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MODELS OF NONLINEAR ACOUSTICS VIEWED AS

APPROXIMATIONS OF THE NAVIER-STOKES AND EULER

COMPRESSIBLE ISENTROPIC SYSTEMS∗
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Abstract. The derivation of different models of non linear acoustic in thermo-elastic media as
the Kuznetsov equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the nonlinear
progressive wave equation (NPE) from an isentropic Navier-Stokes/Euler system is systematized using
the Hilbert-type expansion in the corresponding perturbative and (for the KZK and NPE equations)
paraxial ansatz. The use of small correctors, to compare to the constant state perturbations, allows to
obtain the approximation results for the solutions of these models and to estimate the time during which
they keep closed in the L2 norm. In the aim to compare the solutions of the exact and approximate
systems in found approximation domains a global well-posedness result for the Navier-Stokes system
in a half-space with time periodic initial and boundary data was obtained.
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1. Introduction

There is a renewed interest in the study of nonlinear wave propagation, in par-
ticular because of recent applications to ultrasound imaging (e.g. HIFU) or technical
and medical applications such as lithotripsy or thermotherapy. Such new techniques
rely heavily on the ability to model accurately the nonlinear propagation of a finite-
amplitude sound pulse in thermo-viscous elastic media. The most known nonlinear
acoustic models, which we consider in this paper, are

(1) the Kuznetsov equation (see Equation (3.1) and Equation (3.11)), which is actually
a quasi-linear (damped) wave equation, initially introduced by Kuznetsov [22] for
the velocity potential, see also Refs. [12,17,19,25] for other different methods of its
derivation;

(2) the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation (see Equation (4.11)),
which can be written for the perturbations of the density or of the pressure (see the
systematic physical studies in book [4]);

(3) the nonlinear progressive wave equation (NPE) (see Equation (5.10) and Equa-
tion (5.11)) originally derived in Ref. [31].

All these models were derived from a compressible nonlinear isentropic Navier-Stokes
(for viscous media) and Euler (for the inviscid case) systems up to some small negligible
terms. But all cited physical derivations of these models don’t allow to say that their
solutions approximate the solution of the Navier-Stokes or Euler system. The first work
explaining it for the KZK equation is Ref. [35]. Starting in Section 2 to present the initial
context of the isentropic Navier-Stokes system (actually, it is also an approximation of
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the compressible Navier-Stokes system (2.1)–(2.4)), which describes the acoustic wave
motion in an homogeneous thermo-elastic medium [4, 12, 27], we systematize in this
article the derivation of all these models using the ideas of Ref. [35], consisting of using
correctors in the Hilbert-type expansions of corresponding physical ansatzs.

More precisely, we show that all these models are approximations of the isentropic
Navier-Stokes or Euler system up to third-order terms of a small dimensionless param-
eter ε> 0 measuring the size of the perturbations of the pressure, the density and the
velocity to compare with their constant state (p0,ρ0,0).

The Kuznetsov equation comes from the Navier-Stokes or Euler system only by
small perturbations, but to obtain the KZK and the NPE equations we also need to
perform, in addition to the small perturbations, a paraxial change of variables. We can
notice that the Kuznetsov Equation (3.11) is a non-linear wave equation containing the
terms of different order on ε. But the KZK- and NPE-paraxial approximations allow
to have the approximate equations with all terms of the same order, i.e. the KZK and
NPE equations [10]. The well-posedness results for boundary value problems for the
Kuznetsov equation are given in Refs. [18,20,32] and for the Cauchy problem in Ref. [9].

The NPE equation is usually used to describe short-time pulses and a long-range
propagation, for instance, in an ocean wave-guide, where the refraction phenomena are
important [6, 30], while the KZK equation typically models the ultrasonic propagation
with strong diffraction phenomena, combined with finite amplitude effects (see Ref. [35]
and the references therein). Although the physical context and the physical use of the
KZK and the NPE equations are different (see also Sections 4.1 and 5.1 respectively),
there is a bijection (see Equation (5.12)) between the variables of these two models and
they can be presented by the same type of differential operator with constant positive
coefficients:

Lu=0, L=∂2tx−c1∂x(∂x·)2−c2∂3x±c3∆y, for t∈R
+, x∈R, y∈R

n−1.

Therefore, the results on the solutions of the KZK equation from Ref. [34] are valid for
the NPE equation. See also Ref. [15] for the exponential decay of the solutions of these
models in the viscous case. The main hypothesis for the derivation of all these models
are the following

• the motion is potential;

• the constant state of the medium given by (p0,ρ0,0) (0 for the velocity) is
perturbed proportionally to a dimensionless parameter ε> 0 (for instance, equal
to 10−5 in water with an initial power of the order of 0.3W/cm2);

• all viscosities are small (of order ε).

Let us notice that ansatz (4.14)–(4.15), proposed initially in Ref. [4] and used
in Ref. [35] to obtain the KZK equation from the Navier-Stokes or Euler systems, is
different to ansatz (4.12)–(4.13) in Subsection 4.1: this time it is the composition of
the Kuznetsov perturbative ansatz with the KZK paraxial change of variables [22] (see
Figure 4.1). Moreover, this new approximation of the Navier-Stokes and the Euler
systems is an improvement as compared to the derivation developed in Ref. [35] (see
Subsection 4.1 for more details), as, in Ref. [35], the Navier-Stokes/Euler system could

be only approximated up to O(ε
5
2 )-terms (instead of O(ε3) in our case).

The main result of the paper is the validation of the approximations of the com-
pressible isentropic Navier-Stokes system by the different models: by the Kuznetsov
(Section 3), the KZK (Section 4) and the NPE equations (Section 5). In Section 6 we
do the same for the Euler system in the inviscid case.
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The main difference between the viscous and the inviscid cases is the time existence
and regularity of the solutions. Typically in the inviscid case, the solutions of the models
and also of the Euler system itself (actually strong solutions), due to the non-linearity,
can provide shock front formations at a finite time [2, 9, 34, 36, 40]. Thus, they are
only locally well-posed, while in the viscous media all approximate models are globally
well-posed for small enough initial data [9, 34]. These existence properties of solutions
for the viscous and the inviscid cases may also imply the difference in the definition
of the domain where the approximations hold: for example [35], for the approximation
between the KZK equation and the Navier-Stokes system the approximation domain is
a half-space, but for the analogous inviscid case of the KZK and the Euler system it is
a cone (see also the concluding Table 7.1).

To keep a physical sense of the approximation problems, we consider especially the
two or three dimensional cases, i.e. Rn with n=2 or 3, and in the following we use
the notation x=(x1,x

′)∈R
n with one (a propagative) axis x1∈R and the traversal

variable x′∈R
n−1. In what follows we denote by Uε a solution of the “exact” Navier-

Stokes/Euler system

Exact(Uε)=0 (see Equation (3.19))

and by Uε an approximate solution, constructed by the derivation ansatz from a regular
solution of one of the approximate models (typically of the Kuznetsov, the KZK or the
NPE equations), i.e. a function which solves the Navier-Stokes/Euler system up to ε3

terms, denoted by ε3R:

Approx(Uε)=Exact(Uε)−ε3R=0 (see Equation (3.20)).

To have the remainder term R∈C([0,T ],L2(Ω)) we ensure that

Exact(Uε)∈C([0,T ],L2(Ω)),

i.e. we need a sufficiently regular solution Uε. The minimal regularity of the initial data
to have such a Uε is given in Table 7.1.

Choosing for the exact system the same initial-boundary data found by the ansatz
for Uε (the regular case) or the initial data taken in their small L2-neighborhood, i.e.

‖Uε(0)−Uε(0)‖L2(Ω)≤ δ≤ ε, (1.1)

with Uε(0) not necessarily smooth, but ensuring the existence of an admissible weak
solution of a bounded energy (see Definition 3.1), we prove the existence of constants
C> 0 and K> 0 independent of ε, δ and the time t such that

for all 0≤ t≤ C

ε
‖(Uε−Uε)(t)‖2L2(Ω)≤K(ε3t+δ2)eKεt≤ 9ε2 (1.2)

with Ω a domain where the both solutions Uε and Uε exist (see Theorems 3.3, 4.3
and 5.4).

As we have mentioned, in the viscous case all approximate models have a global
unique classical solution for small enough initial data in their corresponding approximate
domains (Ω varies for different models, see Table 7.1: it is equal to R

n, Tx1
×R

n−1

and R+×R
n−1 for the Kuznetsov equation, the NPE equation and the KZK equation

respectively). If we take regular initial data Uε(0)=Uε(0), the same thing is true for
the Navier-Stokes system with the same regularity for the solutions [29]. But in the case
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of the half-space for the approximation between the Navier-Stokes system and the KZK
equation, firstly considered in Ref. [35], when, due to the periodic-in-time boundary
conditions, coming from the initial conditions for the KZK equation, we prove the well-
posedness for all finite time. To obtain it we use Ref. [35] Theorem 5.5. We updated
it in the framework of the new ansatz (4.12)–(4.13) and corrected several misleading
points in its proof (see Subsection 4.3 Theorem 4.2), which allows us in Theorem 4.3
of Subsection 4.4, to establish the approximation result between the KZK equation and
the Navier-Stokes system by following Theorem 5.7 in Ref. [35] and just updating the
stability approximation estimate.

For the inviscid case, given in Section 6, we verify that the existence time of (strong)
solutions of all models is not less than O(1

ε
) and estimate (1.2) still holds.

But to obtain estimate (1.2) we don’t need the regularity of the classical solution of
the Navier-Stokes (or Euler) system, it can be a weak solution (in the sense of Hoff [13]
for the Navier-Stokes system or one of the solutions in the sense of Luo et al. [26] for
the Euler system) satisfying the admissible conditions given in Definition 3.1 (see also
Ref. [8] p.52 and Ref. [35] Definition 5.9).

2. Isentropic Navier-Stokes system for a subsonic potential motion

To describe the acoustic wave motion in a homogeneous thermo-elastic medium, we
start from the Navier-Stokes system in R

n

∂tρ+div(ρv)=0, (2.1)

ρ[∂tv+(v.∇)v]=−∇p+η∆v+
(

ζ+
η

3

)

∇.div(v), (2.2)

ρT [∂tS+(v.∇)S]=κ∆T +ζ(divv)2+
η

2

(

∂xk
vi+∂xi

vk−
2

3
δik∂xi

vi

)2

, (2.3)

p=p(ρ,S), (2.4)

where the pressure p is given by the state law p=p(ρ,S). The density ρ, the velocity v,
the temperature T and the entropy S are unknown functions in system (2.1)–(2.4). The
coefficients β, κ and η are constant viscosity coefficients. The wave motion is supposed
to be potential and the viscosity coefficients are supposed to be small in terms of a
dimensionless small parameter ε> 0:

η∆v+
(

ζ+
η

3

)

∇.div(v)=
(

ζ+
4

3
η

)

∆v :=β∆v with β= εβ̃.

Any constant state (ρ0,v0,S0,T0) is a stationary solution of system (2.1)–(2.4). Further
we always take v0=0 using a Galilean transformation. Perturbation near this constant
state (ρ0,0,S0,T0) introduces small increments in terms of the same dimensionless small
parameter ε> 0:

T (x,t)=T0+εT̃ (x,t) and S(x,t)=S0+ε
2S̃(x,t),

ρε(x,t)=ρ0+ερ̃ε(x,t) and vε(x,t)= εṽε(x,t),

where the perturbation of the entropy is of order O(ε2), since it is the smallest size
on ε of right-hand terms in Equation (2.3), due to the smallness of the viscosities
(see Equation (2.5)).

Actually, ε is the Mach number, which is supposed to be small [4] (ǫ=10−5 for the
propagation in water with an initial power of the order of 0.3W/cm2):

ρ−ρ0
ρ0

∼ T −T0
T0

∼ |v|
c0

∼ ǫ,
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where c0=
√

p′(ρ0) is the speed of sound in the unperturbed media.
Using the transport heat Equation (2.3) up to the terms of the order of ε3

ε2ρ0T0∂tS̃= ε2κ̃∆T̃ +O(ε3), (2.5)

the approximate state equation

p=p0+c
2ερ̃ε+

1

2
(∂2ρp)Sε

2ρ̃2ε+(∂Sp)ρε
2S̃+O(ε3)

(where the notation (.)S means that the expression in brackets is constant in S), can
be replaced [4, 12, 27] by

p=p0+c
2ερ̃ε+

(γ−1)c2

2ρ0
ε2ρ̃2ε−εκ̃

(

1

CV

− 1

Cp

)

∇.vε+O(ε3),

using T = p
ρR

from the theory of ideal gas and taking

p(ρ,S)=Rργe

S−S0

CV .

Here γ=Cp/CV denotes the ratio of the heat capacities at constant pressure and at
constant volume respectively.

Hence, system (2.1)–(2.4) becomes an isentropic Navier-Stokes system

∂tρε+div(ρεvε)=0, (2.6)

ρε[∂tvε+(vε ·∇)vε]=−∇p(ρε)+εν∆vε, (2.7)

with the approximate state equation p(ρ,S)=p(ρε)+O(ε
3):

p(ρε)=p0+c
2(ρε−ρ0)+

(γ−1)c2

2ρ0
(ρε−ρ0)2, (2.8)

and with a small enough and positive viscosity coefficient:

εν=β+κ

(

1

CV

− 1

Cp

)

.

3. Navier-Stokes system and the Kuznetsov equation

We consider system (2.6)–(2.8) as the exact model. The state law (2.8) is a Taylor
expansion of the pressure up to the terms of the third order on ε. Therefore an approx-
imation of system (2.6)–(2.8) for vε and ρε up to terms O(ε3) would be optimal. In the
framework of the nonlinear acoustic between the known approximate models derived
from system (2.6)–(2.8) are the Kuznetsov, the KZK and the NPE equations. In this
section we focus on the first of these models, i.e. on the Kuznetsov equation.

Initially the Kuznetsov equation was derived by Kuznetsov [22] from the isentropic
Navier-Stokes system (2.6)–(2.8) for the small velocity potential vε(x,t)=−∇ũ(x,t),
x∈R

n, t∈R
+:

∂2t ũ−c2△ũ=∂t
(

(∇ũ)2+ γ−1

2c2
(∂tũ)

2+
εν

ρ0
∆ũ

)

. (3.1)

The derivation was latter discussed by a lot of authors [12, 17, 25].



2080 APPROXIMATION RESULTS FOR MODELS OF NONLINEAR ACOUSTICS

Unlike in these physical derivations we introduce a Hilbert expansion type construc-
tion with a corrector ε2ρ2(x,t) for the density perturbation, by considering the following
ansatz

ρε(x,t)=ρ0+ερ1(x,t)+ε
2ρ2(x,t), (3.2)

vε(x,t)=−ε∇u(x,t). (3.3)

The use of the second-order corrector in (3.2) allows to ensure the approximation of (2.7)
up to terms of order ε3 (see Subsection 3.1) and to open the question about the approx-
imation between the exact solution of the isentropic Navier-Stokes system (2.6)–(2.8)
and its approximation given by the solution of the Kuznetsov equation, as it was done
for the KZK equation [35].

