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MODELS OF NONLINEAR ACOUSTICS VIEWED AS
APPROXIMATIONS OF THE NAVIER-STOKES AND EULER
COMPRESSIBLE ISENTROPIC SYSTEMS*
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Abstract. The derivation of different models of non linear acoustic in thermo-elastic media as
the Kuznetsov equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the nonlinear
progressive wave equation (NPE) from an isentropic Navier-Stokes/Euler system is systematized using
the Hilbert-type expansion in the corresponding perturbative and (for the KZK and NPE equations)
paraxial ansatz. The use of small correctors, to compare to the constant state perturbations, allows to
obtain the approximation results for the solutions of these models and to estimate the time during which
they keep closed in the L2 norm. In the aim to compare the solutions of the exact and approximate
systems in found approximation domains a global well-posedness result for the Navier-Stokes system
in a half-space with time periodic initial and boundary data was obtained.
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1. Introduction

There is a renewed interest in the study of nonlinear wave propagation, in par-
ticular because of recent applications to ultrasound imaging (e.g. HIFU) or technical
and medical applications such as lithotripsy or thermotherapy. Such new techniques
rely heavily on the ability to model accurately the nonlinear propagation of a finite-
amplitude sound pulse in thermo-viscous elastic media. The most known nonlinear
acoustic models, which we consider in this paper, are

(1) the Kuznetsov equation (see Equation (3.1) and Equation (3.11)), which is actually
a quasi-linear (damped) wave equation, initially introduced by Kuznetsov [22] for
the velocity potential, see also Refs. [12,17,19,25] for other different methods of its
derivation;

(2) the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation (see Equation (4.11)),
which can be written for the perturbations of the density or of the pressure (see the
systematic physical studies in book [4]);

(3) the nonlinear progressive wave equation (NPE) (see Equation (5.10) and Equa-
tion (5.11)) originally derived in Ref. [31].
All these models were derived from a compressible nonlinear isentropic Navier-Stokes
(for viscous media) and Euler (for the inviscid case) systems up to some small negligible
terms. But all cited physical derivations of these models don’t allow to say that their
solutions approximate the solution of the Navier-Stokes or Euler system. The first work
explaining it for the KZK equation is Ref. [35]. Starting in Section 2 to present the initial
context of the isentropic Navier-Stokes system (actually, it is also an approximation of
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the compressible Navier-Stokes system (2.1)—(2.4)), which describes the acoustic wave
motion in an homogeneous thermo-elastic medium [4, 12, 27], we systematize in this
article the derivation of all these models using the ideas of Ref. [35], consisting of using
correctors in the Hilbert-type expansions of corresponding physical ansatzs.

More precisely, we show that all these models are approximations of the isentropic
Navier-Stokes or Euler system up to third-order terms of a small dimensionless param-
eter € >0 measuring the size of the perturbations of the pressure, the density and the
velocity to compare with their constant state (pg, po,0).

The Kuznetsov equation comes from the Navier-Stokes or Euler system only by
small perturbations, but to obtain the KZK and the NPE equations we also need to
perform, in addition to the small perturbations, a paraxial change of variables. We can
notice that the Kuznetsov Equation (3.11) is a non-linear wave equation containing the
terms of different order on . But the KZK- and NPE-paraxial approximations allow
to have the approximate equations with all terms of the same order, i.e. the KZK and
NPE equations [10]. The well-posedness results for boundary value problems for the
Kuznetsov equation are given in Refs. [18,20,32] and for the Cauchy problem in Ref. [9].

The NPE equation is usually used to describe short-time pulses and a long-range
propagation, for instance, in an ocean wave-guide, where the refraction phenomena are
important [6,30], while the KZK equation typically models the ultrasonic propagation
with strong diffraction phenomena, combined with finite amplitude effects (see Ref. [35]
and the references therein). Although the physical context and the physical use of the
KZK and the NPE equations are different (see also Sections 4.1 and 5.1 respectively),
there is a bijection (see Equation (5.12)) between the variables of these two models and
they can be presented by the same type of differential operator with constant positive
coefficients:

Lu=0, L=0} —c10;(0:")*—c202+c3A,, forteRT xeR, yeR"

Therefore, the results on the solutions of the KZK equation from Ref. [34] are valid for
the NPE equation. See also Ref. [15] for the exponential decay of the solutions of these
models in the viscous case. The main hypothesis for the derivation of all these models
are the following

e the motion is potential;

e the constant state of the medium given by (pg,p0,0) (0 for the velocity) is
perturbed proportionally to a dimensionless parameter £ > 0 (for instance, equal
to 107° in water with an initial power of the order of 0.3W /cm?);

e all viscosities are small (of order ¢).

Let us notice that ansatz (4.14)—(4.15), proposed initially in Ref. [4] and used
in Ref. [35] to obtain the KZK equation from the Navier-Stokes or Euler systems, is
different to ansatz (4.12)—(4.13) in Subsection 4.1: this time it is the composition of
the Kuznetsov perturbative ansatz with the KZK paraxial change of variables [22] (see
Figure 4.1). Moreover, this new approximation of the Navier-Stokes and the Euler
systems is an improvement as compared to the derivation developed in Ref. [35] (see
Subsection 4.1 for more details), as, in Ref. [35], the Navier-Stokes/Euler system could
be only approximated up to O(e2)-terms (instead of O(£?) in our case).

The main result of the paper is the validation of the approximations of the com-
pressible isentropic Navier-Stokes system by the different models: by the Kuznetsov
(Section 3), the KZK (Section 4) and the NPE equations (Section 5). In Section 6 we
do the same for the Euler system in the inviscid case.



DEKKERS AND ROZANOVA-PIERRAT 2077

The main difference between the viscous and the inviscid cases is the time existence
and regularity of the solutions. Typically in the inviscid case, the solutions of the models
and also of the Euler system itself (actually strong solutions), due to the non-linearity,
can provide shock front formations at a finite time [2,9, 34, 36,40]. Thus, they are
only locally well-posed, while in the viscous media all approximate models are globally
well-posed for small enough initial data [9,34]. These existence properties of solutions
for the viscous and the inviscid cases may also imply the difference in the definition
of the domain where the approximations hold: for example [35], for the approximation
between the KZK equation and the Navier-Stokes system the approximation domain is
a half-space, but for the analogous inviscid case of the KZK and the Euler system it is
a cone (see also the concluding Table 7.1).

To keep a physical sense of the approximation problems, we consider especially the
two or three dimensional cases, i.e. R” with n=2 or 3, and in the following we use
the notation == (z1,2’) €R™ with one (a propagative) axis z1 € R and the traversal
variable 2/ € R»~!. In what follows we denote by U, a solution of the “exact” Navier-
Stokes/Euler system

Ezxact(U.)=0 (see Equation (3.19))

and by U, an approximate solution, constructed by the derivation ansatz from a regular
solution of one of the approximate models (typically of the Kuznetsov, the KZK or the
NPE equations), i.e. a function which solves the Navier-Stokes/Euler system up to &3
terms, denoted by 3R

Approx(U.) = Exact(U.) —e*R=0 (see Equation (3.20)).
To have the remainder term R € C([0,T7],L*(Q2)) we ensure that
Exact(U.) e C([0,T],L*()),

i.e. we need a sufficiently regular solution U.. The minimal regularity of the initial data
to have such a U, is given in Table 7.1.

Choosing for the exact system the same initial-boundary data found by the ansatz
for U, (the regular case) or the initial data taken in their small L?-neighborhood, i.e.

||U€(0)_ﬁ€(0)||L2(Q)§5§€, (1.1)

with U.(0) not necessarily smooth, but ensuring the existence of an admissible weak
solution of a bounded energy (see Definition 3.1), we prove the existence of constants
C >0 and K >0 independent of €, § and the time ¢ such that

for all 0<t < g (U =U.) (1)1 720 < K (%t +6%)e = <9e? (1.2)

with € a domain where the both solutions U. and U, exist (see Theorems 3.3, 4.3
and 5.4).

As we have mentioned, in the viscous case all approximate models have a global
unique classical solution for small enough initial data in their corresponding approximate
domains ( varies for different models, see Table 7.1: it is equal to R™, T,, x R"~!
and R, x R"~! for the Kuznetsov equation, the NPE equation and the KZK equation
respectively). If we take regular initial data U.(0)=U.(0), the same thing is true for
the Navier-Stokes system with the same regularity for the solutions [29]. But in the case
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of the half-space for the approximation between the Navier-Stokes system and the KZK
equation, firstly considered in Ref. [35], when, due to the periodic-in-time boundary
conditions, coming from the initial conditions for the KZK equation, we prove the well-
posedness for all finite time. To obtain it we use Ref. [35] Theorem 5.5. We updated
it in the framework of the new ansatz (4.12)—(4.13) and corrected several misleading
points in its proof (see Subsection 4.3 Theorem 4.2), which allows us in Theorem 4.3
of Subsection 4.4, to establish the approximation result between the KZK equation and
the Navier-Stokes system by following Theorem 5.7 in Ref. [35] and just updating the
stability approximation estimate.

For the inviscid case, given in Section 6, we verify that the existence time of (strong)
solutions of all models is not less than O(1) and estimate (1.2) still holds.

But to obtain estimate (1.2) we don’t need the regularity of the classical solution of
the Navier-Stokes (or Euler) system, it can be a weak solution (in the sense of Hoff [13]
for the Navier-Stokes system or one of the solutions in the sense of Luo et al. [26] for
the Euler system) satisfying the admissible conditions given in Definition 3.1 (see also
Ref. [8] p.52 and Ref. [35] Definition 5.9).

2. Isentropic Navier-Stokes system for a subsonic potential motion
To describe the acoustic wave motion in a homogeneous thermo-elastic medium, we
start from the Navier-Stokes system in R"

Oep~+div(pv) =0, (2.1)
PO+ (v.V)V] = —Vp+nAv+ (<+g) V. div(v), (2.2)
2
pT[@tS—i—(v.V)S]:ﬁAT—i—C(divv)Q—i—g (@kvi—i—&mvk—g&ikaﬁvi) , (2.3)
p=p(p,5), (2.4)

where the pressure p is given by the state law p=p(p,S). The density p, the velocity v,
the temperature T and the entropy S are unknown functions in system (2.1)-(2.4). The
coeflicients 3, k and 7 are constant viscosity coefficients. The wave motion is supposed
to be potential and the viscosity coefficients are supposed to be small in terms of a
dimensionless small parameter € > 0:

nAvV+ (§+ g) V.div(v) = (C+ gn) Av:=pAv  with B=¢p.

Any constant state (po,vo,S50,70) is a stationary solution of system (2.1)—(2.4). Further
we always take vo =0 using a Galilean transformation. Perturbation near this constant
state (po,0,S50,Tp) introduces small increments in terms of the same dimensionless small
parameter € > 0:

T(x,t)=To+eT(x,t) and S(x,t)=So+e25(x,t),
pe(x,t)=potepe(x,t) and v.(x,t)=ev.(x,t),
where the perturbation of the entropy is of order O(g?), since it is the smallest size
on ¢ of right-hand terms in Equation (2.3), due to the smallness of the viscosities
(see Equation (2.5)).
Actually, € is the Mach number, which is supposed to be small [4] (e=1075 for the
propagation in water with an initial power of the order of 0.3W /cm?):
p=p T=To M
Po To Co
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where ¢o =+/p’(po) is the speed of sound in the unperturbed media.
Using the transport heat Equation (2.3) up to the terms of the order of &3

£2p0To0uS = 2RAT + O(£%), (2.5)

the approximate state equation
1 ~ =
p=po+cepet5(05p)se?p2+ (9sp)pe” S+ O(e")

(where the notation (.)g means that the expression in brackets is constant in S), can
be replaced [4,12,27] by

s —1)c? , . (1 1
p=po+ciep.+ (7270)52@? —€eR (O_V — @) V.v.+0(?),

using T'= p% from the theory of ideal gas and taking

5—Sp
p(p,S)=Rp’e Cv

Here y=C,/Cy denotes the ratio of the heat capacities at constant pressure and at
constant volume respectively.
Hence, system (2.1)—(2.4) becomes an isentropic Navier-Stokes system

Orpe +div(peve) =0, (2.6)
pelOrve+ (ve-V)ve ]| =—=Vp(pe) +evAv,, (2.7)

with the approximate state equation p(p,S)=p(p:)+O(e?):

(y=1)¢

oo (o= o) 28)

p(pe) =po+c*(pe—po) +

and with a small enough and positive viscosity coefficient:

1 1
EV—ﬂ—I—Ii(CV Cp)'

3. Navier-Stokes system and the Kuznetsov equation

We consider system (2.6)—(2.8) as the exact model. The state law (2.8) is a Taylor
expansion of the pressure up to the terms of the third order on e. Therefore an approx-
imation of system (2.6)—(2.8) for v. and p. up to terms O(¢®) would be optimal. In the
framework of the nonlinear acoustic between the known approximate models derived
from system (2.6)—(2.8) are the Kuznetsov, the KZK and the NPE equations. In this
section we focus on the first of these models, i.e. on the Kuznetsov equation.

