VN,l(f),Y1 = |f l|2
HNl

,Y2 = |fh|2
HNl

, we get the following results. If

VN,l(f0)>2c(c1/c2)
pq
p−q , let t∗ be the time such that VN,l(f(t∗)) = 2c(c1/c2)

pq
p−q , then

for any t≥0,

VN,l(f(t))≤ V
N,l(f0)

(1+C1t)p
1t<t∗+

VN,l(f(t∗))

(1+C2(t− t∗))q
1t≥t∗ , (3.30)

where C1 = c1
2cp (V

N,l(f0)
2c )1/p∼|f0|2/pHNl

|f0|−2/pHN
l−p(γ/2+s)

,C2 = c2
2cq (c1/c2)

p
p−q ∼ ε2sq/(p−q).

If VN,l(f0)≤2c(c1/c2)
pq
p−q , then for any t≥0,

VN,l(f(t))≤ V
N,l(f0)

(1+C2t)q
, (3.31)

where C2 = c2
2cq (V

N,l(f0)
2c )1/q∼|f0|2/qHNl

|f0|−2/qHN
l−p(γ/2+s)

.

Note that

(c1/c2)
pq
p−q = (C(p,N)/C(q,N)ε2s)

pq
p−q |f0|2HN

l−p(γ/2+s)
:= (ε2s)

pq
p−qC(p,q,N)|f0|2HN

l−p(γ/2+s)
.

With the equivalence

|f |2HNl ≤V
N,l(f)≤ c|f |2HNl ,

we get (1.24) and (1.25) from (3.30) and (3.31) respectively.

Before going to prove the remaining part of Theorem 1.1, we prove the following
technical lemma for a commutator estimate.

Lemma 3.1. Let γ>−3. Suppose j≥3, then for any η>0, there holds

|〈[Lε,Pj ]f,Pjf〉|.η−1(exp(−C122j)|W εf |2L2
γ/2

+

j+3∑
k=j−3

|Pkf |2L2
γ/2

)+η|Pjf |2ε,γ/2,

where C1>0 is a universal constant.

Proof. By the definition of Lε(see (1.6)), it suffices to consider I(g,h) :=

〈Γε(g,hϕj)−Γε(g,h)ϕj ,fϕj〉 where (g,h) = (µ
1
2 ,f) or (g,h) = (f,µ

1
2 ). Recalling ϕj(·) =

ψ(2−j ·) and ψ has support in { 34 ≤|v|≤
8
3}, so the support of ϕj is contained in

{ 34×2j≤|v|≤ 8
3×2j}.

Direct calculation will give

I(g,h) =

∫
Bε
[
(gµ

1
2 )∗h(fϕj)

′(−(ϕj)
′+ϕj

)
+g∗

(
(µ

1
2 )′∗−(µ

1
2 )∗
)
h(fϕj)

′(−(ϕj)
′+ϕj

)]
dσdv∗dv.
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Here and in the following σ∈S2,v∈R3,v∗∈R3, and we omit the integral region for
notational brevity. By Cauchy-Schwartz inequality, we get

|I(g,h)|.
(∫

Bεg2∗h
2(µ

1
2
∗ +(µ

1
2 )′∗)

(
(ϕj)

′−ϕj
)2
dσdv∗dv

) 1
2

×
(∫

Bε
[
µ

1
2
∗
(
(fϕj)

′−fϕj
)2

+(fϕj)
2
(
(µ

1
4 )′∗−(µ

1
4 )∗
)2]

dσdv∗dv

) 1
2

+
∣∣∫ Bε(gµ

1
2 )∗hfϕj

(
(ϕj)

′−ϕj
)
dσdv∗dv

∣∣
.η|fϕj |2ε,γ/2 +η−1J (g,h)+K(g,h),

where

J (g,h) :=

∫
Bεg2∗h

2(µ
1
2
∗ +(µ

1
2 )′∗)

(
(ϕj)

′−ϕj
)2
dσdv∗dv,

K(g,h) :=
∣∣∫ Bε(gµ

1
2 )∗hfϕj

(
(ϕj)

′−ϕj
)
dσdv∗dv

∣∣.
It remains to analyze J (g,h) and K(g,h).

Step 1: Estimate of J (g,h). We separate J (g,h) =J1(g,h)+J2(g,h)+J3(g,h)
corresponding to {|v∗|≤2j/10}, {|v∗|≥2j/10, |v|≤ |v∗|/4} and {|v∗|≥2j/10,|v|≥ |v∗|/4}
respectively.

Step 1.1: Estimate of J1(g,h). In J1(g,h), we have {|v∗|≤2j/10} and then

|(ϕj)(v′)−ϕj(v)|21|v∗|≤2j/10 = |(ϕj)(v′)−ϕj(v)|21|v∗|≤2j/10,2j/5≤|v|≤10×2j .

By Taylor expansion and the fact |∇ϕj |L∞ .2−j , we get

|(ϕj)(v′)−ϕj(v)|21|v∗|≤2j/10.2−2j |v−v∗|2θ21|v∗|≤2j/10,2j/5≤|v|≤10×2j

.θ21|v∗|≤2j/10,2j/5≤|v|≤10×2j .

From which we get∫
Bε(ϕj(v

′)−ϕj(v))2dσ. |v−v∗|γ1|v∗|≤2j/10,2j/5≤|v|≤10×2j

. 〈v〉γ1|v∗|≤2j/10,2j/5≤|v|≤10×2j .

where we use 3|v|/2≥|v−v∗|≥ |v|/2&1, and thus |v−v∗|γ∼〈v−v∗〉γ∼〈v〉γ . Also note
that |v∗|≤ |v|, we get for any a≥0,

J1(g,h).
∫
g2∗h

2〈v〉−a〈v〉γ+a1|v∗|≤2j/10,2j/5≤|v|≤10×2jdvdv∗

. |g1|·|≤2j/10|2L2
−a
|h12j/5≤|·|≤10×2j |2L2

γ/2+a
.

When (g,h) = (µ1/2,f), take a= 0, we get

J1(µ1/2,f). |µ1/21|·|≤2j/10|2L2 |f12j/5≤|·|≤10×2j |2L2
γ/2

. |f12j/5≤|·|≤10×2j |2L2
γ/2
.
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When (g,h) = (f,µ1/2), take a= 0∨(−γ/2) := max{0,−γ/2}, by the fact µ1/2(v).
exp(−C122j) if |v|∈ [2j/5,10×2j ], we get

J1(f,µ1/2). |f1|·|≤2j/10|2L2
γ/2
|µ1/212j/5≤|·|≤10×2j |2L2

γ/2∨0
. exp(−C122j)|W εf |2L2

γ/2
.

Step 1.2: Estimate of J2(g,h). In J2(g,h), we have {|v∗|≥2j/10,|v|≤ |v∗|/4},
and so it is easy to check 3

4 |v∗|≤ |v−v∗|≤
5
4 |v∗|∼ |v−v

′
∗|∼ |v′∗|. Together with |v−

v∗|/
√

2≤|v−v′∗|≤ |v−v∗|, we have |v′∗|≥ |v−v′∗|−|v|≥ ( 3
4
√
2
−1/4)|v∗|≥ |v∗|/4. There-

fore (µ
1
2
∗ +(µ

1
2 )′∗). exp(−C122j). Thanks to (ϕj(v

′)−ϕj(v))2.min{|v−v∗|2θ2,1} and
Proposition A.1, we get∫

Bε(µ
1
2
∗ +(µ

1
2 )′∗)(ϕj(v

′)−ϕj(v))2dσ

. exp(−C122j)|v−v∗|γ(W ε)2(v−v∗)1|v∗|≥2j/10,|v|≤|v∗|/4

. exp(−C122j)〈v∗〉γ(W ε)2(v∗)1|v∗|≥2j/10,|v|≤|v∗|/4.

Also note that |v|≤ |v∗|, we get for any a≥0,

J2(g,h). exp(−C122j)

∫
g2∗h

2〈v〉−a〈v∗〉γ+a1|v∗|≥2j/10,|v|≤|v∗|/4dvdv∗

. exp(−C122j)|W εg1|·|≥2j/10|2L2
γ/2+a

|h|2L2
−a
.

When (g,h) = (µ1/2,f), take a= 0∨(−γ/2), and when (g,h) = (f,µ1/2), take a= 0, we
get

J2(µ1/2,f). exp(−C122j)|W εf |2L2
γ/2
,J2(f,µ1/2). exp(−C122j)|W εf |2L2

γ/2
.