3.1. Derivation of the Kuznetsov equation from an isentropic Navier-

Stokes system. Putting expressions for the density and velocity (3.2)–(3.3) into
the isentropic Navier-Stokes system (2.6)–(2.8), we obtain for the momentum conserva-
tion (2.7)

ρε[∂tvε+(vε ·∇)vε]+∇p(ρε)−εν∆vε= ε∇(−ρ0∂tu+c2ρ1)

+ε2
[

−ρ1∇(∂tu)+
ρ0
2
∇((∇u)2)+c2∇ρ2+

(γ−1)c2

2ρ0
∇(ρ21)+ν∇∆u

]

+O(ε3). (3.4)

In order to have an approximation up to the terms O(ε3) we put the terms of order
one and two in ε equal to 0, which allows us to find the expressions for the density
correctors:

ρ1(x,t)=
ρ0
c2
∂tu(x,t), (3.5)

ρ2(x,t)=− ρ0(γ−2)

2c4
(∂tu)

2− ρ0
2c2

(∇u)2− ν

c2
∆u. (3.6)

Indeed, we start by making ε∇(−ρ0∂tu+c2ρ1)=0 and find the first-order perturbation
of the density ρ1 given by Equation (3.5). Consequently, if ρ1 satisfies (3.5), then
Equation (3.4) becomes

ρε[∂tvε+(vε ·∇)vε]+∇p(ρε)−εν∆vε= ε∇(−ρ0∂tu+c2ρ1)

ε2∇
[

− ρ0
2c2

(∂tu)
2+

ρ0
2
(∇u)2+c2ρ2+

(γ−1)ρ0
2c2

(∂tu)
2+ν∆u

]

+O(ε3). (3.7)

Thus, taking the corrector ρ2 by formula (3.6), we ensure that

ρε[∂tvε+(vε ·∇)vε]+∇p(ρε)−εν∆vε=O(ε
3). (3.8)

Now we put these expressions of ρ1 from (3.5) and ρ2 from (3.6) with ansatz (3.2)–(3.3)
in Equation (2.6) of the mass conservation to obtain

∂tρε+div(ρεvε)=ε
ρ0
c2
[

∂2t u−c2∆u

−ε∂t
(

(∇u)2+ γ−2

2c2
(∂tu)

2+
ν

ρ0
∆u

)

−εut∆u
]

+O(ε3). (3.9)
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Then we notice that the right-hand term of the order ε in Equation (3.9) is actually the
linear wave equation up to smaller on ε terms:

∂2t u−c2∆u=O(ε).

Hence, we express

εut∆u= ε
1

c2
ututt+O(ε

2)= ε
1

2c2
∂t((ut)

2)+O(ε2)

and, putting it in Equation (3.9), we finally have

∂tρε+div(ρεvε)=ε
ρ0
c2
[

∂2t u−c2∆u

−ε∂t
(

(∇u)2+ γ−1

2c2
(∂tu)

2+
ν

ρ0
∆u

)]

+O(ε3). (3.10)

The right-hand side of Equation (3.10) gives us the Kuznetsov equation

∂2t u−c2∆u= ε∂t
(

(∇u)2+ γ−1

2c2
(∂tu)

2+
ν

ρ0
∆u

)

, (3.11)

which is the first-order approximation of the isentropic Navier-Stokes system up to the
terms O(ε3). Moreover, if u is a solution of the Kuznetsov equation, then with the
relations for the density perturbations (3.5) and (3.6) and with ansatz (3.2)–(3.3) we
have

∂tρε+div(ρεvε)=O(ε
3), (3.12)

ρε[∂tvε+(vε ·∇)vε]+∇p(ρε)−εν∆vε=O(ε
3). (3.13)

Hence, it is clear that the standard physical perturbative approach without the corrector
ρ2 (it is sufficient to take ρ2=0 in our calculus) can’t ensure (3.12)–(3.13).

Let us also notice, as it was originally mentioned by Kuznetsov, that the Kuznetsov
Equation (3.11) contains terms of different orders, and hence, it is a wave equation with
small size non-linear perturbations ∂t(∇u)2, ∂t(∂tu)2 and the viscosity term ∂t∆u.

3.2. Approximation of the solutions of the isentropic Navier-Stokes sys-

tem by the solutions of the Kuznetsov equation. Let us calculate the remainder
terms in (3.12)–(3.13), which are denoted respectively by ε3RNS−Kuz

1 and ε3RNS−Kuz
2 :

ε3RNS−Kuz
1 =ε3

[

1

c2
∂tu

(

ρ0(γ−2)

2c4
∂t[(∂tu)

2]+
ρ0
c2
∂t[(∇u)2]+

ν

c2
∂t∆u

)

−ρ0
c2
∂tu∆u−∇ρ2.∇u−ρ2∆u

]

+ε4
1

c2
∂tu(∇ρ2.∇u+ρ2∆u), (3.14)

ε3RNS−Kuz
2 = ε3

[ρ1
2
∇[(∇u)2]−ρ2∇∂tu

]

+ε4
ρ2
2
∇
[

(∇u)2
]

. (3.15)

If u is a sufficiently regular solution of the Cauchy problem for the Kuznetsov equation
in R

n

{

∂2t u−c2∆u= ε∂t
(

(∇u)2+ γ−1
2c2 (∂tu)

2+ ν
ρ0
∆u
)

,

u(0)=u0, ut(0)=u1,
(3.16)
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then, taking ρ1 and ρ2 according to formulas (3.5)-(3.6), we define ρε and vε by Equa-
tions (3.2)-(3.3) and obtain a solution of the following approximate system

∂tρε+div(ρεvε)= ε
3RNS−Kuz

1 , (3.17)

ρε[∂tvε+(vε.∇)vε]+∇p(ρε)−εν∆vε= ε
3RNS−Kuz

2 (3.18)

with p(ρε) from the state law (2.8). With notations

Uε=(ρε, ρεvε)
t and Uε=(ρε, ρεvε)

t,

the exact (2.6)–(2.7) and the approximate (3.17)–(3.18) Navier-Stokes systems can be
respectively rewritten in the following forms [8, 35]:

∂tUε+

n
∑

i=1

∂xi
Gi(Uε)−εν

[

0
∆vε

]

=0, (3.19)

∂tUε+

n
∑

i=1

∂xi
Gi(Uε)−εν

[

0
∆vε

]

= ε3RNS−Kuz (3.20)

with RNS−Kuz=

[

RNS−Kuz
1

RNS−Kuz
2

]

from (3.14)–(3.15) and

Gi(Uε)=

[

ρεvi
ρεvivε+p(ρε)ei

]

, ∂xi
Gi(Uε)=DGi(Uε)∂xi

Uε. (3.21)

The well-posedness results for the Cauchy problems (2.6)-(2.8) [29] and (3.16) [9]
allow us to establish the global existence and the unicity of the classical solutions Uε

and Uε, considered in the Kuznetsov approximation framework:

Theorem 3.1. There exists a constant k> 0 such that if the initial data u0∈H5(R3)
and u1∈H4(R3) for the Cauchy problem for the Kuznetsov Equation (3.16) are suffi-
ciently small

‖u0‖H5(R3)+‖u1‖H4(R3)<k,

then there exist global-in-time solutions Uε=(ρε, ρεvε)
t of the approximate Navier-

Stokes system (3.20) and Uε=(ρε, ρεvε)
t of the exact Navier-Stokes system (3.19)

respectively, with the same regularity corresponding to

ρε−ρ0, ρε−ρ0∈C([0,+∞[;H3(R3))∩C1([0,+∞[;H2(R3)) (3.22)

and

vε, vε ∈C([0,+∞[;H3(R3))∩C1([0,+∞[;H1(R3)), (3.23)

both considered with the state law (2.8) and with the same initial data

(ρ̄ε−ρε)|t=0=0, (v̄ε−vε)|t=0=0, (3.24)

where ρ̄ε|t=0 and v̄ε|t=0 are constructed as the functions of the initial data for the
Kuznetsov equation u0 and u1 according to formulas (3.2)–(3.3) and (3.5)–(3.6):

ρ̄ε|t=0=ρ0+ε
ρ0
c2
u1−ε2

[

ρ0(γ−2)

2c4
u21+

ρ0
2c2

(∇u0)2+
ν

c2
∆u0

]

, (3.25)
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v̄ε|t=0=−ε∇u0. (3.26)

Proof. On one hand, Theorem 1.2 in Ref. [9] applied for n=3 with m=4 ensures
that for u0∈H5(R3) and u1∈H4(R3) there exists a constant k2> 0 such that if

‖u0‖H5(R3)+‖u1‖H4(R3)<k2, (3.27)

then the Cauchy problem for the Kuznetsov Equation (3.16) has a unique global-in-time
solution

u∈C([0,+∞[,H5(R3))∩C1([0,+∞[,H4(R3))∩C2([0,+∞[,H2(R3)). (3.28)

On the other hand, the Cauchy problem for the Navier-Stokes system is also globally
well-posed in R

3 for sufficiently small initial data (see Ref. [29] Theorem 7.1, p. 100):
there exists a constant k1> 0 such that if the initial data

ρε(0)−ρ0∈H3(R3), vε(0)∈H3(R3) (3.29)

satisfy

‖ρε(0)−ρ0‖H3(R3)+‖vε(0)‖H3(R3)<k1,

then the Cauchy problem (2.6)-(2.8) with the initial data (3.29) has a unique solution
(ρε, vε) globally in time satisfying (3.22) and (3.23).

Thus, for the initial solutions of the Kuznetsov equation we need to impose u0∈
H5(R3) to have ∆u0∈H3(R3) to be able to ensure that ρε−ρ0|t=0∈H3(R3). The
regularity u1∈H4(R3) comes from the well-posedness of the Kuznetsov problem and
obviously ensures vε|t=0∈H3(R3), which is necessary [29] to have a global solution of
the exact Navier-Stokes system (3.19).

As ρε and vε are defined by ansatz (3.2)-(3.3) with ρ1 and ρ2 given in (3.5) and (3.6)
respectively, the regularity of u ensures for ρε−ρ0 and vε at least the same regularity
as given in (3.22) and (3.23). To find it we use the following Sobolev embedding for the
multiplication (see for example Ref. [5] or [21]):

Hs(Rn)×Hs(Rn) →֒Hs(Rn) for s>
n

2
, (3.30)

(u,v) 7→uv.

Moreover, considering formulas (3.14)–(3.15) with u as defined in (3.28), all terms in
RNS−Kuz

1 and RNS−Kuz
2 are in H2(R3). Therefore, as 2> 3

2 , we use embedding (3.30)
to find that

RNS−Kuz
1 ∈C([0,+∞[,H2(R3)) and RNS−Kuz

2 ∈C([0,+∞[,H2(R3)).

Hence, the L2(R3) and L∞(R3) norms of the remainder terms RNS−Kuz
1 (t) and

RNS−Kuz
2 (t) are bounded for t∈ [0,+∞[.
Finally, it is important to notice that, as Uε(0)=Uε(0),

‖ρε(0)−ρ0‖H3(R3)+‖vε(0)‖H3(R3)=‖ρε(0)−ρ0‖H3(R3)+‖vε(0)‖H3(R3)

≤C(‖u0‖H5(R3)+‖u1‖H4(R3)).

Thus, there exists k> 0 (necessarily k≤k2) such that ‖u0‖H5 +‖u1‖H4 <k implies the
global existence of Uε and Uε.
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The stability estimate which we obtain between the exact solution of the Navier-
Stokes system Uε and the solution of the Kuznetsov equation presented by Uε does not
require for Uε to have the regularity of a classical solution and allows to approximate
less regular solutions of the Navier-Stokes system with initial data in a small L2 neigh-
borhood of Uε(0). To define the minimal regularity property of Uε for which stability
estimate (1.2) holds, we introduce admissible weak solutions of a bounded energy using
the entropy of the Euler system (system (3.19) with ν=0)

η(Uε)=ρεh(ρε)+ρε
v2
ε

2
=H(ρε)+

1

ρε

m2

2
, (3.31)

which is convex [8] with h′(ρε)=
p(ρε)
ρ2
ε

and vε=
m

ρε
. Thus, the first and second derivatives

of η are [35]

η′(Uε)=

[

H ′(ρε)− 1
ρ2
ε

m
2

2
m

ρε

]t

=

[

H ′(ρε)− v
2
ε

2
vε

]t

, (3.32)

η′′(Uε)=

[

H ′′(ρε)+
m

2

ρ3
ε
−m

ρ2
ε

−m

ρ2
ε

1
ρε

]

=

[

H ′′(ρε)+
v
2
ε

ρε
−vε

ρε

−vε

ρε

1
ρε

]

, (3.33)

knowing that η′′(Uε) is strictly positive-definite.

Definition 3.1. The function Uε=(ρε,ρεvε) is called an admissible weak solution
of a bounded energy of the Cauchy problem for the Navier-Stokes system (2.6)–(2.8) if
it satisfies the following properties:

(1) The pair (ρε,vε) is a weak solution of the Cauchy problem for the Navier-Stokes
system (2.6)–(2.8) (in the distributional sense).

(2) The function Uε satisfies in the sense of distributions (see Ref. [8, p.52])

∂tη(Uε)+∇.q(Uε)−ενvε△vε≤ 0, where q(Uε)=vε(η(Uε)+p(ρε)), (3.34)

or equivalently, for any positive test function ψ in D(Rn× [0,∞[) the function Uε

satisfies

∫ T

0

∫

Rn

(

∂tψη(Uε)+∇ψ.q(Uε)+εν|∇.vε|2ψ+ενvε.[∇.vε∇ψ]
)

dxdt

+

∫

Rn

ψ(x,0)η(Uε(0))dx≥ 0.

(3) The function Uε satisfies the equality (with the notation vε=(v1, . . . ,vn))

−
∫

Rn

U2
ǫ (t)

2
dx+

∫ t

0

∫

Rn

(

n
∑

i=1

Gi(Uε)∂xi
Uǫ−ǫν∇(ρεvi).∇vi

)

dxds

+

∫

Rn

U2
ǫ (0)

2
dx=0.

Let us notice that any classical solution of (3.19), for instance the solution defined
in Theorem 3.1, satisfies the entropy condition (3.34) by the equality and obviously
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it is sufficiently regular to perform the integration by parts resulting in the relation
of point 3. For existence results of global weak solutions of the Cauchy problem for
the Navier-Stokes system (3.19) with sufficiently small initial data around the constant
state (ρ0,0) (actually, ρ0−ρ(0) is small in L∞, v(0) is small in L2 and bounded in L2n)
and with the pressure p(ρ)=Kργ with γ≥ 1, we refer to results of D. Hoff [13,14]. For
fixing the idea of the regularity of a global weak solution we summarize the results of
Hoff in the following theorem:

Theorem 3.2 ( [13]). Let for n=3, β=0 and for n=2, β be arbitrarily small, N be
a given arbitrarily large constant. There exists a constant C0> 0 such that if the initial
data of (3.19) with p(ρ)=Kργ (γ≥ 1) satisfy the following smallness condition

‖ρ0−ρ(0)‖2L∞(Rn)+

∫

Rn

[

(ρ0−ρ(0))2+ |v(0)|2
]

(1+ |x|2)βdx≤C0,

‖v(0)‖L2n(Rn)≤N,

then there exists a global weak solution (ρ,v) (in the distributional sense) such that

(1) ρ−ρ0∈L∞(Rn× [0,∞[),

(2) v∈H1(Rn) for all t> 0,

(3) for all t≥ τ > 0 v(·,t)∈L∞(Rn),

(4) for all τ > 0 v∈Cα, α
2α+2 (Rn× [τ,∞[) for all α∈]0,1[ when n=2 and v∈C 1

2
, 1
8 (Rn×

[τ,∞[) when n=3,
(5) ενdivv+p(ρ)−p(ρ0)∈H1(Rn)∩Cα(Rn) for almost all t> 0 with α= 1

2 for n=2
and α= 1

10 when n=3.

