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ANOMALOUS DIFFUSION IN
COMB-SHAPED DOMAINS AND GRAPHS∗

SAMUEL COHN† , GAUTAM IYER‡ , JAMES NOLEN§ , AND ROBERT L. PEGO¶

Abstract. In this paper we study the asymptotic behavior of Brownian motion in both comb-shaped
planar domains, and comb-shaped graphs. We show convergence to a limiting process when both the
spacing between the teeth and the width of the teeth vanish at the same rate. The limiting process
exhibits an anomalous diffusive behavior and can be described as a Brownian motion time-changed by
the local time of an independent sticky Brownian motion. In the two dimensional setting the main
technical step is an oscillation estimate for a Neumann problem, which we prove here using a probabilistic
argument. In the one dimensional setting we provide both a direct SDE proof, and a proof using the
trapped Brownian motion framework in Ben Arous et al. (Ann. Probab. ’15).
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1. Introduction
Diffusion in comb-like structures arises in the study of several applications such as

the study of linear porous media, microscopically disordered fluids, transport in dendrites
and tissues (see for instance [1, 10, 16, 39, 43] and references therein). Our aim in this
paper is to study idealized, periodic, comb-shaped domains in R2 under scaling regimes
where an anomalous diffusive behavior is observed. We also study scaling limits of a
skew Brownian motion on an infinite comb-shaped graph. In both scenarios we show
that under a certain scaling the limiting process is a Brownian motion time-changed by
the local time of an independent sticky reflected Brownian motion. We describe each of
these scenarios separately in Sections 1.1 and 1.2 below.

1.1. Anomalous diffusion in comb-shaped domains. Let h0∈ (0,∞], and
α,ε>0, and let Ωε⊂R2 be the fattened comb-shaped domain defined by

Ωε={(x,y)∈R2 |−ε<y<h01B(εZ,αε2/2)(x)}, (1.1)

where B(εZ,αε2/2)⊆R denotes the αε2/2 neighborhood of εZ, and 1 denotes the
indicator function. Figure 1.1 shows a picture of the domain Ωε. We refer to the region
where −ε<y<0 as the spine; Ωε also has teeth of height h0 and width αε2, which are
spaced ε apart.

Let Zε=(Xε,Y ε) be a Brownian motion in Ωε that is reflected normally on the
boundary ∂Ωε. Our aim is to study the limiting behavior of Zε as ε→0. This is an
idealized, two dimensional version of the arterial flow models considered by Young [43].
Note that the process Zε may travel large horizontal distances when it is in the spine,
but travels only negligible horizontal distances when it is “trapped” inside the teeth.
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Fig. 1.1. Image of the comb-shaped domain Ωε. The teeth have width αε2 and height h0. The
spine has width ε, and the teeth are spaced a distance of ε apart.

From the shape of Ωε, one expects that the chance Zε wanders into the teeth from
the spine is of order αε. Since the teeth are spaced ε apart, the process Zε encounters
O(1/ε) teeth after traveling an O(1) distance horizontally. These balance, and after
large horizontal distances, the process Zε spends comparable amounts of time in the
spine and in the teeth. This leads us to expect that the limiting horizontal behavior
of Zε should be described by a Brownian motion that is time-changed so that it only
moves when the process is in the spine–this is our main result.

To state the result, we let Ω0
def= R× [0,h0], and let πε : Ωε→Ω0 be defined by

πε(x,y)=(x,y+), where y+ =max{y,0} denotes the positive part of y. Given a proba-
bility measure µε on Ωε, let π∗ε (µε) denote the push forward of µε, under the map πε, to
a probability measure on Ω0. We can now state the main result.

Theorem 1.1. Let Zε=(Xε,Y ε) be a normally reflected Brownian motion in Ωε

with initial distribution µε. If the sequence of measures (π∗ε(µε)) converges weakly to
a probability measure µ on Ω0, then the sequence of processes Zε,+ def= πε(Zε) converges
weakly as ε→0. The limiting process, denoted by Z= (X,Y ), can be described as follows.
The initial distribution of Z is µ. The process Y is a Brownian motion on (0,h0), which
is normally reflected at h0 if h0<∞, and is stickily reflected (with parameter 1/α) at 0.
The process X is a time-changed Brownian motion given by

Xt=W̄ 2
αL

Y
t (0), (1.2)

where W̄ is a Brownian motion on R that is independent of Y , and LY (0) is the local
time of Y at 0.

To clarify notation, we follow the normalization convention of [34], and define local
time of Y at 0 by

LYt (0) = lim
δ→0

1
2δ

∫ t

0
1{06Ys6δ}d〈Y 〉s= lim

δ→0

1
2δ

∫ t

0
1{0<Ys6δ}ds.

In the second equality above we note that the strict inequality 0<Ys in the integrand is
crucial, as the process Y spends a non-negligible time at 0. Indeed, recall that the sticky
reflection of the process Y at 0 is characterized by the local time relation

2dLYt (0) =α1{Yt=0}dt.
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Such a process can be constructed explicitly by time changing a reflected Brownian
motion, or by using the Hille-Yosida theorem. We elaborate on this in Section 2, below.

We remark that while the statement of Theorem 1.1 is intuitive, the proof isn’t as
simple. The broad outline of the proof follows techniques introduced by Freidlin and
Wentzell (see for instance Theorem 8.2.2 in [25]) and the structure in [28, 29]. However,
the key step in establishing the required estimates requires balancing the time spent
by Zε in the spine with the local time at the interface between the teeth and spine.
In order to prove this, we require an oscillation estimate on the solution to a certain
Neumann problem (Proposition 3.1, below).

To the best of our knowledge, the oscillation estimate we require can not be obtained
by standard techniques for the following reasons: First, for the problem at hand energy
methods only provide estimates with domain-dependent constants. Since Ωε varies
with ε these constants may degenerate as ε→0. Second, since we impose Neumann
boundary conditions on the entire boundary we may not easily use techniques based
on the comparison principle. We prove the oscillation estimate here directly by using a
probabilistic argument, and this comprises the bulk of the proof of Theorem 1.1.

Notice that Theorem 1.1 immediately yields the behavior of the variance of the
horizontal displacement. This question has been studied by various authors (see for
instance [6] and references therein), and is of interest as it is an easily computable
benchmark indicating anomalous diffusion.

Corollary 1.1. If h0<∞ then

lim
t→0

lim
ε→0

1
t
E(x,0)|Xε

t −x|2 = 1, (1.3a)

lim
t→∞

lim
ε→0

1
t
E(x,0)|Xε

t −x|2 = 1
αh0 +1 . (1.3b)

If h0 =∞, then (1.3a) still holds. However, instead of (1.3b) we have

lim
t→∞

lim
ε→0

1√
t
E(x,0)|Xε

t −x|2 = 1
α

( 8
π

)1/2
. (1.4)

Here we clarify that the notation E(x,0) refers to the expectation under the probability
measure P (x,0) under which (Xε

0 ,Y
ε
0 )=(x,0) almost surely. Note that when h0<∞,

the variance is asymptotically linear with slope 1 at short time, and asymptotically
linear at long time with slope strictly smaller than 1. On the other hand, when h0 =∞
the variance is asymptotically linear for short time, and asymptotically O(

√
t) for long

time, indicating an anomalous sub-diffusive behavior on long-time scales. This was also
previously observed by Young [43].

In addition to the variance, another quantity of interest is the limiting behavior of
the probability density function. This is essentially a PDE homogenization result that
also follows quickly from Theorem 1.1. Explicitly, let uε represent the concentration
density of a scalar diffusing in the region Ωε. When the diffusivity is normalized to
be 1/2, and the boundaries are impermeable the time evolution of uε is governed by the
heat equation with Neumann boundary conditions:

∂tu
ε− 1

2∆uε= 0 in Ωε (1.5a)

∂νu
ε= 0 on ∂Ωε. (1.5b)
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Using Theorem 1.1 we can show that uε converges as ε→0, and obtain effective equations
for the limit. The same equations were also obtained heuristically by Young [43].