Step 1.3: Estimate of J3(g,h). In J3(g,h), we have {|v∗|≥2j/10,|v|≥ |v∗|/4}, and
so there holds |v|≥2j/40. Thanks to (ϕj(v

′)−ϕj(v))2.min{|v−v∗|2θ2,1}, Proposition
A.1 and |v∗|. |v|, we get∫

Bε(ϕj(v
′)−ϕj(v))2dσ. |v−v∗|γ(W ε)2(v−v∗)1|v∗|≥2j/10,|v|≥|v∗|/4

. |v−v∗|γ(W ε)2(v)1|v∗|≥2j/10,|v|≥2j/40,

which gives

J3(g,h).
∫
g2∗h

2|v−v∗|γ(W ε)2(v)1|v∗|≥2j/10,|v|≥2j/40dvdv∗.

When (g,h) = (µ1/2,f), thanks to the fact
∫
µ∗|v−v∗|γ1|v∗|≥2j/10dv∗. exp(−C122j)〈v〉γ ,

we get

J3(µ1/2,f). exp(−C122j)

∫
f2(W ε)2(v)〈v〉γdv. exp(−C122j)|W εf |2L2

γ/2
.

When (g,h) = (f,µ1/2), thanks to the fact
∫
µ|v−v∗|γ(W ε)2(v)1|v|≥2j/40dv.

exp(−C122j)〈v∗〉γ , we get

J3(f,µ1/2). exp(−C122j)

∫
f2∗ 〈v∗〉γdv∗. exp(−C122j)|W εf |2L2

γ/2
.
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Patch together the above estimates in Step 1.1, Step 1.2 and Step 1.3, to get

J (µ1/2,f)+J (f,µ1/2). exp(−C122j)|W εf |2L2
γ/2

+ |f12j/5≤|·|≤10×2j |2L2
γ/2
.

Step 2: Estimate of K(g,h). Recall K(g,h) :=
∣∣∫ Bε(gµ 1

2 )∗hfϕj
(
(ϕj)

′−
ϕj
)
dσdv∗dv

∣∣. We separate K(g,h)≤K1(g,h)+K2(g,h) corresponding to {|v∗|≤2j/10}
and {|v∗|≥2j/10} respectively, where

K1(g,h) :=
∣∣∫ Bε1|v∗|≤2j/10(gµ

1
2 )∗hfϕj

(
(ϕj)

′−ϕj
)
dσdv∗dv

∣∣,
K2(g,h) :=

∣∣∫ Bε1|v∗|≥2j/10(gµ
1
2 )∗hfϕj

(
(ϕj)

′−ϕj
)
dσdv∗dv

∣∣.
Step 2.1: Estimate of K1(g,h). In K1(g,h), we have {|v∗|≤2j/10}. By Taylor

expansion

(ϕj)(v
′)−ϕj(v) = (∇ϕj)(v) ·(v−v′)+

1

2

∫ 1

0

(∇2ϕj)(v(κ)) : (v′−v)⊗(v′−v)dκ, (3.32)

where v(κ) =v+κ(v′−v). In this case, by previous arguments in Step 1.1, |v∗| is rela-
tively small and |v|∼ |v−v∗|∼ |v(κ)|∼2j .

By the facts |∇ϕj |L∞ .2−j , |∇2ϕj |L∞ .2−2j , the symmetry property
∫
Bε(v′−

v)dσ= (v∗−v)
∫
Bε sin2(θ/2)dσ, we get

|
∫
Bε(ϕj(v

′)−ϕj(v))dσ|. 〈v〉γ1|v∗|≤2j/10,2j/5≤|v|≤10×2j ,

which gives

|K1(g,h)|.
∫
|(gµ 1

2 )∗hf |ϕj 〈v〉γ1|v∗|≤2j/10,2j/5≤|v|≤10×2jdvdv∗

. |gµ 1
2 1|·|≤2j/10|L1 |h12j/5≤|·|≤10×2j |L2

γ/2
|fϕj12j/5≤|·|≤10×2j |L2

γ/2
.

When (g,h) = (µ1/2,f), we get

|K1(µ1/2,f)|. |f12j/5≤|·|≤10×2j |2L2
γ/2
.

When (g,h) = (f,µ1/2), by the fact µ1/2(v). exp(−C122j) if |v|∈ [2j/5,10×2j ] and

|fµ 1
2 |L1 . |f |L2

γ/2
, we get

|K1(f,µ1/2)|. exp(−C122j)|f |2L2
γ/2
.

Step 2.2: Estimate of K2(g,h). In K2(g,h), we have {|v∗|≥2j/10}. Note that the
support of ∇ϕj belongs to [2j/10,10×2j ], then by (3.32), we have

(ϕj)(v
′)−ϕj(v) = 12j/10≤|v|≤10×2j (∇ϕj)(v) ·(v−v′)

+
1

2

∫ 1

0

(∇2ϕj)(v(κ)) : (v′−v)⊗(v′−v)dκ,

which gives when 2j/10≤|v|≤10×2j ,

|
∫
bε(cosθ)(ϕj)(v

′)−ϕj(v)dσ|≤ |
∫
bε(cosθ)(∇ϕj)(v) ·(v−v′)dσ|
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+|1
2

∫
bε(cosθ)(∇2ϕj)(v(κ)) : (v′−v)⊗(v′−v)dσdκ|

.2−j |v−v∗|+2−2j |v−v∗|2.

While when |v|<2j/10 or |v|>10×2j , only the second order is left and we get
|(ϕj)(v′)−ϕj(v)|.min{|v−v∗|2θ2,1} and thus

|
∫
bε(cosθ)(ϕj)(v

′)−ϕj(v)dσ|. (W ε)2(|v−v∗|). (W ε)2(v∗)(W
ε)2(v),

which yields

K2(g,h) =
∣∣∫ Bε(gµ

1
2 1|·|≥2j/10)∗hfϕj

(
(ϕj)

′−ϕj
)
dσdv∗dv

∣∣
≤
∫
|v−v∗|γ |(gµ

1
2 1|·|≥2j/10)∗|12j/10≤|v|≤10×2j (2−j |v−v∗|+2−2j |v−v∗|2)

×|hf |ϕjdv∗dv+

∫
|v−v∗|γ |(gµ

1
2 1|·|≥2j/10)∗|(1|v|<2j/10 +1|v|>10×2j )

×(W ε)2(v∗)(W
ε)2(v)|hf |ϕjdv∗dv

:=K2,1(g,h)+K2,2(g,h).

When (g,h) = (µ1/2,f), by the facts µ1/2(v). exp(−C122j) if |v|≥2j/10, and
∫
|v−

v∗|n(µ1/2)∗dv∗. 〈v〉n for n>−3, we get

K2,1(µ1/2,f) =

∫
(µ1|·|≥2j/10)∗12j/10≤|v|≤10×2jaj(v,v∗)f

2ϕjdv∗dv

. exp(−C122j)

∫
12j/10≤|v|≤10×2j (2

−j〈v〉γ+1 +2−2j〈v〉γ+2)f2ϕjdv

. exp(−C122j)|f |2L2
γ/2
,

where for notational brevity, we set aj(v,v∗) := 2−j |v−v∗|γ+1 +2−2j |v−v∗|γ+2. Similar
argument yields

K2,2(µ1/2,f) =

∫
|v−v∗|γ(µ1|·|≥2j/10)∗(1|v|<2j/10 +1|v|>10×2j )(W

ε)2(v∗)(W
ε)2(v)

×f2ϕjdv∗dv
. exp(−C122j)|W εf |2L2

γ/2
.

When (g,h) = (f,µ1/2), we get by Cauchy-Schwartz inequality and similar argu-
ments as before,

K2,1(f,µ1/2)

=

∫
|(fµ1/21|·|≥2j/10)∗|12j/10≤|v|≤10×2jaj(v,v∗)µ1/2|f |ϕjdv∗dv

≤
(∫

(f2µ1/21|·|≥2j/10)∗12j/10≤|v|≤10×2jaj(v,v∗)µ
1/2dv∗dv

)1/2

×
(∫

(µ1/21|·|≥2j/10)∗12j/10≤|v|≤10×2jaj(v,v∗)µ
1/2(fϕj)

2dv∗dv

)1/2
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. exp(−C122j)|f |2L2
γ/2
.

Similar argument yields

K2,2(f,µ1/2)

=

∫
|v−v∗|γ |(fµ1/21|·|≥2j/10)∗|(1|v|<2j/10 +1|v|>10×2j )

×(W ε)2(v∗)(W
ε)2(v)µ1/2|f |ϕjdv∗dv

.