In addition, (ρ,v)→ (ρ0,0) as t→+∞ in the sense that for all q∈]2,+∞[

lim
T→∞

(

‖ρ−ρ0‖L∞(Rn×[T,∞[)+‖v(·,T )‖Lq(Rn)

)

=0.

Therefore, from Theorem 3.2 it follows that a weak solution of the isentropic compress-
ible Navier-Stokes system (2.6)–(2.8) is also an admissible weak solution of a bounded
energy in the sense of Definition 3.1. But in the following we only consider the question
of the validity of the stability estimate (1.2) for initial data close to Uε(0) in L

2 norm
(thus for initial data not necessarily satisfying Theorem 3.2) and we don’t consider the
existence question of an admissible weak solution of a bounded energy of the Cauchy
problem for the Navier-Stokes system. Thanks to Theorem 3.1 for classical solutions
of two models and to Definition 3.1 containing the minimal conditions on Uε necessary
for saying that it is in a small L2-neighborhood of the regular solution of the Kuznetsov
equation, we validate the approximation of Uε by Uε following the ideas of Ref. [35].

Theorem 3.3. Let ν > 0 and ε> 0 be fixed and all assumptions of Theorem 3.1 hold.
Then there exist constants C> 0 and K> 0, independent of ε and the time t, such that

(1) for all t≤ C
ε

‖(Uε−Uε)(t)‖2L2(R3)≤Kε3teKεt≤ 4ε2;

(2) for all b∈]0,1[ during all time t≤ C
ε
ln(1

ε
) it holds

‖(Uε−Uε)(t)‖L2(R3)≤ 2εb.

Moreover, if the initial conditions for the Kuznetsov equation are such that

u0∈Hs+2(Rn), u1∈Hs+1(Rn) for s>
n

2
, n≥ 2
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and sufficiently small (in the sense of Ref. [9] Theorem 1.2), then there exists the unique
global-in-time solution of the Cauchy problem for the Kuznetsov equation

ρε−ρ0∈C([0,+∞[;Hs(Rn))∩C1([0,+∞[;Hs−1(Rn)), (3.35)

vε∈C([0,+∞[;Hs+1(Rn))∩C1([0,+∞[;Hs(Rn)) (3.36)

and the remainder terms (RNS−Kuz
1 ,RNS−Kuz

2 ), defined in Equations (3.14)–(3.15),
belong to C([0,+∞[,Hs−1(Rn)).

If in addition there exists an admissible weak solution of a bounded energy of the
Cauchy problem for the Navier-Stokes system (3.19) (for instance if Uε(0) satisfies
conditions of Theorem 3.2 there is such a global weak solution) on a time interval [0,TNS[
for the initial data

‖Uε(0)−Uε(0)‖L2(Rn)≤ δ≤ ε,

then it holds for all t<min{C
ε
,TNS} the stability estimate (1.2):

‖(Uε−Uε)(t)‖2L2(Rn)≤K(ε3t+δ2)eKεt≤ 9ε2.

Proof. In terms of entropy, system (3.20), having, by the assumption, the unique
classical solution Uε, can be rewritten as follows

∂tη(Uε)+∇.q(Uε)−ενvε.∆vε= ε
3

(

η(Uε)+p(ρε)

ρε
RNS−Kuz

1 +vε.R
NS−Kuz
2

)

(3.37)

with

RNS−Kuz =(RNS−Kuz
1 ,RNS−Kuz

2 )

defined in Equation (3.14)-(3.15). To abbreviate the notations, we denote the remainder
term of the entropy equation in system (3.37) by

R
NS−Kuz

=

(

η(Uε)+p(ρε)

ρε
RNS−Kuz

1 +vε.R
NS−Kuz
2

)

.

In the same time, it is assumed that for Uε (3.34) holds in the sense of distributions.
Let us estimate in the sense of distributions

∂

∂t

(

η(Uε)−η(Uε)−η′(Uε)(Uε−Uε)
)

. (3.38)

First we find from systems (3.34) and (3.37) that in the sense of distributions

∂

∂t
(η(Uε)−η(Uε))≤−∇.(q(Uε)−q(Uε))+εν(vε.∆vε−vε.∆vε)−ε3R

NS−Kuz

=−∇.(q(Uε)−q(Uε))+εν

n
∑

i=1

∂xi
(vε∂xi

vε−vε∂xi
vε)

−εν
n
∑

i=1

(∂xi
vε∂xi

vε−∂xi
vε∂xi

vε)−ε3R
NS−Kuz

.

Then we notice that

− ∂

∂t
(η′(Uε)(Uε−Uε))=−∂tU

t

εη
′′(Uε)(Uε−Uε)−η′(Uε)(∂tUε−∂tUε),
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where in the sense of distributions

−∂tU
t

εη
′′(Uε)(Uε−Uε)=−

[

−
n
∑

i=1

DGi(Uε)∂xi
Uε

]t

η′′(Uε)(Uε−Uε)

−
([

0
εν∆vε

]

+ε3RNS−Kuz

)t

η′′(Uε)(Uε−Uε),

and

−η′(Uε)(∂tUε−∂tUε)=−η′(Uε)(−
n
∑

i=1

∂xi
(Gi(Uε)−Gi(Uε)))

−η′(Uε)εν

[

0
∆vε−∆vε

]

+ε3η′(Uε)R
NS−Kuz

=
n
∑

i=1

∂xi
(η′(Uε)(Gi(Uε)−Gi(Uε))

−
n
∑

i=1

∂xi
U

t
η′′(Uε)(Gi(Uε)−Gi(Uε))

−η′(Uε)εν

[

0
∆vε−∆vε

]

+ε3η′(Uε)R
NS−Kuz.

Thanks to the convex property of the entropy we have

η′′(U)DGi(U)= (DGi(U))tη′′(U),

and consequently

(DGi(Uε)∂xi
Uε)

tη′′(Uε)(Uε−Uε)=∂xi
U

t

ε(DGi(Uε))
tη′′(Uε)(Uε−Uε)

=∂xi
U

t

εη
′′(Uε)DGi(Uε)(Uε−Uε).

Moreover, we compute in the sense of distributions

−
[

0
εν∆vε

]t

η′′(Uε)(Uε−Uε)=−εν∆vε(vε−vε)−εν∆vε

ρε−ρε
ρε

(vε−vε)

=−εν
n
∑

i=1

∂xi
(∂xi

vε(vε−vε))+εν
n
∑

i=1

∂xi
vε∂xi

(vε−vε)−εν∆vε

ρε−ρε
ρε

(vε−vε),

and

−η′(Uε)εν

[

0
∆vε−∆vε

]

=−ενvε.(∆vε−∆vε)

=−εν
n
∑

i=1

∂xi
(vε∂xi

(vε−vε))+εν

n
∑

i=1

∂xi
vε∂xi

(vε−vε).

We integrate expression (3.38) over R
n and notice that the integrals of the terms in

divergence form in the development of (3.38) are equal to zero. For the regular case in
the framework of Theorem 3.1 it is due to the regularity given by (3.22) and (3.23) and
the following Sobolev embedding [1]

Hs(Rn) →֒C0(R
n) := {f ∈C(Rn)| |f(x)|→0 as ‖x‖→+∞} for s>

n

2
, (3.39)
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which allows us to use the fact that

∀f ∈C0(R
n),

∫

Rn

∇.f(x)dx=0.

In the case of a weak admissible solution Uε it follows from its bounded energy property
(see Definition 3.1 point 3) which implies that ρε−ρ0 and vε tend to 0 for |x|→+∞
and also implies the existence of the integrals over R

n. Therefore, we obtain the fol-
lowing estimate in which each term is well-defined in the sense of distributions on
[0,+∞[∩[0,TNS]

d

dt

∫

R3

η(Uε)−η(Uε)−η′(Uε)(Uε−Uε)dx

≤−
3
∑

i=1

∫

R3

∂xi
U

t
η′′(Uε)(Gi(Uε)−Gi(Uε)−DGi(Uε)(Uε−Uε))dx

−εν
∫

R3

3
∑

i=1

(∂xi
vε∂xi

vε−∂xi
vε∂xi

vε)dx

+2εν

∫

R3

3
∑

i=1

∂xi
vε∂xi

(vε−vε)dx+εν

∫

R3

∆vε

ρε−ρε
ρε

(vε−vε)dx

−ε3
∫

R3

(R
NS−Kuz−η′(Uε)R

NS−Kuz)dx−ε3
∫

R3

[RNS−Kuz]tη′′(Uε)(Uε−Uε)dx.

(3.40)

Now we study lower bounds of the left-hand side and upper bounds of the right-hand
side of (3.40) in order to obtain a suitable estimate. For the right-hand side of Equa-
tion (3.40) we notice that

−εν
∫

R3

3
∑

i=1

(∂xi
vε∂xi

vε−∂xi
vε∂xi

vε)dx+2εν

∫

R3

3
∑

i=1

∂xi
vε∂xi

(vε−vε)dx

=−εν
∫

R3

3
∑

i=1

(∂xi
(vε−vε))

2dx≤ 0,

hence this term can be passed in the left-hand side of Equation (3.40) and omitted in
the estimation. As the entropy is convex it holds

∃δ0> 0 : η(Uε)−η(Uε)−η′(Uε)(Uε−Uε)≥ δ0|Uε−Uε|2.

Then using also its continuity, we find

δ0

∫

R3

|Uε−Uε|2(t)dx≤
∫ t

0

d

ds

(∫

R3

η(Uε)−η(Uε)−η′(Uε)(Uε−Uε)dx

)

ds

+C0

∫

R3

|Uε−Uε|2(0)dx.

On the right-hand side of (3.40), by the Taylor expansion we also have

Gi(Uε)−Gi(Uε)−DGi(Uε)(Uε−Uε)≤C|Uε−Uε|2.
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With the boundedness on [0;+∞[ of R1(t) and R2(t) in the L2 and L∞ norms, and
thanks to the regularity of Uε defined in (3.35) and (3.36) (see also (3.22) and (3.23)
for the case Uε(0)=Uε(0)) and the energy boundedness of Uε, we estimate the other
terms in Equation (3.40) in the following way

εν

∫

R3

∆vε

ρε−ρε
ρε

(vε−vε)dx≤Kε‖Uε−Uε‖2L2(R3),

−ε3
∫

R3

(R
NS−Kuz−η′(Uε)R

NS−Kuz)dx≤Kε3,

−ε3
∫

R3

[RNS−Kuz]tη′′(Uε)(Uε−Uε)dx

≤ε3‖η′′(Uε)‖L∞(R3)‖RNS−Kuz‖L2(R3)‖Uε−Uε‖L2(R3)

≤Kε3‖Uε−Uε‖L2(R3).

Now, by integrating on [0,t], we obtain from (3.40) the following inequality

∫

R3

|Uε−Uε|2(t)dx≤
∫ t

0

[

(C‖∇Uε‖L∞ +Kε)‖Uε−Uε‖2L2(R3)

+Kε3+Kε3‖Uε−Uε‖L2(R3)

]

ds+C1

∫

R3

|Uε−Uε|2(0)dx.

Here K, C and C1 are generic constants of order O(ε0) which do not depend on time.
Using once more the regularity properties (3.22) and (3.23), we have the boundedness
of ‖∇Uε‖L∞ . But knowing that ρε and vε are defined by ansatz (3.2)–(3.3), we deduce
that ‖∇Uε‖L∞ ≤Cε. Therefore,

‖Uε−Uε‖2L2 ≤
∫ t

0

K
(

ε‖Uε−Uε‖2L2(R3)+ε
3+ε3‖Uε−Uε‖L2(R3)

)

ds

+C1

∫

R3

|Uε−Uε|2(0)dx.

Then applying the Grönwall lemma we have directly

‖(Uε−Uε)(t)‖2L2(R3)≤K(ε3t+δ2)eKεt,

since Kεt is a non-decreasing function in time and ε3
√
v<Kεv for all v∈R

+. In
addition, to find the estimate of point 2 for the regular case Uε(0)=Uε(0), we notice
that

‖Uε−Uε‖L2(R3)≤ v,

where v is the solution of the following Cauchy problem

{

(v2)′=K(ε3+ε3v+εv2),
v(0)=0.

The study of this problem gives us

1

Kε
ln

(

1+v(t)+
1

ε2
v(t)2

)
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− 1

K

2√
4−ε2

[

arctan

(

2√
4ε2−ε4

[

v(t)+
ε2

2

])

−arctan

(

ε√
4−ε2

)]

= t.

The boundedness of the function arctanx implies

1+v(t)+
1

ε2
v(t)2≤e

2ε√
4−ε2 e

arctan

[

2√
4ε2−ε4

(

v(t)+ ε2

2

)

]

−arctan

(

ε√
4−ε2

)

eKεt

≤e
2ε√
4−ε2 e

π
2 eKεt≤ c20 eKεt

with c20= e
2√
3 e

π
2 which for instance is less than 3.5 . Therefore, the estimate

‖Uε−Uε‖L2(R3)≤ c0εeKεt

gives the result as soon as c0εe
εKt≤ 2εb, with b≤ 1, i.e. for t≤ C

ε
when b=1, and for

t≤ C
ε
ln(1

ε
) in the case b< 1.

We finish the proof with the remark on the minimal regularity of the initial data
for the Kuznetsov equation such that the approximation is possible, i.e. the remainder
terms RNS−Kuz

1 and RNS−Kuz
2 keep bounded for a finite time interval. Indeed, if

u0∈Hs+2(Rn) and u1∈Hs+1(Rn) with s> n
2 then u∈C([0,+∞[;Hs+2(Rn)) and

ut∈C([0,+∞[;Hs+1(Rn)), utt∈C([0,+∞[;Hs−1(Rn)).

Since ρε is defined by (3.2) with (3.5) and (3.6) and vε by (3.3) respectively, we exactly
find regularity (3.35) and (3.36). Thus by the regularity of the left-hand side part for
the approximate Navier-Stokes system (3.17)–(3.18) we obtain the desired regularity for
the right-hand side.

4. Navier-Stokes system and the KZK equation

4.1. Derivation of the KZK equation from an isentropic Navier-Stokes

system. In the present section we focus on the derivation from the isentropic Navier-
Stokes system of the Khoklov-Zabolotskaya-Kuznetsov equation (KZK) in non-linear
media using the following acoustical properties of beam’s propagation:

(1) the beams are concentrated near the x1-axis;

(2) the beams propagate along the x1-direction;

(3) the beams are generated either by an initial condition or by a forcing term on the
boundary x1=0.

The different type of derivations of the KZK equation are discussed in Ref. [35].
This time we perform it in two steps:

(1) We introduce small perturbations around a constant state of the compressible isen-
tropic Navier-Stokes system according to the Kuznetsov ansatz (3.2)–(3.3):

∂tρε+∇.(ρεvε)=ε[∂tρ1−ρ0∆u]
+ε2[∂tρ2−∇ρ1∇u−ρ1∆u]+O(ε3), (4.1)

and we have again (3.4) for the conservation of momentum.

