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ASYMPTOTIC ANALYSIS OF
THE BOLTZMANN EQUATION WITH VERY SOFT POTENTIALS
FROM ANGULAR CUTOFF TO NON-CUTOFF*

LING-BING HE', ZHENG-AN YAO?f, AND YU-LONG ZHOUS$

Abstract. Our focus is the Boltzmann equation in a torus under very soft potentials around
equilibrium. We analyze the asymptotics of the equation from angular cutoff to non-cutoff. We first
prove a refined decay result of the semi-group stemming from the linearized Boltzmann operator. Then
we prove the global well-posedness of the equations near equilibrium, refined decay patterns of the
solutions. Finally, we rigorously give the asymptotic formula between the solutions to cutoff and non-
cutoff equations with an explicit convergence rate.
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1. Introduction

Grad’s angular cutoff assumption plays an important role in the study of Boltz-
mann equation throughout the history. A relatively satisfactory mathematical theory
has been established for the cutoff case. We review some relevant results in the near-
equilibrium framework, i.e., a small perturbation around global Maxwellians. Inde-
pendently, Caflisch [7] and Ukai-Asano [20] constructed global classical solutions near-
equilibrium for the inhomogeneous Boltzmann equation with a soft potential v> —1
(see below for the meaning of parameter ). Guo [12] extended the result to the full
range y > —3.

Without Grad’s cutoff assumption, Pao in [17,18] studied the spectrum of the lin-
earized Boltzmann operator. In the seminal work [1], the authors proved some entropy
dissipation formula, which accelerates the study of non-cutoff Boltzmann equation. In
the near-equilibrium framework, two groups independently built the well-posedness the-
ory by introducing some implicit anisotropic norms, see Alexandre-Morimoto-Ukai-Xu-
Yang [4] and Gressman-Strain [10].

Now that the well-posedness theory has been established for both cutoff and non-
cutoff Boltzmann equations, it is natural to consider the relation between them. In
the near-equilibrium framework, the analysis of linearized Boltzmann operator plays a
central role. The asymptotic analysis of the linearized Boltzmann operator from cutoff
to non-cutoff is given in [14]. Understandably, the analysis relies on keeping the angular
cutoff threshold as a parameter and getting some estimates uniformly with respect to
it. As an application of the analysis, in the moderately soft potential case —2s <~y <0,
different decay patterns are connected in [14] for the semi-groups generated by the cutoff
and non-cutoff linearized Boltzmann operators. In this work, we consider the very soft
potential case —3 <y < —2s, and discover the role of cutoff threshold in the asymptotic
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process from cutoff to non-cutoff.

1.1. The Boltzmann equation. To go further, we introduce the Boltzmann
equation and its linearized counterpart.

1.1.1. The Boltzmann collision operator. The Boltzmann collision operator
@ is a bilinear operator acting only on the velocity variable v, given by,

Qo) = [ Blo=v.)(glh ~g.h)dado.

Here the standard shorthand h="h(v), g. =¢g(vs), ' =h(v'), g.. =g(v)) is used, where

*

, vtu.  Ju—u  , vtue |v—uy 9
= = - S . 1-1
5 50 0= 5 5 00€ (1.1)

The Boltzmann collision kernel B(v—w,,0) is always assumed to depend only on
|v—wv,| and cosf:= ﬁj:g:l -o. By some symmetrization, we can assume that B(v—uv,,0)
is supported in the set 0 <6< 7. The collision kernels studied in this work satisfy the
following conditions.

For the non-cutoff collision kernel, we assume that

e The cross-section B(v—uv,,0) takes a product form of
B(v—14,0) =|v—v.|7b(cosh),
where —3 <~ <0 and b is a nonnegative function satisfying that
K7107172% <sinfb(cosf) < KO 172 with 0<s<1, K>1.

The parameters v and s verify that v+ 2s <0.
Note that we impose v+ 2s < 0, which represents very soft potential. For moderately
soft potential —2s <~ <0, some asymptotic analysis has been done in [14].
The Cauchy problem of the non-cutoff Boltzmann equation in a periodic box reads:

{atF+v~VxFQ(F,F)a t>0,2€T° v ERY; (1.2)

Fli—o=Fp.

Here F(t,z,v)>0 is the density function of particles which at time ¢ >0, position = €
T3 := [—n, 7], move with velocity veR>.
For the cutoff collision kernel, we assume that

e The cross-section B¢(v—wv,,0) takes a product form of
B (v —v4,0) = |v—04]"b(cosb),

where bG:b(lfgb(sing/e)), where 0 <e< ? and ¢ is a function defined by
(1.18), which has support in [0,4/3] and equals to 1 on [0,3/4].

The angular cutoff Boltzmann collision operator and its associated equation are
defined by

Q“(g.1)(v) = / B (0—0..0)(g 1 — g.h)dodo..
S2 xR3
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and

{6tF+v-vxF=Qf(F,F), t>0,2€T° v ERY; (1.3)

Fli—o=F.

We mention that the solutions to (1.2) and (1.3) have the fundamental physical
properties of conserving total mass, momentum and kinetic energy, that is, for all ¢ >0,

/ F(t,m,v)(b(v)dxdv:/ F(0,z,0)¢(v)dzdv, ¢(v)=1v;v]*, j=1,2,3.
T3 xR3

T3 xR3

As a result, if initially Fy(x,v) has the same mass, momentum and total energy as those

v|2
of the global Maxwellian u(v):= (27r)*%e’%, then for any ¢ >0,

/ (F—p)(H)odadv=0, o()=1,0,,0]%, j=1,2,3. (1.4)
T3 xR3

1.1.2. The linearized Boltzmann collision operator. In the non-cutoff
case, the linearized Boltzmann operator L is defined by

Lg:==T(u"?,9)=T(g,u'?), where T(g,h):=p"""?Q(u"?g,u'/*h). (1.5)
In the cutoff case, the linearized Boltzmann operator L€ is defined by
Log:=—T(u'?,9)=T(g,u'?), where T(g,h):=p Q" (u"/?g,u*/*n). (1.6)
The null spaces of the operators £ and £, N (L) and N (L), verify
N (L) =N (L) =N :=span{ /1, /[1v1,/[iv2,/Jiv3,/11|v]*}.

If we set F'=p-+pu'/2f, then (1.2) and (1.3) become

Wf+v-Vof +LF=T(f.f), t>0; (1.7)
fli=o= fo.

and
Of +0-Vof +LF=T(f,f), t>0; (18)
fli=0o= fo-

We can regard (1.8) when e=0 as (1.7). Without loss of generality, we assume that fo
verifies

5 Sﬁfo¢dxdv:0, ¢(’U):1,'Uj,|’l]|27 j:13273 (19)
T3 xR

By (1.4), the solutions to (1.7) and (1.8) also verify (1.9).

1.2. Problems and motivations. Our motivations originate from the following
two problems.
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1.2.1. Problem 1: longtime behavior. What is the longtime behavior of
e~ £t fy with fo € Nt for 4 € (—3,—2s) in the limit process that e goes to 07

Set fe(t)=e £t fy and f(t)=e ' fy. As we know, for v € (—3,—2s), both f¢ and
[ enjoy polynomial decay rate if fo € L? for some [ >0. However, their decay rates are
different. To be precise, if [ =—p(y/2+s) for some p> 0, one has

[f(®)]Z: SO7P). (1.10)
However, according to [19], one only has

[f®)z: SOE™), (1.11)
with ¢=p(1+2s/v) <p. Let us explain a bit more how these results can be derived.

Denote by (f,g):= [zs f(v)g(v)dv the inner product in L? space. Previous works [3,4,
10,11, 13] show that

(LEA I ~If12 +Ifhe +(=Dg2) 2 f]32 . (1.12)
v/2 s+v/2 /2 v/2

From which together with spectral gap estimate (Lf,f) 2 |f —]P’f|2L2 , for fe N one
v/2
further has

(LLENZILe - (1.13)

2

Here P is the projection (see (1.21) below) to the null space A/. In the cutoff case as
in [12], one has for feN*,

(£f N2, (1.14)

By some interpolation techniques, one can get (1.10) and (1.11) from (1.13) and (1.14)
respectively.
Recently, [14] shows that

LS+, ~ WS +W(=A2) ) [ +IW DLz,
where W€ is defined by
We(v) = (14 [v[*)*2¢(e|v]) + (1= ¢ (e|v]). (1.15)
Then for f €N, there holds
LTI 2T (1.16)
Sending € to 0, (1.16) turns out to be (1.13). However, (1.11) does not lead to (1.10).
The mismatch here indicates the result (1.11) is not good enough when € is very small.
This inconsistency is largely due to that like in [12] or other cutoff setting, a specified and
fixed value of the parameter € is considered. Therefore, it is meaningful and interesting

to consider the limit process and to improve the estimate (1.11) in order to eradiate the
mismatch.
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1.2.2. Problem 2: asymptotic formula. @ Which kind of asymptotic formula
connects the solutions of the nonlinear Equations (1.7) and (1.8) ?

Formally when the parameter e goes to 0, the solution f€ of (1.8) is expected to
converge to the solution f of (1.7). The motivation here is to justify this convergence
and look for an asymptotic formula to capture the error between them. Like in [14], it
is natural to conjecture

J= I~ O(E).

Obviously some uniform estimates w.r.t. € are needed in order to rigorously derive the
above result.

1.3. Notations. We collect some function spaces and notations in this sub-
section. Most of them are standard. One may skip this part and come back when
necessary.

1.3.1. Basic notations. We denote the multi-index a=(a1,a2,a3) with
la]=a;+az+as. We write a <b to indicate that there is a universal constant C
which is independent of a,b but may depend on the parameters «,s and be different
across different lines, such that a <Cb. We use the notation a~b whenever a <b and
b<a. The Japanese bracket (-) is defined by (v):=(1+]|v[%)2. The weight function
W, is defined by Wj(v):=(v)!. We denote C(A1,A2,-+,An) or Cx; x,...x, by a con-
stant depending on parameters Ai,Ag,--,A,. The notations (f,g) ::ng f(v)g(v)dv and
(f,g9):= fR3 . 13 fgdrdv are used to denote the inner products for v variable and for z,v
variables respectively. As usual, 14 is the characteristic function of a set A.

1.3.2. Function spaces. For simplicity, we set 0% :=0%,0p :285,85‘ =020,
(1) For n€N,l€R, the weighted Sobolev space on R? is defined by
= { 1)y = X 105112 <00 .
1BI<n

where [f|z2 :=[Wif[r2 is the usual L? norm with weight W;.
(2) For neN,leR, we denote the weighted pure order-n space on R* by

= { Sy = 3 10a11 <o . (117)
|Bl=n
(3) For meN, we denote the Sobolev space on T3 by
2= { £y = X 101y <oc .
jal<m

(4) For m,neN,l€R, the weighted Sobolev space on T? x R? is defined by
A= fao B = Y 10515l <oc .
|Q‘Sm7‘ﬁ‘§n

For simplicity, we write ||f||H;nle = ||fHH;nHIo if n=0 and Hf||L§le = HfHHngO if
m=n=0. The space H*H]' can be similarly defined.
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1.3.3. Dyadic decomposition. Let us give a brief introduction to dyadic
decomposition. Let By/3:={ve€ R?:|v| <4/3} and C:={veR?:3/4<|v|<8/3}. Then
one may introduce two radial functions ¢ € C§°(B,/3) and ¢ € C5°(C) which satisfy

0<¢, <1, and ¢(v)+ > _$(277v) =1, for all v€R®. (1.18)
7>0

Now define ¢_1(v) :=¢(v) and p;(v) :=1(27v) for any v €R® and j >0. Let P; be the
projection operator on the region |v|~27 defined by (P;f)(v):=p;(v)f(v). Then one
has the following dyadic decomposition

f=Y_Pif, (1.19)
j=—1
for any function defined on R®. Let us further introduce

fl=o(e)f, fh=0-¢(e)f, (1.20)
which stand for low velocity part |v| <1/€ and high velocity part |v| 2 1/€ of function f.