(∫
(f2µ1/41|·|≥2j/10)∗|v−v∗|γµ1/4dv∗dv

)1/2

×
(∫

(µ1/41|·|≥2j/10)∗|v−v∗|γµ1/4(fϕj)
2dv∗dv

)1/2

. exp(−C122j)|f |2L2
γ/2
.

Patch together the above estimates in Step 2.1 and Step 2.2, to get

K(µ1/2,f)+K(f,µ1/2). exp(−C122j)|W εf |2L2
γ/2
.

Patching together all the above estimates, we get the lemma by the fact ψ(x) = 1 if

|x|∈ [4/3,3/2] and thus |f12j/5≤|·|≤10×2j |2L2
γ/2

≤
∑j+3
k=j−3 |Pkf |2L2

γ/2

.

Now we set to prove the second part of Theorem 1.1, namely (1.26) and (1.27).

Proof. (Proof of Theorem 1.1: (1.26) and (1.27).) Applying Pj to both sides
of ∂tf+Lεf = 0, we have

∂tPjf+LεPjf = [Lε,Pj ]f.

Take inner product with Pjf, thanks to Theorem 2.1 and Lemma 3.1, we have

d

dt
|Pjf(t)|2L2 +C|Pjf |2ε,γ/2&−exp(−C122j)|W εf |2L2

γ/2
−

j+3∑
k=j−3

|Pkf |2L2
γ/2
, (3.33)

d

dt
|Pjf(t)|2L2 +λ|Pjf |2ε,γ/2. exp(−C122j)|W εf |2L2

γ/2
+

j+3∑
k=j−3

|Pkf |2L2
γ/2
. (3.34)

Since 2j≥1/ε, we observe |W εPjf |2L2
γ/2

∼ ε−2s2jγ |Pjf |2L2 and

|W ε(D)Wγ/2Pjf |2L2 + |W ε((−∆S2)1/2)Wγ/2Pjf |2. ε−2s2jγ |Pjf |2L2 .

It is obvious to see
∑j+3
k=j−3 |Pkf |2L2

γ/2

.2jγ |f |2L2 . Plugging these facts into (3.33), we

get

d

dt
|Pjf(t)|2L2 &−exp(−C122j)|W εf |2L2

γ/2
−ε−2s2jγ |Pjf |2L2−2jγ |f |2L2 .

By (3.6), we have supt≥0 |f(t)|2L2 ≤|f0|2L2 ,
∫∞
0
|f(t)|2ε,γ/2dt≤ (2λ)−1|f0|2L2 . By the as-

sumption |f0|L2 = 1, we get |Pjf(t)|2L2 ≥|Pjf0|2L2−Cε−2s2jγt−C exp(−C122j). From
this, we conclude the result (1.26).
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We now set to prove (1.27). From (3.34) and the fact
∑j+3
k=j−3 |Pkf |2L2

γ/2

.2jγ |f |2L2 ,

we have

d

dt
|Pjf(t)|2L2 +λε−2s2jγ |Pjf(t)|2L2 ≤C(exp(−C122j)|W εf |2L2

γ/2
+2jγ |f |2L2) :=a(t).

Recall Λ =λε−2s2jγ . By Grönwall’s inequality, we have

|Pjf(t)|2L2 ≤ exp(−Λt)|Pjf0|2L2 +

∫ t

0

exp(Λ(s− t))a(s)ds.

Since γ/2+2s<0, we have |W εf |2
L2
γ/2

≤|f |2
L2
γ/2+s

≤|f |2L2 ≤|f0|2L2 = 1, which gives

a(t)≤C(exp(−C122j)+2jγ),

and thus

|Pjf(t)|2L2 ≤ exp(−Λt)|Pjf0|2L2 +
1−exp(−Λt)

Λ
C(exp(−C122j)+2jγ)

= exp(−Λt)|Pjf0|2L2 +(1−exp(−Λt))C(λ−1ε2s2−jγ exp(−C122j)+λ−1ε2s)

≤ exp(−Λt)|Pjf0|2L2 +(1−exp(−Λt))λ−1C(1+δ)ε2s, (3.35)

where we use the assumption 2−jγ exp(−C122j)≤ δ. When K>2,t≤2ln(K−1)/Λ, it is
easy to check

K exp(−Λt)+(1−exp(−Λt))≤K exp(−Λt/2).

Then set K=
|Pjf0|2L2

λ−1C(1+δ)ε2s , for t∈ [0,2λ−1ε2s2−jγ ln(K−1)], revisit (3.35), we have

|Pjf(t)|2L2 ≤ exp(−Λt/2)|Pjf0|2L2 ,

which is exactly (1.27).

4. Boltzmann equation near equilibrium
This section is devoted to the proof to Theorem 1.2, which includes three subsec-

tions. In subsection 4.1, we prove global well-posedenss and propagation of regularity.
Global dynamics is derived in subsection 4.2 by employing Proposition 3.2 once again.
The global asymptotic formula is established in the last subsection.

4.1. Global well-posedenss and propagation of regularity. We only provide
the a priori estimates for the equation, which is Theorem 4.1, from which together with
local existence result in [12], the first part (global well-posedness) in Theorem 1.2
can be established. The second part (propagation of regularity) in Theorem 1.2
follows directly from Theorem 4.1.

4.1.1. Estimate for the linear equation. Fix a small ε>0 and a general
function g, suppose f ε is a solution to

∂tf+v ·∇xf+Lεf =g. (4.1)

For simplicity, we omit the superscript ε in f ε. We set f1 :=Pf and f2 :=f−Pf .
By the Definition (1.21) of the projection operator P, one has

f1(t,x,v) ={a(t,x)+b(t,x) ·v+c(t,x)|v|2}µ1/2, (4.2)
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which satisfies

∂tf1 +v ·∇xf1 = r+ l+g, (4.3)

where r=−∂tf2 and l=−v ·∇xf2−Lεf2.
We recall that {ej}1≤j≤13 is defined explicitly as

e1 =µ1/2,e2 =v1µ
1/2,e3 =v2µ

1/2,e4 =v3µ
1/2,

e5 =v21µ
1/2,e6 =v22µ

1/2,e7 =v23µ
1/2,e8 =v1v2µ

1/2,e9 =v2v3µ
1/2,e10 =v3v1µ

1/2,

e11 = |v|2v1µ1/2,e12 = |v|2v2µ1/2,e13 = |v|2v3µ1/2.

Let A= (aij)1≤i,j≤13 be the real matrix given by aij := 〈ei,ej〉 and y be the
13-dimensional vector with components ∂ta,{∂tbi+∂ia}1≤i≤3,{∂tc+∂ibi}1≤i≤3,{∂ibj+
∂jbi}1≤i<j≤3,{∂ic}1≤i≤3. Set z := (zi)

13
i=1 := (〈r+ l+g,ei〉)13i=1. Taking inner product

between (4.3) and {ej}1≤j≤13, one has Ay=z, which gives y=A−1z. For notational
simplicity, we denote zr := (zri )13i=1 := (〈r,ei〉)13i=1. We also use zl,zg,zf2 in a similar way.
Further, we set

r̃= (r(0),{r(1)i }1≤i≤3,{r
(2)
i }1≤i≤3,{r

(2)
ij }1≤i<j≤3,{r

(3)
i }1≤i≤3)T =A−1zr,

l̃= (l(0),{l(1)i }1≤i≤3,{l
(2)
i }1≤i≤3,{l

(2)
ij }1≤i<j≤3,{l

(3)
i }1≤i≤3)T =A−1zl,

g̃= (g(0),{g(1)i }1≤i≤3,{g
(2)
i }1≤i≤3,{g

(2)
ij }1≤i<j≤3,{g

(3)
i }1≤i≤3)T =A−1zg.

With a little abuse of notation, we set f̃ :=A−1zf2 . That is,

f̃ = (f̃ (0),{f̃ (1)i }1≤i≤3,{f̃
(2)
i }1≤i≤3,{f̃

(2)
ij }1≤i<j≤3,{f̃

(3)
i }1≤i≤3)T =A−1(〈f2,ei〉)13i=1.