(2) We perform the paraxial change of variable [35] (see Figure 4.1):

τ = t− x1
c
, z= εx1, y=

√
εx′. (4.2)
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x1

x′

t

Navier-Stokes/

Euler (x1,x
′
,t)

z= ǫx1

y=
√
ǫx′

τ = t− x1

c

KZK(τ,z,y)

Fig. 4.1. Paraxial change of variables for the profiles U(t−x1/c,ǫx1,
√

ǫx′).

Since the gradient ∇ in the coordinates (τ,z,y) becomes dependent on ε

∇̃=

(

ε∂z−
1

c
∂τ ,

√
ε∇y

)t

,

if we denote

u(x,t)=Φ(t−x1/c,ǫx1,
√
ǫx′)=Φ(τ,z,y), (4.3)

we need to take attention to have the paraxial correctors of the order O(1):

ρ1(x,t)= I(τ,z,y), ρ2(x,t)=H(τ,z,y)=J(τ,z,y)+O(ε),

where actually H(τ,z,y) is the profile function obtained from ρ2 (see Equation (A.1) in
the appendix) containing not only the terms of the order O(1) but also terms up to ε2.
Hence, we denote by J all terms of H of order 0 on ε, which are significant in order to
have an approximation up to the terms O(ε3).

In new variables (τ,z,y) Equation (3.4) becomes

ρε[∂tvε+(vε.∇)vε]+∇p(ρε)−εν∆vε

=ε∇̃[−ρ0∂τΦ+c2I]+ε2
[

−I∇̃(∂τΦ)+
ρ0
2
∇̃
(

1

c2
(∂τΦ)

2

)

+c2∇̃J+ γ−1

2ρ0
c2∇̃(I2)+ν∇̃

(

1

c2
∂2τΦ

)]

+O(ε3). (4.4)

Consequently, we find the correctors of the density as functions of Φ:

I(τ,z,y)=
ρ0
c2
∂τΦ(τ,z,y), (4.5)

J(τ,z,y)=− ρ0(γ−1)

2c4
(∂τΦ)

2− ν

c4
∂2τΦ. (4.6)

Indeed, we start by making

ε∇̃[−ρ0∂τΦ+c2I]=0

and find the first-order perturbation of the density I given by Equation (4.5). Moreover,
if ρ1 satisfies (4.5), then Equation (4.4) becomes
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ρε[∂tvε+(vε ·∇)vε]+∇p(ρε)−εν∆vε= ε∇̃[−ρ0∂τΦ+c2I]

ε2∇̃
[

− ρ0
2c2

(∂τΦ)
2+

ρ0
2c2

(∂τΦ)
2+c2J+

(γ−1)ρ0
2c2

(∂τΦ)
2+

ν

c2
∂2τΦ

]

+O(ε3). (4.7)

Thus, taking the corrector J in the expansion of ρε

ρε(x,t)=ρ0+εI(τ,z,y)+ε
2J(τ,z,y), (4.8)

by formula (4.6), we ensure that

ρε[∂tvε+(vε ·∇)vε]+∇p(ρε)−εν∆vε=O(ε
3). (4.9)

Now we put these expressions of I from (4.5) and J from (4.6) with the paraxial ap-
proximation in Equation (4.1) of the mass conservation to obtain

∂tρε+∇.(ρεvε)=ε
2
[ρ0
c2

(2c∂2zτΦ−c2∆yΦ)−
ρ0
2c4

(γ+1)∂τ [(∂τΦ)
2]− ν

c4
∂3τΦ

]

+O(ε3).

(4.10)

All terms of the second order on ε in relation (4.10) give us the equation on Φ, which
is the KZK equation. If we use relation (4.5), we obtain the usual form of the KZK
equation often written (see [4, 35]) for the first perturbation I of the density ρǫ:

c∂2τzI−
(γ+1)

4ρ0
∂2τ I

2− ν

2c2ρ0
∂3τ I−

c2

2
∆yI=0. (4.11)

We notice that, as the Kuznetsov equation, this model still contains terms describ-
ing the wave propagation ∂2τzI, the non-linearity ∂2τI

2 and the viscosity effects ∂3τ I of
the medium but also adds a diffraction effect by the transversal Laplacian ∆yI. This
corresponds to the description of the quasi-one-dimensional propagation of a signal
in a homogeneous nonlinear isentropic medium. By our derivation (see also Equa-
tions (4.33)–(4.34)) we obtain that the KZK equation is the second-order approxima-
tion of the isentropic Navier-Stokes system up to terms of O(ε3). In this sense, since
the entropy and the pressure in Section 2 are approximated up to terms of the order
of ε3, ansatz (4.8)-(4.16) (for the KZK equation) is optimal, as the equations of the
Navier-Stokes system are approximated up to O(ε3)-terms.

Let us compare our ansatz

u(x1,x
′,t)=Φ(t−x1/c,ǫx1,

√
ǫx′), (4.12)

ρε(x1,x
′,t)=ρ0+εI(t−x1/c,ǫx1,

√
ǫx′)+ε2J(t−x1/c,ǫx1,

√
ǫx′) (4.13)

to the ansatz introduced in Ref. [35] by defining a corrector ǫ2v2 for the velocity per-
turbation along the propagation axis in the initial ansatz, proposed by Khokhlov and
Zabolotskaya [4]:

ρǫ(x1,x
′,t)=ρ0+ǫI(t−

x1
c
,ǫx1,

√
ǫx′), (4.14)

vǫ(x1,x
′,t)= ǫ(v1+ǫv2;

√
ǫw)(t− x1

c
,ǫx1,

√
ǫx′). (4.15)

This time, the assumption to work directly with the velocity potential (4.12) im-
mediately implies the following velocity expansion

vε(x,t)=−ε
(

−1

c
∂τΦ+ε∂zΦ;

√
ε∇yΦ

)

(τ,z,y), (4.16)
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where we recognize the velocity ansatz of Ref. [35] with

v1=
1

c
∂τΦ=

c

ρ0
I, w=∇yΦ=

c2

ρ0
∂−1
τ ∇yI,

but for the corrector v2 this time

v2=−∂zΦ=− c2

ρ0
∂−1
τ ∂zI

instead of (see Ref. [35] and formula (4.19) for definition of the operator ∂−1
τ )

vRozanova
2 =− c2

ρ0
∂−1
τ ∂zI+

(γ−1)

2ρ20
cI2+

ν

cρ20
∂τ I.

If we add the second-order correctors v2 for the velocity to J for the density, we obtain
exactly all terms of the corrector vRozanova

2 . But the ansatz (4.14)–(4.15) is not optimal
since the equation of momentum in transverse direction keeps the non-zero terms [35]

of the order of ǫ
5
2 .

4.2. Well posedness of the KZK equation. We use Ref. [34] to give results
on the well posedness of the Cauchy problem:

{

c∂2τzI− (γ+1)
4ρ0

∂2τ I
2− ν

2c2ρ0
∂3τ I− c2

2 ∆yI=0 on Tτ ×R+×R
n−1,

I(τ,0,y)= I0(τ,y) on Tτ ×R
n−1

(4.17)

in the class of L−periodic functions with respect to the variable τ and with mean value
zero

∫ L

0

I(τ,z,y)dτ =0. (4.18)

The introduction of the operator ∂−1
τ , defined by formula

∂−1
τ I(τ,z,y) :=

∫ τ

0

I(s,z,y)ds+

∫ L

0

s

L
I(s,z,y)ds, (4.19)

allows us to consider instead of Equation (4.11) the following equivalent equation

c∂zI−
(γ+1)

4ρ0
∂τ I

2− ν

2c2ρ0
∂2τ I−

c2

2
∂−1
τ ∆yI=0 on Tτ ×R+×R

n−1, (4.20)

for which, in the viscous case ν > 0, it holds a global in z well-posedness result [34] for
sufficiently small by Hs norm (s>

[

n
2

]

+1) initial data.
As it was mentioned in [23,24,33] for the KP-type equations in R

2, the introduced
operator ∂−1

τ is singular in the sense that its Fourier transform gives a division [34] by
a discrete variable m:

F(∂−1
τ ∆yI)=

Lξ2

i2πm
F(I)(m,ξ) m∈Z, ξ∈R.

If we suppose that I has the mean value zero in τ , it implies that F(I)(0,ξ)=0 for all ξ,
which makes disappear the singularity for m=0. For the same reason this requires [34,
Lemma 5.2] the additional constraint for the initial data ∂−1

τ △yI0=φ0∈Hs−2 to be
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able to ensure that the solution I ∈C([0,T [,Hs(Tτ ×R
n−1)) can be also considered

in C1([0,T [,Hs−2(Tτ ×R
n−1)) (see also a similar situation for the KP-type equations

explained in [33]). At the same time, as it is discussed in [23, 24, 33], in the non-
periodic case this regularity constraint is not physical. However, if we work in the class
of periodic functions with the mean value zero this condition can be omitted.

Indeed, by definition (4.19) of the operator ∂−1
τ , it preserves the property of a

periodic function to have the mean value zero. Thus, if I0 is a periodic function with
the mean value zero on τ , the solution I belongs also in this class, where we find the
equivalence between the Cauchy problem (4.17) and the analogous problem considered
for Equation (4.20). Formula (4.19), as it is noticed in [34, p.796], allows to establish
an analogue of the Poincaré inequality (which is false in the non-periodic case of Rn):

‖I‖Hs(]0,L[×R
n−1
y )≤C‖∂τI‖Hs(]0,L[×R

n−1
y ),

coming from the following relation

I=∂−1
τ ∂τ I=

∫ τ

0

∂τI(s,y)ds+

∫ L

0

s

L
∂τI(s,y)ds.

As, by (4.19), ∂−1
τ I is L-periodic in τ and of mean value zero, this also gives us the

following estimate

‖∂−1
τ I‖Hs(Ω1)≤C‖∂τ∂−1

τ I‖Hs(Ω1)=C‖I‖Hs(Ω1). (4.21)

This means that in the class of periodic and of mean value zero functions as soon as
I0∈Hs(Ω1), it implies that ∂−1

τ I0 is also in Hs(Ω1) and in the same class. Hence
the condition ∂−1

τ ∆yI0∈Hs−2(Ω1) required in [34, Thm. 1.2, Point 4] is automatically
verified for I0 from Hs, periodic and of mean value zero in t (τ = t for z=0).

To be able to ensure the boundedness of the remainder terms in the KZK-type
approximations we need to have very regular solutions of (4.17) corresponding to the
propagation variable z, which exist according to the following theorem [34]:

Theorem 4.1 ([34]). Let ν≥ 0, s>
[

n
2

]

+1, the operator ∂−1
τ defined by formula (4.19)

and I0∈Hs(Tτ ×R
n−1) be such that

∫ L

0
I0(ℓ,y)dℓ=0. Then the following results hold

true for the Cauchy problem for the KZK equation

{

c∂zI− (γ+1)
4ρ0

∂τ I
2− ν

2c2ρ0
∂2τ I− c2

2 ∂
−1
τ ∆yI=0 on Tτ ×R+×R

n−1,

I(τ,0,y)= I0(τ,y) on Tτ ×R
n−1.

(4.22)

(1) ( Local existence.) There exists a constant C(s,L) such that for any (previously
defined) initial data I0 on an interval [0,T [ with

T ≥ 1

C(s,L)‖I0‖Hs(Tτ×Rn−1)

problem (4.22) has a unique solution I such that

I ∈C([0,T [,Hs(Tτ ×R
n−1))∩C1([0,T [,Hs−2(Tτ ×R

n−1)),

which satisfies the zero mean value condition (4.18).
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(2) (Shock formation.) Let T ∗ be the largest time on which such a solution is defined,
then we have

∫ T∗

0

sup
τ,y

(|∂τ I(τ,t,y)|+ |∇yI(τ,t,y)|)dt=+∞.

(3) (Global existence.) If ν > 0 we have the global existence for small enough data: there
exists a constant C1> 0 such that

‖I0‖Hs(Tτ×Rn−1)≤C1⇒T ∗=+∞.

(4) (Exponential decay.) [15, 34] If ν > 0, s∈N and s≥
[

n+1
2

]

, then there exists a con-
stant C2> 0 such that ‖I0‖Hs(Tτ×Rn−1)≤C2 implies for all z≥ 0

‖I(z)‖Hs(Tτ×Rn−1)≤C‖I0‖Hs(Tτ×Rn−1)e
−ĉz ,

where C> 0 and ĉ∈]0,1[ are constants.

Remark 4.1. We note that when ν=0, all the corresponding statements of Theo-
rem 4.1 remain valid for 0>t>−C with a suitable C [34].

Remark 4.2. In the study of the well-posedness of the KZK equation we invert the
usual role of the time with the main space variable along the propagation axis z: for
ν > 0 the solution I(τ,z,y)= I(t− x1

c
,εx1,

√
εx′) is defined for x1> 0, as it is global on

z∈R
+. Hence if we want to compare the KZK equation to other models such as the

Kuznetsov equation or the Navier-Stokes system we need the well posedness results for
these models on the half-space

{x1> 0, t> 0, x′ ∈R
n−1}, (4.23)

taking into account the fact that the boundary conditions for the exact system come from
the initial condition I0 of the Cauchy problem (4.22) associated to the KZK equation.

4.3. Well posedness of the isentropic Navier-Stokes system on the half-

space with inflow-outflow periodic boundary conditions. We follow now Sec-
tion 5.2 in Ref. [35] updating it for the new ansatz and correct the proof of Theorem 5.5.
See Ref. [35] for more details.

We consider the Cauchy problem for the KZK Equation (4.22) for the initial data

I(t,0,y)= I0(t,y) (τ = t for x1=0),

which are L-periodic in time and of mean value zero. For s> [n2 ]+1, Theorem 4.1
ensures that for all initial data I0, defined in Tt×R

n−1 with small enough Hs norm
(with respect to ν), there exists a unique solution I of the KZK Equation (4.11), which
as a function of (τ,z,y) is global on z∈R

+, periodic in τ of period L and mean value
zero, and decays for z→∞ [34].

Therefore, see Remark 4.2, we consider our approximation problem between
the isentropic Navier-Stokes system (2.6)–(2.7) and the KZK equation in the half-
space (4.23).

By I0 we find I and thus also Φ and J , using Equations (4.5)–(4.6). This allows
us to construct the density and velocities ρε and vε in accordance with ansatz (4.8)
and (4.16). Thus, by I we construct the function Uε=(ρε,ρεvε)

t.
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0

x1> 0

x′

v1|x1=0< 0

v1|x1=0< 0

v1|x1=0> 0

v1|x1=0> 0

(v−v)|x1=0=0

(v−v)|x1=0=0

(ρ−ρ)|x1=0=0

t

Fig. 4.2. Periodic subsonic inflow-outflow boundary conditions for the Navier-Stokes system.