Initially the Kuznetsov equation was derived by Kuznetsov [22] from the isentropic

Navier-Stokes system (2.6)—(2.8) for the small velocity potential v.(x,t)=—Vu(x,t),
xcR", teR*:

02t — 2 A=, <(va)2 + 7_21 (9y)? + E—VAﬁ) . (3.1)
2c Po

The derivation was latter discussed by a lot of authors [12,17,25].
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Unlike in these physical derivations we introduce a Hilbert expansion type construc-
tion with a corrector e2ps(x,t) for the density perturbation, by considering the following
ansatz

pa(xat):p0+€pl(x7t)+€2p2(xut)u (32)
ve(x,t) =—eVu(x,t).

The use of the second-order corrector in (3.2) allows to ensure the approximation of (2.7)
up to terms of order % (see Subsection 3.1) and to open the question about the approx-
imation between the exact solution of the isentropic Navier-Stokes system (2.6)—(2.8)
and its approximation given by the solution of the Kuznetsov equation, as it was done
for the KZK equation [35].

3.1. Derivation of the Kuznetsov equation from an isentropic Navier-
Stokes system. Putting expressions for the density and velocity (3.2)-(3.3) into
the isentropic Navier-Stokes system (2.6)—(2.8), we obtain for the momentum conserva-
tion (2.7)

p[00ve + (Ve - V)V +Vp(pe) —evAv. =V (—podsu+c?p1)

—1)¢?
+&? —p1V(8tu)+p—QOV((Vu)Q)—l—CQVpg—i—%V(pf)—i—uVAu +0(*). (3.4)
0

In order to have an approximation up to the terms O(e3) we put the terms of order
one and two in € equal to 0, which allows us to find the expressions for the density
correctors:

p1(x,t) zgatu(x,t), (3.5)
po(y—2) Po 4
pg(x,t):—T(atu)Q—@(Vu)2—c—2Au. (3.6)

Indeed, we start by making eV (—podyu+c?p1) =0 and find the first-order perturbation
of the density p; given by Equation (3.5). Consequently, if p; satisfies (3.5), then
Equation (3.4) becomes

p:[00ve + (Ve - V)V +Vp(pe) —evAv. =V (—podsu+c?py)

2 Po 2, Po 2, 2 (y—1)po 2 3
e’V _@(8{“) +7(VU) +c P2+T(atu) +rAu|+0(”). (3.7)

Thus, taking the corrector ps by formula (3.6), we ensure that
Pe[Orve + (Ve - V) ve] + Vp(pe) —evAve. = O(£%). (3.8)

Now we put these expressions of p; from (3.5) and ps from (3.6) with ansatz (3.2)—(3.3)
in Equation (2.6) of the mass conservation to obtain

Ope +div(peve) :a% [0fu—c®Au

—e0y <(Vu)2 + L_f (Opu)? + iAu) - autAu} +0(?). (3.9)
2c Po
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Then we notice that the right-hand term of the order € in Equation (3.9) is actually the
linear wave equation up to smaller on € terms:

OPu—c*Au=0(e).

Hence, we express

L ou((u)?) +0(e2)

1 2
E’U,tAu =E—SUtUtt +O(E ) = E@

c2

and, putting it in Equation (3.9), we finally have
. _ PO 142 2
Ope +div(peve) —50—2 [at u—c"Au

e, ((w)ué—gj(atu)%p—zm)] +O(E%). (3.10)

The right-hand side of Equation (3.10) gives us the Kuznetsov equation

-1

OPu— A Au=ed; (Vu)2+7—(8tu)2+iAu , (3.11)
2¢? Po

which is the first-order approximation of the isentropic Navier-Stokes system up to the

terms O(e®). Moreover, if u is a solution of the Kuznetsov equation, then with the

relations for the density perturbations (3.5) and (3.6) and with ansatz (3.2)—(3.3) we

have

Ot pe +div(p5v5):O(53), (3.12)

Pe[Orve + (Ve - V) ve] + Vp(pe) —evAve. = O(e%). (3.13)

Hence, it is clear that the standard physical perturbative approach without the corrector
p2 (it is sufficient to take pa =0 in our calculus) can’t ensure (3.12)—(3.13).

Let us also notice, as it was originally mentioned by Kuznetsov, that the Kuznetsov

Equation (3.11) contains terms of different orders, and hence, it is a wave equation with
small size non-linear perturbations 9;(Vu)?, 9;(0;u)? and the viscosity term 9;Au.

3.2. Approximation of the solutions of the isentropic Navier-Stokes sys-
tem by the solutions of the Kuznetsov equation. Let us calculate the remainder
terms in (3.12)~(3.13), which are denoted respectively by e? RY~5%* and 3RS~ 2.

—Kuz 1 14 (7_2) P v
e RIVS—Kuz _g3 [C—Qatu <02T(9t[(8tu)2]+c—gat[(Vu)Q]—i—c—Q@tAu

1
—%&u Au—Vpa.Vu— pgAu} +54C—28tu (Vpa.Vu+paAu),  (3.14)

SRYS K = [AL(Vu?) - Vo + 2 (V] (315)

If w is a sufficiently regular solution of the Cauchy problem for the Kuznetsov equation
in R™

(3.16)

{ O?u—c*Au=¢0, ((Vu)2 + 1 (0pu)? + pLOAu) ,
w(0) =wuo, ut(0) =wuq,
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then, taking p; and p2 according to formulas (3.5)-(3.6), we define p. and V. by Equa-
tions (3.2)-(3.3) and obtain a solution of the following approximate system

0;p. +div(p.7.) =3RS~ Kuz, (3.17)
P[0V + (Vo. V)V ]+ Vp(p,) — evAT. = 3RY S K vz (3.18)
with p(p.) from the state law (2.8). With notations
U.= (pau pava)t and ﬁa = (ﬁgu ﬁava)tu

the exact (2.6)—(2.7) and the approximate (3.17)—(3.18) Navier-Stokes systems can be
respectively rewritten in the following forms [8,35]:

U+ 0:,Gi(Uo)—ev [ AOVJ =0, (3.19)
i=1
0, U. —l—Z@MGi (U.)—ev [AOVJ =SRNS—Kuz (3.20)

i=1

NS—Kuz
with RVS—Kuz — [Q%SKM} from (3.14)—(3.15) and
2

. — Peli , _ ,
Gi(U.)= [psvivs i (ps)ei] . 0.,G(U.)=DG;(U.)d,, U.. (3.21)

The well-posedness results for the Cauchy problems (2.6)-(2.8) [29] and (3.16) [9]
allow us to establish the global existence and the unicity of the classical solutions U,
and U,, considered in the Kuznetsov approximation framework:

THEOREM 3.1.  There exists a constant k>0 such that if the initial data ug € H®(R?)
and uy € HY(R3) for the Cauchy problem for the Kuznetsov Equation (3.16) are suffi-
ciently small

ol ms o) + l[ua || ey <k,

then there exist global-in-time solutions U. = (p., p.V.)! of the approrimate Navier-
Stokes system (3.20) and Uc= (pe, peve)t of the exact Navier-Stokes system (3.19)
respectively, with the same reqularity corresponding to

P — po, pe — po € C([0,+o00[; H3(R*))NC* ([0, +00[; H(R?)) (3.22)
and
Ve, ve € C([0,400[; H*(R?)) N C' ([0, +00[; H' (R?)), (3.23)
both considered with the state law (2.8) and with the same initial data
(Pe = pe)lt=0=0, (Ve =ve)|=0=0, (3.24)

where peli—o and V.|t—o are constructed as the functions of the initial data for the
Kuznetsov equation ug and uy according to formulas (3.2)-(3.3) and (3.5)—(3.6):

2 [ po(y—2)
2ct

wd+ 22 (Vug)? + C%Auo , (3.25)

De|t—0 = 1 e e
Pelt=0=poTe U 22
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{’s|t:O = —EVUO. (326)

Proof.  On one hand, Theorem 1.2 in Ref. [9] applied for n =23 with m =4 ensures
that for ug € H?(R?) and u; € H*(R?) there exists a constant ke >0 such that if

l[woll s re) +[[ull e ey <k, (3.27)

then the Cauchy problem for the Kuznetsov Equation (3.16) has a unique global-in-time
solution

u € C([0,+oo[, H*(R*))NC* ([0, +oo[, H*(R?*)) N C?([0, +-o00[, H*(R?)). (3.28)

On the other hand, the Cauchy problem for the Navier-Stokes system is also globally
well-posed in R? for sufficiently small initial data (see Ref. [29] Theorem 7.1, p. 100):
there exists a constant k1 >0 such that if the initial data

p(0) —po € H*(R®), v.(0) € H(R?) (3.29)
satisfy

= (0) = pol| 3 (rsy + ([ Ve (0)]| &3 3y < Fox,

then the Cauchy problem (2.6)-(2.8) with the initial data (3.29) has a unique solution
(pe, ve) globally in time satisfying (3.22) and (3.23).

Thus, for the initial solutions of the Kuznetsov equation we need to impose ug €
H?(R3) to have Auge H?(R3) to be able to ensure that p. — poli—o € H3(R?). The
regularity u; € H*(R?) comes from the well-posedness of the Kuznetsov problem and
obviously ensures v.|i—o € H3>(R?), which is necessary [29] to have a global solution of
the exact Navier-Stokes system (3.19).

Asp. and V. are defined by ansatz (3.2)-(3.3) with p; and ps given in (3.5) and (3.6)
respectively, the regularity of w ensures for p, —po and V. at least the same regularity
as given in (3.22) and (3.23). To find it we use the following Sobolev embedding for the
multiplication (see for example Ref. [5] or [21]):

H*(R™) x H*(R") < H*(R") for s> g (3.30)
(u,v) — uv.

Moreover, considering formulas (3.14)—(3.15) with u as defined in (3.28), all terms in
RNS=Kuz and RYS754% are in H?(R®). Therefore, as 2> 3, we use embedding (3.30)
to find that

RYS™H € C([0, 400, H*(R?)) and R3S~ € C([0,+o00[, H*(R?)).

Hence, the L?*(R3) and L*(R®) norms of the remainder terms RIN°75%%(t) and
RIS () are bounded for t € [0,400]. o
Finally, it is important to notice that, as U.(0) =U.(0),

[1p2(0) = poll m3 (3 + [[ve (0) | 125 m3) =1P (0) — pol| 3 ms) + 1V (0) [ 113 (ro)
<C(|luoll s ) +[wal 2 rs))-

Thus, there exists k>0 (necessarily k <o) such that |[uol|gs + |[u1]| g+ <k implies the
global existence of U, and U.. a



2084 APPROXIMATION RESULTS FOR MODELS OF NONLINEAR ACOUSTICS

The stability estimate which we obtain between the exact solution of the Navier-
Stokes system U, and the solution of the Kuznetsov equation presented by U, does not
require for U, to have the regularity of a classical solution and allows to approximate
less regular solutions of the Navier-Stokes system with initial data in a small L? neigh-
borhood of U.(0). To define the minimal regularity property of U, for which stability
estimate (1.2) holds, we introduce admissible weak solutions of a bounded energy using
the entropy of the Euler system (system (3.19) with v=0)

v2 1 m?
n(Ue) = phlpe) +pe— =H(pe) + ——-, (3.31)
2 pPe 2
which is convex [8] with h/(p.) =L (pp;) and v. = 7%. Thus, the first and second derivatives

of n are [35]

Bl ] , (3.32)

(3.33)

knowing that " (U,) is strictly positive-definite.

DEFINITION 3.1.  The function U. = (pe,peve) is called an admissible weak solution
of a bounded energy of the Cauchy problem for the Navier-Stokes system (2.6)-(2.8) if
it satisfies the following properties:

(1) The pair (pe,ve) is a weak solution of the Cauchy problem for the Navier-Stokes
system (2.6)—-(2.8) (in the distributional sense).

(2) The function U, satisfies in the sense of distributions (see Ref. [8, p.52])
0m(Ue)+V.q(U) —evv. Av. <0, where q(U.) =v(n(Uc) +p(pe)), (3.34)

or equivalently, for any positive test function v in D(R™ x [0,00[) the function U,
satisfies

T
/ / (0uyn(Ue)+Vip.q(U.) +ev|V.ve P +evv..[V.v. Vi) dadt
O n

+ . Y(2,0)n(Uc(0))dx > 0.