With these notations, one has r̃=−∂tf̃ , and thus

y=−∂tf̃+ l̃+ g̃. (4.4)

Following the notations in [8], let us define the temporal energy functional IN (f)
as

IN (f) :=
∑

|α|≤N−1

3∑
i=1

(Iaα,i(f)+Ibα,i(f)+Icα,i(f)+Iabα,i(f)), (4.5)

where
Iaα,i(f) = 〈∂αf̃ (1)

i ,∂i∂
αa〉,Ibα,i(f) =−

∑
j 6=i〈∂

αf̃
(2)
j ,∂i∂

αbi〉+
∑
j 6=i〈∂

αf̃
(2)
ji ,∂j∂

αbi〉+2〈∂αf̃ (2)
i ,

∂i∂
αbi〉,Icα,i(f) = 〈∂αf̃ (3)

i ,∂i∂
αc〉 and Iabα,i(f) = 〈∂i∂αa,∂αbi〉. There is some universal con-

stant M such that

|IN (f)|≤M ||f ||2HNx L2 . (4.6)

We recall a result on the dissipation of (a,b,c).

Lemma 4.1. There exists a constant C>0 such that

d

dt
IN (f)+

1

2
|∇x(a,b,c)|2

HN−1
x
≤C(‖f2‖2HNx L2

ε,γ/2
+

∑
|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx). (4.7)
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The proof of Lemma 4.1 can be found in the end of the Appendix in [14].
For non-negative integers n,m, we recall

||f ||2
Hnx Ḣ

m
l

=
∑

|α|≤n,|β|=m

||Wl∂
α
β f ||2L2 ,||f ||2Hnx Ḣmε,l+γ/2 =

∑
|α|≤n,|β|=m

||Wl∂
α
β f ||2L2

ε,γ/2
.

For some constants Kj ,−2≤ j≤N , which can be explicitly determined later, we define
the energy functional

ΞN,l(f) :=K−2IN (f)+K−1||f ||2HNx L2 +

N∑
j=0

Kj ||f ||2HN−jx Ḣjl+jγ
,

and the corresponding dissipation functional

DN,lε (f) := |MA|2HNx + ||f2||2HNx L2
ε,γ/2

+

N∑
j=0

||f2||2HN−jx Ḣj
ε,l+jγ+γ/2

&
N∑
j=0

||f ||2
HN−jx Ḣj

ε,l+jγ+γ/2

,

where MA := (a(t,x),b(t,x),c(t,x)) which stands for the macro-part of a solution f .
With these notations in hand, we derive the following a priori estimate of (4.1).

Proposition 4.1. Let N ≥2,l≥2−γN , suppose f is a smooth solution to (4.1).
Then there holds

d

dt
ΞN,l(f)+λDN,lε (f).

N∑
j=0

∑
|α|≤N−j,|β|=j

|(Wl+jγ∂
α
β g,Wl+jγ∂

α
β f)|

+
∑
|α|≤N

|(∂αg,∂αf)|+
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx. (4.8)

Here the . could result in a constant CN,l on the right-hand side.

Proof. Note that ΞN,l(f) contains many items. We already have the term IN (f)
from Lemma 4.1. We add the rest step by step.

Step 1 : ||f ||2HNx L2 . Applying ∂α to Equation (4.1), taking inner product with ∂αf , we

have

1

2

d

dt
‖∂αf‖2L2 +(Lε∂αf,∂αf) = (∂αg,∂αf).

Thanks to (∂αf)2 =∂αf2 and Proposition 2.1, taking sum over |α|≤N , we have

1

2

d

dt
‖f‖2HNx L2 +λ‖f2‖2HNx L2

ε,γ/2
≤
∑
|α|≤N

|(∂αg,∂αf)|. (4.9)

Multiplying (4.9) by a large constant M1 and adding the resulting inequality to (4.7),
we get

d

dt
(IN (f)+M1‖f‖2HNx L2)+

1

2
(|∇xMA|2HN−1

x
+‖f2‖2HNx L2

ε,γ/2
)

.
∑
|α|≤N

|(∂αg,∂αf)|+
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx. (4.10)
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Here M1 is also chosen large enough such that M1‖f‖2HNx L2 +IN (f)∼‖f‖2HNx L2 thanks

to (4.6).

Step 2 : ||f ||2
HNx L

2
l
. Applying Wl∂

α to Equation (4.1), taking inner product with Wl∂
αf ,

taking sum over |α|≤N , we have

1

2

d

dt
‖f‖2HNx L2

l
+
∑
|α|≤N

(WlLε∂αf2,Wl∂
αf) =

∑
|α|≤N

(Wl∂
αg,Wl∂

αf).

By splitting f =f1 +f2, we have

(WlLε∂αf2,Wl∂
αf) = (WlLε∂αf2,Wl∂

αf1)+(WlLε∂αf2,Wl∂
αf2) :=A1 +A2.

By Corollary 2.1 on the upper bound estimate of Lε, moving all the weights to f1, we
have

|A1|.
∫
|∂αf2|ε,γ/2|∂αMA|dx. |MA|HNx ||f2||HNx L2

ε,γ/2
.

Rearrange A2 by introducing the commutator operator [Wl,Lε]:

A2 = (LεWl∂
αf2,Wl∂

αf2)+([Wl,Lε]∂αf2,Wl∂
αf2) :=A2,1 +A2,2.

By the coercivity result (2.2), we have

A2,1≥λ||Wl∂
αf2||2L2

ε,γ/2
−C‖f2‖2HNx L2

l+γ/2
.

By the commutator estimate in Corollary 2.2, we have

|A2,2|.‖f2‖HNx L2
l+γ/2
||Wl∂

αf2||L2
ε,γ/2

.

Taking sum over |α|≤N , together with 2AB≤ηA2 +η−1B2 for any η>0, we get∑
|α|≤N

(WlLε∂αf2,Wl∂
αf)≥ 3

4
λ||f2||2HNx L2

ε,l+γ/2
−C(‖f2‖2HNx L2

l+γ/2
+ |MA|2HNx ).

By (3.8) and (3.9), we have

‖f2‖2HNx L2
l+γ/2

≤ (η+ε2s)||f2||2HNx L2
ε,l+γ/2

+Cη||f2||2HNx L2
ε,γ/2

.

Taking η small enough such that Cη≤λ/8, then when ε is small such that Cε2s≤λ/8,
we have

d

dt
‖f‖2HNx L2

l
+λ||f2||2HNx L2

ε,l+γ/2
≤C(‖f2‖2HNx L2

ε,γ/2
+ |MA|2HNx )+2

∑
|α|≤N

(Wl∂
αg,Wl∂

αf).

Thanks to (1.4) and (1.9), Poincare inequality gives |MA|HNx ∼|∇xMA|HN−1
x

. Multiply
(4.10) by a large constant M2 and add it to the previous inequality, to get

d

dt
(M2IN (f)+M1M2‖f‖2HNx L2 +‖f‖2HNx L2

l
)

+λ(|MA|2HNx +‖f2‖2HNx L2
ε,γ/2

+‖f2‖2HNx L2
ε,l+γ/2

)
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.
∑
|α|≤N

|(∂αg,∂αf)|+
∑
|α|≤N

|(Wl∂
αg,Wl∂

αf)|+
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx. (4.11)

Step 3 :
∑N
j=1Kj ||f ||2HN−jx Ḣjl+jγ

. (Mathematical Induction)

We prove, for any 0≤ i≤N , there exist some constants Ki
j ,−2≤ j≤ i, such that

d

dt
(Ki
−2IN (f)+Ki

−1‖f‖2HNx L2 +
∑

0≤j≤i

Ki
j‖f‖2HN−jx Ḣjl+jγ

)

+λ(|MA|2HNx + ||f2||2HNx L2
ε,γ/2

+

i∑
j=0

||f2||2HN−jx Ḣj
ε,l+jγ+γ/2

)

.
∑
|α|≤N

|(∂αg,∂αf)|+
i∑

j=0

∑
|α|≤N−j,|β|=j

|(Wl+jγ∂
α
β g,Wl+jγ∂

α
β f)|

+
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx. (4.12)

Our final goal (4.8) is actually (4.12) with i=N .
Note that (4.12) is true when i= 0, which is given by (4.11). More precisely, we can

take K0
−2 =M2,K

0
−1 =M1M2,K

0
0 = 1.

We prove (4.12) by induction on i. Suppose (4.12) is true when i=k for some
0≤k≤N−1, we prove it is also valid when i=k+1.