Corollary 1.2. Let u0 : Ω0→R be a bounded continuous function, and let uε be the
solution to (1.5a)–(1.5b) with initial data u0 ◦πε. Let µε be a family of test probability
measures on Ωε such that (π∗ε(µε)) converges weakly to a probability measure µ on Ω0.
Then for any t>0 we have

lim
ε→0

∫
Ωε
uε(z,t)dµε(z) =

∫
Ω0

u(z,t)dµ(z), (1.6)

where u : Ω0→R is the unique solution of the system

∂tu−
1
2∂

2
yu= 0, for t>0, y∈ (0,h0), (1.7a)

α∂yu+∂2
xu=∂2

yu, when y= 0, (1.7b)
∂yu= 0 when y=h0, (1.7c)
u=u0 when t= 0. (1.7d)

Since large scale transport only occurs in the x-direction, one is often only interested
in the limiting behavior in this direction. This can be obtained by taking the slice of
u at y=0, leading to a self contained time-fractional equation, similar to the Basset
equation [3]. We remark that such time-fractional PDEs associated with the time-
changed diffusions have been studied in more generality in [2] (see also [13,36]), and we
refer the reader to these papers for the details.

Proposition 1.1. Let v(x,t)=u(x,0,t), where u is the solution of (1.7a)–(1.7d).
Then v satisfies

∂tv+ α

2 ∂
w
t v−

1
2∂

2
xv= α

2 f, (1.8)

with initial data v(x,0)=u0(x,0). The operator ∂wt appearing above is a generalized
Caputo derivative defined by

∂wt v(x,t) def=
∫ t

0
w(t−s)∂tv(x,s)ds,

where w is defined by

w(t) def= 2
h0

∞∑
k=0

exp
(
− (2k+1)2π2t

8h2
0

)
.

The function f appearing on the right of (1.8) can be explicitly determined in terms of
u0 by the identity f =f(x,t) =∂yg(x,0,t), where g=g(x,y,t) solves

∂tg−
1
2∂

2
yg= 0 for t>0, y∈ (0,h0),

g(x,0,t) =g(x,h0,t) = 0 for t>0,
g(x,y,0) =u0(x,y)−u0(x,0) for y∈ (0,h0), t= 0.
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Remark 1.1. As we will see later, the Laplace transform of w is given by

Lw(s) =
∫ ∞

0
e−stw(t)dt= 2tanh(h0

√
2s)√

2s
. (1.9)

For h0 =∞,

w(t) =
( 2
πt

)1/2
, and Lw(s) =

(2
s

)1/2
.

In this case, ∂wt is precisely
√

2∂1/2
t , the standard Caputo derivative of order 1/2 (see

for instance [17]), and Equation (1.8) becomes the Basset differential equation [3].

Finally we conclude this section with two remarks on generalizations of Theorem 1.1.

Remark 1.2 (Other scalings). The width of the spine and teeth may be scaled in
different ways to obtain the same limiting process as in Theorem 1.1. Explicitly, let

Ω̃ε={(x,y)∈R2 |−wS(ε)<y<h01B(εZ,wT (ε)/2)(x)},
where wS(ε) and wT (ε) denote the width of the spine and teeth respectively. We claim
that Theorem 1.1 still holds (with the same limiting process), provided

lim
ε→0

wT
εwS(ε) =α∈ (0,∞), and lim

ε→0
wS(ε) = 0. (1.10)

The proof of Theorem 1.1 needs to be modified slightly to account for this more general
statement. These modifications are described in Section 3.7, below.

In the degenerate case when α=0, the process Zε rarely enters the teeth and the
limiting behavior is simply that of a horizontal Brownian motion. On the other hand,
if α=∞, then the process Zε enters the teeth too often, and the limiting behavior is
simply that of a vertical, doubly-reflected, Brownian motion.

Remark 1.3 (Higher-dimensional models). Theorem 1.1 can also be extended to
analogous higher-dimensional models. For example, let Ω′ε⊆R3 be a three dimensional
“brush”, defined by

Ω′ε
def=
⋃
k∈Z

(Qk∪Tk).

Here Qk and Tk are defined by

Qk
def=
(
εk− ε2 ,εk+ ε

2
)
×
(
−ε2 ,

ε

2
)
× [−ε,0),

Tk
def=
{

(x1,x2,x3)∈R3 ∣∣((x1−εk)2 +x2
2)1/2 6 rε3/2, x3∈ [0,h0)

}
.

In this case, the spine is the set ∪kQk, an infinite rectangular cylinder; the cylindrical
teeth Tk are spaced O(ε) apart and have radius rε3/2>0. If Zε is a Brownian motion
in this domain with normal reflection at the boundary, then one obtains an analogous
scaling limit as ε→0. The O(ε3/2) scaling of the radius of the teeth is chosen so that
the ratio

2Vol(Qk)
Area(Qk∩Tk)

= 2
πr2

is independent of ε – this constant ratio plays the same role as the constant 2/α in
the comb-shaped domain Ωε. While our proof of Theorem 1.1 extends to this higher-
dimensional version in a straight-forward way, the added modifications are technical.
Thus, for simplicity and clarity of presentation, we only focus on the comb-shaped
domain as defined above for Theorem 1.1.
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1.2. Anomalous diffusion in comb-shaped graphs. We now turn our atten-
tion to comb-shaped graphs, with the intention of studying a simpler version of the model
in Section 1.1 and of relating it to other work on trapped random walks. Related random
walk models on comb-shaped discrete graphs have been studied by several authors,
including [7, 8, 14, 15]. In each of these works, a limit process is obtained which involves
a Brownian motion time-changed by the local time of an independent Brownian motion.
One difference between these other works and Theorem 1.2 below is that the limiting
processes in our result involves Brownian motion with sticky reflections, a consequence
of the gluing condition described below. More closely related to our model are the
works [4,5], especially Section 3.2 of [4], where the trapping and drift of the random walk
plays a role that is similar to our gluing condition. In Section 5.2 below, we will use the
framework in [4] for an alternate proof of our result in this simpler setting, illuminating
the relationship between these models. Nevertheless, the analyses in these other works
do not apply to the comb-shaped domains considered in the previous Section 1.1, where
the boundary local time of the diffusion process (pre-limit) plays an essential role.

We consider the infinite connected comb-shaped graph, Cε⊂R2, be defined by

Cε=
(
R×{0}

)
∪
(
εZ× [0,h0)

)
. (1.11)

We think of R×{0} as the spine of Cε, and εZ× [0,h0) as the infinite collection of teeth.
The teeth meet the spine at the junction points Jε⊆Cε defined by

Jε
def= (εZ)×{0}, (1.12)

and is depicted in Figure 1.2.

h0

ε

Fig. 1.2. Image of the comb-shaped graph Cε. The teeth are spaced ε apart and have height h0.

Let Zε=(Xε,Y ε) be a diffusion on Cε such that away from the junction points Jε,
the process Zε is a standard Brownian motion. If h0<∞, we reflect Zε at the ends
of the teeth. At the junction points, we specify a “gluing condition” which dictates
that Zε enters the teeth with probability αε/(2+αε), and stays in the spine with
probability 2/(2+αε), thus the rate of entering the teeth is O(ε) times the rate of
staying in the spine. One can formulate this precisely by requiring the local time balance

LX
ε

t (Jε) = 2
2+αε

LZ
ε

t (Jε), LY
ε

t (Jε) = αε

2+αε
LZ

ε

t (Jε),

at the junction points. As discussed further in Section 4, the particular form of these
coefficients corresponds to a simple flux balance condition (4.2a) at the junction points.
Alternately, one can make this gluing condition precise by using the excursion decompo-
sition of Zε, and we do this in Section 5.
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Clearly the mechanics of the above diffusion on the comb-shaped graph Cε shows that
it is a simplified model of the diffusion on the comb-shaped domain Ωε. Our main result
in this section shows convergence of Zε to the same limit process as that in Theorem 1.1.