(3) The function U, satisfies the equality (with the notation ve = (v1,...,0y))

U2 (t) ' -
_ Td:z:—l— ZGi(Us)aine —evV(pev;). Vo, | deds
R 0 JR™ \j=1

U%(0
+ Adw =0.
R 2
Let us notice that any classical solution of (3.19), for instance the solution defined
in Theorem 3.1, satisfies the entropy condition (3.34) by the equality and obviously
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it is sufficiently regular to perform the integration by parts resulting in the relation
of point 3. For existence results of global weak solutions of the Cauchy problem for
the Navier-Stokes system (3.19) with sufficiently small initial data around the constant
state (po,0) (actually, pg— p(0) is small in L, v(0) is small in L? and bounded in L?")
and with the pressure p(p) = Kp" with v>1, we refer to results of D. Hoff [13,14]. For
fixing the idea of the regularity of a global weak solution we summarize the results of
Hoff in the following theorem:

THEOREM 3.2 ( [13]). Let for n=3, 3=0 and for n=2, 8 be arbitrarily small, N be
a given arbitrarily large constant. There exists a constant Co >0 such that if the initial
data of (3.19) with p(p)=Kp? (v>1) satisfy the following smallness condition

10 = p(0)]| % o () +/R [(po—p(0))* +[v(0)[*] (1+|z[*)"dz < Cy,
[v(O)|l om mmy < NN,

then there exists a global weak solution (p,v) (in the distributional sense) such that

(1) p—po€ L=(B" x [0,00]),

(2) ve HY(R") for all t >0,

(3) for allt>7>0 v(-,t)e L>(R"),

(4) for all7>0veC* % (R" x [r,00]) for all «€]0,1] when n=2 and v eCzs (R" x
[1,00[) when n=3,

(5) evdivv+p(p) —p(po) € HH(R™)NC*(R") for almost all t>0 with a=3% for n=2
and a:% when n=3.

In addition, (p,v)— (po,0) as t— +o0 in the sense that for all g €]2,+00[
Jim ([lp = poll e rrxroop + V()| oy ) =0-

Therefore, from Theorem 3.2 it follows that a weak solution of the isentropic compress-
ible Navier-Stokes system (2.6)—(2.8) is also an admissible weak solution of a bounded
energy in the sense of Definition 3.1. But in the following we only consider the question
of the validity of the stability estimate (1.2) for initial data close to U.(0) in L? norm
(thus for initial data not necessarily satisfying Theorem 3.2) and we don’t consider the
existence question of an admissible weak solution of a bounded energy of the Cauchy
problem for the Navier-Stokes system. Thanks to Theorem 3.1 for classical solutions
of two models and to Definition 3.1 containing the minimal conditions on U, necessary
for saying that it is in a small L2-neighborhood of the regular solution of the Kuznetsov
equation, we validate the approximation of U. by U, following the ideas of Ref. [35].

THEOREM 3.3. Let v>0 and >0 be fired and all assumptions of Theorem 3.1 hold.
Then there exist constants C' >0 and K >0, independent of € and the time t, such that

(1) for allt< g
(U= T)(0) |2 gar) < KPRt <42
(2) for all b€]0,1[ during all time t < <1n(L) it holds
(U =T (O ey < 26
Moreover, if the initial conditions for the Kuznetsov equation are such that

up € HF2(R™), wy € H*HL(R™) for s> g n>2
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and sufficiently small (in the sense of Ref. [9] Theorem 1.2), then there exists the unique
global-in-time solution of the Cauchy problem for the Kuznetsov equation

p. —po € C([0,+oo[; H*(R™))NC* ([0, +oo[; H* 1 (R™)), (3.35)
B € C([0,4o00[; H*THR™))NC ([0, +o00[; H (R™)) (3.36)

and the remainder terms (RNS=Kvz RYNS=Kv2) " defined in Equations (3.14)-(3.15),
belong to C([0,+oc0l, H*~H(R™)).

If in addition there exists an admissible weak solution of a bounded energy of the
Cauchy problem for the Navier-Stokes system (3.19) (for instance if U.(0) satisfies
conditions of Theorem 3.2 there is such a global weak solution) on a time interval [0, Tns]
for the initial data

[T (0) = T (0) | 2wy <<,
then it holds for all t <min{<,Tng} the stability estimate (1.2):

1(U. ~T2) Ol gy < K (31462)e5 <062

Proof.  In terms of entropy, system (3.20), having, by the assumption, the unique
classical solution U, can be rewritten as follows

on(U.)+V.q(U.) —evv. AV, =& (MR{VSKW +vE.R§V5K“Z) (3.37)
with

RNS—Kuz _ (RNS—Kuz RNS—KUZ)
- 1 )2

defined in Equation (3.14)-(3.15). To abbreviate the notations, we denote the remainder
term of the entropy equation in system (3.37) by

RNS-Kuz _ <77(U5)_+p(ps)RiVSKuz+V€.RéVSKuz> '
Pe
In the same time, it is assumed that for U, (3.34) holds in the sense of distributions.
Let us estimate in the sense of distributions

0 — — —
= (100 =n(T) = (T)(U.-T2)). (3.38)
First we find from systems (3.34) and (3.37) that in the sense of distributions

%(n(Ua) - n(ﬁa)) <- V(q(Ua) — q(ﬁg)) +5V(V5.AV€ _VEAVE) i EBRN57K’U‘Z

=-V.(q(U.) = q(U.) +ev Y 0r, (VeOa, Ve — Ve0a, V)
=1

n
— _ 35NS—Kuz
—cv E (02, VeOy, Ve — 03, V0., Ve) —° R .

i=1
Then we notice that

0

_E(nl(ﬁs)(Us _ﬁs)) = _8tﬁi77// (ﬁs)(Us _ﬁs) _nl(ﬁs)(atUs - 8tﬁ€)a
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where in the sense of distributions

_6tﬁi77ﬂ(ﬁa)(U€ _ﬁa) == [_ iDGi(ﬁa)awiﬁsl 77H (ﬁa)(Ua -U,)

and

Thanks to the convex property of the entropy we have
1" (U)DG;(U) =(DG;(U))""(U),

and consequently

(DG; (ﬁs)aziﬁs)tnn (ﬁs)(Us _ﬁs) :8961-62 (DG (ﬁs))tnn(Us)(Us -U.)
=0, U (U.)DG;(T.)(U. - T.).
Moreover, we compute in the sense of distributions

t —
a Lygv } 1"(Ue)(Ue = Ue) = —evAVe(ve —Ve) — EVAvau(vg ~v.)

==Y 00, (00, Ve (Ve = Vo)) Fev Y 02, VeOu, (Ve —V2) — ayAvsps_;spa (Ve —V.),
=1 1=1

and

— 0 — —
—n'(U.)ev {Avg -~ AVJ =—cvv..(Av. — AV,)

=— EUZ@M (VeOz, (Ve —V2)) —I—EUZBMV&-BM (Ve —Ve).
i=1 i=1
We integrate expression (3.38) over R™ and notice that the integrals of the terms in
divergence form in the development of (3.38) are equal to zero. For the regular case in
the framework of Theorem 3.1 it is due to the regularity given by (3.22) and (3.23) and
the following Sobolev embedding [1]

H¥(R™") = Co(R™):={feCR")| |f(z)] =0 as ||x|| — +oo} for s> g, (3.39)
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which allows us to use the fact that
VfeCy(R"), / V.f(x)dz=0.
]Rn

In the case of a weak admissible solution Uy, it follows from its bounded energy property
(see Definition 3.1 point 3) which implies that p. —po and v. tend to 0 for |z| —+o0
and also implies the existence of the integrals over R™. Therefore, we obtain the fol-
lowing estimate in which each term is well-defined in the sense of distributions on
[0,+00[N][0, T 5]

d

7 . 1(Ue) = n(U.) -7 (U.)(U. - U.)dx
R3

3
S_Z/ 8int77//(ﬁs)(Gi(Us)_Gi(ﬁs)_DGi(ﬁs)(Us_ﬁs))dx
=1 R3
3
—au/ Z(@mivaamiva—BMVSBMVE)dx
R3 i=1
3 =
+2EV/ Z@zivsazi(vs—vs)dx—l—ay AVEM(VE—Vs)dx
R3 T RS Pe
_ .3 HNS—Kuz ;35 \p NS—Kuz _ .3 NS—Kuzt I (FT T
€ (R 7' (Ue)R )dz—e R J'n"(Ue)(Ue — Ue)da.
R3 R3
(3.40)

Now we study lower bounds of the left-hand side and upper bounds of the right-hand
side of (3.40) in order to obtain a suitable estimate. For the right-hand side of Equa-
tion (3.40) we notice that

3 3
—ev / D (02, VeOa, Ve — 02, V0, Ve )da+ 26 / > 02,90, (Ve —Ve)d
R3 51 R3 %1

3
= —ay/ Z(@M (ve —¥.))*dz <0,
R3 1

hence this term can be passed in the left-hand side of Equation (3.40) and omitted in
the estimation. As the entropy is convex it holds

360>0: 77(U8) - n(ﬁa) - n/(ﬁa)(Ua _ﬁa) > 6O|U€ _ﬁ8|2'
Then using also its continuity, we find

oo [ 10T p0r< [ ([ 000 -0~/ (@v. Ty ) s

ds

+Co/ |U. —U.|*(0)da.
]R3

On the right-hand side of (3.40), by the Taylor expansion we also have

G;(U.)-G;(U.)-DG;(U.)(U.-U,)<C|U. -T2
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With the boundedness on [0;+o00[ of R;(t) and Ra(t) in the L? and L* norms, and
thanks to the regularity of U, defined in (3.35) and (3.36) (see also (3.22) and (3.23)
for the case U.(0)=1U.(0)) and the energy boundedness of U., we estimate the other
terms in Equation (3.40) in the following way

ev | AV, pg_— Pe
R3 Pe

—53/ (RNS—Kuz _n/(ﬁE)RNS—KUZ)dx§K537
R3

(ve —VE)dZESKEHUE—ﬁEH%z(Rs),

—83 /3 [RNS_Kuz]tT]H(ﬁE)(UE _ﬁg)dx
R

§53||77”(ﬁs)”Lw(R3) HRNS_KUZHL%R% [Ue — U || p2rs)
SKSSHUE —ﬁEHLQ(RS).

Now, by integrating on [0,t], we obtain from (3.40) the following inequality
J— t — J—
Ju. —UE|2(t)da:§/ (VT e+ K) [0~ T e,
R 0
+Ke*+ K3 U, —ﬁsnLZ(Rs)} ds+01/ |U. -0 *(0)dz.
R3

Here K, C and C; are generic constants of order O(g”) which do not depend on time.
Using once more the regularity properties (3.22) and (3.23), we have the boundedness
of ||[VU;|| L. But knowing that p. and V. are defined by ansatz (3.2)—(3.3), we deduce
that ||[VU.|| 1 < Ce. Therefore,

t
HUa —U5||%2 S/ K(EHUE _UEH%Q(RS) +€3+53HU5 —UEHLz(Rs))dS
0

Then applying the Gronwall lemma we have directly
(U =00) (1) |72 pa) < K (€78 +6)e™,

since Ket is a non-decreasing function in time and &3\/v < Kev for all veRT. In
addition, to find the estimate of point 2 for the regular case U.(0)=U.(0), we notice
that

”Ua _ﬁEHLz(R?’) <w,
where v is the solution of the following Cauchy problem

{ (v?) =K (e3+&3v+ev?),
v(0)=0.

The study of this problem gives us

é In <1 +o(t)+ E%v(tf)
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1 2 2 2
- 7[1)@)4——
K \/4—¢2 V4e2 — ¢t 2

The boundedness of the function arctanz implies

arctan (

)

1+v(t)+€—12v(t)2 Seﬂ/fisgearctan[ 45754 (v(t)Jr%)]farctan( —4E,€2>6K5t

i jus . . . M
with ¢3=eV3e? which for instance is less than 3.5. Therefore, the estimate

U, —ﬁs ||L2(]R3) < Coé‘eKSt

gives the result as soon as cpeeft <2eb, with b<1, i.e. for t< % when b=1, and for
t< gln(%) in the case b< 1.

We finish the proof with the remark on the minimal regularity of the initial data
for the Kuznetsov equation such that the approximation is possible, i.e. the remainder
terms Ry 575" and RYS75“% keep bounded for a finite time interval. Indeed, if
ug € H¥"2(R™) and uy € H*H(R™) with s> % then ue C([0,+oo[; H*F2(R™)) and

uy € O([0,+oo[; HSTHR™)),  ugy € C([0,+00[; H¥H(R™)).

Since 7. is defined by (3.2) with (3.5) and (3.6) and V. by (3.3) respectively, we exactly
find regularity (3.35) and (3.36). Thus by the regularity of the left-hand side part for
the approximate Navier-Stokes system (3.17)—(3.18) we obtain the desired regularity for
the right-hand side. a

4. Navier-Stokes system and the KZK equation

4.1. Derivation of the KZK equation from an isentropic Navier-Stokes
system. In the present section we focus on the derivation from the isentropic Navier-
Stokes system of the Khoklov-Zabolotskaya-Kuznetsov equation (KZK) in non-linear
media using the following acoustical properties of beam’s propagation:

(1) the beams are concentrated near the x;-axis;
(2) the beams propagate along the x;-direction;

(3) the beams are generated either by an initial condition or by a forcing term on the
boundary x; =0.

The different type of derivations of the KZK equation are discussed in Ref. [35].
This time we perform it in two steps:

(1) We introduce small perturbations around a constant state of the compressible isen-
tropic Navier-Stokes system according to the Kuznetsov ansatz (3.2)—(3.3):

Op-+V.(peve) =e[0rp1 — poAul
+&2[0p2 — V1 Vu— p1 Au] +O(£%), (4.1)

and we have again (3.4) for the conservation of momentum.