Take two indexes α and β such that |α|≤N−(k+1) and |β|=k+1≥1, set q=
l+(k+1)γ. Applying Wq∂

α
β to both sides of (4.1), we have

∂tWq∂
α
β f+v ·∇xWq∂

α
β f+

∑
β1≤β,|β1|=1

Wq∂
α+β1

β−β1
f+Wq∂

α
βLεf2 =Wq∂

α
β g. (4.13)

Taking inner product with Wq∂
α
β f over (x,v), one has

1

2

d

dt
‖∂αβ f‖2L2

q
+

∑
β1≤β,|β1|=1

(Wq∂
α+β1

β−β1
f,Wq∂

α
β f)+(Wq∂

α
βLεf2,Wq∂

α
β f)

= (Wq∂
α
β g,Wq∂

α
β f). (4.14)

We first go to deal with (Wq∂
α+β1

β−β1
f,Wq∂

α
β f). By Cauchy-Schwartz inequality and

using f =f1 +f2, we get

|(Wq∂
α+β1

β−β1
f,Wq∂

α
β f)|≤‖∂α+β1

β−β1
f‖L2

xL
2
q−γ/2

‖∂αβ f‖L2
xL

2
q+γ/2

.‖f2‖2HN−kx Ḣk
ε,q−γ/2

+‖f2‖2HN−k−1
x Ḣk+1

q+γ/2

+ |MA|2
HN−kx

. (4.15)

We now go to deal with (Wq∂
α
βLεf2,Wq∂

α
β f). Observe

(Wq∂
α
βLεf2,Wq∂

α
β f) = (Wq∂

α
βLεf2,Wq∂

α
β f1)+(Wq∂

α
βLεf2,Wq∂

α
β f2). (4.16)

Recalling (3.5), we have

Wq∂
α
βLεf2 =LεWq∂

α
β f2 +

∑
β2≤β

Cβ0,β1,β2β [Wq,Lε,β0,β1 ]∂αβ2f2 +
∑
β2<β

Cβ0,β1,β2β Lε,β0,β1Wq∂
α
β2f2.
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We remark that Lε,β0,β1 satisfies the upper bound in Corollary 2.1 and commutator
estimate in Corollary 2.2. By Corollary 2.1 and Corollary 2.2, we have

|(Wq∂
α
βLεf2,Wq∂

α
β f1)|

≤η||∂αβ f2||2L2
ε,q+γ/2

+Cη(|MA|2HNx +‖f2‖2HN−k−1
x Hk+1

q+γ/2

+ ||f2||2HN−k−1
x Hk

ε,q+γ/2

).

By coercivity (2.2), upper bound in Corollary 2.1 and commutator estimate in Corollary
2.2, we have for any η>0,

(Wq∂
α
βLεf2,Wq∂

α
β f2)≥ (λ−η)||∂αβ f2||2L2

ε,q+γ/2

−Cη(‖f2‖2HN−k−1
x Hk+1

q+γ/2

+ ||f2||2HN−k−1
x Hk

ε,q+γ/2

).

Taking η=λ/8, and plugging the previous two results into (4.16), we get

(Wq∂
α
βLεf2,Wq∂

α
β f)≥ (3λ/4)||∂αβ f2||2L2

ε,q+γ/2

−Cη(|MA|2HNx +‖f2‖2HN−k−1
x Hk+1

q+γ/2

+ ||f2||2HN−k−1
x Hk

ε,q+γ/2

),

from which together with (4.15), back to (4.14), taking sum over |α|≤N−(k+1), |β|=
k+1, we have

d

dt
‖f‖2

HN−k−1
x Ḣk+1

q
+

3

2
λ||f2||2HN−k−1

x Ḣk+1
ε,q+γ/2

.
∑

|α|≤N−k−1,|β|=k+1

|(Wq∂
α
β g,Wq∂

α
β f)|+ |MA|2HNx +‖f2‖2HN−k−1

x Hk+1
q+γ/2

+||f2||2HN−k−1
x Hk

ε,q+γ/2

+‖f2‖2HN−kx Ḣk
ε,q−γ/2

. (4.17)

Recalling q= l+(k+1)γ and by Proposition A.2, we have

‖f2‖2HN−k−1
x Hk+1

q+γ/2

≤ (η+ε2s)‖f2‖2HN−k−1
x Hk+1

ε,q+γ/2

+Cη‖f2‖2HN−k−1
x H0

q+γ/2

≤ (η+ε2s)‖f2‖2HN−k−1
x Ḣk+1

ε,q+γ/2

+Cη‖f2‖2HN−k−1
x Hk

ε,l+kγ+γ/2

,

‖f2‖2HN−kx Ḣk
q−γ/2

≤‖f2‖2HN−kx Ḣk
ε,l+kγ+γ/2

.

Plugging which into (4.17), taking η small enough such that η�λ/8, then when ε is
small such that ε2s�λ/8, we have

d

dt
‖f‖2

HN−k−1
x Ḣk+1

q
+λ||f2||2HN−k−1

x Ḣk+1
ε,q+γ/2

.
∑

|α|≤N−k−1,|β|=k+1

|(Wq∂
α
β g,Wq∂

α
β f)|+ |MA|2HNx +‖f2‖2HN−kx Hk

ε,l+kγ+γ/2

. (4.18)

By our induction assumption, (4.12) is true when i=k, that is,

d

dt
(Kk
−2IN (f)+Kk

−1‖f‖2HNx L2 +

k∑
j=0

Kk
j ‖f‖2HN−jx Ḣjl+jγ

)

+λ(|MA|2HNx + ||f2||2HNx L2
ε,γ/2

+

k∑
j=0

||f2||2HN−jx Ḣj
ε,l+jγ+γ/2

)
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.
∑
|α|≤N

|(∂αg,∂αf)|+
k∑
j=0

∑
|α|≤N−j,|β|=j

|(Wl+jγ∂
α
β g,Wl+jγ∂

α
β f)|

+
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx. (4.19)

Multiplying (4.19) by a large constant M , and adding the resulting inequality to (4.18)
to cancel the two terms |MA|2HNx and ‖f2‖2HN−kx Hk

ε,l+kγ+γ/2

, we get

d

dt
(M(Kk

−2IN (f)+Kk
−1‖f‖2HNx L2 +

k∑
j=0

Kk
j ‖f‖2HN−jx Ḣjl+jγ

)+‖f‖2
HN−k−1
x Ḣk+1

q
)

+λ(|MA|2HNx + ||f2||2HNx L2
ε,γ/2

+

k+1∑
j=0

||f2||2HN−jx Ḣj
ε,l+jγ+γ/2

)

.
∑
|α|≤N

|(∂αg,∂αf)|+
k+1∑
j=0

∑
|α|≤N−j,|β|=j

|(Wl+jγ∂
α
β g,Wl+jγ∂

α
β f)|

+
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx. (4.20)

Thus (4.12) is proved when i=k+1. In detail, we set Kk+1
j =MKk+1

j for −2≤ j≤k
and Kk+1

k+1 = 1.

4.1.2. Global well-posedness of the Boltzmann Equation (1.8). In this
subsection, we derive some a priori estimates for solutions to the Cauchy problem (1.8).
To this end, we employ Proposition 4.1 by taking g= Γε(f,f). The a priori result can
be concluded as follows:

Theorem 4.1. Let γ <0,N ≥4,l≥2−γN . There exists a sufficiently small constant
δ>0 which is independent of ε, such that if a solution f ε to the Cauchy problem (1.8)
satisfies sup0≤t≤T E4(f ε(t))≤ δ, then for any t∈ [0,T ], it verifies

EN,l(f ε(t))+

∫ t

0

DN,lε (f ε(s))ds≤PN,l
(
EN,l(f0)

)
, (4.21)

where PN,l is a function with PN,l(0) = 0. Here P4,l(x) =Clx for some constant Cl and
Pk+1,l(x) =Ck+1,lxexp(Ck+1,lPk,l (x)) for some constants Ck+1,l when k≥4.

We first prove a lemma to deal with some inner products regarding to the nonlinear
term Γε.

Lemma 4.2. Let N ≥4,l≥2−γN . Set

AN,l(g,h,f) :=
∑

|α|+|β|≤N

|(Wl+|β|γ∂
α
βΓε(g,h),Wl+|β|γ∂

α
β f)|,

then

AN,l(g,h,f). ||g||H4
x,v

√
DN,lε (h)

√
DN,lε (f)+1N≥5||g||HNx,v

√
DN−1,lε (h)

√
DN,lε (f),
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where ‖f‖2HNx,v :=
∑
|α|+|β|≤N ||∂αβ f ||2L2 . Here the . could result in a constant CN,l on

the right-hand side.