In particular, for t=0 we have functions defined for x1> 0 because I is well-defined
for any z> 0

ρε(0,x1,x
′)=ρ0+εI(−

x1
c
,εx1,

√
εx′)+ε2J(−x1

c
,εx1,

√
εx′),

vε(0,x1,x
′)= (v1,v

′
ε)(−

x1
c
,εx1,

√
εx′),

where

v1= ε
c

ρ0
I+ε2

c2

ρ0
∂z∂

−1
τ I, v′

ε=
√
ε
c2

ρ0
∇y∂

−1
τ I

and for x1=0 we have L-periodic functions with mean value zero

ρε(t,0,x
′)=ρ0+εI(t,0,

√
εx′)+ε2J(t,0,

√
εx′), (4.24)

vε(t,0,x
′)= (v1,v

′
ε)(t,0,

√
εx′). (4.25)

It is important to notice [34] that the solution vε in system (2.6)–(2.7) is small on
the boundary: vε|x1=0= εṽε|x1=0. Therefore, we have |vε|x1=0|<c, which corresponds
to the “subsonic” boundary case. More precisely, when the first velocity component
is positive v1|x1=0> 0, we have a subsonic inflow boundary condition, and when it is
negative v1|x1=0< 0, we have a subsonic outflow boundary condition, see Figure 4.2.

We also notice that, due to Equation (4.16), the first component of the velocity v1

on the boundary has the following form

v1|x1=0=

(

ε
c

ρ0
I+ε2G(I)

)

(t,0,
√
εx′)=

(

ε
c

ρ0
I+ε2G(I)

)∣

∣

∣

∣

z=0

= ε
c

ρ0
I0(t,y)+ε

2G(I0)(t,y),

where

G(I)=
c2

ρ0
∂z∂

−1
τ I=

c2

ρ0
∂−1
τ

(

(γ+1)

4cρ0
∂τI

2+
ν

2c3ρ0
∂2τ I+

c

2
∂−1
τ ∆yI

)

. (4.26)

Therefore, the boundary conditions for v1 are defined by the initial conditions for KZK
equation and are L-periodic in t and have mean value zero. In addition, the sign of
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v1|x1=0 is the same as the sign of I0 (because the term G(I0) is of a higher order of
smallness on ε). In addition, as the viscosity term ενvε, where ε is a fixed small enough
parameter, ν is a constant, and in our case vε is of the order of ε, the boundary layer
phenomenon is excluded.

Theorem 4.2. Let n≤ 3. Suppose that the initial data of the KZK Cauchy problem
I0(t,y)= I0(t,

√
ǫx′) is such that

(1) I0 is L-periodic in t and with mean value zero,

(2) for fixed t, I0 has the same sign for all y∈R
n−1, and for t∈]0,L[ the sign changes,

i.e. I0=0, only for a finite number of times,

(3) I0(t,y)∈Hs(Tt×R
n−1) for s≥ 10,

(4) I0 is sufficiently small in the sense of Theorem 4.1 such that [34, p.20]

‖I0‖Hs <
ν

2c2ρ0

C1(L)

C2(s)
.

Consequently, there exists a unique global solution in time I(τ,z,y) of (4.22) for z=
ǫx1> 0, moreover, the functions ρ̄ǫ, vε=(v1,v

′
ε), defined by ansatz (4.8)-(4.16) and

Equations (4.5)–(4.6) in the half-space (4.23) are smooth with Ω=Tt×R
n−1
y :

ρ̄ǫ∈C
(

[0,∞[,Hs−4 (Ω)
)

∩C1
(

[0,∞[;Hs−6 (Ω)
)

, (4.27)

v̄ǫ∈C
(

[0,∞[;Hs−4 (Ω)
)

∩C1
(

[0,∞[;Hs−6 (Ω)
)

. (4.28)

The Navier-Stokes system (2.6)–(2.7) in the half-space with initial data (3.24) and fol-
lowing boundary conditions

(v̄ǫ−vǫ)|x1=0=0,

with positive first component of the velocity v1|x1=0> 0 (i.e. at points where the fluid
enters the domain) has the additional boundary condition

(ρ̄ǫ−ρǫ)|x1=0=0.

When v1|x1=0≤ 0 there isn’t any boundary condition for ρǫ.
Then, for all finite times T > 0 there exists a unique solution Uǫ=(ρǫ,ρεuǫ) of the

Navier-Stokes system (2.6)–(2.7) with the following smoothness on [0,T ]

ρε∈C
(

[0,T ],H3
(

{x1> 0}×R
n−1
))

∩C1
(

[0,T ],H2
(

{x1> 0}×R
n−1
))

, (4.29)

uε∈C
(

[0,T ],H3
(

{x1> 0}×R
n−1
))

∩C1
(

[0,T ],H1
(

{x1> 0}×R
n−1
))

. (4.30)

Remark 4.3 ([35]). The restriction to have the same sign for I0 for all fixed times
avoids a change in the type of the boundary condition applied to the tangential variables
for the Navier-Stokes system. Moreover, Zabolotskaya [4] takes as the initial conditions
for the KZK equation (which correspond to the boundary condition for v1) the expres-
sion

I(τ,0,y)=−F (y)sinτ

with an amplitude distribution F (y)≥ 0. Especially, for a Gaussian beam [4]

F (y)= e−y2

,
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while for a beam with a polynomial amplitude [4]

F (y)=

{

(1−y2)2, y≤ 1,

0, y > 1.

Proof. As previously, we use the fact that the entropy for the isentropic Euler
system η(Uε), defined by Equation (3.31) is a convex function [8].

Let us multiply the Navier-Stokes system (3.19), from the left, by 2UT
ε η

′′(Uε)

2UT
ε η

′′(Uε)∂tUε+

n
∑

i=1

2UT
ε η

′′(Uε)DGi(Uε)∂xi
Uε−εν2UT

ε η
′′(Uε)

[

0
△vε

]

=0.

We notice that

UT
ε η

′′(Uε)

[

0
△vε

]

=0,

and, therefore, we have

2UT
ε η

′′(Uε)∂tUε=∂t[U
T
ε η

′′(Uε)Uε]−UT
ε ∂tη

′′(Uε)Uε.

Moreover, by virtue of η′′(U)DGi(U)= (DGi(U))T η′′(U) we find

2UT
ε η

′′(Uε)DGi(Uε)∂xi
Uε=

∂xi
[UT

ε η
′′(Uε)DGi(Uε)Uε]−UT

ε ∂xi
[η′′(Uε)DGi(Uε)]Uε.

Integrating over [0,t]×{x1> 0} (x′ ∈R
n−1), we obtain

∫ t

0

∫

x1>0

∂t[U
T
ε η

′′(Uε)Uε]dxds+

∫ t

0

∫

x1>0

n
∑

i=1

∂xi
[UT

ε η
′′(Uε)DGi(Uε)Uε]dxds

−
∫ t

0

∫

x1>0

UT
ε ∂tη

′′(Uε)Uεdxds−
∫ t

0

∫

x1>0

n
∑

i=1

UT
ε ∂xi

[η′′(Uε)DGi(Uε)]Uεdxds=0.

Integrating by parts results in
∫

x1>0

UT
ε η

′′(Uε)Uεdx−
∫

x1>0

UT
ε η

′′(Uε)Uε|t=0dx

−
∫ t

0

∫

x1>0

UT
ε

[

∂tη
′′(Uε)+

n
∑

i=1

∂xi
[η′′(Uε)DGi(Uε)]

]

Uεdxds

−
∫ t

0

∫

Rn−1

UT
ε η

′′(Uε)DG1(Uε)Uε|x1=0dx
′ds=0.

We recall that η′′(Uε) is positive definite, consequently for some C> 0 and δ0> 0

C|Uε|2≥UT
ε η

′′(Uε)Uε≥ δ0|Uε|2.

Therefore, we obtain for the initial data

U0=

[

ρ0+εI+ε
2J

ε
(

ρ0+εI+ε
2J
)

(

c
ρ0
I+εG(I),

√
ε~w
)

]

(

−x1
c
,εx1,

√
εx′
)

(4.31)
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and the relation

δ0

∫

x1>0

U2
εdx−C

∫

x1>0

U2
0dx−

∫ t

0

∫

Rn−1

UT
ε η

′′(Uε)DG1(Uε)Uε|x1=0dx
′ds

≤C1

∫ t

0

∫

x1>0

U2
εdxds.

As in Ref. [11], C1 is an upper bound for the eigenvalues of the symmetric matrix

∂tη
′′(Uε)+

n
∑

i=1

∂xi
[η′′(Uε)DGi(Uε)].

Let us now consider the integral on the boundary. With notation vε=(v1,v
′
ε)

t for the

velocity and H ′′(ρ)= p′(ρ)
ρ

, we see with DG1(Uε) coming from Equation (3.21) that

UT
ε η

′′(Uε)DG1(Uε)Uε

=(ρε,ρεvε)
T







H ′′(ρε)+
v
2
ε

ρε
−vε

ρε

−vε

ρε

1
ρε
Idn











0 1 0
−v21+p′(ρε) 2v1 0

−v1v′
ε v′

ε v1Idn−1





(

ρε
ρεvε

)

=(ρε,ρεv1,ρεv
′
ε)

T









v1

(

v
2
ε

ρε
− p′(ρε)

ρε

)

−v2
1

ρε
+ p′(ρε)

ρε
−v1 v

′
ε

ρε

−v2
1

ρε
+ p′(ρε)

ρε

v1
ρε

0

−v1 v
′
ε

ρε
0 v1

ρε
Idn−1













ρε
ρεv1
ρεv

′
ε





=ρεp
′(ρε)v1.

Let us consider the initial condition I0(t,y) for the KZK equation of the type de-
scribed in Remark 4.3. We suppose (without loss of generality) that I0=0 for t∈]0,L[
only once. More precisely, we suppose that the sign of v1 is changing in the following
way:

• v1≤ 0 for t∈ [0+(k−1)L, L2 +(k−1)L] (k=1,2,3, ...),

• v1> 0 for t∈]L2 +(k−1)L,kL[ (k=1,2,3, ...).

If t∈ [0, L2 ] (for k=1), the first component of the velocity v1|x1=0< 0 is negative,
and thus we have

ρεp
′(ρε)v1< 0.

If t∈]L2 ,L[, the first component of velocity is positive v1|x1=0> 0, then we also impose
ρε|x1=0=ρ0+εI0(t,y)+ε

2J , where I0(t,y) is the initial condition for the KZK equation
and J coming from Equation (4.6). For the term

ρεp
′(ρε)v1> 0

we see that on the boundary it has the form

ρεp
′(ρε)v1=ε

(

c

ρ0
I0+

c2

ρ0
∂z∂

−1
τ I0

)

(ρ0+εI0(t,y)+ε
2J)p′(ρ0+εI0(t,y)+ε

2J)

≤C0εI0
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for some constant C0> 0 independent of ε. Consequently, for k≥ 1

∫ kL

0

∫

Rn−1

ρεp
′(ρε)v1|x1=0dx

′ ds≤
k
∑

j=1

∫

]L2 +(j−1)L,jL[

∫

Rn−1

ρεp
′(ρε)v1|x1=0dx

′ ds

≤
k
∑

j=1

∫

]L2 +(j−1)L,jL[

∫

Rn−1

C0εI0≤Kkε‖I0‖Hs ,

where K=O(1) is a positive constant independent of k.
However, for t> 0 and k≥ 1 such that t∈ [(k−1)L,kL[, it implies on one hand that

if t∈
[

(k−1)L,(k−1)L+ L
2

[

∫ t

0

∫

Rn−1

ρεp
′(ρε)v1|x1=0dx

′ ds≤
∫ (k−1)L

0

∫

Rn−1

ρεp
′(ρε)v1|x1=0dx

′ ds,

and on the other hand, that if t∈
[

(k−1)L+ L
2 ,kL

[

∫ t

0

∫

Rn−1

ρεp
′(ρε)v1|x1=0dx

′ ds≤
∫ kL

0

∫

Rn−1

ρεp
′(ρε)v1|x1=0dx

′ ds.

As a consequence, we obtain for all t> 0

∫ t

0

∫

Rn−1

ρεp
′(ρε)v1|x1=0dx

′ ds≤K
([

t

L

]

+1

)

ε‖I0‖Hs .

Therefore, we deduce the following estimate, as δ0> 0

∫

x1>0

U2
εdx≤

C

δ0

∫

x1>0

U2
0dx+ε

K

δ0

([

t

L

]

+1

)

‖I0‖Hs +
C1

δ0

∫ t

0

∫

x1>0

U2
εdxds.

By the Grönwall lemma we find

‖Uε‖2L2(t)≤ C

δ0

(

‖U0‖2L2 +ε
K

C

([

t

L

]

+1

)

‖I0‖Hs

)

e
C1
δ0

t,

remaining bounded for all finite times.
Thus, for all T <+∞ we obtain that

Uε ∈L∞([0,T ],L2
(

{x1> 0}×R
n−1
))

.

If I0=0 for t∈]0,L[ a finite number of times m, we obtain the same result.
Hence, by [11] we have proved that the chosen boundary conditions ensure the local

well-posedness for the Navier-Stokes system in the half-space, which can be viewed
as a symetrisable incompletely parabolic system. We apply now the theory of in-
completely parabolic problems [11, p. 352] with the result of global well-posedness
of the Navier-Stokes system in the half-space with the Dirichlet boundary condi-
tions [28] for the velocity and with the initial data ρε(0)−ρ0∈H3({x1> 0}×R

n−1))
and vε(0)∈H3({x1> 0}×R

n−1) small enough. Hence, for sufficiently regular initial
data U0∈H3({x1> 0}×R

n−1) (n≤ 3) for all finite time T <∞, we obtain by the en-
ergy method that Uε ∈L∞([0,T ],H3({x1> 0}×R

n−1)).
To ensure that U0 defined in Equation (4.31) belongs to H3({x1> 0}×R

n−1), we
need to take I0∈Hs(Tt×R

n−1) such that

ρε∈C([0,+∞[;H3({x1> 0}×R
n−1), vε∈C([0,+∞[;H3({x1> 0}×R

n−1).
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By Theorem 4.1, I0∈Hs(Tt×R
n−1) implies while s−2ℓ≥ 0 that

I(τ,z,y)∈Cℓ({x1> 0};Hs−2ℓ(Tτ ×R
n−1)),

but we can also say, thanks to point 4 of Theorem 4.1, that

∂ℓzI(τ,z,y)∈L2({x1> 0};Hs−2ℓ(Tτ ×R
n−1)).

Considering the expressions of ρε and vε

ρε=ρ0+εI−
ε2

ρ0

(

γ−1

2
I2− ν

c2
∂τ I

)

, vε=
c2

ρ0

(ε

c
I−ε2∂−1

τ ∂zI;ε
3
2 ∂−1

τ ∇yI
)

, (4.32)

the least regular term is ∂−1
τ ∂zI. Thus we need to ensure

∂zI ∈C([0,+∞[;H3({x1> 0}×R
n−1),

which leads us to take s≥ 10 in order to have

∂ℓzI(τ,z,y)∈L2({x1> 0};Hs−2ℓ(Tτ ×R
n−1))

for ℓ≤ 4 with s−2ℓ≥ 2 as we want to have the continuity in time. This choice of the
regularity for I0 allows us to control the boundary terms appearing from the integration
by parts in the energy method. Indeed, we can perform analogous computations as in
Ref. [8, p. 103] to control the spatial derivative of Uε of the order less than or equal to 3
and directly verify that all boundary terms are controlled by ‖I0‖Hs , which is actually
is a consequence of the well-posedness [28] in H3.