1.3.4. Macro-Micro decomposition. Recalling

N:Span{\/ﬁv \/ﬁvlv\/ﬁu27\/ﬁ'v37 \/;E|U|2}7

we introduce the projection operator P on A as follows:
Pf=(a+b-v+cv|?)/i, (1.21)
where for 1<i <3,

w* 1

a:/ (2—%)\//7]"6&1; bi= | wvi/ufdv; c=/ (——f)ffdv (1.22)
R3 R3 R3

Now f=Pf+(f—Pf). Usually, Pf is called the macro part, and f—Pf is called the
micro part.

1.3.5. Function spaces related to coercivity estimate. Recalling W*
defined by (1.15), we naturally define some spaces resulting from the coercivity estimates
of L in Theorem 2.1. For 1 >0,—1 <m <, let Y} be real spherical harmonics verifying
(—Ag2)Y;™ =1(14+1)Y;™. Then the operator W¢((—Agz)'/2) is defined by: if v=r0, then

(W(=As)"?)f) Z Z WU+ 1) )Y (o) f(r), (1.23)
I=0m=-1
where f/"(r)= [, Y (0)f(ro)do. Now we introduce

(1) Space L?,l' For functions defined on R?, the space L2l with [ €R is defined by

el —{f ‘|f|ig‘l<00}7
where

fzz, = (We((— ) 2 )Wif |72+ W (DYW f |72+ [W W, fl72.
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(2) Space H;*H!,. For functions defined on T3 x R, the space H'H, with m,neN
is defined by

P H = { e B = 5 1081 e <o

la|<m,|B|<n

For simplicity, we set ||fHH;nL3l = Hf”H;”HSJ if n=0 and Hf”LiLf,z = Hf”HgHgl itm=

n=0. Again, the space H;”Hg‘l can be defined accordingly.

1.4. Main results.  Our first result is on the longtime behavior of e~ f with

fo eNt.

THEOREM 1.1.  Let € >0 be small enough, v € (—3,—25),N€N,1>2.p>0 and fo e N'*.
Then f€(t):=e £t fo verifies the following statements.
(1) (Refined polynomial decay rates.) Assume fo€ Hﬁp(v/ﬂs) Jdet g=p(142s/7).
For simplicity and clarity, denote c(fo,€):= 26(625)%0(]?,(],]\]”]00‘?{1\, ~
l=p(v/2+s)

(625)%|f0|f{5\, o rarey’ where ¢>1 is a constant depending only on N,l, and
—p(y s

C(p,q,N) is an explicitly computable constant depending only on p,q,N. If
|fo|§{lN > c(fo,€), then there is a critical time t, >0 such that |f<(t.) %’zN <c(fo,€) <

clfe(ty) ?IZN and

| fol3~ () |2
Ol S arene A g Lt 1.24
|f<( )‘HLN STy t<t, T (T Coli—t.))1 t>t. ( )
Here Cy ~ \fo|i{lﬁ |f0|l;?{f(w/2+s) Oy ~ €25/ (=0)
If c|fo %.IZN <c(fo,€), then
|f0|i11v
Oy ST o 1.2
OBy S s 1.2

Here Co ~ \foli,/lfilfo ~2/a

Hlfp("r/2+5) '
(2) (Almost energy conservation in an arbitrarily large time span.) Assume
|fol2:=1 and |P;fol2.=1—n with n sufficiently small and 27 >€e~*, then for te
[0,C~1e252797n], there holds

P f<(t)[72 > 1—2n—Cexp(—C12%). (1.26)

Here C,C1 are two universal constants.

(3) (Exponential decay in an arbitrarily large time span.) Assume |fy|2,=
1. Fiz §>0, suppose j €N wverifies 2777 exp(—C12%7) <§ and 29 > e 1, denote A=

. . 2 R
N2, K = e Ip K> 2, then for t€]0,2071 27 In(K —1)], there

holds
P f<(8)|72 <exp(—At/2)[P; fol7 (1.27)

Here C,Cy are two universal constants and A is the constant in (2.2).
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Some comments are in order:

N
REMARK 1.1. If foerp(w/QJrsy

¢(fo,€) is valid when e is sufficiently small. Therefore (1.24) invokes, and by sending
€ to 0, we have ¢, — oo and thus recover the well-known polynomial decay (1.10) for
solutions of the non-cutoff linearized Boltzmann equation,

ol

(1+Cqit)r’

then lim._,q¢(fo,€) =0, which means that |f0\§{N >
l

@) S (1.28)

REMARK 1.2. Note that, the critical time ¢, in (1.24) is a turning point of decay rates.
That is, before the critical time ¢, the solution decays with the rate O(¢t™P); after .,
the decay rate becomes to O(t~?). Note that ¢, is the time when |f€(¢,) %IZN ~c(fo,€),
so it could be very large when € is very small. In a word, the decay pattern is closely
related to the cutoff parameter e. In previous works, see [19] for instance, under the
same assumption fy € Hj_vp(,y/2+s), since the parameter € is fixed, in terms of large time
behavior, one has

O S

—_—t 1.2

Because of the largeness of ¢, and p>gq, (1.24) is more refined than (1.29). More
importantly, it reveals the role of the cut-off parameter ¢, and discloses the difference
between cutoff and non-cutoff. One may see the difference clearly in Figure 1.1, where

Decay rates comparison

"'-.__“ =
el P —— f: earlier result
~
B "‘"~..___ —- % our result
~~
-
~a
2 '-.,_‘.‘
s
~~.
— "--__.
=
.
-4 g T
.
~.

\"--..
s
1 T T T T T T
0.0 0.5 1.0 1.5 20 25 30

log(1 +1)

Fic. 1.1. Comparison of different decay rates.

we set p=2 and g=1 with y=—4s. We choose e=1/10 in order to have a relatively
visible difference. Note that the graph is drawn after taking the logarithm. Thus
negative linear relation implies polynomial decay rates. In Figure 1.1, the red solid
line represents decay of the solution f to the non-cutoff linearized Boltzmann equation.
For the solution f€ to the cutoff linearized Boltzmann equation, earlier result (1.29) is
depicted by the blue dashed line, and our result (1.24) by the green dot-and-dashed
line.
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We have two comments. First, before the critical time t,, both f and f€ enjoy the
same faster decay rate O(t=2), while after t., the decay rate of f€ shifts to O(t~1).
Second, the critical time ¢, is extremely large when € is extremely small, which demon-
strates the superiority of the dot-and-dashed line over the dashed line, and thus that of
(1.24) over (1.29).

REMARK 1.3.  Equation (1.26) tells us that if the initial data fy is concentrated in
some ring around |v| ~27 and far away from origin, the L? energy would conserve for a
very long time. On the other hand, (1.27) insures that over the long time interval, the
corresponding L? energy decays in an exponential pattern, albeit with a very slow rate
Ae=25207 /2,

Our second result is concerned with the global well-posedness and the global dy-
namics of Equation (1.8). As a direct consequence, we derive the asymptotic formula
for the solutions to (1.7) and (1.8) , which solves Problem 2. We will use the following
energy functional

N
EN»l(f);:ZHinIévfjH{* . (1.30)
=0 3

We assume [>2— N+ in order to apply Lemma 2.1. For simplicity, set EN(f):=
EN2N(f),

THEOREM 1.2.  Let €>0 be small enough, —3<vy<—2s and do >0 be a sufficiently
small constant which is independent of €. Let fo verify (1.9) and E4(fo) < do.

(1) (Global well-posedness.) The Cauchy problem (1.8) (when e =0, it is understood
as (1.7)) admits a unique and global solution f€ verifying

§1>110>54(f€(t)) < C4E*(fo), (1.31)

for some universal constant Cy.

(2) (Propagation of regularity.) Fiz N >4,01>2— N~, there is a sufficiently small
constant 0 < dxn ;<o such that, if E4(fo) <y, and ENA(fo) <00, then

igng’l(fﬁ(t)) < Pni(EN(f0). (1.32)

Here 6, could depend on N, but is independent of . Py is an increasing function
verifying Pn 1(0)=0.

(3) (Global dynamics.) Fiz N >4,1>2—Nv,p>0,q=p(1+2s/7v), assume E*(fy) <
ONI—p(y/2+s) and ENI=P(7/245) (£} < 00. For simplicity and clarity, denote

c(for€) :=2¢(€2*) 777 C (p,q, N)EN PO/ 2E(f) o (€2) 77 ENIPO/249) (£,

where ¢>1 is a constant depending only on N,l, and C(p,q,N) is an explicitly
computable constant depending on p,q,N. If EN(fo)>c(fo,€), there is critical
time t. >0 such that ENL(f(t.)) <c(fo,€) < cENA(fF(t,)) and

EVUp) |, V)
1+ Ch) t<t. A+ Calt— 1)) t>t, -

Here Cy ~EN(fo) /PENA=PO/248) (£)=1/P Oy ~ 259/ (P=0),

EN’l(fe(t)),S (1.33)



296 ASYMPTOTIC ANALYSIS OF THE BOLTZMANN EQUATION
If c€N(fo) <c(fos€), then

< ENJ(fO)

5N’l(f6(t))wm, (1.34)

where Cy ~ ENA( fo)/IENI=P(¥/2+5) (f) =1/,

(4) (Global asymptotic formula.) Fiz N >4,1>2— N+, assume that E*(fy) <
SNt2,042-2, and ENFT2IF2=2Y(fi) < oo, then

supEMI(f(8) = (1)) S C(ENTHH2T2(fy))e e, (1.35)

t>0

where f and f€ are the solutions to (1.7) and (1.8) respectively.
Some comments are in order:

REMARK 1.4.  We study the Boltzmann equation with and without angular cutoff
simultaneously in the near-equilibrium framework. As for the global well-posedness
(1.31) and the propagation of regularity (1.32), we only require smallness of £4(fy),
rather than smallness of EM:!(f), which is different from and an improvement over the
results in [12] for cutoff case and [4,10] for non-cutoff case.

REMARK 1.5.  As for the minimal regularity of initial datum, we only need N >4.
Actually, the minimal order can be improved to —3 —2v+ 4 for any § > 0 if one needs to
use the embedding L — H3/2%9 in dimension 3. Thus when v is near —3, N >3+4 is
required, which means 4 is the smallest achievable integer. This issue is indicated in [10].
Note that [12] and [4] impose N >8 and N >6 respectively. Notably, very recently [9]
establishes well-posedness of Boltzmann and Landau equation in a low regularity space

3/2+0 1 2

containing H; in our notation.