(2) We perform the paraxial change of variable [35] (see Figure 4.1):

T:t—ﬂ, z=¢cxy, y=+er'. (4.2)
c
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Navier-Stokes/ KZK(7,2,y)
Euler (z1,x’,t)
t
x/
€r1 Z=€X1

F1G. 4.1. Parazial change of variables for the profiles U(t—x1/c,ex1,1/ex’).

Since the gradient V in the coordinates (7,z,y) becomes dependent on &

. 1 t
V= (Eaz - Earv\/gvy> )
if we denote
w(x,t)=®(t—x1/c,ex1,Vex') =®(T,2,9), (4.3)
we need to take attention to have the paraxial correctors of the order O(1):
P1 (,T,t) :I(T,Z,y), p2($7t) = H(T,Z,y) = J(T,Z,y)+0(€),

where actually H(7,z,y) is the profile function obtained from ps (see Equation (A.1) in
the appendix) containing not only the terms of the order O(1) but also terms up to £2.
Hence, we denote by J all terms of H of order 0 on &, which are significant in order to
have an approximation up to the terms O(g?).

In new variables (7,z,y) Equation (3.4) becomes

pel0rve+ (ve.V)ve]+ Vp(p:) —evAv,

:q@}m&@+8ﬂ+¥{J@@A@+%@(é@ﬂ¥)

+c2@J—|—7—_1c2@(12)+V@ (%63@)} +0(e%). (4.4)
2p0 c

Consequently, we find the correctors of the density as functions of ®:

I@Aw=%@¢@aw, (4.5)
-1 v
ﬂﬂ%wz—ﬂ%%—%@¢ﬁ—g£¢. (4.6)

Indeed, we start by making
eV[—pod,®+c2I] =0

and find the first-order perturbation of the density I given by Equation (4.5). Moreover,
if py satisfies (4.5), then Equation (4.4) becomes
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p[0ive + (Ve - V)V 4+ Vp(pe) — evAv, = eV[—podr ® + 1]

2y |0 2, PO 2, 27, (0=Dpo 5, Voo 5
3 V _2C2 (87'@) +202 (87-@) +c J+ 202 (87'@) “1‘0287.@ —‘rO(E ) (47)

Thus, taking the corrector J in the expansion of p.
pe(x,t)=po+el(r,2,y) +2J(T,2,y), (4.8)
by formula (4.6), we ensure that
p[0ive+ (Ve - V) ve|+ Vp(pe) —evAv. = O(€?). (4.9)

Now we put these expressions of I from (4.5) and J from (4.6) with the paraxial ap-
proximation in Equation (4.1) of the mass conservation to obtain

Lo Lo v
Bpe+V.(peve) = 0—2(20337(13 A, P) — By (Y+1)0:[(0:®)*] - 0—433‘1)} +0(e%).
(4.10)

All terms of the second order on ¢ in relation (4.10) give us the equation on ®, which
is the KZK equation. If we use relation (4.5), we obtain the usual form of the KZK
equation often written (see [4,35]) for the first perturbation I of the density pe:
2 (v+1) jop2 Vg, ¢

coz, 1 1o 0:1 5, 0:1 5 AyI=0. (4.11)
We notice that, as the Kuznetsov equation, this model still contains terms describ-
ing the wave propagation 92,1, the non-linearity 8272 and the viscosity effects 931 of
the medium but also adds a diffraction effect by the transversal Laplacian A,I. This
corresponds to the description of the quasi-one-dimensional propagation of a signal
in a homogeneous nonlinear isentropic medium. By our derivation (see also Equa-
tions (4.33)—(4.34)) we obtain that the KZK equation is the second-order approxima-
tion of the isentropic Navier-Stokes system up to terms of O(g%). In this sense, since
the entropy and the pressure in Section 2 are approximated up to terms of the order
of €3, ansatz (4.8)-(4.16) (for the KZK equation) is optimal, as the equations of the
Navier-Stokes system are approximated up to O(g3)-terms.

Let us compare our ansatz

w(zy,x 1) =0t —x1/c,exq,\/ex'), (4.12)
pe(w1, X t)=po+el(t—x1/c,exy,ex') +e2J(t— a1 /c,exy,/ex!) (4.13)

to the ansatz introduced in Ref. [35] by defining a corrector e2vy for the velocity per-
turbation along the propagation axis in the initial ansatz, proposed by Khokhlov and
Zabolotskaya [4]:

pe(:vl,x',t):po—l—d(t—ﬂ,exl,\/gx'), (4.14)
c
ve(z1,x',t) = €(v1 + €vo; v ew) (t — ﬂ,exl,\/gx’). (4.15)
c

This time, the assumption to work directly with the velocity potential (4.12) im-
mediately implies the following velocity expansion

vs(x,t)_—s(—%&-@—I—E@sz;\/gvy@) (1,2,y), (4.16)
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where we recognize the velocity ansatz of Ref. [35] with

c

1
v = —87-(1):
¢ Po

2
I, w=V,o=—0;'V,I,
Po
but for the corrector vy this time
2
vg=—0,0=——0-10.1
Po
instead of (see Ref. [35] and formula (4.19) for definition of the operator 9- 1)
2
-1
,Ué%ozanova _ —0—87._182]4— (FY - )CI2+ LQ(?TI
Po 2p5 cph
If we add the second-order correctors v, for the velocity to J for the density, we obtain
exactly all terms of the corrector v¥°#emeva  But the ansatz (4.14)—(4.15) is not optimal

since the equation of momentum in transverse direction keeps the non-zero terms [35]
of the order of 2.

4.2. Well posedness of the KZK equation. We use Ref. [34] to give results
on the well posedness of the Cauchy problem:

4po 2¢Zpo O T

2,19 Ng22 v 931 €A T=0o0n T, xRy xR", 17
I(7,0,y) =Io(,y) on Tr xR~ |

in the class of L—periodic functions with respect to the variable 7 and with mean value
Zero

L
/ I(7,2,y)dr 0. (4.18)
0

The introduction of the operator 1, defined by formula

T

L
6;1I(T,z,y)::/ I(s,z,y)ds—i—/ %I(s,z,y)ds, (4.19)
0

0

allows us to consider instead of Equation (4.11) the following equivalent equation

2
v 83[—%8;1Ay1:0 on T, x Ry x R, (4.20)
Po

(
0.1 —
¢ 4po 2c2

for which, in the viscous case v >0, it holds a global in z well-posedness result [34] for
sufficiently small by H*® norm (s> [2] 4 1) initial data.

As it was mentioned in [23,24,33] for the KP-type equations in R?, the introduced
operator J-! is singular in the sense that its Fourier transform gives a division [34] by
a discrete variable m:

L&?
2Tm

FO:rA D)= F(I)(m,&) meZ,EcR.

If we suppose that I has the mean value zero in 7, it implies that F(I)(0,£) =0 for all £,
which makes disappear the singularity for m =0. For the same reason this requires [34,
Lemma 5.2] the additional constraint for the initial data 0-1A,Ip=¢o€ H*"2 to be
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able to ensure that the solution I€C([0,T[,H*(T, x R"~1)) can be also considered
in C*([0,T[,H*"2(T, xR"™1)) (see also a similar situation for the KP-type equations
explained in [33]). At the same time, as it is discussed in [23, 24, 33|, in the non-
periodic case this regularity constraint is not physical. However, if we work in the class
of periodic functions with the mean value zero this condition can be omitted.

Indeed, by definition (4.19) of the operator 97!, it preserves the property of a
periodic function to have the mean value zero. Thus, if I is a periodic function with
the mean value zero on 7, the solution I belongs also in this class, where we find the
equivalence between the Cauchy problem (4.17) and the analogous problem considered
for Equation (4.20). Formula (4.19), as it is noticed in [34, p.796], allows to establish
an analogue of the Poincaré inequality (which is false in the non-periodic case of R™):

||I|\Hs(]o,L[xR;‘*1) = C”aTIHHS(]O,L[XRZ*I)’

coming from the following relation

T L
I:@;laTI:/ &J(s,y)ds—i—/ i&J(s,y)ds.
0 o L

As, by (4.19), 0711 is L-periodic in 7 and of mean value zero, this also gives us the
following estimate

107 1| 12 0,) < CN10-07 1| 1= 020) = CI | 11+ 0 (4.21)

This means that in the class of periodic and of mean value zero functions as soon as
Io€ H5(Qy), it implies that 9711 is also in H*(2;) and in the same class. Hence
the condition 97 A, Iy € H*72(Q4) required in [34, Thm. 1.2, Point 4] is automatically
verified for Iy from H*, periodic and of mean value zero in t (7=t for z=0).

To be able to ensure the boundedness of the remainder terms in the KZK-type
approximations we need to have very regular solutions of (4.17) corresponding to the
propagation variable z, which exist according to the following theorem [34]:

THEOREM 4.1 ([34]). Letv>0, s> [2] +1, the operator ;" defined by formula (4.19)

and Inp€ H*(T, x R"™1) be such that fOL Iy(¢,y)dt=0. Then the following results hold
true for the Cauchy problem for the KZK equation

2¢2pg T

c0.1— OO 12— 402~ 071 A, T =0 on T, xRy xR, (4.2
I(7,0,y) = Iy(T,y) on T, x R"~1. '

(1) ( Local existence.) There exists a constant C(s,L) such that for any (previously
defined) initial data Iy on an interval [0,T] with

1
T>
~ CO(s, )| Lol g (T, xrn—1)

problem (4.22) has a unique solution I such that
IEC([OaT[aHS(TT XRnil))ﬁcl([OaT[aH572(TT XRnil))a

which satisfies the zero mean value condition (4.18).
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(2) (Shock formation.) Let T* be the largest time on which such a solution is defined,
then we have

.
| b0 1)+ 19, ) = oc.
0 Y

(8) (Global existence.) If v>0 we have the global existence for small enough data: there
exists a constant C7 >0 such that

Voll ez, mn-1) < Ca = T* = 400,

(4) (Ezponential decay.) [15,34] If v>0, sEN and s> [“EL], then there exists a con-

stant Co >0 such that || Io|| gs (1, xrn—1) < Co implies for all >0

12(2) | (v, xmn=1) < Clloll a1+, xmn-1y€ ™,

where C' >0 and ¢€]0,1[ are constants.

REMARK 4.1. We note that when v=0, all the corresponding statements of Theo-
rem 4.1 remain valid for 0>¢ > —C with a suitable C' [34].

REMARK 4.2. In the study of the well-posedness of the KZK equation we invert the
usual role of the time with the main space variable along the propagation axis z: for
v >0 the solution I(7,2,y)=1I(t— =t cxy,/ex’) is defined for z; >0, as it is global on
z€RT. Hence if we want to compare the KZK equation to other models such as the
Kuznetsov equation or the Navier-Stokes system we need the well posedness results for
these models on the half-space

{£,>0, t>0, z/’cR"'}, (4.23)

taking into account the fact that the boundary conditions for the exact system come from
the initial condition Iy of the Cauchy problem (4.22) associated to the KZK equation.

4.3. Well posedness of the isentropic Navier-Stokes system on the half-
space with inflow-outflow periodic boundary conditions. We follow now Sec-
tion 5.2 in Ref. [35] updating it for the new ansatz and correct the proof of Theorem 5.5.
See Ref. [35] for more details.

We consider the Cauchy problem for the KZK Equation (4.22) for the initial data

I(tuouy):IO(tvy) (T:t for .%'1:0)7

which are L-periodic in time and of mean value zero. For s>[§]+1, Theorem 4.1
ensures that for all initial data Iy, defined in T; x R®~! with small enough H*® norm
(with respect to v), there exists a unique solution I of the KZK Equation (4.11), which
as a function of (7,z,y) is global on z € R, periodic in 7 of period L and mean value
zero, and decays for z — oo [34].

Therefore, see Remark 4.2, we consider our approximation problem between
the isentropic Navier-Stokes system (2.6)—(2.7) and the KZK equation in the half-
space (4.23).

By Iy we find I and thus also ® and J, using Equations (4.5)—(4.6). This allows
us to construct the density and velocities p, and V. in accordance with ansatz (4.8)
and (4.16). Thus, by I we construct the function U, = (5.,5.V:)".
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U1|11:0 <0 —

x1>0

Fic. 4.2. Periodic subsonic inflow-outflow boundary conditions for the Navier-Stokes system.

In particular, for ¢t =0 we have functions defined for x; > 0 because I is well-defined
for any 2>0

ps(o’xhx/) :pO—FEI(—x—Cl,E:El’\/E:E/)—|—E2J(—x—cl7ax1,\/gx/)7
V-(0,21,2") = (71,9.) (= 2L ey, v/E2'),
C

where

c 202 1 / ? 1
vy=e—I+e*—0,0;'1, V.=+e—V,0.'I
Po Po po

and for x1 =0 we have L-periodic functions with mean value zero

7 (,0,2") = po+(t,0,v/ex') +2J (t,0,/22"), (4.24)
v.(t,0,2") = (01,VL)(t,0,y/cx’). (4.25)

It is important to notice [34] that the solution V. in system (2.6)—(2.7) is small on
the boundary: V.|z,—0=¢Ve|s,=0. Therefore, we have [V.|,,—o0| < ¢, which corresponds
to the “subsonic” boundary case. More precisely, when the first velocity component
is positive U1 |,,=0 >0, we have a subsonic inflow boundary condition, and when it is
negative U1 |,, —o <0, we have a subsonic outflow boundary condition, see Figure 4.2.