Thus, for all finite times we obtain the existence of the unique solution of the
Navier-Stokes system in the sense of (4.29) and (4.30).

4.4. Approximation of the solutions of the isentropic Navier-Stokes sys-

tem with the solutions of the KZK equation. Knowing from Subsection 4.1
that the KZK equation can be derived from the compressible isentropic Navier-Stokes
system (2.6)–(2.7) using ansatz (4.12)–(4.13) with I and J given by (4.5) and (4.6)
respectively, we obtain the following expansion of the Navier-Stokes equations

∂tρε+∇.(ρεvε)=ε
2[
ρ0
c2

(2c∂2zτΦ−c2∆yΦ)−
ρ0
2c4

(γ+1)∂τ [(∂τΦ)
2]− ν

c4
∂3τΦ]

+ε3RNS−KZK
1 (4.33)

and

ρε[∂tvε+(vε.∇)vε]+∇p(ρε)−εν∆vε= ε∇̃[−ρ0∂τΦ+c2I]

+ε2∇̃
[

c2J+
(γ−1)ρ0

2c2
(∂τΦ)

2+
ν

c2
∂2τΦ

]

+ε3RNS−KZK
2 , (4.34)

where RNS−KZK
1 and RNS−KZK

2 are the remainder terms given in the appendix. So, as
it was previously explained for the approximation of the Navier-Stokes by the Kuznetsov
equation in Subsection 3.2, if we consider a solution of the KZK equation I and define
by it the functions Φ and J , then we define according to ansatz (4.12)–(4.13) ρε and
vε (see Equation (4.16)), which solve the approximate system (3.17)–(3.18) with the
remainder terms RNS−KZK

1 and RNS−KZK
2 and, as previously, with p(ρε) from the

state law (2.8):

∂tρε+div(ρεvε)= ε
3RNS−KZK

1 , (4.35)
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ρε[∂tvε+(vε.∇)vε]+∇p(ρε)−εν∆vε= ε
3RNS−KZK

2 . (4.36)

As usual, we denote by Uε=(ρε , ρεvε)
t the solution of the exact Navier-Stokes

system and by Uε=(ρε , ρεvε)
t the solution of (4.35)–(4.36).

We work on R+×R
n−1 (n=2 or 3) due to the domain of the well-posedness for

the KZK equation. In this case the Navier-Stokes system is globally well-posed with
non-homogeneous boundary conditions of Uε, as they are directly determined by the
initial condition I0 of the KZK Equation (4.22) according to Theorem 4.2. Knowing the
existence results for two problems, we validate the approximation of Uε by Uε following
Ref. [35] and Subsection 3.2:

Theorem 4.3 ([35]). Let n=2 or 3, s≥ 10 and Theorem 4.2 hold. Then there exist
constants C> 0 and K> 0 such that if

(ρε−ρε)|t=0=0 and (vε−vε)|t=0=0,

we have the following stability estimate

0≤ t≤ C

ε
‖Uε−Uε‖2L2(R+×Rn−1)(t)≤Kε3teKεt≤ 9ε2.

Moreover, if the initial conditions for the KZK equation are such that

I0 ∈Hs(Tt×R
n−1) for s≥ 8,

and sufficiently small (in the sense of Theorem 4.1), then there exists the unique global-
in-time solution of the Cauchy problem for the KZK equation

ρε−ρ0∈C([0,+∞[;H2({x1> 0}×R
n−1))∩C1([0,+∞[;H1({x1> 0}×R

n−1)),

vε∈C([0,+∞[;H2({x1> 0}×R
n−1))∩C1([0,+∞[;H1({x1> 0}×R

n−1))

and the remainder terms (RNS−KZK
1 ,RNS−ZKZ

2 ) (see the appendix) belong to
C([0,+∞[;L2(R+×R

n−1)).
If in addition there exists an admissible weak solution of a bounded energy of the

Cauchy problem for the Navier-Stokes system (3.19) on a time interval [0,TNS[ for the
initial data

‖Uε(0)−Uε(0)‖L2(Rn)≤ δ≤ ε,

then it holds for all t<min{C
ε
,TNS} the stability estimate (1.2):

‖(Uε−Uε)(t)‖2L2(Rn)≤K(ε3t+δ2)eKεt≤ 9ε2.

Proof. We validate the approximation of Uε by Uε following Ref. [35] and Sub-
section 3.2. For the regularity of the approximate solution, if I0∈Hs(Tt×R

n−1) with
s>max{8, n2 } then for 0≤ ℓ≤ 4

I(τ,z,y)∈Cℓ({z> 0};Hs−2ℓ(Tτ ×R
n−1)).

Let us denote Ω=Tτ ×R
n−1. Given the equations for ρε by (4.8) with (4.5) and (4.6)

and for vε by (4.16) respectively, we have for 0≤ ℓ≤ 2

∂ℓzρε(τ,z,y)∈C({z> 0};Hs−1−2ℓ(Ω)), ∂ℓzvε(τ,z,y)∈C({z> 0};Hs−2−2ℓ(Ω)),
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but we can also say thanks to point 4 of Theorem 4.1 that

∂ℓzρε(τ,z,y)∈L2({z> 0};Hs−1−2ℓ(Ω)), ∂ℓzvε(τ,z,y)∈L2({z> 0};Hs−2−2ℓ(Ω)).

This implies for 0≤ ℓ≤ 2 (as s≥ 8) that s−2−2ℓ> 2 and

∂ℓzρε(τ,z,y)∈C(Tτ ;L
2({z> 0};Hs−1−2ℓ(Rn−1))),

∂ℓzvε(τ,z,y)∈C(Tτ ;L
2({z> 0};Hs−2−2ℓ(Rn−1))).

Hence we find

ρε(t,x1,x
′) and vε(t,x1,x

′)∈C([0,+∞[;H2({x1> 0}×R
n−1).

As in addition for 0≤ ℓ≤ 1, considering ρε and vε as functions of (τ,z,y),

∂ℓz∂τρε∈C({z> 0};Hs−2−2ℓ(Ω)), ∂ℓz∂τvε∈C({z> 0};Hs−3−2ℓ(Ω)),

we deduce in the same way that

∂tρε(t,x1,x
′) and ∂tvε(t,x1,x

′)∈C([0,+∞[;H1({x1> 0}×R
n−1)).

These regularities of ρε and vε, viewed as functions of (t,x1,x
′), allow to have all left-

hand terms in the approximate Navier-Stokes system (4.35)–(4.36) of the regularity
C([0,T ];L2({x1> 0}×R

n−1)) and the remainder terms in the right-hand side inherit it.
The regularity of I0 ∈Hs(Tt×R

n−1) with s≥ 8 (see Table 7.1), is minimal to ensure
that RNS−KZK

1 and RNS−KZK
2 (see the appendix for their expressions), belongs to

C([0,+∞[;L2(R+×R
n−1)).

It is due to the fact that the least regular term in RNS−KZK
1 and RNS−KZK

2 is of the
form

∂3zΦ∈L2({z> 0};Hs−6(Ω))∩C({z > 0};Hs−6(Ω)).

5. Navier-Stokes system and the NPE equation

5.1. Derivation of the NPE equation. The NPE equation (nonlinear pro-
gressive wave equation), initially derived by McDonald and Kuperman [31], is an exam-
ple of a paraxial approximation aiming to describe short-time pulses and a long-range
propagation, for instance, in an ocean wave-guide, where the refraction phenomena are
important. To compare to the KZK equation we use the following paraxial change of
variables

u(t,x1,x
′)=Ψ(εt,x1−ct,

√
εx′)=Ψ(τ,z,y), (5.1)

with

τ = εt, z=x1−ct, y=
√
εx′. (5.2)

For the velocity we have

vε(t,x1,x
′)=−ε∇u(t,x1,x′)=−ε(∂zΨ,

√
ε∇yΨ)(τ,z,y). (5.3)



2104 APPROXIMATION RESULTS FOR MODELS OF NONLINEAR ACOUSTICS

x1

x′

t

Navier-Stokes/

Euler (x1,x
′
,t)

z=x1−ct

y=
√
ǫx′

τ = ǫt

NPE (τ,z,y)

Fig. 5.1. Paraxial change of variables for the profiles U(ǫt,x1−ct,
√

ǫx′).

If we compare the NPE equation to the isentropic Navier-Stokes system this method
of approximation does not allow to keep the Kuznetsov ansatz of perturbations (3.2)–
(3.3) imposing (3.5)–(3.6), just by introducing the new paraxial profiles Ψ for u, ξ for
ρ1 and χ for ρ2 and taking the term of order 0 in ε as it was done in the case of the
KZK-approximation. This time the paraxial change of variables (5.2) for ρ1 and ρ2,
defined in Equations (3.5)–(3.6), gives

ρ1=− ρ0
c
∂zΨ+ε

ρ0
c2
∂τΨ,

ρ2=− ρ0(γ−2)

2c2
(∂zΨ)2− ρ0

2c2
(∂zΨ)2− ν

ρ0
∂2zΨ

+ε

[

ρ0(γ−2)

2c3
∂zΨ∂τΨ− ρ0

2c2
(∇yΨ)2− ν

c2
∆yΨ

]

+ε2
(

−ρ0(γ−2)

2c4

)

(∂τΨ)2.

Thus, one of the terms in the ρ1-extension takes part of the second-order corrector of
ρε:

ρε(t,x1,x
′)=ρ0+εξ(τ,z,y)+ε

2χ(τ,z,y), (5.4)

with

ξ(τ,z,y)=− ρ0
c
∂zΨ, (5.5)

χ(τ,z,y)=
ρ0
c2
∂τΨ− ρ0(γ−1)

2c2
(∂zΨ)2− ν

c2
∂2zΨ. (5.6)

The obtained ansatz (5.3)–(5.4), applied to the Navier-Stokes system, gives

∂tρε+div(ρεvε)=ε
2(−2ρ0

c
)

(

∂2τzΨ− (γ+1)

4
∂z(∂zΨ)2− ν

2ρ0
∂3zΨ+

c

2
∆yΨ

)

+ε3RNS−NPE
1 ,

and

ρε[∂tvε+(vε.∇)vε]+∇p(ρε)−εν∆vε= ε∇
(

ξ+
ρ0
c
∂zΨ

)

+c2ε2∇
[

χ− ρ0
c2
∂τΨ+

ρ0(γ−1)

2c2
(∂zΨ)2+

ν

c2
∂2zΨ

]

+ε3RNS−NPE
2 .
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The remainder term in the conservation of mass is given by

ε3RNS−NPE
1 =ε3

(

∂τχ−∇yξ∇yΨ−ξ∆yΨ−∂zχ∂zΨ−χ∂2zΨ)

+ε4(−∇yχ∇yΨ−χ∆yΨ), (5.7)

while in the conservation of momentum along the x1 axis it is given by

ε3RNS−NPE
2 .−→e 1= ε

3
[

− ρ0
c
∂zΨ∂

2
τzΨ+

ρ0
2
∂z(∇yΨ)2+ν∂z∆yΨ+

ξ

2
∂z(∂zΨ)2

+cχ∂2zΨ
]

+ε4
(

ξ

2
∂z(∇yΨ)2−χ∂2τzΨ+

χ

2
∂z(∂zΨ)2

)

+ε5
χ

2
∂z(∇yΨ)2, (5.8)

and along all transversal direction xj to the propagation x1-axis

ε3RNS−NPE
2 .−→e j = ε

7
2

[

− ρ0
c
∂zΨ∂

2
τyj

Ψ+
ρ0
2
∂yj

(∇yΨ)2+ν∂yj
∆yΨ+

ξ

2
∂yj

(∂zΨ)2

+cχ∂2zyj
Ψ
]

+ε
9
2

(

ξ

2
∂yj

(∇yΨ)2−χ∂2τyj
Ψ+

χ

2
∂yj

(∂zΨ)2
)

+ε
11
2
χ

2
∂yj

(∇yΨ)2. (5.9)

As all previous models, for this ansatz, the NPE equation

∂2τzΨ− (γ+1)

4
∂z(∂zΨ)2− ν

2ρ0
∂3zΨ+

c

2
∆yΨ=0 (5.10)

appears as the second-order approximation of the isentropic Navier-Stokes system up to
the terms of the order of O(ε3). In the sequel we work with the NPE equation satisfied
by ξ (see Equation (5.5) for the definition)

∂2τzξ+
(γ+1)c

4ρ0
∂2z [(ξ)

2]− ν

2ρ0
∂3zξ+

c

2
∆yξ=0. (5.11)

Looking at Figures 4.1 and 5.1 together with Equations (4.11) and (5.10), we see that
there is a bijection between the variables of the KZK and NPE equations defined by the
relations

zNPE =−cτKZK and τNPE = ετKZK+
zKZK

c
, (5.12)

which implies for the derivatives

∂τNPE
= c∂zKZK

and ∂zNPE
=−1

c
∂τKZK

.

Thus, as it was mentioned in the introduction, the known mathematical results for the
KZK equation can be directly applied for the NPE equation.

5.2. Well posedness of the NPE equation. We consider the Cauchy problem:
{

∂2τzξ+
(γ+1)c
4ρ0

∂2z [(ξ)
2]− ν

2ρ0
∂3zξ+

c
2∆yξ=0 on R+×Tz×R

n−1,

ξ(0,z,y)= ξ0(z,y) on Tz×R
n−1,

(5.13)

in the class of L−periodic functions with respect to the variable z and with mean value
zero along z. The use of the operator ∂−1

z , identically defined as ∂−1
τ in Equation (4.19),

allows us to consider instead of Equation (5.11) the following equivalent equation

∂τ ξ+
(γ+1)c

4ρ0
∂z [(ξ)

2]− ν

2ρ0
∂2zξ+

c

2
∂−1
z ∆yξ=0 on R+×Tz×R

n−1.
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As a consequence we can use the results of Subsection 4.2 if we replace τ by z. In the
same time for the viscous case the following theorem holds:

Theorem 5.1. Let n≥ 2, ν > 0, s>max
(

4,
[

n
2

]

+1
)

and ξ0∈Hs(Tz×R
n−1) with zero

mean value along z. Then there exists a constant k2> 0 such that if

‖ξ0‖Hs(Tz×R2)<k2, (5.14)

then the Cauchy problem for the NPE Equation (5.13) has a unique global-in-time so-
lution

ξ∈
2
⋂

ℓ=0

Cℓ([0,+∞[,Hs−2ℓ(Tz×R
2)), (5.15)

satisfying the zero mean value condition along z. Moreover, for Ψ according with Equa-
tion (5.5) we have

Ψ:=− c

ρ0
∂−1
z ξ∈

2
⋂

ℓ=0

Cℓ([0,+∞[,Hs−2ℓ(Tz×R
2)),

also satisfying the zero mean value condition along z, i.e.
∫ L

0 Ψ(τ,z,y)dz=0.

Proof. For ξ0∈Hs(Tz×R
n−1) small enough the existence of a global-in-time

solution

ξ∈
1
⋂

ℓ=0

Cℓ([0,+∞[,Hs−2ℓ(Tz×R
n−1))

of the Cauchy problem for the NPE Equation (5.13) comes from Theorem 4.1. We also
have the desired regularity by a simple bootstrap argument. Moreover, the formula
for ∂−1

z (see the equivalent definition of ∂−1
τ in Equation (4.19)) implies for s≥ 1 the

Poincaré inequality

‖∂−1
z ξ‖Hs(Tz×Rn−1)≤C‖∂z∂−1

z ξ‖Hs(Tz×Rn−1)≤C‖ξ‖Hs(Tz×Rn−1),

which gives us the same regularity for Ψ.