REMARK 1.6.  Equations (1.24) and (1.33) together show that the behavior of the
solution to the non-linear equations enjoy the same decay pattern as that for the semi-
group generated by the linearized collision operator. The global error estimate (1.35)
is also established for the solutions f€ and f. To our best knowledge, these results are
new for the very soft potentials.

1.5. Organization of the paper. In Section 2, we recall some known results
on collision operators. Section 3 is devoted to the longtime behavior of the semi-group
e £t that is, the proof of Theorem 1.1. In Section 4, we prove Theorem 1.2. In the
appendix, we list some useful results and an example of an ordinary differential equation.

2. Estimates of the collision operators

In this section, we recall from [14] some results, namely, coercivity estimate of L€,
upper bound of I'“(g,h), and commutator estimate between I'*(g,-) and W;.

For explicit spectral gap and coercivity estimates of the linearized Boltzmann and
Landau operators, one may refer to [6,15,16]. One may also refer to the recent work [2]
for the sharp coercivity estimate of the linearized Boltzmann operator. The following
is Theorem 1.1 in [14], which is a sharp coercivity estimate of £L¢. By “sharp” we mean
the lower and upper bound share the same norm.

THEOREM 2.1. There exists a constant ey >0 such that for 0<e<ey and any smooth
function f,

L) 4B U2 =W (D)D) f e WD) + WS o (2)
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Let X be the largest number such that the following is valid for any smooth function

/s
L)+ 2SR o (22)

The following is Proposition 2.4 in [14], which says that (L°f, f) produces “strict”
coercivity in the space N'*. This type of estimate is usually referred to as “spectral
gap” estimate.

PROPOSITION 2.1.  For any smooth function f, we have

(LS )= =PFIZ ., o

In the near-equilibrium framework, a key step is to control the non-linear term
L(f, f) via the linear term Lf. That is, to establish (T'(f, ), /)| S (LS, f) under small-
ness assumption on f. For the estimate of the trilinear (I'(f,f),f), one may refer
to [4,5,10].

To study the non-linear Equation (1.8), we need to control (I'“(g,h), f) in terms of
the norm |-| - /2 of the coercivity estimate in Theorem 2.1. The following upper bound
estimate of I'¢ is from Theorem 2.2 in [14].

THEOREM 2.2.  For any n >0 and smooth functions g,h and f, the following statements
are valid.

(1) If’y>—3/2, ‘<F6(gah)af>‘§|9|L2|h|e,’y/2|f|e,’y/2;
(2) If y=—=3/2, [{T(g,h), /)| S1gl2 (WD) B brn + [Bley j2) | Fley 23
(3) If =3<y<-3/2,
(0 (g: ), )] S |1 gl rrea
where s1,s2 and s3 verify that s1+sas+s3=—7—3/2 if sa+s3€(0,—y—3/2] and
s1=—7—3/24+n if so=s53=0.

Note that the above result is little bit different from that in [14] in terms
of the weight on function h. More precisely, in [14], the corresponding part is
|8 e \WE(D)h|Hs52|W€(D)f|H332. We emphasize that the weight on h can be im-

WD) *hl -2

I/Ve(l))f|H::§2 + |g‘L2|h e,'y/2|f|e,’y/27

proved to ;!/8 by observing that the term comes from the velocity singularity |v—uv,| <1,
M Yy g Yy Sing y

which implies §u1/2u1/4. Thanks to the existence of u, in g., we can get some p

power for h.
Recall L¢g=—T¢(g,u'/?)—T¢(u/?,g). Then as a direct consequence of Theorem
2.2, we have

COROLLARY 2.1. If~v>—3, there holds
(L9 ) <lg

The following commutator estimate between I'“(g,-) and W, is Lemma 2.11 in [14].
LEMMA 2.1. Let1>2. There hold

(1) if7+220f |<F€(nglh)7VVlF€(g’h)’f>|S|g‘L2|Wl+’7/2h|L2|f|€,"//2;
(2) if —3<~<—2,

(0 (g, Wih) = Wil (g,0), /)] S 19112 (Wi j2hl 2] fleq sz + |0 2 glaes |1 # Rl ez | f e 2,

where s1,82 €[0,—v/2—1] with s1+s3=—v/2—1.

e,’y/2|f|s,'y/2~
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As a result of Lemma 2.1, we have

COROLLARY 2.2. If —3<v<0,l>2, there holds

(£ Wilg, /) S lglee

I+~/2

|f|e,’y/2~

3. Longtime behavior of e~
In this section, we will give the proof to Theorem 1.1. Throughout this section, we

will set f=e £t fy with fo € N-. Then f verifies that f € A/t and

Opf + L f=0;
{f|t_o_f0- 3.1)

To deal with derivatives w.r.t. the velocity variable v, let us deviate to introduce
some notation. By binomial expansion, we have

agff(g,h): Z Cg"”gl”82C;"l’“QFE(agjg,@gjh;ﬁo), (3.2)
60"!‘61"1‘62:6,(114-0(2:&
where
(g,h;8)(v) ::/ B (v —0.,0) (031 %)u (9.1 — goh)dodv,. (3.3)
S2 xR3

Here C’go’ﬁl”gz is the combination such that 8o+ 81+ B2=08. The notation C5*? is
similarly interpreted. We remark that I'“(g,h;3) satisfies the upper bound in Theorem
2.2 and commutator estimate in Lemma 2.1. We define

LeF0P g = (9, 12, g3 o) = T(9,0p, 1"/% o). (34)

Therefore £6#0:81 enjoys the same commutator and upper bound as that of £¢ in Corol-
lary 2.2 and Corollary 2.1. Recalling £cg=—T(p'/2,g) —T(g,1"/?), (3.2), (3.3) and
(3.4), we have

aﬁ‘ceg :‘Ceaﬁg_ Z 0560761762 [FE (8,31 /~L1/27aﬁzg§50) +Ie (aﬁlgvaﬁzul/Q;BO)]
BotB1+B2=8,82<p
=£€83g+ Z 0507,31752[/67607[316,6297 (35)

Bo+B1+P2=8,82<p

where we use the fact C’go’ﬁl’ﬁz :Cg"’ﬁ2’ﬁl in the last line.

We set to prove the following propagation result.

PROPOSITION 3.1.  Fizx 1>2, suppose f€ is the solution to (3.1), then
oo
suplf“ O+ [ 15Oy deS Il
t l 0 e, l+v/2 1

Proof. For simplicity, we omit the superscript € in f€. Start from (3.1), take inner
product with f, by the fact f € Nt and Proposition 2.1, we get

d
T i + 22 fl3po <0 (3.6)
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Fix an index 3, apply W;03 to both sides of 9, f + L f =0, by (3.5), we have

OWiDsf +WidsLf =0Widsf+ Wi Y CioPviLefoliy, f—o.
Bot+B1+B2=p

By introducing the commutator [£¢%0-%1 W] and rearranging, we get
OW0sf+LWidpf= > CRO Lol Wilog, f
BotB1+B2=8

B Z Cgo,ﬂhﬁz L£B0.5 W10, f- (3.7)
Bo+p1+B82=0,82<p

When |3| =0, we simply have 0, W, f + LW, f =L, W] f. Taking inner product with
W, f, using (2.2), Corollary 2.2, by the basic inequality 2AB <nA2?+n~1 B2, we have

|f|Ho+ |f|H Slflfqlo §|fl|§{o + 130
+v/2 1+

Ivy/2

By the definition of W€ in (1.15) and interpolation, we have

h|2 25
My, <€l s (3.8)
112 2 2
|f |H10+ /2_77|f |Hz0+ ot Cn|f |H3/2+sSn‘leE,Hwn+Cn|f|HS,w/2' (3-9)

By taking 1 small enough such that n< )\, when e is small such that ¢2* <\, we have
d o 2 2
_ <
g g ¥ Mo S F e - (3.10)
Making a suitable combination of (3.10) and (3.6), we have

& (M1 B+ 1S ) 4 (MU B 4178 ) <0 (3.11)

For 0<i< N, set

VE(f): MZ\f|Ho+ZKl|f|HJ,u”( =M\l +ZK’\f|

l2
= v/

for some constants M z,K; >1 which will be determined later. For 0 <¢ < N, we proceed
to establish

%V“(f) + AU (f)<0. (3.12)

Note that when ¢ =0, (3.12) reduces to (3.11), which has been proved. Also note
that VNU(f) ~ | f12n and UNA(f) ~[f|2,x . Moveover, we have VV'!(f) > |f|2, v and
l el+v/2 l

UNL(f) > \fﬁ{NH p since M*, K} >1. So when =N, (3.12) yields the proposition im-
e+

mediately. In a word, it remains to derive (3.12).
We will prove (3.12) by mathematical induction. Suppose (3.12) is valid for i =k,
that is,

d

k
k 2 k 2 k 2 k
ol R |f|Ho+ZKj|f|Hlj A ME|fl +ZK |f1% <0, (3.13)

j*O s l+~/2
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we now go to prove that (3.12) is also valid for i=k+1. Start from (3.7) for |5|=k+1
and [>2, take inner product with W;03f, using (2.2), Corollary 2.2 and Corollary 2.1,
by the basic inequality 2AB <nA%?+n"1B?, we have

2
|aﬂf|L2 +35 )‘|aﬁf|e J+v/2 5 |f|Hk+1/ + |f‘HfJ+7/2'

Taking sum over \,6’| =k+1, we get

\f| ity >\|f|Hk+1 2§|f|i1lk+1 +|f|H

)2

By Proposition A.2; we have for any n >0,

2 < 2s 2 2 < 2s 2
s, SO+ ges +Colf g, S0t gy +Coll T
Taking 7 small enough such that 77 < )\, then when ¢ is small enough verifying €2 <\,
we get

d .o 2
$|f|H;€+1 +/\|f|H£T1 <‘f|H 2 (3-14)
Then a suitable combination of (3.13) and (3.14) will produce (3.12) for i =k+1. More
precisely, we can multiply (3.13) by a large constant and then add the resulting inequal-
ity to (3.14) to cancel the term |f|3,, on the right-hand side. 0
Ni 2

el+v/

We now prove a technical proposition regarding to the decay rate of a special type
of ordinary differential inequality.

PROPOSITION 3.2.  Let ¢>1,c1,c0 and p>q be five universal and positive constants.
Consider the ordinary differential inequality:

1

d
—Y Y Y *a <0;
@ T Pt (3.15)

Y=o ="Yo,

where ¢ (Y1 +Y2) <Y (Yl+Y2) and Y,Y1,Y5 >0. Ing>26(cl/c2) , let t, be the
time such that Y (t.) = (01/02)P a, then for any t >0,

Yo Y.