Theorem 1.2. Let (µε) be sequence of probability measures on Cε which converge
weakly to a probability measure µ on Ω0

def= R× [0,h0]. Let Zε be the above graph diffusion
with initial distribution µε. Then, as ε→0, the processes Zε converge weakly to the same
limit process Z= (X,Y ) defined in Theorem 1.1.

The proof of Theorem 1.2 is technically and conceptually much simpler than that
of Theorem 1.1, and is presented in Section 4. Moreover, the excursion decomposition
of Zε on the comb-shaped graph Cε allows for an elegant proof using time changes and
the trapped Brownian motion framework in [4]. We present this approach in Section 5.

The process Zε on the comb-shaped graph Cε is closely related to a model of fluid
flow in fissured media, where trapping in microscopic regions of low permeability yields
a macroscopic anomalous diffusive effect. Explicitly, consider a medium composed of two
materials: a set of blocks, where the permeability is relatively low, and fissures where
the permeability is relatively high (see for instance [1, 9, 39]). Assuming that the region
occupied by the fissures is connected and that the blocks are arranged periodically, the
fluid flow in this situation is modeled by the equation

∂tu
ε−∇·

(
aε∇uε

)
=f, aε(x) =1F

(x
ε

)
a
(x
ε

)
+ε21B

(x
ε

)
A
(x
ε

)
.

Here a,A are uniformly elliptic matrices representing the permeability in the fissures
and blocks respectively, and F,B denote the region occupied by the blocks and fissures
respectively. For this linear model, Clark [12] proved that as ε→0, the function uε

two-scale converges to a function U =U(x,y,t) that satisfies a coupled system, called the
double-porosity model, in which the fluid in the fissures is driven in a non-local manner
by the fluid in the blocks.

To understand this model probabilistically, one could study a diffusion Z̃ε whose
generator is ∇·aε∇. Inside the fissures, the process Z̃ε diffuses freely until it hits the
boundary of a block. Upon hitting a block boundary, the contrast between the block
and fissure permeabilities dictates that Z̃ε enters the blocks with probability O(ε), and
remains in the fissures with probability 1−O(ε). Since the blocks have diameter O(ε),
and the permeability there is O(ε2), the excursions of Z̃ε into the blocks take O(1)
amount of time. These characteristic features are exactly captured by the above comb
model: The spine plays the role of the fissures and the teeth play the role of the blocks
(rescaled to have size 1), and our gluing condition dictates that Zε enters the teeth with
probability O(ε).

Plan of this paper. The rest of the paper is organized as follows. We begin by
describing the limit process Z, and study its basic properties in Section 2. Next, in
Section 3 we prove Theorem 1.1 and all the required lemmas. In Section 4 we prove
Theorem 1.2 on the comb-shaped graph Cε. The proof is similar to that of Theorem 1.1,
but the technicalities are much simpler. Finally, in Section 5 we provide an alternate
proof of Theorem 1.2 using the trapped Brownian motion framework in [4].

2. The limit process
Before proving our main results in this paper, we give a more thorough description of

the limit process Z= (X,Y ). There are two canonical constructions of this process. The
first, relatively well-known construction involves directly writing Y as a time-changed
Brownian motion, and this is presented in Section 2.1. The second construction involves a
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characterization using the generator. While the technicalities using this second approach
are more involved, they relate to the PDE analogue and immediately yield Corollary 1.2.

Remark 2.1. The process Z depends on the parameters α>0, and h0∈ (0,∞]. To
simplify the presentation, we will subsequently assume h0 =1. The case h0 =∞ may
be handled by replacing the normal reflection at 1 with a diffusion on the semi-infinite
interval (0,∞).

2.1. Construction via time changes. We begin by constructing the limit
process Z using a time-changed Brownian motion. To construct the process Y , let B̄t
be a standard doubly-reflected Brownian motion on the interval (0,1). (Recall that in
Remark 2.1 we assumed h0 =1 for simplicity.) Let LB̄s (0) be the local time of B̄ at 0,
and define

ϕ(s) def= s+ 2
α
LB̄s (0), s>0.

Let T , defined by

T (t) =Tt
def= ϕ−1(t) = inf{s>0 |ϕ(s)> t}, (2.1)

denote the inverse of ϕ. Since ϕ is strictly increasing, note that T is continuous. Thus
the process Y , defined by

Yt
def= B̄Tt , (2.2a)

is a continuous process on [0,1]. Clearly, on any interval of time where Y remains inside
the interval (0,1], trajectories of Y and B̄ are identical. When Y hits 0, however, the
trajectories are slowed down on account of the time change T . The behavior at 0 is
known as a sticky reflection with parameter 1/α at 0, and we refer the reader to [33, 14,
§5.7] or the original papers of Feller [21,22] for more details.

Clearly once the process Y is known, the process X can be recovered using (1.2),
reproduced here for convenience:

Xt
def= W̄ 2

αL
Y
t (0). (2.2b)

Here W̄ is standard one dimensional Brownian motion that is independent of B̄. In-
tuitively, we think of R×{0} as the spine of the limiting comb, and R×(0,h0] as the
continuum of teeth. The process Tt may be interpreted as the time accumulated in the
teeth, and 2

αL
Y
t (0) is the time accumulated in the spine.

2.2. The SDE description. We now describe the process Z=(X,Y ) via a
system of SDEs. Let W and B be two independent standard one dimensional Brownian
motions. We claim that the process Z can be characterized as the solution of the system
of SDEs

dXt=1{Yt=0}dWt, (2.3a)
dYt=1{Yt 6=0}dBt−dLYt (1)+dLYt (0), (2.3b)

α1{Yt=0}dt= 2dLYt (0), (2.3c)

with initial distribution µ. Existence of a process Z satisfying (2.3a)–(2.3c) can be
shown abstractly using the Hille-Yosida theorem, and we refer the reader to [13] for the
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details. Instead, we will show existence by showing that the process Z constructed in
the previous section is a solution to (2.3a)–(2.3c).

Lemma 2.1. The process Z= (X,Y ) defined by (2.2a)–(2.2b) is a weak solution to the
system (2.3a)–(2.3c).

The proof of Lemma 2.1 boils down to an SDE characterization of sticky Brownian
motion that was recently shown by Engelbert and Peskir [19]. We remark that in [19]
the authors also show weak uniqueness of the appropriate SDE. While we present the
proof of existence below, we refer the reader to [19] for the proof of uniqueness.

Proof. (Proof of Lemma 2.1.) By the Tanaka formula we have

B̄t=B∗t +LB̄t (0)−LB̄t (1), (2.4)

where B∗ is a Brownian motion. Since Tt is a continuous and increasing time change,
B∗Tt is still a continuous martingale, LYt (0) =LB̄Tt(0) and LYt (1) =LB̄Tt(1). Note first

α

∫ t

0
1{Ys=0}ds=α

∫ t

0
1{B̄Ts=0}dϕ(Ts) =α

∫ Tt

0
1{B̄s=0}dϕ(s). (2.5)

Then since {t |B̄t=0} has Lebesgue measure 0 and LB̄t only increases on this set, we
decompose αϕ(s) =αs+2LB̄s to obtain

α

∫ Tt

0
1{B̄s=0}dϕ(s) = 2

∫ Tt

0
1{B̄s=0}dL

B̄
s (0) = 2LB̄Tt(0) = 2LYt (0), (2.6)

which implies (2.3c). Notice that since (2/α)LYt (0) is independent of W̄ , Xt is a
martingale with quadratic variation

〈X〉t= 2
α
LYt (0). (2.7)

In addition we have

〈B∗T 〉t=Tt.