We also notice that, due to Equation (4.16), the first component of the velocity ¥v;
on the boundary has the following form

Tiloymo= (sp—col—i-62G(I)> (t,0,v/E2") = (gp—cons?G(I))

z=0
c
:E_Io(tvy)+€2G(IO)(t7y)7
Po
where
c? c? (v+1) v ¢
G(I :—azalfz—al( 0, I + 2I+-07'A I). 4.26
() Po T 00 T 4Cp0 263po T 2 T Yy ( )

Therefore, the boundary conditions for ¥, are defined by the initial conditions for KZK
equation and are L-periodic in ¢ and have mean value zero. In addition, the sign of
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Vi1l|zy =0 is the same as the sign of Iy (because the term G(Ip) is of a higher order of
smallness on ¢). In addition, as the viscosity term eV, where ¢ is a fixed small enough
parameter, v is a constant, and in our case V. is of the order of ¢, the boundary layer
phenomenon is excluded.

THEOREM 4.2. Let n<3. Suppose that the initial data of the KZK Cauchy problem
Io(t,y) =1Io(t,\/ex’) is such that
(1) Iy is L-periodic in t and with mean value zero,

(2) for fized t, Iy has the same sign for all y €R™™, and for t €]0, L[ the sign changes,
i.e. Io=0, only for a finite number of times,

(3) Io(t,y) € H*(Ty xR"1) for s > 10,
(4) Iy is sufficiently small in the sense of Theorem 4.1 such that [34, p.20]

174 Ol (L)
2¢2py Ca(s)

1ol 7= <

Consequently, there exists a unique global solution in time I(7,z,y) of (4.22) for z=
exy >0, moreover, the functions p, .= (v1,7.), defined by ansatz (4.8)-(4.16) and
Equations (4.5)(4.6) in the half-space (4.23) are smooth with Q=T; x Ry~
e €C (0,00 () NC" (0,00 H*~5(2). (127)
v.€C([0,00; H**(Q))NC* ([0,00[; H*°(2)). (4.28)
The Navier-Stokes system (2.6)—(2.7) in the half-space with initial data (5.24) and fol-
lowing boundary conditions
(TJE _Ve)|11:O = 07
with positive first component of the velocity vy|z,—0 >0 (i.e. at points where the fluid
enters the domain) has the additional boundary condition
(ﬁe - pe)|w1:0 =0.

When v1|y,=0 <0 there isn’t any boundary condition for p..
Then, for all finite times T >0 there exists a unique solution U, = (pe,peu.) of the
Navier-Stokes system (2.6)—(2.7) with the following smoothness on [0,T)

pe €C ([0,T],H? ({1 >0} xR 1))nC* ([0,T],H? ({21 >0} xR" 1)), (4.29)
u-€C([0,7],H? ({z1>0} xR* 1) )nC* ([0,7], H ({x1 >0} xR 1)) (4.30)

REMARK 4.3 ([35]). The restriction to have the same sign for I for all fixed times
avoids a change in the type of the boundary condition applied to the tangential variables
for the Navier-Stokes system. Moreover, Zabolotskaya [4] takes as the initial conditions
for the KZK equation (which correspond to the boundary condition for v1) the expres-
sion

I(71,0,y)=—F(y)sinT
with an amplitude distribution F(y) > 0. Especially, for a Gaussian beam [4]

F(y)=e™,
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while for a beam with a polynomial amplitude [4]

{(1_y2)27 y§17

F(y)=
) 0, y>1.

Proof.  As previously, we use the fact that the entropy for the isentropic Euler
system n(U.), defined by Equation (3.31) is a convex function [8].
Let us multiply the Navier-Stokes system (3.19), from the left, by 2UZ%"(U,)

22Uy (U.)9,U. +Z2UT "(U.)DG;(U.)d,,U. —ev2ULy"(U.) [ ons] =0.
i=1

‘We notice that

uri )| 0, |0
and, therefore, we have
207" (U2)9,Ue = 0:[UZ 7" (U:)Ue] = U 0y (Ue) U
Moreover, by virtue of n”(U)DG;(U) = (DG;(U))Tn"(U) we find

22Uy (U.)DG;(U.)d,,U. =
92, [ULn"(U.)DG;(U.) U] - UL 0, [n"(U.) DG (U.)]U...

E

Integrating over [0,t] x {z1 >0} (2’ € R""!), we obtain

t
/ / 6t[UZ77//( )U ]d(EdS—f—/ / Zaml UT /I E)DGl(UE)UE]d.’EdS
0 x1>0 $1>0

t t n
— / / UL0,"(U.)U.dzds — / / > UT0,,[n"(U)DG;(U.)|Udads = 0.
0 x1>0 0 x1>0 i=1

Integrating by parts results in

Uy (U.)U.dx— Uy (U.)U,|j=odx

x1>0 11>0

/ / u? latn" +Za% " Gi(UL)]| Usdads
x>0

—/ lUsT 7" (U.)DG1(U.)U, |y, —od2’ds =0.
0 JRn—

We recall that 1"/ (U,) is positive definite, consequently for some C' >0 and &y >0
ClU2>Uly"(U.)U. > 6o|U .
Therefore, we obtain for the initial data

potel+e%] 1 ( 2 )

_ n /
Yo= e(pot+el+e2J) (piol—f—sG(I),\/gw) 0755517\/520

(4.31)
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and the relation

t
5o / Udz—C Uldz— / / Uy (U.)DG1(U.)U,|s, —odx’ ds
x1>0 0 JRn—1

x1>0

¢
SC'l/ Ugdxds.
0 x1>0

As in Ref. [11], C4 is an upper bound for the eigenvalues of the symmetric matrix

n

o (Ue)+ Z Oz, [77” (Ue) DG (U.)].
i=1

Let us now consider the integral on the boundary. With notation v. = (vq,v.)! for the
velocity and H” (p) = &p’)), we see with DG1(U.) coming from Equation (3.21) that

Ul'y"(U.)DG,(U.)U.
2
H"(pe)+ 22 —3= 0 1 0 )
~(pespeve)” ey o ()
_ve 174 vl vlould, PeVe
Pe Pe n € € "
v oplp)) —vi  Ppe) . Vi
v (/725 Pe ) Psl + Pe vl Pe Pe
:(paupavlapavla)T 7p—vl—l—% Z—l 0 Pel1
= € = /
—’1}1% 0 Z_:Idn—l paVE
= pep’(pe)vr.

Let us consider the initial condition Iy(¢,y) for the KZK equation of the type de-
scribed in Remark 4.3. We suppose (without loss of generality) that I =0 for t €]0,L|
only once. More precisely, we suppose that the sign of v; is changing in the following
way:

e vy <O0forte[0+(k—1)L, L+ (k—1)L) (k=1,2,3,..),
e v;>0for te]2+(k—1)L,kL[ (k=1,2,3,..).

If t€[0,Z] (for k=1), the first component of the velocity v1]s,—o <0 is negative,
and thus we have

pap/(pa)vl <0.

If te]%,L[, the first component of velocity is positive v1|,, =0 >0, then we also impose
Pelzy—0=po+elo(t,y)+e?J, where Io(t,y) is the initial condition for the KZK equation
and J coming from Equation (4.6). For the term

papl (pa)Ul >0

we see that on the boundary it has the form

c 2
pep’(pe)v1 =¢ (gfo + %3237 110) (po+elo(t,y)+e20)p (po+elo(t,y)+£2J)

SCOEIQ
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for some constant Cy >0 independent of €. Consequently, for k> 1

kL
/ / pep’ (pe)v1 e, =oda’ d5<2/ / pep (pe)v1 e, =0da’ ds
Rn—1 ] 1)L,]L Rn—1

<Z/ Coclo < Kke||Io|| mre,

+(— 1)L7JL Rn—1

where K =0(1) is a positive constant independent of k.
However, for ¢t >0 and k> 1 such that ¢ € [(k—1)L,kL][, it implies on one hand that
ifte[(k—1)L,(k—1)L+%][

¢ (k—1)L
/ / pep’ (pe)v1 ey =odx’ ds < / / peD (pe) 1 |wy—oda’ ds,
0 JRn—1 0 Rn—1

and on the other hand, that if t€ [(k—1)L+ £ kL]

t kL
/ / Psp/(Ps)Uﬂxl:odI/ ds < / / Psp/(Ps)Uﬂxl:odI/ ds.
0 Rn—1 0 Rn—1

As a consequence, we obtain for all £>0

i ¢
[ [ oamleaasas< e (|1] +1) laln-
0 Rn—1

Therefore, we deduce the following estimate, as dg >0

C K ([t ¢ [t
Ulde < — Uldr+e— ({—} +1> ||10||Hs+—1/ U?dx ds.
2150 00 Jz1>0 oo \ L %0 Jo Jai>0

By the Gronwall lemma we find

C K <
U0 < 5 (W00l +es ([ 7] +1) Il )5

remaining bounded for all finite times.
Thus, for all T'< 400 we obtain that

U. e L>([0,T],L* ({z1 >0} xR 1)).

If Iy =0 for ¢t €]0, L[ a finite number of times m, we obtain the same result.

Hence, by [11] we have proved that the chosen boundary conditions ensure the local
well-posedness for the Navier-Stokes system in the half-space, which can be viewed
as a symetrisable incompletely parabolic system. We apply now the theory of in-
completely parabolic problems [11, p. 352] with the result of global well-posedness
of the Navier-Stokes system in the half-space with the Dirichlet boundary condi-
tions [28] for the velocity and with the initial data p.(0)—po € H3({z1 >0} x R"~1))
and v.(0) € H3({x1 >0} x R"™1) small enough. Hence, for sufficiently regular initial
data Ug€ H3({x1 >0} x R"™1) (n<3) for all finite time 7' < 0o, we obtain by the en-
ergy method that U, € L>([0,T], H3({z1 >0} x R"~1)).

To ensure that Uy defined in Equation (4.31) belongs to H?({x1 >0} x R"™1), we
need to take Iy € H*(T; x R"~!) such that

p= € C([0,+o0 H({z1 > 0} xR, e € C([0,+00; H ({21 > 0} x R" ™).
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By Theorem 4.1, Iy € H*(T; x R*~!) implies while s —2¢ >0 that
I(7,2,y) €C* ({1 >0}; H (T, xR"™ 1)),
but we can also say, thanks to point 4 of Theorem 4.1, that
OLI(1,2,y) € L*({x1 > 0}; H*2(T, x R*1)).

Considering the expressions of p, and V.

2 -1 2
5.=potel——(1=rr-Za.r), VE:C—(51—528;1821;538;1Vy1), (4.32)
po \ 2 c? po \c

the least regular term is 9-'9,1. Thus we need to ensure
0.1€C([0,+oo[; H¥({x1 >0} x R™™1),
which leads us to take s> 10 in order to have
OLI(7,2,y) € L*({w1 > 0}; H*2(T, xR"1))

for £ <4 with s—2¢>2 as we want to have the continuity in time. This choice of the
regularity for I allows us to control the boundary terms appearing from the integration
by parts in the energy method. Indeed, we can perform analogous computations as in
Ref. [8, p. 103] to control the spatial derivative of U, of the order less than or equal to 3
and directly verify that all boundary terms are controlled by ||y =, which is actually
is a consequence of the well-posedness [28] in H>.

Thus, for all finite times we obtain the existence of the unique solution of the
Navier-Stokes system in the sense of (4.29) and (4.30). O

4.4. Approximation of the solutions of the isentropic Navier-Stokes sys-
tem with the solutions of the KZK equation. Knowing from Subsection 4.1
that the KZK equation can be derived from the compressible isentropic Navier-Stokes
system (2.6)—(2.7) using ansatz (4.12)—(4.13) with I and J given by (4.5) and (4.6)
respectively, we obtain the following expansion of the Navier-Stokes equations

Po Lo v
Ope +V.(peve) 252[0—2(2@;@—8%@) — 5T+ 10, [(0,®)%] - 0—433‘1’]
43 RYSTKZE (4.33)
and
pe|Ove + (Ve V)V ]+ Vp(pe) — evAv, = eV [—po 0, ® + 1]

12V | 2T+ %(8@)%%3&’@ +SRYSKZK, (4.34)
where R{V S=KZK and Rév S=KZK gre the remainder terms given in the appendix. So, as
it was previously explained for the approximation of the Navier-Stokes by the Kuznetsov
equation in Subsection 3.2, if we consider a solution of the KZK equation I and define
by it the functions ® and J, then we define according to ansatz (4.12)—(4.13) p. and
V. (see Equation (4.16)), which solve the approximate system (3.17)—(3.18) with the
remainder terms R{V S-KZE 4nq Rév S—KZEK and, as previously, with p(p.) from the
state law (2.8):

0ip. +div(p.v.) = RN I KZK (4.35)
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P[0V + (V. V)V + Vp(p.) — v AV, = 3RYS-KZK, (4.36)

As usual, we denote by U.=(p., p-v.)! the solution of the exact Navier-Stokes
system and by U, = (p., p.V.)" the solution of (4.35)(4.36).