5.3. Approximation of the solutions of the isentropic Navier-Stokes sys-

tem by the solutions of the NPE equation. By Subsections 4.2 and 5.2, this time
the approximation domain is Tx1

×R
n−1. Let ξ be a sufficiently regular solution of the

Cauchy problem (5.13) for the NPE equation in Tz×R
n−1. Then, taking ξ and χ ac-

cording to formulas (5.5)-(5.6), with Ψ defined using the operator ∂−1
z equivalent to ∂−1

τ

(see Equation (4.19)), we define ρε and vε by formulas (5.3)–(5.4). For ρε and vε we ob-
tain a solution of the approximate system (3.17)–(3.18) defined on R+×Tx1

×R
n−1 with

p(ρε) from the state law (2.8), but with the remainder terms RNS−NPE
1 and RNS−NPE

2

defined respectively in Equations (5.7)–(5.9) instead of RNS−Kuz
1 and RNS−Kuz

2 .
In what follows we consider the three dimensional case, knowing, thanks to the

energy method used in Ref. [29] on R
3, that the Cauchy problem for the Navier-Stokes

system is globally well-posed in Tx1
×R

2 for sufficiently small initial data (see Ref. [29]
Theorem 7.1, p. 100 or Ref. [7]):

Theorem 5.2. There exists a constant k1> 0 such that if the initial data

ρε(0)−ρ0∈H3(Tx1
×R

2), vε(0)∈H3(Tx1
×R

2) (5.16)
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satisfy

‖ρε(0)−ρ0‖H3(Tx1
×R2)+‖vε(0)‖H3(Tx1

×R2)<k1,

and ρε(0)−ρ0 and vε(0) have the zero mean value among x1 then the Cauchy prob-
lem (2.6)-(2.8) on Tx1

×R
2 with the initial data (5.16) has a unique global-in-time

solution (ρε, vε) such that

ρε−ρ0∈C([0,+∞[;H3(Tx1
×R

2))∩C1([0,+∞[;H2(Tx1
×R

2)), (5.17)

which implies

ρε−ρ0 and vε ∈C([0,+∞[;H3(Tx1
×R

2))∩C1([0,+∞[;H1(Tx1
×R

2)). (5.18)

Moreover for all times for ρε−ρ0 and vε have the mean value zero along x1.

The existence results for the Cauchy problems of the Navier-Stokes system (2.6)-
(2.8) and the NPE Equation (5.13) allow us to establish the global existence of Uε and
Uε, considered in the NPE approximation framework:

Theorem 5.3. Let n=3. There exists a constant k> 0 such that if the initial datum
ξ0∈H5(Tz×R

2) for the Cauchy problem for the NPE Equation (5.13) (necessarily k≤
k2, see Theorem 5.1) is sufficiently small

‖ξ0‖H5(Tz×Rn−1)<k,

has the mean value zero, then there exist global-in-time solutions Uε=(ρε, ρεvε)
t of

the approximate Navier-Stokes system (3.20) and Uε=(ρε, ρεvε)
t of the exact Navier-

Stokes system (3.19) respectively, with the same regularity corresponding to (5.18) and
with the mean value zero in the x1-direction, both considered with the state law (2.8)
and with the same initial data

(ρ̄ε−ρε)|t=0=0, (v̄ε−vε)|t=0=0. (5.19)

Here ρ̄ε|t=0 and v̄ε|t=0 are constructed as the functions of the initial datum for NPE
equation ξ0 according to formulas (5.3)–(5.6).

Proof. The proof is essentially the same as for Theorem 3.1. According to
Theorem 5.1 with s=5, the datum ξ0 is regular enough so that

ρε−ρ0|t=0∈H3(Tx1
×R

2) and vε|t=0∈ [H3(Tx1
×R

2)]3

constructed with the help of formulas (5.3)–(5.6) in order to apply Theorem 5.2. These
formulas together with Theorem 5.1 imply that ρε and vε have the desired regularity.

Thanks to Theorem 5.3 we validate the approximation of the solution of the Navier-
Stokes system Uε by the solution of the NPE equation Uε following Ref. [35]:

Theorem 5.4. Let ν > 0 and ε> 0 be fixed and all assumptions of Theorem 5.3 hold.
Then estimates of Theorem 3.3 hold in L2(Tx1

×R
2). Moreover, if ξ0 ∈Hs(Tx1

×R
2)

with s≥ 4, then we have the stability estimate (1.2) with

ρε(t,x1,x
′)−ρ0∈C([0,+∞[;H2(Tx1

×R
2))∩C1([0,+∞[;L2(Tx1

×R
2)), (5.20)

vε(t,x1,x
′)∈C([0,+∞[;H3(Tx1

×R
2))∩C1([0,+∞[;H1(Tx1

×R
2)) (5.21)
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and

RNS−NPE
1 and R

NS−NPE
2 ∈C([0,+∞[;L2(Tx1

×R
2)). (5.22)

Proof. The proof, being the same as in Theorem 3.3, is omitted. In fact it is due
to the same Equations (3.19) and (3.20) with just different remainder terms of the same
order on ε.

It is also easy to see using the previous arguments that the minimum regularity of
the initial data (see Table 7.1) to have the remainder terms in C([0,+∞[;L2(Tx1

×R
2))

(see (5.22)) corresponds to ξ0∈Hs(Tx1
×R

2) for s≥ 3. Indeed, if s≥ 3, then

for 0≤ ℓ≤ 1 ξ(τ,z,y)∈Cℓ([0,+∞[;Hs−2ℓ(Tz×R
2)).

As in addition the least regular term in the remainders is ∂2τΨ coming from ∂τχ, this
finally implies with formulas (5.3)–(5.6) the desired regularities of ρε and vε given in
Equations (5.20) and (5.21) respectively.

6. Approximations of the Euler system

Let us consider the following isentropic Euler system:

∂tρε+div(ρεvε)=0, (6.1)

ρε[∂tvε+(vε.∇)vε]+∇p(ρε)=0 (6.2)

with p(ρε) given in Equation (2.8). We use all notations of previous sections just taking
ν=0.

Let us consider two and three dimensional cases. The entropy η of the isentropic
Euler system, defined in Equation (3.31), is of class C3 and in addition η′′(Uε) is positive
definite for ρε> 0. Moreover, from (3.19) we see that Gi∈C∞ with respect to Uε for
ρε> 0. Then we can apply Theorem 5.1.1 p. 98 in Ref. [8], which gives us the local
well-posedness of the Euler system:

Theorem 6.1 ([8]). In R
n for n=2 or 3, suppose the initial data Uε(0) be continu-

ously differentiable on R
n, take value in some compact set with ρε(0)> 0, and

for i=1, ...,n, ∂xi
Uε(0)∈ [Hs(Rn)]n+1 with s>n/2.

Then there exists 0<T∞≤+∞, and a unique continuously differentiable function Uε on
R

3× [0,T∞[ taking value with ρε> 0, which is a classical solution of the Cauchy problem
associated to (3.19) with ν=0. Furthermore for i=1, ...,n

∂xi
Uε(t)∈

s
⋂

k=0

Ck([0,T∞[; [Hs−k(Rn)]n+1).

The interval [0,T∞[ is maximal in that if T∞<+∞ then

∫ T∞

0

sup
i=1,...,n

‖∂xi
Uε‖[L∞(Rn)]n+1dt=+∞,

and/or the range of Uε(t) escapes from every compact subset of R∗
+×R

n as t→T∞.

Remark 6.1. A sufficient condition for the initial data to apply Theorem 6.1 is to
have ρε(0)−ρ0∈H3(Rn) and vε(0)∈ (H3(Rn))n with ρε(0)> 0.
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To approximate the solutions of the Euler system and the Kuznetsov, the NPE or
the KZK equations, we need to know for which time (how long) they exist. As opposed
to the viscous case, the inviscid models can provide blow-up phenomena as indicated
in Theorem 6.1 for the Euler system, in Theorem 6.5 for the Kuznetsov equation and
for the KZK and the NPE equations see Theorem 1.3 in Ref. [34]. Let us start by
summarizing what is known on the blow-up time for the Euler system [2, 36–40].

Due to our framework of the non-linear acoustic, it is important for us to have
a potential motion (the irrotational case) and to consider the compressible isentropic
Euler system (6.1)–(6.2) with initial data defining a perturbation of order ε around
the constant state (ρ0,0). The following theorem estimates the existence time of its
solutions:

Theorem 6.2.

(1) [8] In R
n for n=2 or 3, suppose the initial data

Uε(0)= (ρε,0,ρε,0vε,0)
t

be a perturbation of order ε around the constant state (ρ0,0) (see Equation (6.3))
and take value such that for i=1, ...,n

∂xi
Uε(0)∈ [Hs(Rn)]n+1

with s>n/2. Then according to Theorem 6.1 there exists a unique classical solution
of the Cauchy problem associated to (3.19) with ν=0 with a regularity given in
Theorem 6.1. Moreover considering a generic constant C> 0 independent of ε, the
existence time Tε is estimated by Tε≥ C

ε
.

(2) [36–39] If ∇×vε,0=0 and if

(

ρε,0
ρ0

)
γ−1

2

−1 and vε,0 belong to the energy space Xm

a dense subspace of Hm(Rn) with m≥ 4 (for instance Xm⊂D(Rn), see p.7-8 in
Ref. [38] for the exact definition of Xm), then

Tε≥
C

ε2
for n=2, and Tε≥ exp

(

C

ε

)

−1 for n=3.

The regularity is given by energy estimates on Xm which implies at least the same
regularity as in Theorem 6.1 if for i=1, ...,n

∂xi
Uε(0)∈ [Hm−1(Rn)]n+1.

Proof. The first point is a direct consequence of the proof of Theorem 5.1.1 p. 98
in Ref. [8]. For the second point we refer to Refs. [36–39] in order to have estimations
of Tε with the help of energy estimates in the considered energy spaces which are dense
subspaces of the usual Sobolev spaces.

Let us pay attention to the optimality of the lifespan in the previous results for
two [2] and three dimensional cases [40]. The following theorem tells us that the lower
bound for the lifespan of the compressible Euler system in the irrotational case found
in Theorem 6.2 is optimal thanks to the estimation of the blow-up time:
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Theorem 6.3.
(1) [2] In R

2, we consider the initial data given by

ρε(0)=ρ0+ερε,0 and vε(0)= εvε,0, (6.3)

with ρε,0 and vε,0 of regularity C∞ with a compact support. Moreover

vε,0(x)= vr|x|2−→e r+vθ|x|2−→e θ,

with ρε,0, vr, vθ ∈D(R2) depending only on r= |x|2=
√

x21+x
2
2 for x=(x1,x2)

t.
Then the Euler system (6.1)–(6.2) with initial data (6.3) admits a C∞ solution
for t∈ [0,Tε[ with

lim
ε→0

ε2Tε=C> 0.

(2) [40] In R
3, we consider the initial data given by (6.3) with ρε,0 and vε,0 of regularity

C∞ with a compact support. Moreover

vε,0(x)= vr|x|3−→e r,

with ρε,0 and vr ∈D(R3) depending only on r= |x|3=
√

x21+x
2
2+x

2
3

for x=(x1,x2,x3)
t. Then the Euler system (6.1)–(6.2) with initial data (6.3) admits

a C∞ solution for t∈ [0,Tε[ with

lim
ε→0

ε ln(Tε)=C> 0.

Now let us consider the derivation of the Kuznetsov equation of Subsection 3.1 in
the assumption ν=0. Taking ansatz (3.2)–(3.3) for ρε and vε and imposing (3.5)–(3.6)
for ρ1 and ρ2 with ν=0, we derive as in Subsection 3.1 the inviscid Kuznetsov equation
with the notation α= γ−1

c2

{

∂2t u−c2∆u= ε∂t
(

(∇u)2+ α
2 (∂tu)

2
)

,
u(0)=u0, ut(0)=u1.

(6.4)

Thanks to Theorem 1.1 in Ref. [9], we have the following local well posedness result for
the inviscid Kuznetsov equation:

Theorem 6.4 ([9]). Let ν=0, n∈N
∗ and s> n

2 +1. For all u0∈Hs+1(Rn) and
u1∈Hs(Rn) such that

‖u1‖L∞(Rn)<
1

2αε
, ‖u0‖L∞(Rn)<M1 and ‖∇u0‖L∞(Rn)<M2,

with M1 and M2 in R
∗
+, the following results hold:

(1) There exists T ∗> 0, finite or not, such that there exists a unique solution u of the
inviscid Kuznetsov system (6.4) with the following regularity

u∈Cr([0,T ∗[;Hs+1−r(Rn)) for 0≤ r≤ s, (6.5)

∀t∈ [0,T ∗[, ‖ut(t)‖L∞(Rn)<
1

2αε
, ‖u‖L∞(Rn)<M1, ‖∇u‖L∞(Rn)<M2. (6.6)

(2) The map (u0,u1) 7→ (u(t,.),∂tu(t,.)) is continuous in the topology of Hs+1×Hs uni-
formly in t∈ [0,T ∗[.
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Ref. [9] allows us to give a result on the lower bound of the lifespan Tε of the
Kuznetsov equation. The method is similar to the case of the Euler system (6.1)–(6.2).
It is based on the use of a group of linear transformations preserving the wave equation
utt−∆u=0, initially proposed by John [16]. Let us briefly summarize the lifespan and
blow-up time results for the inviscid Kuznetsov equation in the following theorem:

Theorem 6.5.
(1) [9] Let m∈N, m≥

[

n
2 +2

]

. For u0∈Hm+1(Rn) and u1∈Hm(Rn) such that the
results of Theorem 6.4 hold for s=m, let u0 and u1 be also small enough in the
sense of an energy defined in point 3 of Theorem 1.1 in Ref. [9]. Then there exists
a generic constant C> 0 independent of ε such that Tε≥ C

ε
.

(2) [9] Let m∈N, m≥n+2 if n is even and m≥n+1 if n is odd. For u0∈Hm+1(Rn)
and u1∈Hm(Rn) such that the results of Theorem 6.4 hold for s=m, let u0 and u1
be also small enough in the sense of a generalized energy defined in Theorem 3.3 in
Ref. [9]. Then there exists a generic constant C> 0 independent of ε such that

Tε≥
C

ε2
for n=2, Tε≥ exp

(

C

ε

)

−1 for n=3 and Tε=+∞ for n≥ 4.

(3) [3] In dimension n=2 and 3, there exist functions u0∈D(Rn) and u1∈D(Rn) such
that the solution u of the Cauchy problem for the inviscid Kuznetsov Equation (6.4)
has a geometric blow-up for the time of order Tε=O

(

1
ε2

)

and Tε=O
(

exp
(

1
ε

))

re-
spectively.

Remark 6.2. In R
2 and R

3 we see that the lifespan of the inviscid Kuznetsov equation
corresponds to the blow-up time estimation for the compressible isentropic Euler system
in Theorems 6.2 and 6.3, a result in accordance with the fact that the inviscid Kuznetsov
equation is an approximation of the Euler system. We also notice that in the two cases
(for the Euler system and the Kuznetsov equation) having longer existence time requires
more regularity on the initial data.