Thus, for the process B defined by

Bt
def=B∗Tt +W̄ 2

αL
Y
t (0), (2.8)

we have 〈B〉t= t. For the filtration, we let

Gt=σ
(
N ∪F B̄Tt ∪F

X
t

)
where N denotes the collection of all F (B̄,W̄ )

∞ -null sets. Since B̄ and W̄ are independent,
it is easy to see that for all s>0, Xt−Xs is independent of Gs, and both B∗Tt and Xt

are G-martingales. Thus, B is also a G-martingale, and by Lévy’s criterion must be a
Brownian motion.

Now (2.3a)–(2.3b) follow from (2.3c), (2.8) and the fact that∫ t

0
1{Ys=0}dB

∗
Ts = 0 and

∫ t

0
1{Ys 6=0}dXs= 0.

This finishes the proof.
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2.3. Computing the generator (Lemma 2.2). We now compute the generator
of Z. In the teeth (when y>0) this is a standard calculation with Itô’s formula. In the
spine (when y= 0), however, one needs to estimate the time spent in the spine. We state
this precisely and carry out the details here.

Lemma 2.2. Let Ω0 =R× [0,1), and define the operator A by

A
def= 1

2∂
2
y . (2.9)

Define the domain of A, denoted by D(A), to be the set of all functions g∈C0(Ω0)∩
C2
b (Ω0) such that

∂yg(x,1) = 0, and ∂2
xg(x,0)+α∂yg(x,0) =∂2

yg(x,0). (2.10)

The generator of the process Z (defined by (2.2a)–(2.2b)) is the operator A with domain
D(A).

Proof. Choose g∈D(A) and apply Itô’s formula to obtain

g(Xt,Yt) =g(X0,Y0)+
∫ t

0
∂xg(Xs,Ys)dXs+

∫ t

0
∂yg(Xs,Ys)dYs

+ 1
α

∫ t

0
∂2
xg(Xs,Ys)dLYs (0)+ 1

2

∫ t

0
∂2
yg(Xs,Ys)dTs.

Taking expectations gives

E(x,y)
[
g(Xt,Yt)−g(x,y)

]
=E(x,y)

[∫ t

0
∂yg(Xs,Ys)dYs

]
+E(x,y)

[ 1
α

∫ t

0
∂2
xg(Xs,Ys)dLYs (0)+ 1

2

∫ t

0
∂2
yg(Xs,Ys)dTs

]
. (2.11)

Now for y∈ (0,1) we know Y is a Brownian motion before it first hits 0 or 1, and
hence limt→0 P y(LYt (0) 6=0)=0. Moreover by definition of T , we know Tt= t when
{LYt = 0}. Consequently

lim
t→0

E(x,y)
[g(Xt,Yt)−g(x,y)

t

]
= 1

2∂
2
yg(x,y).

For y= 1 we note

lim
t→0

E(x,1)
[g(Xt,Yt)−g(x,y)

t

]
=1

2∂
2
yg(x,1)+ lim

t→0
E(x,1)

[1
t

∫ t

0
∂yg(Xs,Ys)dYs

]
. (2.12)

By (2.4) we know E(x,1)LYt (1) =O(
√
t), and hence the right-hand side of (2.12) is finite

if and only if ∂yg(x,1) = 0.
Finally, we compute the generator on the spine y= 0. First we show that if we start

Y at 0 then for a short time it spends “most” of the time at 0. More precisely we claim

lim
t→0

E0
[Tt
t

]
= 0. (2.13)
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Here we clarify that the 0 superscript on E refers to the initial distribution of the
process B̄, whereas the double superscript E(x,y), or measure superscript Eµ used earlier
refers to the initial distribution of the joint process Z= (X,Y ).

Let Mt be the running maximum of B̃. Note that since LB̄ =LB̃ on {Mt<1}, we
have

P 0
(
LB̄t (0)6 r

)
6P 0

(
LB
∗

t (0)6 r
)

+P 0
(
Mt>1

)
=1−2P 0

(
r<B∗t <1

)
6

√
2
π

( r√
t

+
√
te−

1
2t

)
.

Thus,

E0
[Tt
t

]
=
∫ 1

0
P 0
(
Tt>st

)
ds=

∫ 1

0
P 0
(
st+2LB̄st(0)6 t

)
ds

=
∫ 1

0
P 0
(
LB̄st(0)6 (1−s)t

2

)
ds6

∫ 1

0

√
2
π

(2(1−s)√
s

√
t+
√
ste−1/2st

)
ds

6C
√
t.

With this estimate, we can now compute generator on the spine. Using Equation
(2.13) we see

E0
[
LYt (0)
t

]
=E0

[
LB̄Tt(0)
t

]
= α

2 E0
[
t−Tt
t

]
t→0−−−→ α

2 . (2.14)

Using (2.4) we have,

E0
[
Yt
t

]
=E0

[
B̄Tt
t

]
=E0

[
B̃Tt +LB̄Tt(0)−LB̄Tt(1)

t

]
.

Since Tt6 t, the third term tends to 0 and using the modulus of continuity for Brownian
motion the first term does as well. Therefore we also have

E0
[
Yt
t

]
t→0−−−→ α

2 . (2.15)

Thus using (2.13), (2.14) and (2.15) in Equation (2.11) gives

lim
t→0

1
t
E(x,y)

[
g(Xt,Yt)−g(x,y)

]
= α

2 ∂yg(x,0)+ 1
2∂

2
xg(x,0)+0,

finishing the proof.

2.4. PDE homogenization (Corollaries 1.1, 1.2, and Proposition 1.1).
Once the generator of Z is known, the behavior of the variance (Corollary 1.1) and PDE
homogenization result (Corollary 1.2) can be deduced quickly.

Proof. (Proof of Corollary 1.1.) We first assume h0 = 1 as in Remark 2.1. Using
Theorem 1.1 and (2.7) we see

lim
ε→0

E(x,0)|Xε
t −x|2 =E(x,0)|Xt−x|2 = 2

α
E0LYt (0). (2.16)
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Now Equation (1.3a) follows from (2.14).
For the long-time limit (when h0 = 1) we note that by ergodicity of B̄, we know that

E0|LB̄t /t−1/2|→0 as t→∞. Thus using (2.1) we must have

lim
t→∞

E0
∣∣∣T (t)
t
− α

α+1

∣∣∣= 0.

Consequently,

E0
(LYt (0)

t

)
=E0

(LB̄Tt
t

)
= α

2 E0
( t−Tt

t

)
t→∞−−−→ α

2(α+1) ,

and together with (2.16) this implies (1.3b). This finishes the proof of (1.3a) and (1.3b)
when h0 = 1. The case for arbitrary finite h0 is similar.

When h0 =∞, the process Y is a sticky Brownian motion on the half-line, and the
distribution of LYt (0) can be computed explicitly. Namely (see for instance [31]) we have

2
α
LYt (0) =

∫ t

0
1{Ys=0}ds∼

2|N |
α

(
t+N2

α2

)1/2
− 2N2

α2 , (2.17)

where N is the standard normal. Taking expectations and using (2.16) immediately
yields (1.3a) and (1.4), finishing the proof.

Proof. (Proof of Corollary 1.2.) By the Kolmogorov backward equation [26, §5.6]
we know that the function uε (defined by (1.5a)–(1.5b)) satisfies

uε(z,t) =Ezu0(Zεt ).