Y ()< aamp <t + T e e e 3.16
( )— (1+01t)p t<ty (1+02(t—t*))q t>t. ( )
where Y, =Y (t.),C1= 20C1p( 0)1/P Cy= L2 Z(c1/c2) ™ 7-7. Moreover, the critical time veri-
fies t. < (Yo/Y2)/P ~1)/Cy.
If Yo <2¢(c1/ez)7 1, then for any t >0,
Yo
Yt) < ——F— 3.17
0= o (317)

where Co = ;gq(;Vg )Ha,

Proof. Tt is easy to check that Y (¢) is a strictly decreasing function before it
vanishes. When Yy > 2¢(c1/c)7-1, since Y (t,) =2¢(c1/ca) 7-7, we have

Y(t) a+r Y(t) 142
2¢ )= 2¢ ).
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Since Y <¢(Y1 +Y2), one has max{Y1,Y2} > 5-Y. Then we deduce

1
clYller—H;ng 0 >max{c1Y CQY }
Y
' Y 1 Y Cl(?) P, 1<ty
Zmln{cl(%)lﬂ ca <20)1+ b= YC . (3.19)
ca() T, et
c

Note that the last equality employs (3.18), which is also the reason of our choice of t..
When t < t,, we have

d Y 141
—Y —)tr <
dt —|—c1(20) r =0,
from which we get
Yo
Y < —— 2
< T (3.20)
with C1 = 5% (12/0)1/? On the interval [t,,00), we have
d Y 141
—Y q <
gy Tely) <0,
from which we get
Y (t.
Y (t) (t,) (3.21)

=T+ Cali—t)"

with Cy= 2C§q(yéi )y1/a = = 2 (¢ /c3)7 4. Patching together (3.20) and (3.21), we con-

clude (3.16). Since Y'(¢) is a strictly decreasing function before it vanishes, we have

Yo
V)< I YOS ey
which yields t, < ((Yo/Y:)?—1)/C;.
When Y, §2c(2—;)(1/q_1/”)71, we have
Y01 Yo.1
> . 3.22
(D) (M1 (522

1

Similar to (3.19), we have ¢1Y; +02Y T _@(%)H% and thus on the interval [0,00),
we get
d Y )1+

Zy -
dt +C2(20

which yields (3.17). The proof is complete now. d

In the appendix, we give a special case of the inequality (3.15) as example A.1 which
shows the decay structure (3.16) is optimal.

With the help of Proposition 3.2, we are ready to prove the first part of Theorem
1.1, namely the refined polynomial decay rates.
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Proof. (Proof of Theorem 1.1: Refined polynomial decay rates (1.24) and
(1.25).) Let Yi=|f"? N Yo =] |HN, then VVU(f )N|fﬁI{VNY1 +Y5. To be clear, we

take a universal constant c¢>2 such that

V4 Y2) < [flFp VNI < SIF By SelYi+Ya).

We remark that the constant ¢ could depend on N,I by the definition of VV:!(f). We
will use the following interpolation result:

[Flee <1f1%2 #1130 <0< B,0< < L ba+(1-0)5=0. (3.23)

Fix p>0, set a=~/2+s,0=-L

m,ﬂz—p(w/?—i—s) in (3.23), we get

|W58ﬂf |L2 < |Wlaﬁf ‘P/ p+1) |W8 fl 1/(p+1)

p(v/2+s)

<|Wids f* \P/ i) (Ol folgy )L/, (3.24)

p(v/2+s)

where the last inequality comes from Proposition 3.1. More precisely, we used

Ut
Wids f Olez oy SFOlape, o, SOl
Rearranging (3.24), we have
112 —1/p ¢ 1—2/P 112(1+1/p)
|W16@f |L'2y/2+s >C ‘f0|HzI\1p(~,/2+s)|Wlaﬁf |L2 . (3.25)

There is some constant C(p,n), such that (31" a;)' /P <C(p,n) > 1 1a11+1/p Taking
sum over || < N, for some constant C(p,N), we get

Z |Wlaﬂfl|ig/2+s >C(p,N )|f0|_2/p |fl 2(1+1/10)

IBI<N o
Taking a:fy/Q,q:p(lJrQs/fy),G:qf’l:%,ﬂz—p(’yﬂﬁs) in (3.23), we
get
[Wids f" |12 < [Widp S 1 (Wi M) (3.26)
/2 P(v/2+9)

By a similar argument, we have

> Widsf 3 =C@N) ol M (3.27)

IBI<N v .
By the fact |f|3~ > >|f! | +e 2|12y, and the estimates (3.25) and

el+vy/ + /2+s e, l4+~/2
(3.27), we get

—2 2(1+1
1, , 2 C@Molgd” F
RO Nl (3.28)

By (3.12) and the fact UM (f) >|f[3,~ , we have
e,l+v/2

GV 4N, <0 (3.29)

e,l+v/2
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Plugging (3.28) into (3.29), we have

d
VNN Fay] T ey T <0,

where ¢; =AC(p,N )\f0|_2/p =X 2C(q,N )|f0|_2/q . Applying Proposi-

2+s) +s)
tion 3.2 with Y= VNl(f) =|f |HN,Y2 | f72 N We get the following results. If

VNL(fo)>2¢(c1/cs)7a, let t, be the time such that VNI(f(t,))=2c(c1/cz)7-a, then
for any ¢ >0,

NI NI
VVL(f(t)) < Mlxt* + mlgt*, (3.30)

where C = £ (V f)y/p | £y \2/”|f0 ‘2/1’ \Co =2 (cy/cy) 757 ~ €254/ (=0),
2ep p(v/2+s) ¢4

If VNV fo) Szc(cl/cg)ﬁ7 then for any tz(),

VN’l(fo)

VN’l(f(t)) < m’

(3.31)

PN
where Cy = 2 (Y Wehyl/a | £, |2/q\fo| 2/q
Note that

(1/c2) 777 = (C(p,N)/Clg,N)€>) 7= | fol 3 = ()73 C(p,q,N Nl foligs

L—p(v/2+s) (’Y/2+S)

p(v/2+s )

With the equivalence

|f\§1;\f <VNVH(f) §C|f|%rlN,

we get (1.24) and (1.25) from (3.30) and (3.31) respectively. |

Before going to prove the remaining part of Theorem 1.1, we prove the following
technical lemma for a commutator estimate.

LEMMA 3.1. Let v>—3. Suppose j >3, then for any n>0, there holds

J+3
(L PALPDIS T exp(-CL2 ) Wese + 3 [PeflEs )+alPifl2, .
k=j—3

where C1 >0 is a universal constant.

Proof. By the definition of L¢(see (1.6)), it suffices to consider Z(g,h):=

(T(g,h;) =T(g,h)p;, fio;) where (g,h)=(u?, f) or (g,h)=(f,n?). Recalling p;(-)=
¥(277-) and w has support in {4 <|v| < 3} so the support of ¢; is contained in

{3 x27<|v[<§ x27}
Direct calculatlon will give

I(g.h)= / B [(gud)h(foy) (— (23) +05)

g (1) = () )R F0y) (— () +05) | doduv.d.
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Here and in the following o €S2?,v €R3,v, €R3, and we omit the integral region for
notational brevity. By Cauchy-Schwartz inequality, we get

1
2

|Z(g,h)| < (/Begth(Mé +(M%);)((Qﬁj)/—@j)QdO’dU*d’U)

X </BE[M§ (o)) — fe5)°

Nl

H(Fe)? (1) = (15)a)"] dcrdv*du)
+| /Bg(gﬂ%)*hfs@j ((soj)' — goj)dadv*dv’
Sulfesl? . p+n" T (9,h)+K(g,h),

where
Tlgh)i= [ B2 + (V) ((05) ~ ) dodo.do,
Klo.)=| [ (o )uhsos () —o3)dodv.d.

It remains to analyze J(g,h) and K(g,h).

Step 1: Estimate of J(g,h). We separate J(g,h)=J1(g9,.h)+T2(g.h)+T5(g.h)
corresponding to {|v.| <27/10}, {|v.| >27/10,|v| <|v.|/4} and {|v.| > 27 /10,|v| > |v.|/4}
respectively.

Step 1.1: Estimate of J1(g,h). In J1(g,h), we have {|v.| <27/10} and then

|(90j)(vl) —Pj (v) \21\1;* |<2i/10 = |(90j)(”/) - @j(”) |21|v* |<29 /10,27 /5<|v|<10%27 -
By Taylor expansion and the fact [Vp;|re < 277, we get

1(05) (V") = 5 (V)P 110, <29 /10 S 27 H [0 = 042071}, | <25 10,29 /5< || <10x 27

2
S 0710, <29 /10,29 /5<|v|<10x 23 -

From which we get

/BS(@J‘(U/)_%(U))QO{US |U_v*|’yl|v*|§2j/1072j/5§|'u\§10><2j
SA{U) L, <24 /10,21 /5<|v]<10% 2 -
where we use 3[v|/2>|v—v.| >|v]/22 1, and thus |[v—v. |7 ~ (v —v.)7 ~ (v)7. Also note
that |v.| < |v|, we get for any a >0,

jl(gvh)5/gzh2<v>_a<v>’y+al|v*|S2J'/1O,2J'/5§|v\SleQidvdU*

2 2
S |91|.\§2j/10|L3a|h12j/5§\-|§10x2j |L5/2+ .

When (g,h) = (u'/2, f), take a =0, we get

1/2 2 2 2
jl(ﬂ/ 7f)5|#1/ 1\-\32:‘/10@2|f12j/5§\-\§10x27|L5/2§|f12i/55\-|§10x2j L2,
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When (g,h)=(f,u*/?), take a=0V(—v/2):=max{0,—v/2}, by the fact p'/?(v)<
exp(—C12%) if |v| €[27/5,10 x 27], we get

1/2y < ) 2 1/29 12 < - 2j €r2
Ji(fp )N|f1\-\§21/10|L§/2|M 124/5§|4|§10x23|1;3/2v0NeXP( C27)|[W f|L3/2-

Step 1.2: Estimate of J2(g,h). In Ja(g,h), we have {|v.|>27/10,|v|<|v.|/4},
and so it is easy to check 3|v,|<|v—v,|<2|v,|~|v—0]|~|v,|. Together with |v—

V.| /V2 < |Jv—vl| <|v—w.|, we have \vi|Z|v—v;\—\v|2(4\3/§—1/4)\v*|2 |vi|/4. There-

fore (ué +(u7).) Sexp(—C12%7). Thanks to (p;(v') —¢;(v))? Smin{|v —v,]262,1} and
Proposition A.1, we get

€ 3 i
[ BeE s 0) s
Sexp(—=C12%) [0 — 0.7 (W) (0= 0.) L1, 226 /10, 0| <o | /4
Sexp(=C12%7) (0,) (W) (0:) Lo | 229 /10, o] <[o. | /4

Also note that |v| <|v.|, we get for any a >0,
jZ(gah)Sexp(_0122j)/gzh2<v>_a<v*>’y+a1|v*\ZQj/10,\v|§|v*\/4dvdU*
5CXP(—C122j)|W€gl\-|22j/10|2L§/2+a|h|iga-

When (g,h)=(u'/?,f), take a=0V (—~v/2), and when (g,h) = (f,u'/?), take a=0, we
get

Jo(u'2, ) Sexp(=Cr2)Wef[1z | To(fn!?) Sexp(=Cr2)WeflLz .
Step 1.3: Estimate of J3(g,h). In J3(g,h), we have {|v.|>27/10,|v| > |v.|/4}, and

so there holds |v| > 27 /40. Thanks to (;(v") —p;(v))? Smin{|v —v,|?62,1}, Proposition
A1l and |v.| S|, we get

/Be(%@')—%(v))QdUS [0 =0, T(W)? (0= 02) L}, 223 /10, 0] > 0. | /4
Sl =0 V(W) (0) 110, 1325 /10, 0|22 /405
which gives

J5(g,h) S/gfhzlv*v*I”(We)z(v)lwv*|zza/1o,|v\zzj/4odvdv*.