Proof. A typical term in AN,l(g,h,f) is |(Wl+|β|γ∂
α
βΓε(f,f),Wl+|β|γ∂

α
β f)| for some

fixed α,β such that |α|+ |β|≤N . By the expansion (3.2) and the fact that Γε(g,h;β)
satisfies the upper bound in Theorem 2.2 and commutator estimate in Lemma 2.1, it
suffices to consider the following term for α1 +α2 =α and β1 +β2≤β,

I(α1,β1,α,β) := |(Wl+|β|γΓε(∂α1

β1
g,∂α2

β2
h),Wl+|β|γ∂

α
β f)|.

To utilize upper bound and commutator estimates, we make the following decomposition

I(α1,β1,α,β) ≤ |(Γε(∂α1

β1
g,Wl+|β|γ∂

α2

β2
h),Wl+|β|γ∂

α
β f)|

+|([Γε(∂α1

β1
g,·),Wl+|β|γ ]∂α2

β2
h,Wl+|β|γ∂

α
β f)|

:=Iu(α1,β1,α,β)+Ic(α1,β1,α,β).

We use upper bound to deal with Iu and commutator estimate to deal with Ic. However,
one can easily see that the commutator estimate in Lemma 2.1 can be controlled by the
upper bound in Theorem 2.2, thus it is sufficient to consider Iu only.

For any b1,b2≥0 with b1 +b2>3/2, according to Theorem 2.2, we have

|〈Γε(g,h),f〉|. |µ1/8g|Hb1 |µ1/8h|
H
b2
ε,γ/2

|f |L2
ε,γ/2

+ |g|H0 |h|H0
ε,γ/2
|f |L2

ε,γ/2
.

If we denote the Fourier transform of f with respect to x variable by f̂ , then we have

(Γε(g,h),f) =
∑

k,m∈Z3

〈Γε(ĝ(k),ĥ(m−k)), f̂(m)〉,

from which together with Theorem 2.2, we get

|(Γε(∂α1

β1
g,∂α2

β2
h),f)|

.
∑

k,m∈Z3

|k||α1||m−k||α2|| ̂µ1/8∂β1
g(k)|Hb1 | ̂µ1/8∂β2

h(m−k)|
H
b2
ε,γ/2

|f̂(m)|L2
ε,γ/2

+
∑

k,m∈Z3

|k||α1||m−k||α2|| ̂µ1/8∂β1
g(k)|H0 |∂̂β2

h(m−k)|H0
ε,γ/2
|f̂(m)|L2

ε,γ/2
.

From this, we derive that for a1,a2≥0 with a1 +a2>
3
2 and b1,b2≥0 with b1 +b2>

3
2 ,

|(Γε(∂α1

β1
g,∂α2

β2
h),f)|.‖µ1/8g‖

H
|α1|+a1
x H|β1|+b1

‖µ1/8h‖
H
|α2|+a2
x H

|β2|+b2
ε,γ/2

‖f‖L2
ε,γ/2

+‖g‖
H
|α1|+a1
x H|β1|

‖h‖
H
|α2|+a2
x H

|β2|
ε,γ/2

‖f‖L2
ε,γ/2

. (4.22)

Recalling Iu(α1,β1,α,β) = |(Γε(∂α1

β1
g,Wl+|β|γ∂

α2

β2
h),Wl+|β|γ∂

α
β f)|, then by (4.22) we get

I(α1,β1,α,β).‖µ1/8g‖
H
|α1|+a1
x H|β1|+b1

‖µ1/16h‖
H
|α2|+a2
x H

|β2|+b2
ε,γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

+‖g‖
H
|α1|+a1
x H|β1|

‖h‖
H
|α2|+a2
x H

|β2|
ε,l+|β|γ+γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

.

For simplicity, we always choose a1,a2,b1,b2∈{0,1,2} with a1 +a2 = 2,b1 +b2 = 2.
Fix N ≥4, |α|+ |β|≤N , we consider all the combinations of α1,α2,β1,β2 such that α1 +
α2 =α,β1 +β2≤β as follows.
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If |α1|+ |β1|≤2, we choose a1 = 2−|α1|,a2 = |α1|,b1 = 2−|β1|,b2 = |β1|, which gives
|α1|+a1 = 2,|β1|+b1 = 2,|α2|+a2≤|α|,|β2|+b2≤|β| and

I(α1,β1,α,β).‖g‖H2
xH

2‖h‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

. ||g||H4
x,v

√
DN,lε (h)

√
DN,lε (f).

If |α1|+ |β1|= 3, which implies |α2|+ |β2|≤N−3, we choose a1 =a2 = 1,b1 = 0,b2 =
2, which gives |α1|+a1 + |β1|= 4, |α2|+a2 + |β2|+b2≤N and

I(α1,β1,α,β).‖µ1/8g‖
H
|α1|+1
x H|β1|

‖µ1/16h‖
H
|α2|+1
x H

|β2|+2

ε,γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

+‖g‖
H
|α1|+1
x H|β1|

‖h‖
H
|α2|+1
x H

|β2|
ε,l+|β|γ+γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

. ||g||H4
x,v

√
DN,lε (h)

√
DN,lε (f).

If |α1|+ |β1|= 4, which implies |α2|+ |β2|≤N−4, we choose a1 = b1 = 0,a2 = b2 = 2,
which gives |α2|+2+ |β2|+2≤N and

I(α1,β1,α,β).‖µ1/8g‖
H
|α1|
x H|β1|

‖µ1/16h‖
H
|α2|+2
x H

|β2|+2

ε,γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

+‖g‖
H
|α1|
x H|β1|

‖h‖
H
|α2|+2
x H

|β2|
ε,l+|β|γ+γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

. ||g||H4
x,v

√
DN,lε (h)

√
DN,lε (f).

If |α1|+ |β1|≥5, which occurs only when N ≥5 and implies |β2|+ |α2|≤N−5, we
choose a1 = b1 = 0,a2 = b2 = 2, which gives |α1|+ |β1|≤N, |α2|+2+ |β2|+2≤N−1 and

I(α1,β1,α,β).‖µ1/8g‖
H
|α1|
x H|β1|

‖µ1/16h‖
H
|α2|+2
x H

|β2|+2

ε,γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

+‖g‖
H
|α1|
x H|β1|

‖h‖
H
|α2|+2
x H

|β2|
ε,l+|β|γ+γ/2

‖f‖
H
|α|
x H

|β|
ε,l+|β|γ+γ/2

. ||g||HNx,v

√
DN−1,lε (h)

√
DN,lε (f).

The lemma then follows by patching all the above estimates.

Now we are ready to prove Theorem 4.1.

Proof. (Proof of Theorem 4.1.) To apply Proposition 4.1, we need to analyze
A1 +A2 +A3, where

A1 =
∑
|α|≤N

|(∂αΓε(f,f),∂αf)|,

A2 =
∑

|α|+|β|≤N

|(Wl+|β|γ∂
α
βΓε(f,f),Wl+|β|γ∂

α
β f)|,

A3 =
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αΓε(f,f),ej〉|2dx.

It is not necessary to estimate A1, since the upper bound of A2 controls A1 naturally.
By Lemma 4.2,

A2. ||f ||H4
x,v
DN,lε (f)+1N≥5||f ||HNx,v

√
DN−1,lε (f)

√
DN,lε (f)
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. ||f ||H4
x,v
DN,lε (f)+1N≥5(ηDN,lε (f)+η−1||f ||2HNx,vD

N−1,l
ε (f)).

In view of the proof of Lemma 4.2, it is much easier to check

∑
|α|≤N−1

13∑
j=1

∫
T3

|〈∂αΓε(f,f),ej〉|2dx. ||f ||2H4
x,v
DN,lε (f)+1N≥5||f ||2HNx,vD

N−1,l
ε (f).