Consequently ∫
Ωε
uε(z,t)dµε(z) =Eµεu0(Zεt ) ε→0−−−→=Eµu0(Zt),

by Theorem 1.1. Thus, if we set

u(z,t) =Ezu0(Zt), (2.18)

we see that (1.6) holds.
It only remains to verify that u satisfies (1.7a)–(1.7d). To see this, recall that the

function u defined by (2.18) belongs to C(0,∞;D(A)) and satisfies the Kolmogorov
equations

∂tu−Au= 0 t>0,
u(·,t) =u0 when t= 0.

The first equation above implies (1.7a) by definition of A (Equation (2.9)). Equa-
tions (1.7b) and (1.7c) follow from the fact that u(·,t)∈D(A) for all t>0, and Equation
(1.7d) follows from the second equation above.

We now obtain evolution equations for the slice of u at y=0, as stated in Proposi-
tion 1.1.

Proof. (Proof of Proposition 1.1.) Let u1 =u−g, and observe that u1 satis-
fies (1.7a) with initial data u1(x,y,0) =u0(x,0) =v0(x), and boundary conditions

u1(x,0,t) =u(x,0,t) =v(x,t) and ∂yu1(x,1,t) = 0. (2.19)



COHN, IYER, NOLEN, AND PEGO 1827

(Recall that in Remark 2.1 we have already set h0 =1 for simplicity.) We now treat x
as a parameter, and solve (1.7a) using separation of variables (in y, t) with boundary
conditions (2.19). A direct calculation shows

∂yu1(x,0,t) =−∂wt v, (2.20)

and hence

∂yu(x,0,t) =−∂wt v(x,t)+∂yg(x,0,t). (2.21)

Now for t>0 using Equation (1.7a) and (1.7b) and continuity of second derivatives
of u up to y= 0 we see

∂tv(x,t) = α

2 ∂yu(x,0,t)+ 1
2∂

2
xv(x,t). (2.22)

Using (2.21) and (2.22) yields (1.8) as claimed.

Remark 2.2. For brevity, we have suppressed the explicit separation of variables
calculation deriving (2.20). One can avoid this calculation by using the Laplace transform
as follows. Following standard convention, we will denote the Laplace transform of a
function using an upper case letter using the variable s, instead of t. Explicitly, given a
function f , we define its Laplace transform, denoted by F or Lf , by

F (s) def=Lf(s) =
∫ ∞

0
e−stf(t)dt.

For functions that depend on both space and time variables, the Laplace transform will
only be with respect to the time variable.

Taking the Laplace transform of u1 yields the ODE in the variable y

sU1−v0−
1
2∂

2
yU1 = 0,

with boundary conditions U1(x,0,s)=V (x,s), and ∂yU1(x,1,s)=0. Solving this ODE
yields

U1(x,y,s) = v0

s
+
( 1

1+e2
√

2s

)(
V − v0

s

)[
ey
√

2s+e
√

2s(2−y)
]
,

and hence

∂yU1(x,0,s) =−
√

2s
(
V − v0

s

)
tanh

√
2s=−2tanh

√
2s√

2s

(
sV −v0

)
.

Choosing w to be a function with Laplace transform (1.9), implies (2.20) as claimed.

3. Comb-shaped domains (Theorem 1.1)
We now turn to the proof of Theorem 1.1. Recall that Zε,+t =πε(Zεt )=

(Xε
t ,max(Y εt ,0)). The main ingredients in the proof are the following lemmas.

Lemma 3.1. Let Zε=(Xε,Y ε) be the reflected Brownian motion on the comb-shaped
domain Ωε, as described in Theorem 1.1. Then, for any T >0, the family of processes
Zε is tight in C([0,T ];R2).

Lemma 3.2. Let A be the generator defined in (2.9), with domain D(A). Weak
uniqueness holds for the martingale problem for A.
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Lemma 3.3. If f ∈D(A), and K⊂Ω0 is compact, then

lim
ε→0

sup
z∈K∩Ωε

Ez
(
f(Zε,+t )−f(Zε,+0 )−

∫ t

0
Af(Zε,+s )ds

)
= 0. (3.1)

Momentarily postponing the proof of these lemmas, we prove Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Suppose first Zε,+→Z ′ weakly along some
subsequence. We claim Z ′ should be a solution of the martingale problem for A with
initial distribution µ. To see this set

Mε
t =f(Zε,+t )−f(Zε,+0 )−

∫ t

0
Af(Zε,+r )dr

and observe

Eµε
(
Mε
t

∣∣Fs)=Mε
s +EZεs (Mε

t−s),

by the Markov property. Using Lemma 3.3, and taking limits along this subsequence, the
last term on the right vanishes. Since this holds for all f ∈D(A) and D(A) is dense in
C0(Ω0), Z ′ must be a solution of the martingale problem for A. Since Zε,+→Z ′ weakly
and π∗ε (µε)→µ weakly by assumption, we have Z(0)∼µ. By uniqueness of solutions to
the martingale problem for A (Lemma 3.2), the above argument shows uniqueness of
subsequential limits of Zε,+. Combined with tightness (Lemma 3.1), and the fact that Z
is a solution to the martingale problem for A (Lemma 2.2), this gives weak convergence
as desired.

It remains to prove Lemmas 3.1–3.3. We do this in Sections 3.1, 3.2 and 3.3, below.

3.1. Proof of Tightness (Lemma 3.1). To prove tightness, we need an auxiliary
lemma comparing the oscillation of trajectories in the spine to that of Brownian motion.
This will also be used in the proof of Lemma 3.3.

Lemma 3.4. Let W ′ be a standard Brownian motion on R with W ′(0)=0. For any
T >0, ε∈ (0,1/2], z∈Ωε, and any a,δ>0, we have

P z
(

sup
r,t∈[0,T ]
|t−r|6δ

|Xε(t)−Xε(r)|>a
)
6P

(
sup

r,t∈[0,T ]
|t−r|6δ

4|W ′(t)−W ′(r)|>a−2ε
)
. (3.2)

Proof. Let

τ0 = inf
{
t>0

∣∣Xε(t)∈ε
(
Z+ 1

2
)}
,

and inductively define

τk+1 = inf
{
t> τk

∣∣ |Xε(t)−Xε(τk)|=ε
}
,

for k>0. By symmetry of the domain, observe that k 7→Xε(τk) defines a simple random
walk on the discrete points ε(Z+1/2). Next, define

τ ′k = inf{t> τk | |Xε(t)−Xε(τk)|=ε/4}, k>0.

In particular, τk<τ ′k<τk+1. At time τk, Xε(τk) is in the spine, at the midpoint
between two adjacent teeth. For t∈ [τk,τ ′k], Xε(t) is in the spine and cannot enter
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the teeth, because |Xε(t)−x|6ε/4 where x=Xε(τk)∈ε(Z+ 1
2 ). Define the increments

∆kX
ε=Xε(τk+1)−Xε(τk)∈{−ε,+ε}. By the strong Markov property and symmetry

of the domain, the random variables {(τ ′k−τk)}k∪{∆Xε
k}k are independent. That

is, {(τ ′k−τk)}k are independent, {∆Xε
k}k are independent, and the {(τ ′k−τk)}k are

independent of the {∆Xε
k}k.

Now, suppose that W ′(t) is an independent Brownian motion on R, with W ′(0) = 0.
Define another set of stopping times inductively by σ0 = 0 and

σk+1 = inf{t>σk | |W ′(t)−W ′(σk)|=ε/4}, k>0.

Let ∆σk =σk+1−σk, and ∆kW
′=W ′(σk+1)−W ′(σk)∈{−ε/4,ε/4}. Observe that the

family of random variables

{(σk+1−σk),4∆W ′k}k>0

has the same law as the family

{(τ ′k−τk),∆Xε
k}k>0.