When (g,h) = (u*/2, f), thanks to the fact [ ju.|v — v, |1}, 501 /10d0s
we get

Sexp(—C12%)(v)7,

~

T2, 1) Sexp(=Cr2) [ POVP W) 0)do S expl-Cuo) WS

When (g,h)=(f,n'/?), thanks to the fact [p|v—v,|"(W)?(0)ly>0i/20dv S
exp(—C12%)(v,)7, we get

() Sexp(-Cr2) [ f2 (0 dv. Sexp(-CuzWFLs
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Patch together the above estimates in Step 1.1, Step 1.2 and Step 1.3, to get
j(,ul/Q,f) +j(f,u1/2) §exp(70122j)|W6f\igy/2 +1f1i /5<).|<10x 29 |%5/2-

Step 2:  Estimate of K(g,h). Recall K(g,h) :=|fBE(gu%)*hf<pj((<pj)’—
¢;)dodv.dv|. We separate K(g,h) <K1(g,h)+K2(g,h) corresponding to {|v,| <27/10}
and {|v.|>27/10} respectively, where

Kl(g,h)iz|/Belwszj/m(gu%)*hﬂm((w)’*w)dadv*dv|,
’C2(9’h)1:\/Belw*lzzj/lo(g#%)*hfsﬁj((%)'*%)dffd”*d’”"

Step 2.1: Estimate of K1(g,h). In Ki(g,h), we have {|v.|<27/10}. By Taylor
expansion

1

(%‘)(1/)—%(U)Z(V%)(v)~(v—v')+§/o (V) (v(K)): (v —v) @ (v —v)dr, (3.32)

where v(k) =v+k(v'—v). In this case, by previous arguments in Step 1.1, |v] is rela-
tively small and [v] ~ v —v.|~|v(k)|~27.

By the facts |Vip,|pe S279,|V20)|~ $27%7, the symmetry property [B¢(v'—
v)do = (v, —v) [ Bsin*(0/2)do, we get

|/Be(<Pj(vl) —j(v))do| S (V) 11y, |<2i /10,23 J5< 0] <1027 5

which gives

|K1(g,h)|§/|(gu%)*hf|<pj <U>71\v*|§2j/10,2j/5§\u|§10x2jdUdU*

1
5|g,u21|~|§2j/10|L1|h12j/5§|4|§10><2i|L'j’{/2|f<pj12f/5§|-|§10><21 L2,
When (g,h) = (u1/2, f), we get

|’C1(M1/2»f)|§|f12.7‘/5g|.\g10x2.7‘\%3/2~

When (g,h)=(f,'/?), by the fact pu'/?(v) Sexp(—C12%) if |v|€[27/5,10 x 27] and
1
Tt S les o we et

Cr(f ! /2) Sexp(=Cr22)| fl7 .

Step 2.2: Estimate of Ka(g,h). In Ka(g,h), we have {|v.|>27/10}. Note that the
support of Vi, belongs to [27/10,10 x 27], then by (3.32), we have

(‘Pj)(“l>—Wj(v):121‘/10§|v\§10x2:‘(V%‘)(U)'(U_Ul)
1 ! 2 / /
+3 | (o)) -0 o —v)dr,

which gives when 27/10 < |v] <10 x 27,

[ ¥ eost)(o3) )~ 5o < | [ 4 (cost) (Vigy) o) (v
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1
—|—|§/b6(cos9)(v2<pj)(v(li)) (v —v)@ (v —v)dodk|
<27 v =, +27H v — 0,2

While when [v|<27/10 or |v|>10x27, only the second order is left and we get
[(03) (") = ¢ (v)] Smin{|v —v.[?6%,1} and thus

|/be(0089)(80j)(vl)—@j(v)dﬂ§(W€)2(|U—U*|)5(WE)Q(U*)(WE)Q(U),
which yields
Ka(g,h) = |/Be(guélugzj/m)*hfsﬁj((sﬁj)/*@j)dadv*dv|
§/\U—U*M(Qlﬁ1|-|22J/10)*|12j/1og\v|g10x2.7‘(27j|v—v*|+272j|U—U*|2)

1
><|hf|<deU*dU+/|U_U*|7‘(9M2 1.>2i 710) % (Lo <23 /10 + Ljo|>10x24)

X (W) () (W) () |1 f|ipjdvedv
= K:271(g,h) —I—’ng(g,h).

When (g,h)=(u/?,f), by the facts p'/2(v) Sexp(—C12%) if [v|>27/10, and [|v—
V| (u?) wdv, < (V) for n> -3, we get

’C2»1(/u1/27f):/(/AHZZJ'/10)*12j/10§\v|§10><21aj(vyv*)fQSOde*d'U
Sexp(*cﬂzj)/12j/1og\v|§10x21 (277 ()7 4272 (0)7F2) v

Sexp(=Ci2Y)f [

where for notational brevity, we set a;(v,v,):=279|v—v, |7 +272|v — v, [7*2. Similar
argument yields

Kz,z(ul/z,f)=/Iv—'U*I’Y(N1|-\zm/1o)*(1|v\<2j/1o+1\v|>10x2j)(We)z(v*)(WE)Q(v)

><f2<pjdv*dv
Sexp(=Cr2)|WeSlzz .

When (g,h)=(f,u'/?), we get by Cauchy-Schwartz inequality and similar argu-
ments as before,

Ko (f,1t/?)

:/|(f#1/21\-|22j/10)*|12J/10§|v\§10x2jaj(vav*)#1/2|f|<ﬁjd”*dv
1/2
< </(f2u1/21->27/10)*121/10<U|<10><2jaj(U,U*)H1/2d’U*drU>

1/2
X (/(Ml/zly>2J‘/10)*121/10<|u<10x2jaj(%”*)ﬂl/2(f¢j)2dv*d”)
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< —C12%)|f|?
Sexp(=C127)|[f[L2
/2
Similar argument yields
,C2,2(f7,u1/2)

:/|U77)*|A/|(f,u'1/21|~|22j/10)*|(1\v|<2ﬂ'/10+1\v|>10><2f)

X (W) (0, ) (W) (0) 2| f| o dvadv

1/2
S </(f2ul/41.22j/1o)*v—v*l’yul/‘ldv*dv)

1/2
(0t s oo [ o) Soxp(-CrEE

Patch together the above estimates in Step 2.1 and Step 2.2, to get

K2, 1)+ K (£ ) Sexp(=Cr22) W[z

Patching together all the above estimates, we get the lemma by the fact ¢(z)=1 if
|l“€[4/3,3/2] and thus |f12j/5§"|§10><2j|%'27 ZjJrS |'Pkf|ii/2 0

Now we set to prove the second part of Theorem 1.1, namely (1.26) and (1.27).

Proof. (Proof of Theorem 1.1: (1.26) and (1.27).) Applying P; to both sides
of Oy f + L f =0, we have

0P f+LP; f=[L, Pl f.
Take inner product with P; f, thanks to Theorem 2.1 and Lemma 3.1, we have

Jj+3

57/2N_6Xp( 01223 |W6f|2 Z |,Pkf|L2 /2’ (333)
k=j—3

d ) Jj+3

TP PO 4 AP 12, o Sexp(-Cr) W fs + 3 [Pl . (330

k=j—3

d
S ()R +CIP;f

Since 27 >1/e, we observe [WeP; f|2, ~e 25277|P;f|7, and
v/2

(WDIW, 2P f [+ W (= As2) 2)W, 2P 12 S €227 Py f| .

It is obvious to see Eiﬁ% |’Pkf|2L3/2 <297\ f]3.. Plugging these facts into (3.33), we
get

d . e |
VP (Ol1e 2 —exp(=CL22)Wfl. | —e 2P, fl72 =27 fZ..
By (3.6), we have sup;so|f(t)|2. <|fol22. [y |f ()2, /2dt < (20\) 7" fol7.- By the as-

sumption |fo|r2 =1, we get |ij( )22 > 1P fol2. —Ce 25297t — Cexp(—C12%). From
this, we conclude the result (1.26).
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We now set to prove (1.27). From (3.34) and the fact Zf;ﬁ_?) |Prfl3. S277f17.,
v/2

we have
d 2 —280j7 2 2j € (2 v 2
21| Pl Oz + A2 P; (1)L S Clexp(=Ci2Y) WS 12 +27|f|12):=a(t).

Recall A =\e~2%2/7. By Gronwall’s inequality, we have

¢
P f(£)I12 < exp(—At)|P; fol1- +/ exp(A(s—t))a(s)ds.
0
Since v/2+2s <0, we have [Wef2, <|f[3,  <|f|3.<|fo|7.=1, which gives
v/2 v/2+s

a(t) < C(exp(—0122j) +277),

and thus

1—- —At , ,
Pa O <esp(-ADIP;folfa + 2P o exp(-012%) 127)

=exp(—At)|P; fol22 + (1 —exp(—At))C(A 12527V exp(—C1 2% ) + A1)
<exp(—At)|P; fol2z + (1 —exp(—A)ATC(1+6)e?, (3.35)

where we use the assumption 2777 exp(—(12%/) <§. When K >2,t<2In(K —1)/A, it is
easy to check

Kexp(—At)+ (1 —exp(—At)) < Kexp(—At/2).

Then set K = %, for t€]0,2A71e252797In(K —1)], revisit (3.35), we have
[Pif(t)[7> < exp(=At/2)[P; fol72,
which is exactly (1.27). |

4. Boltzmann equation near equilibrium

This section is devoted to the proof to Theorem 1.2, which includes three subsec-
tions. In subsection 4.1, we prove global well-posedenss and propagation of regularity.
Global dynamics is derived in subsection 4.2 by employing Proposition 3.2 once again.
The global asymptotic formula is established in the last subsection.

4.1. Global well-posedenss and propagation of regularity. We only provide
the a priori estimates for the equation, which is Theorem 4.1, from which together with
local existence result in [12], the first part (global well-posedness) in Theorem 1.2
can be established. The second part (propagation of regularity) in Theorem 1.2
follows directly from Theorem 4.1.