We work on Ry x R"~! (n=2 or 3) due to the domain of the well-posedness for
the KZK equation. In this case the Navier-Stokes system is globally well-posed with
non-homogeneous boundary conditions of U, as they are directly determined by the
initial condition Iy of the KZK Equation (4.22) according to Theorem 4.2. Knowing the
existence results for two problems, we validate the approximation of U, by U, following
Ref. [35] and Subsection 3.2:

THEOREM 4.3 ([35]). Let n=2 or 3, s>10 and Theorem 4.2 hold. Then there exist
constants C >0 and K >0 such that if

(Pe —pe)lt=0=0 and (V. —v.)|t=0=0,
we have the following stability estimate

C

0<t<— U = U2, xpn-1)(t) < Kete=r <9¢2.

Moreover, if the initial conditions for the KZK equation are such that
TIo€ H*(Ty x R"™1) for s>8,

and sufficiently small (in the sense of Theorem j.1), then there exists the unique global-
in-time solution of the Cauchy problem for the KZK equation

P =o€ C (10,00 H2({ar > 0} x R" 1)) N CH ([0, +00f H ({1 > 0} x R" 1),
9. € C((0. oo H ({1 > 0} x R*™1)NC* (0, +oof: H ({1 > 0} x R 1))

and the remainder terms (RNS™KZK RNS-ZKZ)
C([0,4o00[; L*(R4 x R™71)).

If in addition there exists an admissible weak solution of a bounded energy of the
Cauchy problem for the Navier-Stokes system (5.19) on a time interval [0, Tng]| for the

mitial data

(see the appendiz) belong to

[T (0) = T (0) | 2wy < <e,
then it holds for all t<min{g,TN5} the stability estimate (1.2):
(U2 =T ) (1) gy < K (544 2)eK= <022,
Proof.  We validate the approximation of U, by U, following Ref. [35] and Sub-

section 3.2. For the regularity of the approximate solution, if Iy € H*(T; x R"~!) with
s>max{8, %} then for 0</<4

I(1,2,9) €C*({z>0}; H*~2Y(T, x R"1)).

Let us denote Q=T, x R"~1. Given the equations for p_ by (4.8) with (4.5) and (4.6)
and for v, by (4.16) respectively, we have for 0 <¢<2

0:7(1,2,y) €C({2> 0} H*124(Q)), 0.9.(7,2,y) € C({2 > 01 H*~2724(Q)),
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but we can also say thanks to point 4 of Theorem 4.1 that
0:p:(1,2,y) €L2({z> 01 H* 71 72(Q),  OL¥e(r,2,y) € L* ({2 > 0} H72724(Q)).
This implies for 0 <¢<2 (as s>8) that s—2—2¢>2 and
027-(7,2,y) €C(Tr; L2 ({2 > O} H* (R 1)),
0'%(1,2,y) €C(Ty; L*({2 > 0}; HS 27 24(R"1))).
Hence we find
p.(t,z1,2") and V.(t,z1,2") €C([0,+o0[; H*({x1 >0} x R"™1).
As in addition for 0 </¢<1, considering p. and V. as functions of (7,z,y),
0:0:p. € C({z>0}; H*2724(Q)), 00-v. € C({2>0}; H* > 7(2)),
we deduce in the same way that
Oip.(t,x1,2") and 0,v.(t,x1,2") €C([0,+oc[; H ({1 >0} x R"™1)).

These regularities of p. and V., viewed as functions of (¢,21,2’), allow to have all left-
hand terms in the approximate Navier-Stokes system (4.35)—(4.36) of the regularity
C([0,T); L*({x1 >0} x R"71)) and the remainder terms in the right-hand side inherit it.
The regularity of I € H*(T; x R"~!) with s > 8 (see Table 7.1), is minimal to ensure
that RiVS*KZK and RéVS_KZK (see the appendix for their expressions), belongs to

C([0,+00f; LA(Ry xR"1).

It is due to the fact that the least regular term in RYS~5ZK and RYS™KZK js of the
form

PO L*({z>0}H(Q)NC({z>0}; H5()).

5. Navier-Stokes system and the NPE equation

5.1. Derivation of the NPE equation. The NPE equation (nonlinear pro-
gressive wave equation), initially derived by McDonald and Kuperman [31], is an exam-
ple of a paraxial approximation aiming to describe short-time pulses and a long-range
propagation, for instance, in an ocean wave-guide, where the refraction phenomena are
important. To compare to the KZK equation we use the following paraxial change of
variables

u(t,x1,2’) =V (et,x1 —ct,/ex') =V(T,2,y), (5.1)
with
T=ct, z=x1—ct, y=+/cz’. (5.2)
For the velocity we have

ve(t,x,2") =—eVu(t,z1,2") = —£(0,¥,VeV,V)(T,2,y). (5.3)
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Navier-Stokes/ NPE (7,2,y)
Euler (z1,x’,t)
t
=
%/
1 z=x1—ct

F1G. 5.1. Parazial change of variables for the profiles U(et,x1 —ct,\/ex’).

If we compare the NPE equation to the isentropic Navier-Stokes system this method
of approximation does not allow to keep the Kuznetsov ansatz of perturbations (3.2)—
(3.3) imposing (3.5)—(3.6), just by introducing the new paraxial profiles ¥ for u, £ for
p1 and x for po and taking the term of order 0 in € as it was done in the case of the
KZK-approximation. This time the paraxial change of variables (5.2) for p; and po,
defined in Equations (3.5)—(3.6), gives

P1=— @8ZW+EP_§8T\I/,
C C

__P0(7—2) 2 PO 2 Vo
pr=———-—=(0,7) 262(@\1/) pOaZ\I!

2¢2
e |20 go e 2o v w2 Law
2¢3 =T 2c2 Y 27
2 P0(7_2) 2

Thus, one of the terms in the p;-extension takes part of the second-order corrector of
Pe:

pE(tvxla'I/):p0+E€(TaZ7y)+E2X(TaZ7 )7 (54)
with
S(rzy)=-2o.w, (5.5)
Po po(y—1) 2 Voo

The obtained ansatz (5.3)—(5.4), applied to the Navier-Stokes system, gives

Dupe +div(pev.) =2~ 2L2) (632‘11 - o 0w 2%‘93‘“5%‘1’)

&
+83RiVS_NPE,

and
Po
pelOrve + (v .V)ve ]+ Vp(p:) —evAv. =V (§ + ?BZ\I/)

2_2 Po po(y—1) 2, Voo 3R NS—NPE
“+ce V[X_C_28T\IJ+T(82\I/) +C—28Z\I/:| +e R2 .
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The remainder term in the conservation of mass is given by
SRYSTNIE =23(9,x =V, £V, U —E AT — 0.} 0.V — x 02T)
+eH(=Vyx V, ¥ —x A, W), (5.7)
while in the conservation of momentum along the x; axis it is given by

¢
2
+cx8z2\11} tet <gaz(vy\1/)2 O+ gaz(az\pF) +s5§az(vy\1:)2, (5.8)

SRYSNPE g _ 3 [— 20,9020 + p—;az(vyw 0.0, U +20,(0. V)2
C

and along all transversal direction x; to the propagation x;-axis

§
2
+cxa§yj\1/} te2 (ﬁay]. (V,0)? —x02, U+ gayj (azq/)2) +e2 X9, (V,1)% (5.9)

7

SRYSNPE 2. g3 [_ ”_Coazq/ 02, W + ”—;ayj (V)2 400y, AU+ 20, (9.7)>

2 2

As all previous models, for this ansatz, the NPE equation

(v+1)
4

920 — 0,(0.0)2 — —— 3T+ <A, T =0 (5.10)
2p0 2

appears as the second-order approximation of the isentropic Navier-Stokes system up to

the terms of the order of O(g?). In the sequel we work with the NPE equation satisfied

by & (see Equation (5.5) for the definition)

(v+1)e v c. .
I 33[(5)2]—2—m3§’€+ 5 AyE=0. (5.11)

Looking at Figures 4.1 and 5.1 together with Equations (4.11) and (5.10), we see that
there is a bijection between the variables of the KZK and NPE equations defined by the
relations

2.6+

ZKZK

2NPE=—CTkzK and TNpE =ETKZK + - (5.12)
which implies for the derivatives
1
a7'NPE = CaZKZK and 8ZNPE = _EaTKZK'

Thus, as it was mentioned in the introduction, the known mathematical results for the
KZK equation can be directly applied for the NPE equation.

5.2. Well posedness of the NPE equation. We consider the Cauchy problem:

4po z
£(0,2,y) =&o(z,y) on T, x R" 1,

in the class of L—periodic functions with respect to the variable z and with mean value
zero along z. The use of the operator 9,1, identically defined as 9~ ! in Equation (4.19),
allows us to consider instead of Equation (5.11) the following equivalent equation

{ 02,¢+ U 02[(¢)%) — s 03 + §A € =0 on Ry x T xR, (5.13)

(v+1)e
4po

0.6+ az[(§)2]—2lpoa§§+§a;myg=o on Ry x T, x R"L.
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As a consequence we can use the results of Subsection 4.2 if we replace 7 by z. In the
same time for the viscous case the following theorem holds:

THEOREM 5.1. Letn>2,v>0, s>max (4, [%] + 1) and & € H*(T, x R" 1) with zero
mean value along z. Then there exists a constant ko >0 such that if

[€0ll 7+ (7. xr2) <2, (5.14)

then the Cauchy problem for the NPE FEquation (5.13) has a unique global-in-time so-
lution

£ () CH[0, 400, H*~(T. x R?)), (5.15)
=0

satisfying the zero mean value condition along z. Moreover, for ¥ according with Equa-
tion (5.5) we have

2
Uo=— 9 lce () C“ ([0, 400, H* (T, x R?)),
Po =0

also satisfying the zero mean value condition along z, i.e. fOL\I/(T,z,y)dZZO.

Proof. For & € H¥(T, x R*1) small enough the existence of a global-in-time
solution

1
€€ CH([0, 400, H* (T, xR"™1))
£=0

of the Cauchy problem for the NPE Equation (5.13) comes from Theorem 4.1. We also
have the desired regularity by a simple bootstrap argument. Moreover, the formula
for 971 (see the equivalent definition of 971 in Equation (4.19)) implies for s>1 the
Poincaré inequality

107 €l s (v, xrn—1) S CN1020; €l s (1, xrr-1) S CllE o (1, xR -1),5
which gives us the same regularity for . d

5.3. Approximation of the solutions of the isentropic Navier-Stokes sys-
tem by the solutions of the NPE equation. By Subsections 4.2 and 5.2, this time
the approximation domain is T,, x R"~1. Let £ be a sufficiently regular solution of the
Cauchy problem (5.13) for the NPE equation in T, x R®~!. Then, taking & and x ac-
cording to formulas (5.5)-(5.6), with ¥ defined using the operator 9,1 equivalent to 9!
(see Equation (4.19)), we define 5, and V. by formulas (5.3)—(5.4). For p,. and ¥ we ob-
tain a solution of the approximate system (3.17)—(3.18) defined on R x T,, x R"~! with
p(p.) from the state law (2.8), but with the remainder terms R 5~ NPF and RYS-NIE
defined respectively in Equations (5.7)-(5.9) instead of RY9~5%* and

In what follows we consider the three dimensional case, knowing, thanks to the
energy method used in Ref. [29] on R3, that the Cauchy problem for the Navier-Stokes
system is globally well-posed in T,, x R? for sufficiently small initial data (see Ref. [29]
Theorem 7.1, p. 100 or Ref. [7]):

RéVS*Kuz'

THEOREM 5.2.  There exists a constant ki1 >0 such that if the initial data

pe(0) — po € H3(T,, xR?), v.(0) € H3(T,, x R?) (5.16)
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satisfy

[p=(0) = poll 2 (T,,, xr2) +[[Ve ()]l 112 (1, xR2) < K1,

and p:(0)—po and v.(0) have the zero mean value among z1 then the Cauchy prob-
lem (2.6)-(2.8) on T,, xR? with the initial data (5.16) has a unique global-in-time
solution (pe, v.) such that

pe—po € C([0,400[; H3(T,, x R?))NC([0,+00[; H*(T,, x R?)), (5.17)
which implies
pe—po and  ve€C([0,+00[; H*(T,, xR*)NC([0,+00; H' (Ty, xR?)).  (5.18)

Moreover for all times for p. —po and v. have the mean value zero along 1.