Next, define

K(t) = max{k>0 | τk6 t},

and observe that if |t−r|6 δ and 06 r6 t6T , then we must have τK(t)−τK(r)+1 6 δ
and thus

K(t)−1∑
j=K(r)+1

(τ ′j−τj)6 δ, and
K(t)−1∑
j=0

(τ ′j−τj)6T.

In this case,

|Xε(t)−Xε(r)|62ε+ |Xε(K(t))−Xε(K(r)+1)|

=2ε+
∣∣∣ K(t)−1∑
j=K(r)+1

∆Xε
j

∣∣∣
62ε+ sup

06`6m

∣∣∣ m−1∑
j=`+1

∆Xε
j

∣∣∣1{∑m−1
j=`+1

(τ ′
j
−τj)6δ

}1{∑m−1
j=0

(τ ′
j
−τj)6T

}.
This last supremum has the same law as

sup
06`6m

∣∣∣ m−1∑
j=`+1

4∆W ′j
∣∣∣1{∑m−1

j=`+1
(σj+1−σj)6δ

}1{∑m−1
j=0

(σj+1−σj)6T
}

= sup
06`6m

4|W ′(σm)−W ′(σ`+1)|1{σm−σ`+16δ}1{σm−σ06T}.

Since the right-hand side of the above is bounded by

sup
r,t∈[0,T ]
|t−r|6δ

4|W ′(t)−W ′(r)|,

we obtain (3.2).



1830 ANOMALOUS DIFFUSION IN COMBS

We now prove Lemma 3.1.

Proof. (Proof of Lemma 3.1.) Note first that Lemma 3.4 immediately implies
that the processes Xε are tight. Indeed, by (3.2) we see

lim
δ→0

limsup
ε→0

P µε
(

sup
r,t∈[0,T ]
|t−r|6δ

|Xε(t)−Xε(r)|>a
)

= 0. (3.3)

Moreover, since µε converge weakly to the probability measure µ, the distributions of
Xε

0 are tight. This implies implies tightness of the processes Xε.
For tightness of Y ε, we note as above that the distributions of Y ε0 are already tight.

In order to control the time oscillations, fix T >0, and let

dZε=dBt+dL∂Ωε
t ,

be the semi-martingale decomposition of Zε (see for instance [40]). Here B= (B1,B2) is
a standard Brownian motion and L∂Ωε is the local time of Zε on ∂Ωε. Let ω(δ) =ωT (δ),
defined by

ω(δ) = sup
s,t∈[0,T ]
|t−s|6δ

|B2(t)−B2(s)|,

be the modulus of continuity for B2 over [0,T ]. Let [s,t]⊂ [0,T ] with |t−s|6 δ. If
0<Y εr <1 for all r∈ (s,t), then we must have

|Y ε(t)−Y ε(s)|= |B2(t)−B2(s)|6ω(δ).

Otherwise, for some r∈ (s,t) either Yr = 0 or Yr = 1. Let Gδ be the event that ω(δ)<1/2;
on this event Y cannot hit both 0 and 1 on the interval [s,t]. Define

η−= inf{r>s |Y εr ∈{0,1}}, and η+ = sup{r<t |Y εr ∈{0,1}}.

In this case we have

|Y εt −Y εs |6max(|Y ε(η−)−Y ε(s)| , |Y ε(t)−Y ε(η+)|)+1Gc
δ
+ε2

= max(|B(η−)−B(s)| , |B(t)−B(η+)|)+1Gc
δ
+ε2 6ω(δ)+1Gc

δ
+ε2.

Combining the two cases, we see that for any z∈Ωε,

P z
(

sup
s,t∈[0,T ]
|t−s|6δ

|Y ε(t)−Y ε(s)|>a
)
6P (ω(δ)>a−ε2)+P (Gcδ).

Since the right-hand side is independent of z, integrating over z with respect to µε
implies

lim
δ→0

limsup
ε→0

P µε
(

sup
s,t∈[0,T ]
|t−s|6δ

|Y ε(t)−Y ε(s)|>a
)

= 0

holds for any a>0. This shows tightness of Y ε in C([0,T ]), finishing the proof of
Lemma 3.1.
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3.2. Uniqueness for the martingale problem (Lemma 3.2). The proof of
Lemma 3.2 relies on the existence of regular solutions to the corresponding parabolic
equation. We state this result next.

Lemma 3.5. For all f ∈D(A), there exists a solution to

∂tu−Au= 0, u(·,0) =f, with u(·,t)∈D(A). (3.4)

Given Lemma 3.5, the proof of Lemma 3.2 is standard (see for instance [20,38]). For
the readers convenience, we describe it briefly here.

Proof. (Proof of Lemma 3.2.) Suppose Z,Z ′ are two processes satisfying the
martingale problem for A. Let f ∈D(A) be any test function, and u be the solution
in D(A) of ∂tu−Au=0 with initial data f . Then for any z∈Ω0, and fixed T >0, the
processes u(Zt,T − t) and u(Z ′t,T − t) are both martingales under the measure P z. Hence

Eµf(ZT ) =
∫

Ω0

Ezf(ZT )µ(dz) =
∫

Ω0

Ezu(Zt,T − t)µ(dz) =
∫

Ω0

u(z,T )µ(dz)

=
∫

Ω0

Ezu(Z ′t,T − t)µ(dz) =
∫

Ω0

Ezf(Z ′T )µ(dz) =Eµf(Z ′T ).

Since D(A) is dense in C0(Ω0) this implies Z and Z ′ have the same one dimensional
distributions. By the Markov property, this in turn implies that the laws of Z and Z ′
are the same.

It remains to prove Lemma 3.5.

Proof. (Proof of Lemma 3.5.) Let v(x,t)=u(x,0,t). Since (3.4) is equivalent
to (1.7a)–(1.7c), Proposition 1.11 implies that v satisfies the Basset-type Equation (1.8).
For the homogeneous equation associated with (1.8), existence and uniqueness is proved
in [11]. The inhomogeneous equation can be solved using an analog of Duhamel’s
principle [41,42]. Explicitly, for s>0, let ṽs be a solution to the equation

∂tṽs(x,t)+ α

2 ∂
w
t ṽs(x,t)−

1
2∂

2
xṽs(x,t) = 0, for t>s, (3.5a)

ṽs(x,s) =
(
I+ α

2 I
w
s

)−1αf(x, ·)
2 . (3.5b)

Here Iw· is the integral operator with kernel w defined by

Iwt h=
∫ t

0
w(t−s)h(s)ds,

for any function h : (0,∞)→R. Since Iw is a compact operator, the operator
(I+(α/2)Iw) is invertible, ensuring the initial condition (3.5b) can be satisfied. For
convenience, define ṽs(x,r)= ṽs(x,s) when r<s. Now, one can directly check that the
function v defined by

v(x,t) def=
∫ t

0
ṽs(x,t)ds,

is a strong solution to the inhomogeneous Equation (1.8).

1We remark that the proof of Proposition 1.1 is self contained, and does not rely on Theorem 1.1.
Thus its use here is valid and does not lead to circular logic loop.
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Since u satisfies the heat equation for y∈ (0,1) we can write u in terms of v and f
using the heat kernel. Explicitly, we have

u(x,y,t) = α

2

∫ 1

0
K ′′t (y,z)f(z)dz+κ

∫ t

0
∂zK

′′
t−s(y,0)v(x,s)ds,

where K ′′ is the heat kernel on (0,1) with Dirichlet boundary conditions at y=0 and
Neumann boundary conditions at y= 1. Since v is C2,1 this immediately implies u∈C2,1.
Thus to show u(·,t)∈D(A) we only need to verify the flux condition (2.10). This,
however, follows immediately from the fact that ∂2

yu(x,0,t) = 2∂tu(x,0,t) = 2∂tv(x,t) and
Equation (2.22).