4.1.1. Estimate for the linear equation. Fix a small €¢>0 and a general
function g, suppose f€ is a solution to
Orf+v-Vuf+Lf=g. (4.1)

For simplicity, we omit the superscript € in f¢. We set fi:=Pf and fo:=f—Pf.
By the Definition (1.21) of the projection operator P, one has

fi(t,z,v)={a(t,z) +b(t,x)-v+c(t,z)|v|* I ut/?, (4.2)
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which satisfies
Otfi+v-Vyfi=r+li+tyg, (4.3)

where r=—0, fo and l=—v -V fo— L fo.
We recall that {e;}1<j<13 is defined explicitly as

61=M1/27€2=U1M1/2,€3=U2M1/2,€4=U3M1/27
65:v%,u,l/z,e(;:7)5/11/2,67:1}%/1,1/2,68:’1)11}2/.11/2769:1)2’03[1,1/2,610:1)3’01[1,1/2,

e11 = |v|Pv1 /2 e10 = v 2ot/ 2, 13 = |v|Puspl /2.

Let A=(a;j)1<i,j<13 be the real matrix given by a;;:=(e;,e;) and y be the

13-dimensional vector with components 0,a,{0:b; +0;a}1<i<3,{0rc+0ib; }1<i<3,{0:b; +

0ibiti<icj<s,{0icti<i<s. Set z:= (zi)llil::(<r+l+g,ei>)£1. Taking inner product

between (4.3) and {e;}1<j<13, one has Ay=z, which gives y=A"'z. For notational

simplicity, we denote 2" := (27)13, := ({r,e;))2,. We also use z!,29,2/2 in a similar way.

Further, we set
=(r O {r hcics, IrP hicigs, r) hzicies (r hicics) T = A712",
[= (1O {1 <igs, 1P h<ics {15 Hziciea (1 hzics) T = A7,
5=(9"" {0\ h<ics {0 hcics {02 hicicjca {00 hcica) T = A7120
With a little abuse of notation, we set f::Aflzfz. That is,
F=(FO M haics I hcics T heici<a {0 hicica) T = A7 ((fa,ea)) .

With these notations, one has 7= —0, f , and thus

el

y=—08,f+1+3. (4.4)
Following the notations in [8], let us define the temporal energy functional Z ( f)
as
3
V= D0 D TN+ TN+ e (N+TL), (45)
la|<N—1i=1
where

78 ()= (0" FV,0:0%a), Zh o (f) == 30,00 [, 0:0%bi) + 32, (07 [, 0;0%b:) +2(0° 12,

ji o
8;0°0:), TS ;(f) = (0° f12),0,0%¢) and T2 (f) = (2:0%a,*b;). There is some universal con-
stant M such that

IZN (£ < M| £[[F7 - (4.6)

We recall a result on the dissipation of (a,b,c).

LEMMA 4.1. There exists a constant C' >0 such that

d 1 13 .
G5y <CU R+ Y Y [ 0%e)Pdo). (47

dt .
la]<N—1j=1
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The proof of Lemma 4.1 can be found in the end of the Appendix in [14].
For non-negative integers n,m, we recall

B = > WOy = > IW0RSIE:

.
|l <n, |Bl=m la|<n,|Bl=m

For some constants K;,—2 <j <N, which can be explicitly determined later, we define
the energy functional

(1]

NJ(f):KfQIN(f)—’—K leHHNLQ—’_ZK ||f||HN JHJ 7
7=0

and the corresponding dissipation functional

N N
D)= IMAyy + falBryse D el 2B
' §=0 j=0

A+iv+~/2 €, l+7w+'v/2

where MA:=(a(t,z),b(t,x),c(t,z)) which stands for the macro-part of a solution f.
With these notations in hand, we derive the following a priori estimate of (4.1).

PROPOSITION 4.1. Let N>2,0>2—~N, suppose f is a smooth solution to (4.1).
Then there holds

N
d _ (63 (6%
2O HADIUN S > > |(Wit705 9, Wi 5505 f)]
J=0lal<N—j.|Bl=j

EY @arie XS [ @ 6

la|<N la|<N—-1j=1

Here the S could result in a constant Cn; on the right-hand side.

Proof. Note that =V!(f) contains many items. We already have the term Z*V(f)
from Lemma 4.1. We add the rest step by step.

Step 1: || f||3~ 2. Applying 9 to Equation (4.1), taking inner product with 8% f, we
have '

0 T3+ (£40° £,0° )= (09,07 ).

Thanks to (0% f)2 =0 f2 and Proposition 2.1, taking sum over |a| < N, we have

1d o
Sl s+ N fllyse < S 109,001 (19)
la|]<N

Multiplying (4.9) by a large constant M; and adding the resulting inequality to (4.7),
we get

d
dt

< Y @+ Y Z/| oge;)Pde. (4.10)

o] <N || <N—-1j=1

1
ST )+ M1y 1) + 5 (Ve MAR s+ ol )
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Here M; is also chosen large enough such that M || f||%x 2 +ZV (f) ~ || f[|%~ > thanks

to (4.6). ' '

Step 2: || f] |§JNL2' Applying W;0* to Equation (4.1), taking inner product with W;0% f,
x 1

taking sum over |a| < N, we have

1d

sl iy + D (WLD o, W0 )= | (Widg, Wi f).

la| <N la|<N
By splitting f = f1 + f2, we have
(WiLO® f2, W, 0% f) = (Wi LD f2, W10 f1) + (WILO f2, W;0% f2) := A1 + As.

By Corollary 2.1 on the upper bound estimate of £¢, moving all the weights to f;, we
have

A5 [10° ol 210" AU S [ MAlry | Fellms

/2’
Rearrange Ay by introducing the commutator operator [W;,L¢]:

Ao = (LW10% fo, W10% f2) + (W1, L]0 f2, W10% f2) := Az 1 + Az 2.
By the coercivity result (2.2), we have

Az 2)\||VV18af2||%§ e _C“f2||§{gL2

l+~/2

By the commutator estimate in Corollary 2.2, we have

[Azo| Sl follmyrz, | IWi0% fallez -

I+v/2 2

Taking sum over |a| < N, together with 2AB <nA?+n~1B2 for any >0, we get

€ N [e% 3
> WL fo, Wi )= M bollire, = Cllflyre, | +IMA[G).
le|<N

By (3.8) and (3.9), we have
2 2 2 2
Hf2||H;VLf+W2 <(n+e S)Hf2”HéVL§J+W2+On||f2||H;}’Lfﬁ/2-

Taking 1 small enough such that Cn<\/8, then when e is small such that Ce?* <\/8,
we have

<Cllfallfry e, +IMAlGy)+2 Y (Wid°g,Wid"f).

la|<N

d 2 2
il ey e P A el

Thanks to (1.4) and (1.9), Poincare inequality gives [MA|gx ~ |V MA|yv-1. Multiply
(4.10) by a large constant M and add it to the previous inequality, to get

d
S TN (1) + MM o+ 1y 1)

FMMAGy + follfy e 41 follyre, )

4y /2
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13
S Y Nt pl+ X (Wt worpl+ 3 3 [ @) (@)

la|<N lal<N la]<N-1j=1

Step 3: ZévleijH?{N_jHj . (Mathematical Induction)
< i+ ,
We prove, for any 0<i< N, there exist some constants K}, —2<j<i, such that
d

ST FE Syt Y K1 )
0<j<i I+3jy

7
FAMAGy 1 felly e +D Nl
Sy

e l+jv+~/2

SO @@ NI+Y. Y Wiy 959, Wiy 505 1)

lo|<N J=0]a|<N—j,|B|=j

13
+ > Z/TB (0%g,e,)|da. (4.12)

la|<N—1j=1

Our final goal (4.8) is actually (4.12) with i=N.

Note that (4.12) is true when ¢ =0, which is given by (4.11). More precisely, we can
take K92 ZMQ,Kgl :M1M27K8 =1.

We prove (4.12) by induction on i. Suppose (4.12) is true when i=Fk for some
0<k<N -1, we prove it is also valid when i=Fk+1.

Take two indexes o and 8 such that |a| <N —(k+1) and |B|=k+1>1, set g=
[+ (k+1)y. Applying W,05 to both sides of (4.1), we have

OW DG f+v- VWS f+ S WSt f W, 0L o= W,d5g. (4.13)
B1<B,|B1|=1

Taking inner product with W,0g f over (z,v), one has

1 d (63 (67 1 163 163 € 103
5%”3,3]””%34' Z (anﬁjgl [sWq05 f)+ (Wo05 L f2,W,05 f)
B1<B,|B1|=1

=(W,059,W,05 f). (4.14)

We first go to deal with (angi_gll [ W05 f ). By Cauchy-Schwartz inequality and
using f = f1+ f2, we get
(W02 WS DI <105 5 s N5 sz,

5||f2||§{§_kH§H/2+Hf2||§,5_k_1Hm/2+|MA|§15_IC. (4.15)
We now go to deal with (W,95L¢ f2, W05 f). Observe
(W05 L f2,W,05 f) = (W,05 L fa, W05 f1) + (W05 L fo, W, 05 f2).  (4.16)
Recalling (3.5), we have

W05 L fa=LW0F fot Y CLOPLE W, L5005, fo 4 Y CRoPrP2 L9800 Ry, 05 fo.
B2<B B2<B
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We remark that £t satisfies the upper bound in Corollary 2.1 and commutator
estimate in Corollary 2.2. By Corollary 2.1 and Corollary 2.2, we have

|(W,05 L f2,W,05 f1)]
§77||5§f2||%§,q+w2 +Cn(|Mv4|?q;v + ||f2||§15*k71m¢1/2 +|\f2|\igw*1m

+v/2

By coercivity (2.2), upper bound in Corollary 2.1 and commutator estimate in Corollary
2.2, we have for any n >0,

(Wa0§ £ f2,Wo05 F2) > A=l allZz

2 2
—Cn(||f2||H£I—k—lH(l;i—i/2 + ||f2||Hé\]_k—lH§,q+.¥/2 .