Thus by Proposition 4.1, we get

d

dt
ΞN,l(f)+λDN,lε (f). (||f ||H4

x,v
+ ||f ||2H4

x,v
)DN,lε (f)

+1N≥5(ηDN,lε (f)+η−1||f ||2HNx,vD
N−1,l
ε (f)). (4.23)

We take δ small enough such that δ+
√
δ�λ/2. Then under the assumption

supt≥0‖f(t)‖2H4
x,v
≤ supt≥0E4(f(t))≤ δ, we have

d

dt
ΞN,l(f)+

λ

2
DN,lε (f).1N≥5(ηDN,lε (f)+η−1EN (f)DN−1,lε (f)). (4.24)

When N = 4, (4.24) reduces to

d

dt
Ξ4,l(f)+

λ

2
D4,l
ε (f)≤0. (4.25)

Recalling E4,l(f)≤Ξ4,l(f)≤ClE4,l(f), we get (4.21) for the case N = 4 directly from
(4.25). Suppose for some k≥4, (4.21) is valid for N =k, that is,

Ek,l(f ε(t))+

∫ t

0

Dk,lε (f ε(s))ds≤Pk,l
(
Ek,l(f0)

)
. (4.26)

Then for N =k+1≥5, by (4.24), we get

d

dt
Ξk+1,l(f)+

λ

2
Dk+1,l
ε (f).ηDN,lε (f)+η−1Ek+1,l(f)Dk,lε (f).

Choosing η� λ
4 , we have

d

dt
Ξk+1,l(f)+

λ

4
Dk+1,l
ε (f)≤Ck+1,lEk+1,l(f)Dk,lε (f).

Observing
∫ t
0
Dk,lε (f ε(s))ds≤Pk,l

(
Ek,l(f0)

)
given by (4.26), together with Grönwall’s

inequality, we arrive at

Ξk+1,l(f(t))+
λ

4

∫ t

0

Dk+1,l
ε (f(t))dt≤Ξk+1,l(f0)exp(Ck+1,l

∫ t

0

Dk,lε (f ε(s))ds)

≤Ξk+1,l(f0)exp(Ck+1,lPk,l
(
Ek,l(f0)

)
).

Recalling Ek+1,l(f)≤Ξk+1,l(f)≤Ck+1,lEk+1,l(f),Ek,l(f0)≤Ek+1,l(f0), we have

Ek+1,l(f ε(t))+

∫ t

0

Dk+1,l
ε (f ε(s))ds≤Ck+1,lEk+1,l(f0)exp(Ck+1,lPk,l

(
Ek+1,l(f0)

)
).

We define Pk+1,l(x) =Ck+1,lxexp(Ck+1,lPk,l (x)) to end the proof.
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4.2. Global dynamics. We will give the proof to the third part (global dy-
namics) of Theorem 1.2.

Proof. (Proof of Theorem 1.2 (the third part: global dynamics).) Let
Y1 =EN,l(f l),Y2 =EN,l(fh), then ΞN,l(f)∼EN,l(f)∼Y1 +Y2, and

DN,lε (f)&
N∑
j=0

||f ||2
HN−jx Ḣj

ε,l+jγ+γ/2

≥
∑

|α|+|β|≤N

||W εWγ/2Wl+|β|γ∂
α
β f ||2L2

∼
∑

|α|+|β|≤N

||W εWγ/2Wl+|β|γ∂
α
β f

l||2L2 +
∑

|α|+|β|≤N

||W εWγ/2Wl+|β|γ∂
α
β f

h||2L2

∼
∑

|α|+|β|≤N

||Ws+γ/2Wl+|β|γ∂
α
β f

l||2L2 +
∑

|α|+|β|≤N

ε−2s||Wγ/2Wl+|β|γ∂
α
β f

h||2L2

≥C(p,N)(EN,l−p(γ/2+s)(f0))−1/pY
1+1/p
1

+ε−2sC(q,N)(EN,l−p(γ/2+s)(f0))−1/qY
1+1/q
2 ,

where the last inequality is obtained in the same manner as deriving (3.28). Therefore

d

dt
ΞN,l(f)+c1Y

1+1/p
1 +c2Y

1+1/q
2 ≤0, (4.27)

where c1 =C(p,N)(EN,l−p(γ/2+s)(f0))−1/p and c2 = ε−2sC(q,N)(EN,l−p(γ/2+s)(f0))−1/q.
Here, we have

(c1/c2)
pq
p−q = (C(p,N)/C(q,N)ε2s)

pq
p−q EN,l−p(γ/2+s)(f0)

:= (ε2s)
pq
p−qC(p,q,N)EN,l−p(γ/2+s)(f0).

Applying Proposition 3.2, we get (1.33) and (1.34) by the equivalence EN,l(f)≤
ΞN,l(f)≤ cEN,l(f) for some constant c depending only on N,l.

4.3. Asymptotic formula. We will give the proof to the fourth part (global
asymptotic formula) of Theorem 1.2. Let f and f ε be the solutions to (1.7) and (1.8)
respectively with the initial data f0. Set F εR := ε2s−2(f ε−f), then it solves

∂tF
ε
R+v ·∇xF εR+LF εR= ε2s−2[(L−Lε)f ε+(Γε−Γ)(f ε,f)]+Γε(f ε,F εR)+Γ(F εR,f).

We recall an estimate on the operator Γ−Γε, which is Lemma 4.2 in [14].

Lemma 4.3. If γ>−3, there holds

|〈(Γ−Γε)(g,h),f〉|. ε2−2s|g|L2
γ/2
|h|H2

γ/2+2
|f |L2

γ/2
.

We set to establish the global asymptotic formula (1.35).

Proof. (Proof of Theorem 1.2 (the fourth part: global asymptotic for-
mula).)

For simplicity, we set g=g1 +g2 +g3, where g1 := ε2s−2[(L−Lε)f ε+(Γε−
Γ)(f ε,f)],g2 := Γε(f ε,F εR),g3 := Γ(F εR,f). By applying Proposition 4.1, we have

d

dt
ΞN,l(F εR)+λDN,l0 (F εR).

∑
|α|≤N

|(∂αg,∂αF εR)|
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+
∑

|α|+|β|≤N

|(Wl+|β|γ∂
α
β g,Wl+|β|γ∂

α
βF

ε
R)|

+
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αg,ej〉|2dx :=A1 +A2 +A3. (4.28)

We remark that the non-cutoff linearized Boltzmann operator L produces DN,l0 . As
before, we ignore A1 since it can be controlled by the upper bound of A2. Noting
A2≤A2,1 +A2,2 +A2,3, where

A2,i :=
∑

|α|+|β|≤N

|(Wl+|β|γ∂
α
β g

i,Wl+|β|γ∂
α
βF

ε
R)|.

Let q= l+ |β|γ. By the expansion (3.2) and Lemma 4.3, we have

|〈Wq∂
α
β g

1,Wq∂
α
βF

ε
R〉|.

∑
β1≤β

|∂αβ1
f ε|H2

q+2+γ/2
|∂αβF εR|L2

q+γ/2

+
∑

α1+α2=α,β1+β2≤β

|∂α1

β1
f ε|L2

γ/2
|∂α2

β2
f |H2

q+2+γ/2
|∂αβF εR|L2

q+γ/2
,

which yields

A2,1 =
∑

|α|+|β|≤N

|(Wl+|β|γ∂
α
β g

1,Wl+|β|γ∂
α
βF

ε
R)|

.
√
DN+2,l+2−2γ
ε (f ε)

√
DN,l0 (F εR)

+
√
EN+2,l+2−2γ(f ε)

√
DN+2,l+2−2γ

0 (f)

√
DN,l0 (F εR)

.ηDN,l0 (F εR)+Cη(DN+2,l+2−2γ
ε (f ε)+EN+2,l+2−2γ(f ε)DN+2,l+2−2γ

0 (f)).

By Lemma 4.2, we get

A2,2 +A2,3. ||f ε||H4
x,v
DN,lε (F εR)+1N≥5||f ε||HNx,v

√
DN−1,lε (F εR)

√
DN,lε (F εR)

+
√
EN,l(F εR)

√
DN,l0 (f)

√
DN,l0 (F εR)

. (η+
√
E4,14(f ε))DN,l0 (F εR)+1N≥5η

−1EN,l(f ε)DN−1,lε (F εR)

+η−1DN,l0 (f)EN,l(F εR).

Now we set to analyze A3. Observe A3.A3,1 +A3,2 +A3,3, where

A3,i :=
∑

|α|≤N−1

13∑
j=1

∫
T3

|〈∂αgi,ej〉|2dx.

By Lemma 4.3, we have

|〈∂αg1,ej〉|. |∂αf ε|H2
2+γ/2

+
∑

α1+α2=α

|∂α1f ε|L2
γ/2
|∂α2f |H2

2+γ/2
,

which gives

A3,1. ||f ε||2HNx H2
2+γ/2

+ ||f ε||2HNx L2
γ/2
||f ||2HNx H2

2+γ/2
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.DN+2,l+2−2γ
ε (f ε)+EN+2,l+2−2γ(f ε)DN+2,l+2−2γ

0 (f).