3.3. Generator estimate (Lemma 3.3). The main idea behind the proof of
Lemma 3.3 is to balance the local time Zε spends at the “gate” between the spine and
teeth, and the time spent in the spine. Explicitly, let S def= R×(−ε,0) denote the spine
of Ωε, and T , defined by

T
def=
⋃
k∈εZ

{
(x,y)

∣∣ |x−εk|< αε2

2 , y∈ (0,1)
}
,

denote the collection of the teeth (see (1.1) and Figure 1.1). Let the “gate” G, defined
by

G
def= ∂T ∩∂S=

⋃
k∈εZ

{
(x,0)

∣∣ |x−εk|6 αε2

2
}
,

denote the union of short segments connecting the spine and teeth. Let LGt denote the
local time of Zεt at the set G. Now the required local time balance can be stated as
follows.

Lemma 3.6. For every g∈C1
b (R) and K⊆Ω0 compact we have

lim
ε→0

sup
z∈K∩Ωε

Ez
(
α

∫ t

0
g(Xε

s )1{Y εs <0}ds−2
∫ t

0
g(Xε

s )dLGs
)

= 0. (3.6)

Next, we will also need to show that the local times on the left edges and right edges
of the teeth balance. Explicitly, let ∂T−, ∂T+ defined by

∂T−
def=
{

(x,y)∈Zε
∣∣x∈εZ− αε2

2 , y>0
}
,

and ∂T+ def=
{

(x,y)∈Zε
∣∣x∈εZ+ αε2

2 , y>0
}
.

denote the left and right edges of the teeth respectively. Let L+ and L− be the local
times of Zε about ∂T− and ∂T+ respectively, and let L± denote the difference

L±=L−−L+.

The balance on the teeth boundaries we require is as follows.

Lemma 3.7. For every f ∈D(A) and K⊆Ω0 compact, we have

lim
ε→0

sup
z∈K∩Ωε

Ez
(∫ t

0

1
2∂

2
xf(Zε,+s )1{Y εs >0}ds+

∫ t

0
∂xf(Zε,+s )dL±s

)
= 0. (3.7)



COHN, IYER, NOLEN, AND PEGO 1833

Momentarily postponing the proofs of Lemmas 3.6 and 3.7, we prove Lemma 3.3.

Proof. (Proof of Lemma 3.3.) Given f ∈D(A), we define fε : Ωε→R by

fε(x,y) def= f(x,y+).

Thus, f(Zε,+t ) =fε(Zεt ), and (3.1) reduces to showing

lim
ε→0

sup
z∈K∩Ωε

Ez
(
fε(Zεt )−fε(Zε0)−

∫ t

0

1
2∂

2
yf

ε(Zεs )ds
)

= 0.

Since f ∈D(A), we have ∂2
xf(x,0)+α∂yf(x,0) =∂2

yf(x,0) and ∂yf(x,1) = 0. There-
fore, the extension fε satisfies ∂2

xf
ε(x,y)=∂2

yf
ε(x,0+)−α∂yfε(x,0+) for (x,y)∈S, as

well as ∂yfε=0 for (x,y)∈S. Notice that ∂yfε may be discontinuous across G. Using
these facts and Itô’s formula, we compute

Ez
(
fε(Zεt )−fε(Zεs )

)
=Ez

(∫ t

0

1
2
(
∂2
yf(Zε,+s )+∂2

xf(Zε,+s )
)
1{Y εs >0}ds

)
+Ez

(∫ t

0

1
2∂

2
xf(Xε

s ,0+)1{Y εs <0}ds
)

+Ez
(∫ t

0
∂yf(Xε

s ,0+)dLGs +
∫ t

0
∂xf(Zε,+s )dL±s

)
=Ez

(∫ t

0

1
2
(
∂2
yf(Zε,+s )+∂2

xf(Zε,+s )
)
1{Y εs >0}ds

)
+Ez

(1
2

∫ t

0

(
∂2
yf(Xε

s ,0+)−α∂yf(Xε
s ,0+)

)
1{Y εs <0}ds

)
+Ez

(∫ t

0
∂yf(Xε

s ,0+)dLGs +
∫ t

0
∂xf(Zε,+s )dL±s

)
,

and hence

Ez
(
fε(Zεt )−fε(Zε0)−

∫ t

0

1
2∂

2
yf

ε(Zεs )ds
)

=Ez
(∫ t

0

1
2∂

2
xf(Zε,+s )1{Y εs >0}ds+

∫ t

0
∂xf(Zε,+s )dL±s

)
− 1

2Ez
(∫ t

0
α∂yf(Xε

s ,0+)1{Y εs <0}ds−2
∫ t

0
∂yf(Xε

s ,0+)dLGs
)
.

Using Lemmas 3.6 and 3.7 we see that the supremum over z∈Ωε∩K of the right-hand
side of the above vanishes as ε→0. This proves Lemma 3.3.

It remains to prove Lemmas 3.6 and 3.7, and we do this in Sections 3.4 and 3.6
respectively.

3.4. Local time at the gate (Lemma 3.6). The crux in the proof of Lemma 3.6
is an oscillation estimate on the solution to a specific Poisson equation with Neumann
boundary conditions (Proposition 3.1, below). We state this when it is first encountered,
and prove it in the next subsection.

Proof. (Proof of Lemma 3.6.) The expectation in (3.6) can be written as

Ez
(∫ t

0
αg(Xε

s )1{Y εs <0}ds−2
∫ t

0
g(Xε

s )dLGs
)
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=
∑
k∈Z

g(εk)Ez
(
α

∫ t

0
1{Y εs <0}1{|Xεs−εk|<ε/2}ds−2

∫ t

0
1{|Xεs−εk|<ε/2}dL

G
s

)
+Rε (3.8)

where the remainder term Rε is given by

Rε
def= α

∑
k∈Z

Ez
(∫ t

0
(g(Xε

s )−g(εk))1{Y εs <0}1{|Xεs−εk|<ε/2}ds
)

−2Ez
(∫ t

0
(g(Xε

s )−g(εk))1{|Xεs−εk|<ε/2}dL
G
s

)
def=Rε1 +Rε2.

To estimate Rε, for any δ>0 we choose sufficiently large M>0 such that

sup
(x,y)∈K

E
(∫ t

0
1{|x|+4|Ws|+2>M}ds

)
<

δ

‖g‖∞
, (3.9)

where W is a standard Brownian motion in R. Here we write P and E (without
superscripts) to denote the probability measure and expected value for a standard
Brownian motion. By Lemma 3.4, we have

P z(|Xε
s |+1>M)6P (x+4|Ws|+2>M),

where z= (x,y) and so the above estimate can be applied forXε independent of ε∈ (0,1/2].
Since g is continuous and hence uniformly continuous on [−M,M ], for any δ>0 we can
choose ε>0 such that if x1,x2∈ [−M,M ] with |x1−x2|<ε then |g(x1)−g(x2)|<δ. For
such ε and for integers k∈ε−1[−M,M ] we have

E(x,y)
∫ t

0
|g(εk)−g(Xε

s )|1{Y εs <0, |Xεs−εk|<ε/2}ds

6δ
∫ t

0
P z
(
|Xε

s −εk|<ε/2
)
ds. (3.10)

Combining the above with (3.9), gives the following estimate of Rε1

|Rε1|6α

(
δ

∑
k∈Z

εk∈[−M,M ]

∫ t

0
P z
(
|Xε

s −εk|<
ε

2

)
ds

+2‖g‖∞
∑
|εk|>M

∫ t

0
P z
(
|Xε

s −εk|<
ε

2

)
ds

)
6α(t+2)δ.