The existence results for the Cauchy problems of the Navier-Stokes system (2.6)-
(2.8) and the NPE Equation (5.13) allow us to establish the global existence of U, and

U,, considered in the NPE approximation framework:

THEOREM 5.3. Let n=3. There exists a constant k>0 such that if the initial datum
& € H5(T, xR?) for the Cauchy problem for the NPE Equation (5.13) (necessarily k <
ka, see Theorem 5.1) is sufficiently small

€0l &5 (T, xmrn—1) <k,

has the mean value zero, then there ewist global-in-time solutions U. = (p., p. V<)t of
the approzimate Navier-Stokes system (5.20) and U, = (pe, p-ve:)' of the exact Navier-
Stokes system (3.19) respectively, with the same regularity corresponding to (5.18) and
with the mean value zero in the x1-direction, both considered with the state law (2.8)
and with the same initial data

(Pe = pe)lt=0=0, (Ve —=ve)|=o=0. (5.19)
Here pcli—o and V.|i—o are constructed as the functions of the initial datum for NPE
equation & according to formulas (5.3)—(5.6).
Proof. The proof is essentially the same as for Theorem 3.1. According to
Theorem 5.1 with s =25, the datum & is regular enough so that
pe — poli—o € H* (T, x R?) and v.|i—o € [H*(T,, xR?)]?
constructed with the help of formulas (5.3)—(5.6) in order to apply Theorem 5.2. These
formulas together with Theorem 5.1 imply that p, and V. have the desired regularity. O

Thanks to Theorem 5.3 we validate the approximation of the solution of the Navier-
Stokes system U, by the solution of the NPE equation U, following Ref. [35]:

THEOREM 5.4. Let v>0 and >0 be fired and all assumptions of Theorem 5.3 hold.

Then estimates of Theorem 3.3 hold in L*(T,, xR?). Moreover, if &, € H*(T,, x R?)
with s >4, then we have the stability estimate (1.2) with

P.(t,z1,3") = po € C([0,400[; H*(T4, x R*))NC*([0,+00[; L*(T4, xR?)),  (5.20)

. (t,x1,2") € C([0,+00[; H3(T,, x R*))NC* ([0, +oo; H (T, x R?)) (5.21)
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and

R{VS_NPE and RéVS*NPE € C([O,—l—oo[;LQ('H‘I1 X R2))- (5.22)

Proof. The proof, being the same as in Theorem 3.3, is omitted. In fact it is due
to the same Equations (3.19) and (3.20) with just different remainder terms of the same
order on e.

It is also easy to see using the previous arguments that the minimum regularity of
the initial data (see Table 7.1) to have the remainder terms in C([0,+oo[; L*(T,, x R?))
(see (5.22)) corresponds to & € H*(T,, x R?) for s> 3. Indeed, if s >3, then

for 0<0<1 &(1,2,y) € CY([0,+00[; H*2(T, x R?)).

As in addition the least regular term in the remainders is 2% coming from 9., this
finally implies with formulas (5.3)—(5.6) the desired regularities of p. and V. given in
Equations (5.20) and (5.21) respectively. O

6. Approximations of the Euler system
Let us consider the following isentropic Euler system:

Ope +div(peve) =0, (6.1)
pe[0rve + (ve.V)ve]+ Vp(pe) =0

with p(p.) given in Equation (2.8). We use all notations of previous sections just taking
v=0.

Let us consider two and three dimensional cases. The entropy n of the isentropic
Euler system, defined in Equation (3.31), is of class C® and in addition 7 (U.) is positive
definite for p. >0. Moreover, from (3.19) we see that G; € C* with respect to U, for
pe>0. Then we can apply Theorem 5.1.1 p. 98 in Ref. [8], which gives us the local
well-posedness of the Euler system:

THEOREM 6.1 ([8]). In R™ for n=2 or 3, suppose the initial data U(0) be continu-
ously differentiable on R™, take value in some compact set with p.(0)>0, and

fori=1,...n, 8;,U_(0)€ [H*(R™)]" " with s>n/2.

Then there exists 0 < Tpo < 400, and a unique continuously differentiable function U, on
R3 x [0, T | taking value with p. >0, which is a classical solution of the Cauchy problem
associated to (3.19) with v=0. Furthermore for i=1,...,n

9., U.(t) € ﬂ CM([0,Too [;[H*~F(R™)]"H1).
k=0

The interval [0,Tx ][ is maximal in that if Teo <400 then
T
/ ~sup ||awiU€||[Loo(Rn)]n+ldt:+OO,
0 i=1,...,n

and/or the range of U.(t) escapes from every compact subset of R xR™ as t —T.

REMARK 6.1. A sufficient condition for the initial data to apply Theorem 6.1 is to
have p.(0) — po € H3*(R™) and v.(0) € (H3(R™))™ with p.(0) > 0.
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To approximate the solutions of the Euler system and the Kuznetsov, the NPE or
the KZK equations, we need to know for which time (how long) they exist. As opposed
to the viscous case, the inviscid models can provide blow-up phenomena as indicated
in Theorem 6.1 for the Euler system, in Theorem 6.5 for the Kuznetsov equation and
for the KZK and the NPE equations see Theorem 1.3 in Ref. [34]. Let us start by
summarizing what is known on the blow-up time for the Euler system [2,36-40].

Due to our framework of the non-linear acoustic, it is important for us to have
a potential motion (the irrotational case) and to consider the compressible isentropic
Euler system (6.1)—(6.2) with initial data defining a perturbation of order ¢ around
the constant state (po,0). The following theorem estimates the existence time of its
solutions:

THEOREM 6.2.
(1) [8] In R™ for n=2 or 3, suppose the initial data

U, (0) = (ps,Oaps,Ovs,O)t

be a perturbation of order € around the constant state (po,0) (see Equation (6.3))
and take value such that fori=1,...n

0, UL (0) € [H*(R™)]"

with s >n/2. Then according to Theorem 6.1 there exists a unique classical solution
of the Cauchy problem associated to (3.19) with v=0 with a regularity given in
Theorem 6.1. Moreover considering a generic constant C' >0 independent of €, the
existence time T, is estimated by T. > g

(2) [36-39] If V xv.0=0 and if

y—1

=
(ﬁ) —1 and v belong to the energy space X™
Po

a dense subspace of H™(R™) with m >4 (for instance X™ C D(R"), see p.7-8 in
Ref. [38] for the exact definition of X™ ), then
T.> % forn=2, and Tszexp<g> —1 for n=3.
€ €

The regularity is given by energy estimates on X™ which implies at least the same
reqularity as in Theorem 6.1 if for i=1,...,n

0., U (0) € [H™H(R™)]™ .

Proof. The first point is a direct consequence of the proof of Theorem 5.1.1 p. 98
in Ref. [8]. For the second point we refer to Refs. [36-39] in order to have estimations
of T. with the help of energy estimates in the considered energy spaces which are dense
subspaces of the usual Sobolev spaces. a

Let us pay attention to the optimality of the lifespan in the previous results for
two [2] and three dimensional cases [40]. The following theorem tells us that the lower
bound for the lifespan of the compressible Euler system in the irrotational case found
in Theorem 6.2 is optimal thanks to the estimation of the blow-up time:
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THEOREM 6.3.
(1) [2] In R?, we consider the initial data given by

p:(0)=po+epeo and v (0)=ev, g, (6.3)
with peo and ve o of reqularity C* with a compact support. Moreover
Ve0 (.I) - ’UT|$|2€>’I" +vg |I|2?07

with pe o, vy, vg € D(R?) depending only on r=|z|e =+/2? +22 for = (z1,22)".
Then the Euler system (6.1)—(6.2) with initial data (6.3) admits a C* solution
for t€[0,T.[ with

liH(l)EQTE =C>0.
e—

(2) [40] InR3, we consider the initial data given by (6.3) with p- o and v o of reqularity
C* with a compact support. Moreover

VE,O(:E) = ’UT|$|3?T‘7

with pe,o and v, € D(R3) depending only on r=|z|3= /2% + 23+ 22
for x=(z1,22,73)". Then the Euler system (6.1)—(6.2) with initial data (6.3) admits
a C® solution for t€[0,T.] with

limeln(7.)=C>0.

e—0

Now let us consider the derivation of the Kuznetsov equation of Subsection 3.1 in
the assumption v =0. Taking ansatz (3.2)—(3.3) for p. and v. and imposing (3.5)—(3.6)
for p1 and py with v =0, we derive as in Subsection 3.1 the inviscid Kuznetsov equation

with the notation o= ";1

{ Opu—crAu=c0, (Vu)*+ 2 (0pu)?),

u(0) =uo, ut(0) =1uy. (6.4)

Thanks to Theorem 1.1 in Ref. [9], we have the following local well posedness result for
the inviscid Kuznetsov equation:

THEOREM 6.4 ([9]).  Let v=0, neN* and s>%+1. For all upc H**'(R") and
uy € H¥(R™) such that

1
||u1||Loo(]Rn) < r%, ||UQ||Loo(Rn) <M and ||vu0||Loo(]Rn) < Mz,
with My and Mz in R, the following results hold:

(1) There exists T* >0, finite or not, such that there exists a unique solution u of the
inviscid Kuznetsov system (6.4) with the following regularity

we O™ ([0, T*[; HT""(R™)) for0<r<s, (6.5)

. 1
vt e [0,77], ||ut(t)||Lw(Rn)<E, lull oo mny < M1, || VUl poo@ny < Mz, (6.6)

(2) The map (uo,u1)— (u(t,.),0u(t,.)) is continuous in the topology of H**t! x H® uni-
formly in t€[0,T*[.
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Ref. [9] allows us to give a result on the lower bound of the lifespan T of the
Kuznetsov equation. The method is similar to the case of the Euler system (6.1)—(6.2).
It is based on the use of a group of linear transformations preserving the wave equation
ut — Au =0, initially proposed by John [16]. Let us briefly summarize the lifespan and
blow-up time results for the inviscid Kuznetsov equation in the following theorem:

THEOREM 6.5.

(1) [9] Let meN, m>[2+2] . For upe H™(R") and uy € H™(R") such that the
results of Theorem 6.4 hold for s=m, let ug and ui be also small enough in the
sense of an energy defined in point 3 of Theorem 1.1 in Ref. [9]. Then there exists
a generic constant C >0 independent of € such that T, > g

(2) [9] Let meN, m>n+2 ifn is even and m>n+1 if n is odd. For ug € H™T1(R")
and uy € H™(R™) such that the results of Theorem 6.4 hold for s=m, let uy and uy
be also small enough in the sense of a generalized energy defined in Theorem 3.3 in
Ref. [9]. Then there exists a generic constant C >0 independent of € such that

T.> % forn=2T.>exp <g> —1 forn=3 and T, =+o00 for n>4.
€ €
(8) [3] In dimension n=2 and 3, there exist functions ug € D(R™) and u; € D(R™) such
that the solution u of the Cauchy problem for the inviscid Kuznetsov Equation (6.4)
has a geometric blow-up for the time of order T. =0 (E%) and T. =0 (exp (%)) re-
spectively.

REMARK 6.2. In R? and R? we see that the lifespan of the inviscid Kuznetsov equation
corresponds to the blow-up time estimation for the compressible isentropic Euler system
in Theorems 6.2 and 6.3, a result in accordance with the fact that the inviscid Kuznetsov
equation is an approximation of the Euler system. We also notice that in the two cases
(for the Euler system and the Kuznetsov equation) having longer existence time requires
more regularity on the initial data.

Relying now the existence results for the Euler system and the Kuznetsov equation,
we formulate our approximation result:

THEOREM 6.6.  Let n=2 or 3. If the initial data uo€ H*(R"™) and u; € H3(R") for
the Cauchy problem for the inviscid Kuznetsov Equation (6.4) satisfy

lluoll 2 ey + w1 || 3 mny < K (6.7)

with a constant k>0 small enough, there exists T} >0 and C >0, independent of €,
satisfying

Q

T: >~

such that there exist local in time solutions
ﬁi = (psa pgvs)t and U, = (Pa psvs)t on [O,T:[

of the approximate Euler system given by (3.20) and of the exact Euler system given
by (3.19) with v=0, both considered with the state law (2.8) and with the same initial
data (3.24). In addition, the solutions have the same regularity corresponding to

3
U. —(po,0)" € () CH[0, T [ [HP“(R™)]"H). (6.8)
£=0
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Here peli—o and Vc|i=o are constructed as the functions of the initial data for the
Kuznetsov equation ug and uy by formulas (3.25)-(3.26) according to (3.2)-(3.3)
and (3.5)—(3.6) taken with v=0.

Moreover, there exist constants C' >0 and K >0 independent of € and on time t,
such that

VT U~ T) (1) o) < K1 <422 (6.9)

If up€ H¥T2(R™) and uy € H¥TH(R™) with s> % and there exists a classical solution of
the Euler system found for the initial data satisfying (1.1), then estimate (1.2) holds
with

Pe—po € C(0, T2 BT (RY) NC (0,72 B (R™)), (6.10)
% € C(0, T2 B (®M)NC (0,1 B (R")) (6.11)

and with the remainder terms Rf“ler*K“Z and RQE“leer“Z (see (3.14)—(3.15) with
v=0) belonging to C([0,T[; H*(R™)).

Proof. Taking ug € H*(R") and u; € H3(R") satisfying Equation (6.7) with a k>0
small enough, the Cauchy problem for the inviscid Kuznetsov Equation (6.4) is locally
well-posed according to Theorem 6.5. Moreover the solution u belongs to

4

(0. Tea[s H* - (R™)
£=0

with T, 1 > % and C >0 independent of «.
As ug € H*(R™) and u; € H3(R"), it ensures that

pe — poli=o € H*(R™) and v, |—o € [H*(R™)]?.