Taking n=A/8, and plugging the previous two results into (4.16), we get
(Wo0§ L2, Wo05 ) = BN 05 fallZz

2 2 2
—Cy(IMA[py + HfQHHiV"“*leE/z +Hf2HH57k71Hf,q+w/2)’

from which together with (4.15), back to (4.14), taking sum over |a| <N —(k+1),|8|=
k+1, we have

d 3
%Hf||i[i\’—k—11'{f;+l+§)\||f2||i1iv—k—1Hk+J1r /o
il x €, q+~
S W Wadg DI+ IMAGy + ol e
la|<N—k—1,|8|=k+1 aty/
2 2
k- —kF . 4.17
+||f2||H£] § 1H£q+7/2+||f2”Hév kH:q—’Y/Q ( )

Recalling g=1+ (k4 1)y and by Proposition A.2, we have

2 o < +62S 2 o . +C 2 o
||f2HH£V k 1H§Ii/2—(n )”fQHHéV k 1H:Jgi’y/2 77Hf2||HJIC\’ k 1H<(1)+'Y/2

< 2s 2 C 2
_(n+e )”fQHHg]E\] k 1H:Ziw2+ anQ”HgIEV k 1H§L+k7+w27

2 e < 2 ks :
||f2||H“J"V ngfv/2_||f2“H“]f/\] kHeIc,l+kw+’v/2

Plugging which into (4.17), taking n small enough such that n< A/8, then when ¢ is
small such that €2° < \/8, we have

d ez 2
£||f\|H;vfk71H§+1 +)\||f2||H;V—k—1H§+

,q-}—w/Z
< > (W03, WaD )|+ IMAy + 1 follfpyvpe - (418)
lal<N—k—1,|8|=k+1 R
By our induction assumption, (4.12) is true when ¢ =k, that is,
d k

%(KEQIN(f)JFKEl”fH%{;VLQ +ZK§||f||§{£{*jHZJ‘+jw)
§=0
k

FAMALy [ follfy 2 +Z|\f2|\§1}v—jm
® @ Ten/2 =0 ® el+iv+y/2
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k
g Z ‘(aag’aaf)‘_’_z Z |(Wl+j»ya§g,Wl+j78§‘f)|

la|<N J=0]a|<N—j,|8|=j
13
- Z/ (0°g,e,)dz. (4.19)
la|<N—1;j=1"T°
Multiplying (4.19) by a large constant M, and adding the resulting inequality to (4.18)
to cancel the two terms [MA[2 v and || fol|2 vk s , we get
x He He,l+kw+w/2

k
d
ST ()4 KOy gt YK s )+ 1 s o)

=0
k+1
2 2 2
+)\(|MA‘H§ +||f2||H’JJEVLSW/2+j§0||f2||H£]_sz,L+jw+w/2
k+1
S D 10°9.0°NI+Y> . Y [(Winys059. Wity 93 1)
la|<N 3=0|a|<N—j,|8|=j
13
+ > Z/ (0%g,e;)[*d. (4.20)
la|<N—1j=1"T°
Thus (4.12) is proved when ¢ =k+1. In detail, we set KJ’?H :MKJI.H'1 for —2<j<k
and K]]jill =1. 0

4.1.2. Global well-posedness of the Boltzmann Equation (1.8). In this
subsection, we derive some a priori estimates for solutions to the Cauchy problem (1.8).
To this end, we employ Proposition 4.1 by taking g=T°(f,f). The a priori result can
be concluded as follows:

THEOREM 4.1. Let y<O,N>4,1>2—~yN. There exists a sufficiently small constant
0 >0 which is independent of €, such that if a solution f€ to the Cauchy problem (1.8)
satisfies supg<; <7 EX(f€(t)) <6, then for any t€[0,T], it verifies

ENI(Fe(t)) + / DNU(f(s))ds < Py (EN1 (1)) (4.21)

where Py is a function with Py ;(0)=0. Here Py;(x)=Cjz for some constant C; and
Py 1(x) =Cri1,2exp(Cry1,1 P (x)) for some constants Cry1,; when k> 4.

We first prove a lemma to deal with some inner products regarding to the nonlinear
term I'c.

LEMMA 4.2. Let N>4,0>2—~N. Set

Ana(ghs )= D [(Wigipn95T(9,h), Wi 1,95 £
jal+181<N

then

Ana(g:h, F) Sllgllars APV DY) + Tsslgllmy, DYy DY (1),
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where || f13n =30 a1 151<n 105 flI72- Here the < could result in a constant Cy,; on
the m’ght-hand side.

Proof. A typical term in An i(g,h, f) is |(Wiy 5,05 T(f, f), Wit 51,05 f)| for some
fixed «, such that |a|+|3] < N. By the expansion (3.2) and the fact that I'°(g,h;f)
satisfies the upper bound in Theorem 2.2 and commutator estimate in Lemma 2.1, it
suffices to consider the following term for a; +as =« and B+ 2 < g,

I(alaﬁlaa76) = |(I/Vl+\ﬂ\'yrs(agllg7agjh)aWl+|,3|’yagf)|

To utilize upper bound and commutator estimates, we make the following decomposition

I(Oé],Bl,Oé7B) < |(Fe(agllgaWl+|6|’yag;h)’vvl+|ﬁ|vagf)|
(95, 9,), Wis 817105, hs Wiy 51505 £
::Iu(ahﬁl,auﬁ)+Ic(a17517a7ﬁ)'

We use upper bound to deal with Z,, and commutator estimate to deal with Z.. However,
one can easily see that the commutator estimate in Lemma 2.1 can be controlled by the
upper bound in Theorem 2.2, thus it is sufficient to consider Z,, only.

For any by,bs >0 with by +bs > 3/2, according to Theorem 2.2, we have

(T(g, 1), LS 1B g o (030 e [ flr2 A+ lgluolhlgo [ flr2
€v/2 €v/2 €v/2 €,v/2

If we denote the Fourier transform of f with respect to x variable by f , then we have

(C(g.h), )= Y (L(a(k),h(m—Fk)), f(m)),

k,m¢cZ3
from which together with Theorem 2.2, we get
|(T°(95, 9,052 h), f)]
S D R = k(12 /80, g (k)| o |11 /805, h(m — k)| o /2|f(m)|L2

ey /2

k,meZ3

£ R k)12 017505, () o T m ) o |Fm)ge
k,meZ3

From this, we derive that for aq,as >0 with a; +ag > % and by,by >0 with by + by > %,

2

(4.22)

(051 9,0520), N S 129l gyion i1 g1 1400 ||/~tl/8h||H;az|+a2le’avz/\;bz 1Al

gl e i+as e Hh”HJ\E‘*zW“zHl{?)z”fHwam-

Recalling Z,, (a1, 81,0, 8) =[(T'°(95 9, Wiy 5,952 h), Wiy 51,05 f)], then by (4.22) we get

Z(a1, 81,0, 8) S 2 gl et en grion 1oms ||ﬂ1/16h\\HLaaHaQHmQ/\;bz Hf||H‘;IHIf§I+WW2
€y €,
|

Fllggiar s .

+||9||Hia1\+a1 HIA1 Hh||Ha\cu2\+a2H|frg| B B 2

e l+[Blv+~/2

For simplicity, we always choose a1,a2,b1,b2 €{0,1,2} with a3 +as=2,b1 +by=2.

Fix N >4,|a|+ || < N, we consider all the combinations of a1,as, 81,82 such that a; +
as=q, 1+ B2 <5 as follows.
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If |og |4 |B1] <2, we choose a1 =2 —|ay]|,as =|aq|,by =2 —|B1],b2 =|B1], which gives
la1]4a1=2,|81[+b1 =2, || +az <|al,|B2|+ b2 <[B]| and

7 < hll ., e o
(a1, 81,0, 8) S lgllaz a2 |l 'Hlﬁwwﬂ/z”f”Hi L

Sllgllas /P DY),

If |a1|+|B1| =3, which implies |ag|+|B2] < N —3, we choose a; =a2=1,b; =0,bs =
27 which giVGS |a1\+a1+|51|:4,\a2|+a2+|ﬂ2|+b2§N and

1/8 1/16
I(an, B 0, 8) Slw 9||HL01\+1H|;31|||H h||Hg\Eaz|+1HE\{33/\;r2||f||H\za|He|{fl|HBw+w2
o Rl 1 o
B PR TT - R

Sllgllas /DY (/DY (f).

If |ay |+ |B1| =4, which implies |as|+|B2] <N —4, we choose a; =b; =0,a2 =by =2,
which gives |ag|+24|82]+2< N and

(o, 1,0, 8) S ||N1/89||HLQ1\H\131\ \|M1/16h||HLa2\+2sz/|;2 Hf”HLmHlﬂJHMM/Q
€7 B

gl et s 10l gioaries rioar

Sllgllas /DY )/ DY (f).

If |ai|+]51] > 5, which occurs only when N >5 and implies |52]+ |az| <N —5, we
choose a; =b; =0,a3 =by =2, which gives |a1|+|81| < N,|az|+2+|82| +2< N —1 and

ol et e

v+ LBy +v/2

(a1, pr,0,8) S ||M1/89||H\Zu1\Hm1\ \|M1/16h||H\Za2\+szg/l2+2 HfHH‘ra'H'%'WMM/z
€,y €,

Hgll 1001 1001 1l f1eai+2 1621 I F1l g1ect gisi
z © e+ ~/2 = e

[Blv+ A+1Blv+v/2

gl /DY /DY ().

The lemma then follows by patching all the above estimates. O

Now we are ready to prove Theorem 4.1.

Proof. (Proof of Theorem 4.1.) To apply Proposition 4.1, we need to analyze
A1 —|—A2 —|—A3, where

A=Y (@ T(f.0).0%0)],

la|<N
Ay = Z (W87 05 T (f, £)s Wig 51495 )]
|a|+[B|<N
13
Ay = Z Z/ (DT (f, f),e;)|*da.
la|<N—1j=1"T°

It is not necessary to estimate Aj, since the upper bound of As controls A; naturally.
By Lemma 4.2,

Ao 5117l DY)+ Uvsall i, /DY () DY)

x,v
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5||f\|H;{,UDéV’l(f)+1N25(Tﬂ7év"l(f)+7771||f|\?{gvpivfl’l(f))-

In view of the proof of Lemma 4.2, it is much easier to check

S 3 [T D) P S D)+ ol DY)

la|]<N—1j=1
Thus by Proposition 4.1, we get

d
=N AN S Nz, + W s )P

vz (D () + 07 I 15y D). (423)

We take ¢ small enough such that §++/6 < A/2. Then under the assumption
Py (0l < supysoE3(7(1)) <5, we have

d:NJ
P (f)+

When N =4, (4.24) reduces to

DN S a5 DN 40 EN (DY), (424)

d 4, A

%5’(f)+2

Recalhng EXL(F) <EM(F) < CIEY(f), we get (4.21) for the case N =4 directly from
(4.25). Suppose for some k>4, (4.21) is valid for N =k, that is,

D (f)<0. (4.25)

ERL(f / DF(f(5))ds < Py (E(fo)) - (4.26)
Then for N=k+1>5, by (4.24), we get

SERF() D) SuD )+t DR )

Choosing n <« %, we have

d _ A
ZEFLf) 4 TDE () < Crpn £ (YD),

Observing ngf’l(fe(s))dsngJ (EF1(fo)) given by (4.26), together with Gronwall’s
inequality, we arrive at

=L / DFHLLF())dt <EF T fo) exp( C’k+1z/ DI (f(s))ds)

<ERFLY(fo) exp(Crar 1 Pr (EM1(f0)))-
Recalling EFFLL(f) <ERFLU(f) < Chy1 1 EFFBL(F),ER(fo) <EFTLL(fy), we have

gkHLl(f /DH” $))ds < Crr1,E5 (f0) exp(Chog1,1 P (E¥7(f0)))-

We define P11 (z) =Cli1,12exp(Ciiy1,1Pe,i(x)) to end the proof. 1]
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2. Global dynamics. We will give the proof to the third part (global dy-
namics) of Theorem 1.2.