Thanks to |〈Γε(g,h),ej〉|. |g|L2
γ/2
|h|L2

ε,γ/2
and |〈Γ(g,h),ej〉|. |g|L2

γ/2
|h|L2

0,γ/2
, by the fact

|α|≤N−1 in the sum of A3, we get

A3,2 +A3,3.‖f ε‖2H4
xL

2
γ/2
‖F εR‖2HNx L2

ε,γ/2
+1N≥5‖f ε‖2HNx L2

γ/2
‖F εR‖2HN−1

x L2
ε,γ/2

+‖f‖2HNx L2
0,γ/2
‖F εR‖2HNx L2

γ/2

.E4,14(f ε)DN,l0 (F εR)+1N≥5EN,l(f ε)DN−1,lε (F εR)+DN,l0 (f)EN,l(F εR).

Patching together all the above estimates, and plugging them into (4.28), we have

d

dt
ΞN,l(F εR)+λDN,l0 (F εR)

. (η+
√
E4,14(f ε)+E4,14(f ε))DN,l0 (F εR)

+1N≥5CηEN,l(f ε)DN−1,l0 (F εR)+CηDN,l0 (f)EN,l(F εR)

+Cη(DN+2,l+2−2γ
ε (f ε)+EN+2,l+2−2γ(f ε)DN+2,l+2−2γ

0 (f)). (4.29)

Choosing η small enough, thanks to the smallness of E4,14(f0), we get

d

dt
ΞN,l(F εR)+

λ

2
DN,l0 (F εR)

.1N≥5EN,l(f ε)DN−1,l0 (F εR)+DN,l0 (f)EN,l(F εR)

+DN+2,l+2−2γ
ε (f ε)+EN+2,l+2−2γ(f ε)DN+2,l+2−2γ

0 (f). (4.30)

Since EN+2,l+2−2γ(f0)<∞, we have∫ ∞
0

[DN,l0 (f(t))+DN+2,l+2−2γ
ε (f ε(t))+EN+2,l+2−2γ(f ε(t))DN+2,l+2−2γ

0 (f(t))]dt

.C(EN+2,l+2−2γ(f0)).

By Grönwall’s inequality, when N = 4, we arrive at

sup
t≥0

ΞN,l(F εR(t))+
λ

2

∫ ∞
0

DN,lε (F εR(t))dt.C(EN+2,l+2−2γ(f0)). (4.31)

When N ≥5, we can prove (4.31) through mathematical induction by observing that

DN−1,l0 (F εR) is integrable over (0,∞) in a previous step. This is similar to the arguments
in the proof of Theorem 4.1, so we omit the details. Since ΞN,l(F εR)∼EN,l(F εR) and
recalling F εR= ε2s−2(f ε−f), we get (1.35).
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Appendix. The following is Proposition 5.1 of [14].

Proposition A.1. Suppose Aε(ξ) :=
∫
S2 b

ε( ξ
|ξ| ·σ)min{|ξ|2 sin2(θ/2),1}dσ. Then we

have Aε(ξ)∼|ξ|21|ξ|≤2 +1|ξ|≥2(W ε(ξ))2.
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The following is Proposition 4.3 of [14].

Proposition A.2. Let l1≤ l2. Suppose f is a smooth function. For any η>0, we
have

|f |2Hml . (η+ε2s)|W ε(D)f |2Hml +C(η)|f |2L2
l
, |f |L2

ε,l1
. |f |L2

ε,l2
.

The following example is to show that the decay structure (3.16) is optimal for (3.15).

Example A.1. Let ε>0 be small enough. Let c1 =p=Y0 = 1,q= 1/3,c2 = ε−2s, assume
additionally Y1 +Y2 =Y , then we consider the following case of (3.15):

d

dt
Y +Y 2

1 +ε−2sY 4
2 = 0;

Y |t=0 = 1.
(A.1)

Assume further Y1 = ε−sY 2
2 . Then there exists a critical time t∗∼ ε−s such that Y (t∗) =

εs/8 and

1

(1+Cβt)p
1t<t∗+

Y (t∗)

(1+C1(t− t∗))q
1t≥t∗

≤Y (t)≤ 1

(1+Cαt)p
1t<t∗+

Y (t∗)

(1+C2(t− t∗))q
1t≥t∗ , (A.2)

where Cα,Cβ are some universal constants and C1,C2∼ εs.

Proof. Since Y1 +Y2 =Y and Y1 = ε−sY 2
2 , we get

Y2 =
−1+

√
1+4ε−sY

2ε−s
,

which gives

Y 2
1 +ε−2sY 4

2 = 2ε−2sY 4
2 =

(−1+
√

1+4ε−sY )4

8ε−2s
.

Set X := ε−sY , then we have the following ODE
d

dt
X+

(−1+
√

1+4X)4

8ε−s
= 0;

X|t=0 = ε−s.

(A.3)

Set f(x) := (−1+
√

1+4x)4 = (1+4x)2−4(1+4x)3/2 +6(1+4x)−4(1+4x)1/2 +1, then
one has

f ′(x) = 8(1+4x)−24(1+4x)1/2 +24−(1+4x)−1/2,

f ′′(x) = 32−48(1+4x)−1/2 +16(1+4x)−3/2,

f (3)(x) = 96(1+4x)−3/2−96(1+4x)−5/2,

f (4)(x) =−576(1+4x)−5/2−96(1+4x)−7/2,

f (5)(x) = 5760(1+4x)−7/2−13440(1+4x)−9/2.

By Taylor expansion, one has

f(x) =f(0)+f ′(0)x+
f ′′(0)

2
x2 +

f (3)(0)

6
x3 +

f (4)(0)

24
x4 +

1

24

∫ x

0

(x− t)4f (5)(t)dt
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= 16x4 +
1

24

∫ x

0

(x− t)4f (5)(t)dt.

It is elementary to check −7680≤f (5)(x)≤ 45840
27
√
3

, thus we have

16x4−64x5≤f(x)≤16x4 +
896

81
√

3
x5.

If x≤1/8, then 16x4−64x5 = 16x4(1−4x)≥8x4 and 896
81
√
3
x5≤x4, which gives

8x4≤f(x)≤17x4, x≤1/8. (A.4)

Set α= min{f ′′(1/8)/2,4f ′(1/8),64f(1/8)} and g(x) :=f(x)−αx2. We now prove
g(x)≥0 if x≥1/8. Observe that f (3)(x)≥0 if x>0. Then f ′′(x) is an increasing
function on [0,∞). Then when x>1/8, we get g′′(x) =f ′′(x)−2α>f ′′(1/8)−2α≥0,
with g′′(1/8) =f ′′(1/8)−2α≥0, we have g′(x) is an increasing function on [1/8,∞).
Thus g′(x)≥g′(1/8) =f ′(1/8)−α/4≥0. With the same argument, g(x)≥g(1/8) =
f(1/8)−α/64≥0. To summarize, we proved

f(x)≥αx2, x≥1/8.

On the other hand, it is easy to find a β>0 such that f(x)≤βx2 for x≥1/8. Patching
together, we get

αx2≤f(x)≤βx2, x≥1/8. (A.5)

Suppose t∗ is the critical time such that X(t∗) = 1/8, then by (A.5), we get

d

dt
X+εsαX2/8≤ d

dt
X+εsf(X)/8 = 0≤ d

dt
X+εsβX2/8, t≤ t∗,

which gives

εsα

8
≤ d

dt
(

1

X
)≤ ε

sβ

8
, t≤ t∗.

From which we have

X(0)

1+Cβt
≤X(t)≤ X(0)

1+Cαt
, t≤ t∗, (A.6)

where Cα= εsαX(0)
8 =α/8 and Cβ = εsβX(0)

8 =β/8. By (A.4), we get

d

dt
X+εsX4≤ d

dt
X+εsf(X)/8 = 0≤ d

dt
X+

17

8
εsX4, t≥ t∗,

which gives

3εs≤ d

dt
(

1

X3
)≤ 51

8
εs, t≥ t∗.

Integrating over [t∗,t], we have

X(t∗)

(1+C1(t− t∗))1/3
≤X(t)≤ X(t∗)

(1+C2(t− t∗))1/3
, t≥ t∗. (A.7)
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where C1 = 51
8 ε

sX3(t∗) and C2 = 3εsX3(t∗). By (A.6), recalling X(0) = ε−s,X(t∗) = 1/8,
we have

8ε−s−1

Cβ
≤ t∗≤

8ε−s−1

Cα
,

which implies t∗∼ ε−s. Recalling X= ε−sY , we have (A.2).
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