Therefore p.|t—o >0 if ug and u; are small enough. By Theorem 6.2 it is sufficient to
have a local solution U, on [0,7; 2| of the exact Euler system (see (3.19) with v=0)

verifying (6.8) with T corresponding to T; o, T: 2> % with C3 >0 independent of ¢.

Now we consider T =min(7% 1,7 2), and we have T > < with C >0 independent
of e. As p, and V. are defined by ansatz (3.2)-(3.3) with p; and ps given in Equa-
tions (3.5)—(3.6), the regularity of u implies for U, at least the same regularity as given
n (6.8). To find it we use the Sobolev embedding (3.30) for the multiplication.

Knowing the existence results for the two problems, we validate the approximation
of U, by the solution of the Kuznetsov equation, i.e. by U., following Ref. [35]: we
make use of the convex entropy as in Ref. [8] for the isentropic Euler equation and the
rest follows exactly as in the proof of Theorem 3.3 except that v =0.

Let us finish the proof with the remark on the minimal regularity of the initial
data for the Kuznetsov equation such that the approximation of the Euler system is
possible, i.e. the remainder terms Rf“ler*K“Z and Rf“ler*K“Z must be kept bounded
for a finite time interval. Indeed, if we take ug€ H*T?(R") and u; € H¥1(R™) with
s>2 then ue C([0,T7[; H*"*(R™)) and

u €C([0, X H L R™)),  uy € C([0,TF[; H*(R™)).
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Since p, is defined by (3.2) with (3.5)—(3.6) and ¥, by (3.3) with v =0, respectively, we
deduce regularity (6.10)—(6.11). As this time for =0, we don’t have the term Ad;u as
in the viscous case in Equation (3.14), the remainder terms belong to C'([0,T[; H*(R™)).

|

REMARK 6.3. If we allow the Euler system to have, not the classical, but an admissible
weak solution with the bounded energy (see Definition 3.1 and take v=0) taking the
initial data in a small (on ¢) L2-neighborhood of U.(0), then we also formally have
estimate (1.2). But, thanks to Ref. [26] it is known that the Euler system can provide
infinitely many admissible weak solutions, and thus there is no sense to approximate
them.

For the approximation of solutions of the Euler system by the solutions of the NPE
equation we obtain the following theorem:

THEOREM 6.7. Let n=2 or 3. There exists a constant k>0 such that if the initial
datum & € H?(T, x R"~Y) for the Cauchy problem for the NPE Equation (5.13) with
v =0 s sufficiently small

ol zz5 (T, xmn—1) < ke,

has the mean value zero, then

(1) There exist unique local in time solutions U, of the approzimate Euler system (5.20)
and U, of the exact Euler system (3.19) with v=0 respectively. The solutions
U. and U, are of the same regularity corresponding to (5.18) on [0,T*[ instead
of [0,+00] and of mean walue zero in the wxy-direction, both considered with the
state law (2.8) and with the same initial data (5.19). Here peli—o and Ve|i—o are
constructed as the functions of the initial datum for NPE equation &y according to
formulas (5.3)—(5.6) with v=0.

(2) Moreover, there exists C >0 independent of € such that T} > g and for t < % in-
equality (6.9) holds on T,, x R"~1.

If & € H(T,, x R™"™Y) with s >3 and there exists a classical solution of the Euler system

found for the initial data satisfying (1.1), then estimate (1.2) holds with

p.—po€C([0,TF[; H*(T,, x R"1))NCH ([0, T [; L*(T,, x R"™1)), (6.12)
9. € C([0,TF[; H*(T,, x R* ) NCH([0, T*[; H(T,, x R"™1)) (6.13)

and with the remainder terms REUr—NPE qng REWer=NPE (see (5.7)-(5.9) withv=0)
belonging to C([0,T[; L*(T,, x R"™1)).

Proof.  The work of Dafermos in Ref. [8] can always be applied on T,, x R"~!
for n=2 or 3 instead of R"™ so we have an equivalent of Theorem 6.1 and we also have
the same equivalent of Theorem 6.2. This is due to the fact that the energy estimates
in the articles of Sideris [36-39] are always true on T,, xR and T,, x R?. In all these
cases we must also suppose that we have the mean value equal to zero in the direction
x1. As by Theorem 4.1 the NPE equation is locally well posed on [0,7;[ with T > % if
o]l 5 (7. xn—1) < ke, we have an equivalent of Theorem 6.6 for the exact compressible
isentropic Euler system and its approximation by the NPE equation on T,, x R*~! for
n=2or 3, as & € H>(T, x R"1) also implies pe|i—o and v.|;—o in H3(T,, x R"~1).

The minimum regularity of the initial data (see Table 7.1) to have the remainder
terms well defined is found exactly in the same way as in Theorem 5.4 for the viscous
case, as soon as the least regular term does not disappear taking v=0. a
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For the approximation by the KZK equation the inviscid case has already been
studied in Ref. [35]. The key point is that we must restrict our spatial domain to a cone
in order to take into account the fact that the KZK equation is only locally well posed.
For the completeness of the article and for the reader’s convenience, we give, updating
for our new ansatz, the Euler-KZK approximation result, proved in detail in Ref. [35].

THEOREM 6.8. Suppose that there exists the solution I of the KZK Cauchy prob-
lem (4.22) with Iy € H*(T; x R"™Y) for s >max{10, 2] +1} and v=0 such that I(1,z,y)
is L—periodic with respect to T and defined for |z| <R and y e R}~

Let U.=(p.,p.v:)! be the approzimate solution of the isentropic Euler sys-
tem (4.35)-(4.36) with v=0 deduced from a solution of the KZK equation. Then the

function U, (t,x1,2") is defined in Ty x Q¢ with
Q.= {21 €R| |o] <§—ct} KR
and is smooth enough according to the reqularity of I:
p. € C(Ty HY(Q))NCH (T HP(Q:))  and - W € O(T; H(Q2))NCH (Tes H2(Qe)).

Let us now consider the Euler system (3.19) with v=0 in a cone
R
Ct)={0<s<t} xQ:(s)={z=(z1,2"): 21| < - ~Ms,M>c,2’ eR" !}
with the same initial data

(pe =P)lt=0=0 and (ve—V.)|=0=0.

Consequently, (see Ref. [8] p. 62) there exists Ty >0, such that for the time interval
0<t<Lo there exists the classical solution U.=(pe,peve) of the Euler system (3.19)
with v=0 in a cone

C(T)={0<t<T|T< %} <O (t)
with

||VU5||L00( <eC for s> [g}—kl.

(0,20 [ H-1(Q-))

Moreover, there exists K >0, such that for any € small enough the solutions U, and
U., which were determined as above in cone C(T) with the same initial data, satisfy
the estimate for 0 <t < %

1(Ue =U2) ()1 72(q. ) < coete? = <4e?

with ¢ > 0.
If Iye H(T; x R"™1) with s >6 then

p.(t,x1,2))—po  and  V(t,x1,2") €C([0, % [HYQ.)) (6.14)

and RiVS_KZK and Révs*KZK (for the definitions see the appendiz) are in
C’([O,%[;LQ(Qs)) and hence estimate (1.2) holds as soon as the initial data of the clas-
sical solution of the Euler system U, are taken in their small L*>-neighborhood defined

by (1.1).
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Proof.  Considering expressions for p, and ¥, in (4.32) with v =0, the term asking
the most regularity of Iy is the same as for the viscous case and given by 9-10.1.
Thus, we need to impose the same regularity of Ip€ H® with s>10 as for ¥ >0 to
ensure V. € C(T¢, H3(Q.)). This regularity, if we take the same initial data, implies the
existence of the classical solution U, of the Euler system.

Now, if the initial data are taken in a small L? neighborhood, according to (1.1), we
can find the minimal regularity on Iy ensuring that the remainder terms are bounded
and well defined.

If Ipe H® with s>6 we have for 0 </<1 that the initial data found from I, for
the Navier-Stokes system satisfies Theorem 4.2. Indeed, if Iy € H*(T; x R"~1) with
s>max{8,%5}, then for 0 <k <4

I(7,2,y) €C*(|] = R, R H* (T, x R"™)).

Let us denote 2=T, xR"~!. Defining p. by Equation (4.8) with Equations (4.5)
and (4.6) and ¥, by (4.16) with v=0 respectively, we have as in the proof of Theo-
rem 4.3 for 0 </ <1 considering p, and V. as functions of (7,z,y):

0.0,p. € C(| = R,R[H*'7*(Q)), 0.0,V € (]~ R,R[,H**"*(Q2)),

from where we deduce (6.14). These regularities of p, and V. viewed as functions of
(t,z1,2") allow to have all left-hand terms in the approximate Euler system (4.35)—(4.36)
with v =0 of the regularity C(][0, % [;L*(Q-)) and the remainder terms in the right-hand
side inherit it. Since the least regular term in the remainder terms is 20.[(0.®)?], the
regularity of Io € H*(T; x R"~1) with s >6 (see also Table 7.1) is minimal to ensure that
RYSTKZE and RY® 7K are in C([0,2[;L%(Q.)). 0

7. Conclusion
We summarize all obtained approximation results in the comparative Table 7.1.

Appendix. Expressions of the remainder terms. The expression of H, the

profile of po, in the paraxial variables of the KZK ansatz is:

—1 v
H(r,2,y)=— %(6@)2 - 020

Po 2 2 v 2.0
+e|-—=I(Vy®) —282¢8T®]—c—2[Ay<1>—28ﬂ<1>]

22
v
+52[—%(azq>)2— —029]. (A1)

If we consider (4.33)-(4.34) the expressions of RYS~KZK and RYS=KZK are written
with the terms I and J defined by (4.5) and (4.6) respectively:
e3RNS-KZK
3 24 4 L 1
= & -pd2®+ 0,10, %+ -0, 10.9 -V, 1.V, P
2 1 1,
+-107, - IA®—~—0,J0, P~ —JO; P
c c c

+e* [—azfaz@ — 1020+ laZJaTJJr 1aTJaz@
C C

2
~V, IV, o+ EJafzcb - JAyCI)] +&°[-0,J0,® — JO?®;
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TABLE 7.1. Approximation results for models derived from Navier-Stokes and Euler systems

Kuznetsov KZK NPE
Navier-Stokes Euler Navier-Stokes Euler Navier-Stokes Euler
Theorem Theorem 3.3 | Theorem 6.6 Theorem 4.3 Theorem 6.8 Theorem 5.4 | Theorem 6.7
paraxial approximation paraxial approximation
e = po+ep1+€2ps, u=®(t— L cxy,,/ex’) u=V(et,x1 —ct,\/ex)
ve=—¢cVu, pe=po+el+£2J, pe =po+eE+e’x,
p1=230su, ve from (4.16), I =230, 9, ve from (5.3), {=—220.9,
Ansatz p2 from (3.6) J from (4.6) X from (5.6)
Pu—cPAu=
— 1 c
ed; (Vu)®+ %57 (9ru)” c02,1— o2 02,6 + e g2 e2)
v v QN _ v c J—
Models +£Au) g O3 — S AT =0 LB EAE=0
Approxi-
mation
Order O(e?)
the cone
the half space {lz1| < W —ct}
Domain R? {x1>0,2' €R" '} xR T,, xR?
Approxi- -
mation |U.—U.||p2<efort<Z
Initial 5
data ﬁommo@wv ﬁomm&ADv
regularity ﬁwmm%ADV ﬁwmmwADV NommHoADV Nommpombv mOmmmADv mOmmmADv
Data s+2 s+2
regularity uo € H imbv uo € H iﬂbv
for remainder | W1 € H*THQ) | wi € HTH(Q)
boundedness >4 5> 75 Ine H3(Q) Ine H5(Q) &0 € HA() &o€ HA(Y)
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among the z; axis

€3RéVS—KZK_€>1

_ 3| _Po _2 7V _2 2
= ¢ { 2087[ C8Z<I>8T<I>+(Vy<1>)] 687[ 6872¢)+Ay<13]

.1 S

P 2 2
+et [ 0] 5z[—;8z<1>67<1>+(vy<1>)2]+v8z [~207.2+4,2]

—%&[—%ﬁ&@ﬂvy@) ]+ a [ (0, @) —JO? @

J 2
Lo ko022, [(az@]—;araz@]
[ (5.) ]+§az[—%azq>af¢+(vy¢)2]

+30.05(0 @)]—%a[—%az@aqw(vy@)?]

+”2—Oaz[(azq>)2] +yagq>}
e [faz[(az@)ﬂ Lo n0.0+ - 20.00,0+ (vycp)?]] 4o [182[(@@2]]
2 2c 2 ¢ 2
and in the hyperplane orthogonal to the x; axis

n
Z(RNS KZK —> )?z
=2

. 2 2
= g3 [%vy[—zaz@@qw(vy@)2]+uvy[—za£zq>+qu>]
I_ .1 )
+§vy[c—2(67q>) |- JV,[0.9]

o (1 2 J 1
+e2 [_vy[_zaz(b87¢+ (qu))2] =+ §Vy[c_2(a"'q))2]

2
+ 20, [(0.9)% + vV, [020]]
11 I J 2 13 J
+e2 [ivy[(az@)ﬂ+§vy[—zazq>87q>+(qu>)2]] +e2 {Evy[(ach)z]] .
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