Proof. (Proof of Theorem 1.2 (the third part: global dynamics).) Let
Vi=ENI(f1), Y2 =ENI(f), then EMI(f) ~ ENH(f) ~ Y1 +Y2, and

N

DN Z Y I - T > WW, o Wig 5,08 £1]72
3=0 T Jal+IBISN
~ Y W, o Wi sn 05 f MG+ DWW, 2 Wiy 54,05 £71172
la|+|BI<N la|+|BISN
~ > W Wi 05 £ N2+ Y €W o Wi 1,05 £7117
lal+[B|ISN la|+[BISN

> C(p’N)(gN,l—p('y/Q-i-s) (fo))—l/pyll+1/p
+€_280(q7N)((S'Nvl—P(’Y/2+s)(f0>)—1/qy21+1/q’

where the last inequality is obtained in the same manner as deriving (3.28). Therefore

d

ZEV D Fea T ey, <0, (4.27)

where ¢; = C(p, N)(ENA=PO/249) (f3))~1/P and ¢y =€ 25C (g, N)(ENI—PO/2H9) (f,))~1/4.
Here, we have
(c1/c2) 777 = (C(p,N)/Clq, N)e®)i=a gN1-r0/24) ()
_ (628)%C(p7q7N)gN,l—p("//Z-‘rS) (fO)
Applying Proposition 3.2, we get (1.33) and (1.34) by the equivalence EV!(f)<
ENL(F) <cEN(f) for some constant ¢ depending only on N, 1. d

4.3. Asymptotic formula. We will give the proof to the fourth part (global
asymptotic formula) of Theorem 1.2. Let f and f€ be the solutions to (1.7) and (1.8)
respectively with the initial data fy. Set F§,:=¢e?*72(f— f), then it solves

OFfy+v Vo Ff+ LF = 72[(L— L)+ (T =T)(f, )] +T(f, FR) + T (Fg. f)-

We recall an estimate on the operator I' —I'¢, which is Lemma 4.2 in [14].

LEMMA 4.3. Ify>—3, there holds

(@ =) (g.h). A< > glez , lhluz, Iflez )

“//2+2
We set to establish the global asymptotic formula (1.35).

Proof. (Proof of Theorem 1.2 (the fourth part: global asymptotic for-
mula).)
For simplicity, we set g=g'+g%>+g3, where gl:=e252[(L—L)f+ (T~

D)(f<, )], 9% :=T(f¢,Fg), 9% :=T(Fg, f). By applying Proposition 4.1, we have
d_n o
Pl {FR)+ D" (FR) S Z |(0%9,0%Fg)|

lal<N
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+ > Wi 959, Wir 5105 Fr)|
laf+]|BISN

13
+ Z Z/ |<8‘Xg,ej>|2dx::A1 +A2+A3 (428)
la|<N—1j=1"T°

We remark that the non-cutoff linearized Boltzmann operator £ produces Dév 1 As
before, we ignore A; since it can be controlled by the upper bound of A;. Noting
Ay < Ag 1+ Ay o+ A3, where

Avii= D |(Wisypn 059 Wit s, 05 FR)l.
lal+]B|<N

Let g=14|8]v. By the expansion (3.2) and Lemma 4.3, we have

(W,084 W05 FR) S 37 105, Fili,_ 03 FRlsa_
B1<B
X1 fe a2 (e nl3
* Z 105, F*l22,,108; Flaz, 105 FRIL oo

artaz=a,f1+B2<p

which yields

Agi= > |(Wipp1059" Wi 1,05 FR)|
|al+BI<N

<\ [DNHBER2-2 e \/,D(])V,l (F%)

=+ 6N+2,l+2—2'y(f5)\/Dév+27l+2—2’)’(f) \/Dév’l(Ff%)
SD (Ff) + Oy (DN 212727 ( o) gNF2IF2=2y ey pVERIF2=27 ()

By Lemma 4.2, we get

A+ Ass SI1F s DVUER) + Lvss | oLy, o/ DY M (F)y D (Fg)

T+ JENI B DY )y D ()
S+VES(F)DY (FR) + 1nssn €N (f4)DN 1 (FF)
+n D (ENH(FR).

Now we set to analyze As. Observe Az S A3 1+ As 2+ As 3, where

13
SIED DD oY LT

la|]<N—1j=1

By Lemma 4.3, we have

a1 \| < |9 pe
(0% e S10% f Imz,

Y 0%z 0% fl

(,Y1+042=Ct

2 ;
24~/2
which gives

As1 S Hf6||§1;}'H§+W2 JF||f6||:1)ar£7L3/2||f||?q;vH22+W2
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N+2,l+4+2-2 N+42,14+2—-2 N+2,14+2-2
SO PHETR(fO) + ENTHIETRI(f)Dy ()

Thanks to [(P%(g.h).e;) Slglze ,[Blz . and [(D(g.h).e)  Slluz  [bliz . by the fact
|a] <N —1 in the sum of Asz, we get

2 2 2 2
A3,2 +A3,3 5 ”feHH;Lf{m||F}E%||H;VL§W/2 +1N25“f6||H;}'L§Y/2”F}E%”Hi_\fflllfﬁﬂ

+||f||fq;ngW/2 HFEH?{;VLi/Z
SENM(FIDY (FR) + Inss €N (f)DY M (FR) + D (NENH (FR).
Patching together all the above estimates, and plugging them into (4.28), we have

d —_ € €
%:N’I(FR) +)‘D(I)V7Z(FR)

S+ VEWA(F)+EM(f)) Dy (FR)
+1vzsCh€N (F)Dy M (FR) + Gy D (1) EN (FR)
Jrcn ('D£V+2’l+2727(f6) Jr(c;]\7+2,l4r2727 (fe)DéV—‘rZ,l-i-?—Q’Y (f)) (4'29)

Choosing 7 small enough, thanks to the smallness of £+14(f,), we get

d _ . A N, e
&EN’Z(FR)+§D0 (Fr)
SinssEN (D (FR) + Dy (HEN(F)

#4221 (o) 4 gN4RIE-Z(pey N2 () (4:30)

Since ENT2IH2-27(£4) < 0o, we have

/OO D" (F(0)) + DY 2720 (fe(8)) + ENFHHERY (£ (1)) D I (£ (1))
0

SCENTHIE2(fy)).

By Gronwall’s inequality, when N =4, we arrive at

= . A . _
sup=VI(FR(0)+5 [ DYUFRO)ESCE T (). (13
t> 0

When N >5, we can prove (4.31) through mathematical induction by observing that
’Dév_l’l(Ff;c) is integrable over (0,00) in a previous step. This is similar to the arguments
in the proof of Theorem 4.1, so we omit the details. Since ZN:{(Fg)~ENI(Fg) and
recalling F§, =e?*72(f¢— f), we get (1.35). 0
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Appendix. The following is Proposition 5.1 of [14].

PROPOSITION A.1.  Suppose A°(§):= | bf(é—l -o)min{|¢|?sin?(0/2),1}do. Then we
have A°(€) ~[€]*Ligj<2 + 1jg1>2(W<(€))*.
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The following is Proposition 4.3 of [14].

ProPOSITION A.2.  Let Iy <ly. Suppose f is a smooth function. For any n>0, we
have

B S (04 WD) [+ C)I 122, 11

The following example is to show that the decay structure (3.16) is optimal for (3.15).

2
le N

EXAMPLE A.1. Lete>0 be small enough. Letci=p=Yy=1,q=1/3,co=€"2%, assume
additionally Y1+ Yo=Y, then we consider the following case of (3.15):

d
dt
Y|t:0 = ].

— Y+ Y+ e Y, =0; (A1)

Assume further Y1 =e =Y. Then there exists a critical time t, ~e~* such that Y (t.) =
€°/8 and

1 Y (t,)

e VS S —
(1+Cﬁt)p t<t (1+Cl(t—t*))q t>t,
1 Y (ts)
<Yt <———m1 —_ 1 A2
= ()_(1+Cat)p t<t*+(1+02(t7t*))q t>t ( )
where Co,Cp are some universal constants and C7,Co ~€®.
Proof. Since Y1 +Y>=Y and Y; =€ *Y?, we get
Yo —14+v1+44e- SY
2T 2e¢—s
which gives
1++1+4e=5Y
Y12+6_23Y24:26_23Y24—( + - +2 € )
€ S
Set X :=€¢~°Y, then we have the following ODE
d —14+/1+4X)4
L (-14+v1+4X) —0;
dt 8e—s (A.3)

X|t:() =¢ %,

Set f(z):=(—1+vI+4z)*=(1+42)? —4(1+42)%>2 +6(1+4z) —4(1 +42) /2 +1, then
one has
f(2) =8(1+4x) —24(1 +42) Y2 + 24 — (1 +4x)"V/2,
F(2) =32—48(1+4x) " Y2 +16(1+4x)~%/2,
FO () =96(1442)7%/2 = 96(1 +4x) /2,
4>(x):—576(1+4z) 5/2 _96(144x)77/2,
FO (@) =5760(1 +4x)~7/2 - 13440(1 +4z) =2

T

x
By Taylor expansion, one has

" (3) (0 @
f(w):f(O)—i-f’(O):E—i—f 2(0)x2+f36(0)x3+f;i )a: +ﬂ (z—t)* O (t)dt
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x

— 162 — (ac—t)4f(5)(t)dt.
24
It is elementary to check —7680 < ) () < ‘;57%%) , thus we have
= 896 .
162* —642° < <16a* + ——=a®.
<f(z) 313
If 2 <1/8, then 162* — 642° =162%(1 —42) > 8z* and %xs <z*, which gives
8zt < f(x)<172*, x<1/8. (A.4)

Set a=min{f"”(1/8)/2,4f'(1/8),64f(1/8)} and g(z):=f(z)—ax®. We now prove
g(x)>0 if 2>1/8. Observe that f©)(z)>0 if £>0. Then f”(z) is an increasing
function on [0,00). Then when x>1/8, we get ¢"(z)=f"(x)—2a> f"(1/8) —2a >0,
with ¢”(1/8)=f"(1/8) —2a >0, we have ¢'(x) is an increasing function on [1/8,00).
Thus ¢'(x)>¢'(1/8)=f'(1/8) —a/4>0. With the same argument, g(z)>g(1/8)=
f(1/8) —a/64>0. To summarize, we proved

f(:c)ZozmQ, x>1/8.

On the other hand, it is easy to find a >0 such that f(z)<p2? for x >1/8. Patching
together, we get

ar’ < f(x)<px?,  x>1/8. (A.5)

Suppose t, is the critical time such that X (t,)=1/8, then by (A.5), we get

d
— X+ BX2/8, t<t.,

d 5 d
— < — s =0<
X+eaX /8_th+e f(X)/8 O_dt

dt

which gives

€Sa d I345)
(=)< <t.
8 d (X) 8’ t=t
From which we have
X(0) X(0)
<X(#)< t<t,, A6
14+Cgt — ()—1+Cat’ - (4.6)

where Cp = < O‘X(O) =a/8 and Cz="= 5X(0 =4/8. By (A.4), we get

d d d 17
—X+eEX <X+ f(X)/8=0< — X+ —e*X*, t>t,
g TeEX ST X te f(X)/8 O_dt + g€ t>t.,
which gives
d, 1 51
< — (== —e®, t>t,
sz sge
Integrating over [t.,t], we have
X (t) X (t)
X ()< >t A7
R e (NG A TR (4.1)



324

ASYMPTOTIC ANALYSIS OF THE BOLTZMANN EQUATION

where Cy = 2 e* X3(t,) and Co =3¢ X3(¢,). By (A.6), recalling X (0) =¢*, X (t,) =1/8,

we have

8e™%—1 <t*<86_ —17
Cﬁ - Cy

which implies t, ~ €. Recalling X =¢~°Y, we have (A.2). ad
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