Relying now the existence results for the Euler system and the Kuznetsov equation,
we formulate our approximation result:

Theorem 6.6. Let n=2 or 3. If the initial data u0∈H4(Rn) and u1∈H3(Rn) for
the Cauchy problem for the inviscid Kuznetsov Equation (6.4) satisfy

‖u0‖H4(Rn)+‖u1‖H3(Rn)≤k (6.7)

with a constant k> 0 small enough, there exists T ∗
ε > 0 and C> 0, independent of ε,

satisfying

T ∗
ε ≥ C

ε

such that there exist local in time solutions

Uε=(ρε, ρεvε)
t and Uε=(ρε, ρεvε)

t on [0,T ∗
ε [

of the approximate Euler system given by (3.20) and of the exact Euler system given
by (3.19) with ν=0, both considered with the state law (2.8) and with the same initial
data (3.24). In addition, the solutions have the same regularity corresponding to

Uε−(ρ0,0)
t∈

3
⋂

ℓ=0

Cℓ([0,T ∗
ε [; [H

3−ℓ(Rn)]n+1). (6.8)
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Here ρ̄ε|t=0 and v̄ε|t=0 are constructed as the functions of the initial data for the
Kuznetsov equation u0 and u1 by formulas (3.25)–(3.26) according to (3.2)–(3.3)
and (3.5)–(3.6) taken with ν=0.

Moreover, there exist constants C> 0 and K> 0 independent of ε and on time t,
such that

∀t≤ C

ε
‖(Uε−Uε)(t)‖2L2(R3)≤Ktε3eKεt≤ 4ε2. (6.9)

If u0∈Hs+2(Rn) and u1∈Hs+1(Rn) with s> n
2 and there exists a classical solution of

the Euler system found for the initial data satisfying (1.1), then estimate (1.2) holds
with

ρε−ρ0∈C([0,T ∗
ε [;H

s+1(Rn))∩C1([0,T ∗
ε [;H

s(Rn)), (6.10)

vε∈C([0,T ∗
ε [;H

s+1(Rn))∩C1([0,T ∗
ε [;H

s(Rn)) (6.11)

and with the remainder terms REuler−Kuz
1 and REuler−Kuz

2 (see (3.14)–(3.15) with
ν=0) belonging to C([0,T ∗

ε [;H
s(Rn)).

Proof. Taking u0∈H4(Rn) and u1∈H3(Rn) satisfying Equation (6.7) with a k> 0
small enough, the Cauchy problem for the inviscid Kuznetsov Equation (6.4) is locally
well-posed according to Theorem 6.5. Moreover the solution u belongs to

4
⋂

ℓ=0

Cℓ([0,Tε,1[;H
4−ℓ(Rn))

with Tε,1≥ C1

ε
and C1> 0 independent of ε.

As u0∈H4(Rn) and u1∈H3(Rn), it ensures that

ρε−ρ0|t=0∈H3(Rn) and vε|t=0∈ [H3(Rn)]3.

Therefore ρε|t=0> 0 if u0 and u1 are small enough. By Theorem 6.2 it is sufficient to
have a local solution Uε on [0,Tε,2[ of the exact Euler system (see (3.19) with ν=0)
verifying (6.8) with T ∗

ε corresponding to Tε,2, Tε,2≥ C2

ε
with C2> 0 independent of ε.

Now we consider T ∗
ε =min(Tε,1,Tε,2), and we have T ∗

ε ≥ C
ε
with C> 0 independent

of ε. As ρε and vε are defined by ansatz (3.2)-(3.3) with ρ1 and ρ2 given in Equa-
tions (3.5)–(3.6), the regularity of u implies for Uε at least the same regularity as given
in (6.8). To find it we use the Sobolev embedding (3.30) for the multiplication.

Knowing the existence results for the two problems, we validate the approximation
of Uε by the solution of the Kuznetsov equation, i.e. by Uε, following Ref. [35]: we
make use of the convex entropy as in Ref. [8] for the isentropic Euler equation and the
rest follows exactly as in the proof of Theorem 3.3 except that ν=0.

Let us finish the proof with the remark on the minimal regularity of the initial
data for the Kuznetsov equation such that the approximation of the Euler system is
possible, i.e. the remainder terms REuler−Kuz

1 and REuler−Kuz
2 must be kept bounded

for a finite time interval. Indeed, if we take u0∈Hs+2(Rn) and u1∈Hs+1(Rn) with
s> n

2 , then u∈C([0,T ∗
ε [;H

s+2(Rn)) and

ut∈C([0,T ∗
ε [;H

s+1(Rn)), utt∈C([0,T ∗
ε [;H

s(Rn)).
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Since ρε is defined by (3.2) with (3.5)–(3.6) and vε by (3.3) with ν=0, respectively, we
deduce regularity (6.10)–(6.11). As this time for ν=0, we don’t have the term ∆∂tu as
in the viscous case in Equation (3.14), the remainder terms belong to C([0,T ∗

ε [;H
s(Rn)).

Remark 6.3. If we allow the Euler system to have, not the classical, but an admissible
weak solution with the bounded energy (see Definition 3.1 and take ν=0) taking the
initial data in a small (on ε) L2-neighborhood of Uε(0), then we also formally have
estimate (1.2). But, thanks to Ref. [26] it is known that the Euler system can provide
infinitely many admissible weak solutions, and thus there is no sense to approximate
them.

For the approximation of solutions of the Euler system by the solutions of the NPE
equation we obtain the following theorem:

Theorem 6.7. Let n=2 or 3. There exists a constant k> 0 such that if the initial
datum ξ0∈H5(Tz×R

n−1) for the Cauchy problem for the NPE Equation (5.13) with
ν=0 is sufficiently small

‖ξ0‖H5(Tz×Rn−1)<kε,

has the mean value zero, then

(1) There exist unique local in time solutions Uε of the approximate Euler system (3.20)
and Uε of the exact Euler system (3.19) with ν=0 respectively. The solutions
Uε and Uε are of the same regularity corresponding to (5.18) on [0,T ∗

ε [ instead
of [0,+∞[ and of mean value zero in the x1-direction, both considered with the
state law (2.8) and with the same initial data (5.19). Here ρ̄ε|t=0 and v̄ε|t=0 are
constructed as the functions of the initial datum for NPE equation ξ0 according to
formulas (5.3)–(5.6) with ν=0.

(2) Moreover, there exists C> 0 independent of ε such that T ∗
ε >

C
ε

and for t≤ C
ε

in-
equality (6.9) holds on Tx1

×R
n−1.

If ξ0∈Hs(Tx1
×R

n−1) with s> 3 and there exists a classical solution of the Euler system
found for the initial data satisfying (1.1), then estimate (1.2) holds with

ρε−ρ0∈C([0,T ∗
ε [;H

2(Tx1
×R

n−1))∩C1([0,T ∗
ε [;L

2(Tx1
×R

n−1)), (6.12)

vε ∈C([0,T ∗
ε [;H

3(Tx1
×R

n−1))∩C1([0,T ∗
ε [;H

1(Tx1
×R

n−1)) (6.13)

and with the remainder terms REuler−NPE
1 andREuler−NPE

2 (see (5.7)–(5.9) with ν=0)
belonging to C([0,T ∗

ε [;L
2(Tx1

×R
n−1)).

Proof. The work of Dafermos in Ref. [8] can always be applied on Tx1
×R

n−1

for n=2 or 3 instead of Rn so we have an equivalent of Theorem 6.1 and we also have
the same equivalent of Theorem 6.2. This is due to the fact that the energy estimates
in the articles of Sideris [36–39] are always true on Tx1

×R and Tx1
×R

2. In all these
cases we must also suppose that we have the mean value equal to zero in the direction
x1. As by Theorem 4.1 the NPE equation is locally well posed on [0,Tε[ with Tε≥ C

ε
if

‖ξ0‖H5(Tz×Rn−1)<kε, we have an equivalent of Theorem 6.6 for the exact compressible
isentropic Euler system and its approximation by the NPE equation on Tx1

×R
n−1 for

n=2 or 3, as ξ0∈H5(Tz×R
n−1) also implies ρ̄ε|t=0 and v̄ε|t=0 in H3(Tx1

×R
n−1).

The minimum regularity of the initial data (see Table 7.1) to have the remainder
terms well defined is found exactly in the same way as in Theorem 5.4 for the viscous
case, as soon as the least regular term does not disappear taking ν=0.
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For the approximation by the KZK equation the inviscid case has already been
studied in Ref. [35]. The key point is that we must restrict our spatial domain to a cone
in order to take into account the fact that the KZK equation is only locally well posed.
For the completeness of the article and for the reader’s convenience, we give, updating
for our new ansatz, the Euler-KZK approximation result, proved in detail in Ref. [35].

Theorem 6.8. Suppose that there exists the solution I of the KZK Cauchy prob-
lem (4.22) with I0∈Hs(Tτ ×R

n−1) for s>max{10,
[

n
2

]

+1} and ν=0 such that I(τ,z,y)
is L−periodic with respect to τ and defined for |z|≤R and y∈R

n−1
y .

Let Uε=(ρε,ρεvε)
t be the approximate solution of the isentropic Euler sys-

tem (4.35)–(4.36) with ν=0 deduced from a solution of the KZK equation. Then the
function Uε(t,x1,x

′) is defined in Tt×Ωε with

Ωε= {x1∈R| |x1|<
R

ε
−ct}×R

n−1
x′

and is smooth enough according to the regularity of I:

ρε∈C(Tt;H
4(Ωε))∩C1(Tt;H

3(Ωε)) and vε∈C(Tt;H
3(Ωε))∩C1(Tt;H

2(Ωε)).

Let us now consider the Euler system (3.19) with ν=0 in a cone

C(t)= {0<s<t}×Qε(s)= {x=(x1,x
′) : |x1|≤

R

ε
−Ms,M ≥ c,x′∈R

n−1}

with the same initial data

(ρε−ρε)|t=0=0 and (vε−vε)|t=0=0.

Consequently, (see Ref. [8] p. 62) there exists T0> 0, such that for the time interval
0≤ t≤ T0

ε
there exists the classical solution Uε=(ρε,ρεvε) of the Euler system (3.19)

with ν=0 in a cone

C(T )= {0<t<T |T< T0
ε
}×Qε(t)

with

‖∇Uε‖L∞([0,
T0
ε
[;Hs−1(Qε))

<εC for s>
[n

2

]

+1.

Moreover, there exists K> 0, such that for any ε small enough the solutions Uε and
Uε, which were determined as above in cone C(T ) with the same initial data, satisfy
the estimate for 0<t< T0

ε

‖(Uε−Uε)(t)‖2L2(Qε(t))
≤ c20ε3te2Kεt≤ 4ε2

with c20> 0.
If I0∈Hs(Tt×R

n−1) with s≥ 6 then

ρε(t,x1,x
′)−ρ0 and vε(t,x1,x

′)∈C1([0,
T0
ε
[;H1(Qε)) (6.14)

and RNS−KZK
1 and RNS−KZK

2 (for the definitions see the appendix) are in
C([0, T0

ε
[;L2(Qε)) and hence estimate (1.2) holds as soon as the initial data of the clas-

sical solution of the Euler system Uε are taken in their small L2-neighborhood defined
by (1.1).
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Proof. Considering expressions for ρε and vε in (4.32) with ν=0, the term asking
the most regularity of I0 is the same as for the viscous case and given by ∂−1

τ ∂zI.
Thus, we need to impose the same regularity of I0∈Hs with s> 10 as for ν > 0 to
ensure vε∈C(Tt,H

3(Ωε)). This regularity, if we take the same initial data, implies the
existence of the classical solution Uε of the Euler system.

Now, if the initial data are taken in a small L2 neighborhood, according to (1.1), we
can find the minimal regularity on I0 ensuring that the remainder terms are bounded
and well defined.

If I0∈Hs with s≥ 6 we have for 0≤ ℓ≤ 1 that the initial data found from I0 for
the Navier-Stokes system satisfies Theorem 4.2. Indeed, if I0∈Hs(Tt×R

n−1) with
s>max{8, n2 }, then for 0≤k≤ 4

I(τ,z,y)∈Cℓ(]−R,R[;Hs−2ℓ(Tτ ×R
n−1)).

Let us denote Ω=Tτ ×R
n−1. Defining ρε by Equation (4.8) with Equations (4.5)

and (4.6) and vε by (4.16) with ν=0 respectively, we have as in the proof of Theo-
rem 4.3 for 0≤ ℓ≤ 1 considering ρε and vε as functions of (τ,z,y):

∂ℓz∂τρε∈C(]−R,R[;Hs−1−2ℓ(Ω)), ∂ℓz∂τvε∈C(]−R,R[;Hs−3−2ℓ(Ω)),

from where we deduce (6.14). These regularities of ρε and vε viewed as functions of
(t,x1,x

′) allow to have all left-hand terms in the approximate Euler system (4.35)–(4.36)
with ν=0 of the regularity C([0, T0

ε
[;L2(Qε)) and the remainder terms in the right-hand

side inherit it. Since the least regular term in the remainder terms is J
2 ∂z [(∂zΦ)

2], the
regularity of I0∈Hs(Tt×R

n−1) with s≥ 6 (see also Table 7.1) is minimal to ensure that
RNS−KZK

1 and RNS−KZK
2 are in C([0, T0

ε
[;L2(Qε)).

7. Conclusion

We summarize all obtained approximation results in the comparative Table 7.1.

Appendix. Expressions of the remainder terms. The expression of H , the
profile of ρ2, in the paraxial variables of the KZK ansatz is:

H(τ,z,y)=− ρ0(γ−1)

2c4
(∂τΦ)

2− ν

c4
∂2τΦ

+ε

[

− ρ0
2c2

[(∇yΦ)
2− 2

c
∂zΦ∂τΦ]−

ν

c2
[∆yΦ− 2

c
∂2zτΦ]

]

+ε2[− ρ0
2c2

(∂zΦ)
2− ν

c2
∂2zΦ]. (A.1)

If we consider (4.33)-(4.34) the expressions of RNS−KZK
1 andRNS−KZK

2 are written
with the terms I and J defined by (4.5) and (4.6) respectively:

ε3RNS−KZK
1

= ε3
[

−ρ0∂2zΦ+
1

c
∂zI∂τΦ+

1

c
∂τI∂zΦ−∇yI.∇yΦ

+
2

c
I∂2τzΦ−I∆yΦ− 1

c2
∂τJ∂τΦ− 1

c2
J∂2τΦ

]

+ε4
[

−∂zI∂zΦ−I∂2zΦ+
1

c
∂zJ∂τJ+

1

c
∂τJ∂zΦ

−∇yJ.∇yΦ+
2

c
J∂2τzΦ−J∆yΦ

]

+ε5[−∂zJ∂zΦ−J∂2zΦ];
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among the x1 axis
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= ε3
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−ρ0
2c
∂τ [−

2

c
∂zΦ∂τΦ+(∇yΦ)

2]− ν
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∂τ [−

2
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∂2τzΦ+∆yΦ]

− I
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∂τ [

1

c2
(∂τΦ)
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J

c
∂2τΦ

]

+ε4
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2
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c
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and in the hyperplane orthogonal to the x1 axis
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