Since δ>0 was arbitrary this proves Rε1→0 as ε→0. An estimate for Rε2 can be obtained
in the same manner. Namely,

|Rε2|62
(
δEz

(
LGt
)

+2‖g‖∞
∑
k∈Z
|εk|>M

Ez
(∫ t

0
1{|Xεs−εk|<ε/2}dL

G
s

))

6 c(t)δ+2‖g‖∞Ex
(∫ t

0
1{|Xεs |+1>M}dL

G
s

)
.
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Let τ = inf{t | |Xε
t |+1>M} and note that by the Markov property

Ez
(∫ t

0
1{|Xεs |+1>M}dL

G
s

)
6Ez

(
EXετ

(
LGt−t∧τ

))
6
(

sup
z′

Ez′
(
LGt
))

P z(τ <t).

Applying Itô’s formula to w(Zε), where

w(x,y) def=


1
2(1−y)2, y∈ [0,1],

0, otherwise,

shows

Ez(LGt ) =O(1) as t→0. (3.11)

By choosing M larger, if necessary, we have

sup
z∈K

P z(τ <t)<δ

for all ε∈ (0,1/2]. Since δ>0 is arbitrary, this shows that Rε2→0 as ε→0.
Next, we need a PDE estimate to control the expression

Ez
(
α

∫ t

0
1{Y εs <0}1{|Xs−εk|<ε/2}ds−2

∫ t

0
1{|Xs−εk|<ε/2}dL

G
s

)
,

from (3.8). To this end, let Q be a region of width ε directly below the tooth at x=0,
and G0 be the component of G contained in [−ε/2,ε/2]×R. Explicitly, let

Q
def=
[
−ε2 ,

ε

2

]
×
[
−ε,0

]
and G0 =

{
(x,0)

∣∣∣−αε2

2 <x<
αε2

2

}
. (3.12)

Let µε denote the one dimensional Hausdorff measure supported on G0 (i.e. a measure
supported on G0).
Proposition 3.1. Let the function uε : Ωε→R be the solution of

−∆uε=α1Q−µε in Ωε (3.13)
∂νu

ε= 0 on ∂Ωε, (3.14)

with the normalization condition

inf
Ωε
uε= 0. (3.15)

Then there exists a constant C>0, independent of ε such that

sup
Ωε

uε(z)6Cε2|lnε|. (3.16)

Remark 3.1. Existence of a solution to (3.13)–(3.14) can be proved by using [18, Thm.
2.2] and a standard approximation argument to deal with the unbounded domain. See
also [27, Thm. 2.2.1.3].
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Throughout the remainder of this proof and the section, we will use the convention
that C>0 is a constant that is independent of ε. We apply Itô’s formula to the function
uε defined in Proposition 3.1 to obtain

2Ez(uε(Zεt )−uε(Zε0)) =−Ez
(
α

∫ t

0
1Q(Zεs )ds−2LG0

t

)
.

=Ez
(
α

∫ t

0
1{Y εs <0}1{|Xs|<ε/2}ds−2

∫ t

0
1{|Xs|<ε/2}dL

G
s

)
.

The oscillation bound (3.16) now implies∣∣∣∣Ez
(
α

∫ t

0
1{Y εs <0}1{|Xs−εk|<ε/2}ds−2

∫ t

0
1{|Xs−εk|<ε/2}dL

G
s

)∣∣∣∣6Cε2| logε|

holds for all k and x∈R. Because of (3.9), we can restrict the sum in (3.8) to k∈Z for
which ε|k|6M (i.e. only O(ε−1) terms in the sum). Therefore,

∑
k∈Z

ε|k|6M

Ez
(
α

∫ t

0
1{Y εs <0}1{|Xεs−εk|<ε/2}ds−2

∫ t

0
1{|Xεs−εk|<ε/2}dL

G
s

)
6O(ε| log(ε)|).

Combining this with the above estimates, we conclude that (3.6) holds.

To complete the proof of Lemma 3.6, it remains to prove Proposition 3.1. We do
this in the next subsection.

3.5. An oscillation estimate for the Neumann problem (the proof of
Proposition 3.1). The proof of Proposition 3.1 involves a “geometric series” argument
using the probabilistic representation. Explicitly, we obtain the desired oscillation esti-
mate by estimating the probabilities of successive visits of Zε between two segments. The
key step in the proof involves the so-called narrow escape problem (see for instance [30]),
which guarantees that the probability that Brownian motion exists from a given interval
on the boundary of a domain vanishes logarithmically with the interval size. In our
specific scenario, however, we can not directly use the results of [30] and we prove the
required estimates here.

Proof. (Proof of Proposition 3.1.) Note first that∫
Ωε

(
α1Q−µε

)
dz= 0,

and hence a bounded solution to (3.13)–(3.14) exists. Moreover, because the measure
α1Q(z)−µε is supported in Q̄, the function uε is harmonic in Ωε−Q̄. Thus, by the
maximum principle,

sup
Ωε

uε6 sup
Q
uε.

Define Q′⊇Q to be the region that enlarges Q by ε2 on the top, and ε/4 on the
sides. Precisely, let

Q′
def= Ωε

⋂([
−3ε

4 ,
3ε
4
]
×
[
−ε,ε2]).
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Q

G0

A′

D′ D′D D

Fig. 3.1. Image of one period of Ωε.

The first step is to estimate the oscillation of uε on the top and side portion of Q′. Let A′
and D′, defined by

A′
def=
[
−αε

2

2 ,
αε2

2

]
×
{
αε2} and D′

def=
{
±3ε

4

}
×
[
−ε,0

]
(3.17)

denotes the top and sides of Q′ respectively. See Figure 3.1 for an illustration. We aim
to show

sup
a,d∈A′∪D′

|uε(a)−uε(d)|6Cε2|lnε|. (3.18)

Let τ0 be the first time at which the process Zεt hits the gate G0 (defined in (3.12)).
The stopping time τ0 is finite almost surely, but has infinite expectation. We claim that
the distribution of Zετ0 on G is bounded below by a constant multiple of the Hausdorff
measure, uniformly over all initial points in A′∪D′.

Lemma 3.8. For any z∈A′∪D′, let ρ(z,·), defined by

ρ(z,r) =P z(Zετ0 ∈dr),

denote the density of the random variable Zετ0 on G0. Then, there exists δ>0 such that

ρ(z,r)> δ

αε2 , (3.19)

for all z∈A′∪D′ and r∈G0.

Momentarily postponing the proof of this lemma, we note that for any a,d∈A′∪D′,
we have

Eauε(Zετ0)−Eduε(Zετ0) =
∫
G0

ρ(a,r)uε(r)dr−
∫
G0

ρ(d,r)uε(r)dr

=
∫
G0

(
ρ(a,r)− δ

αε2

)
uε(r)dr−

∫
G0

(
ρ(d,r)− δ

αε2

)
uε(r)dr

6 (1−δ)
(

sup
G0

uε− inf
G0
uε
)
6 (1−δ)

(
sup

r1,r2∈G0

|uε(r1)−uε(r2)|
)
.
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To obtain the second last inequality above we used the fact that

ρ(z,r)− δ

αε2 >0, (3.20)

which is guaranteed by Lemma 3.8.
Now by Itô’s formula,

uε(a)−uε(d) =Eauε(Zετ0)−Eduε(Zετ0)− 1
2Ea

(
2LG

+
0

τ0 −α
∫ τ0

0
1Q(Zεs )ds

)
+ 1

2Ed
(

2LG
+
0

τ0 −α
∫ τ0

0
1Q(Zεs )ds

)
6 (1−δ) sup

r1,r2∈G0

|uε(r1)−uε(r2)|− 1
2Ea

(
2LG

+
0

τ0 −α
∫ τ0

0
1Q(Zεs )ds

)
+ 1

2Ed
(

2LG
+
0

τ0 −α
∫ τ0

0
1Q(Zεs )ds

)
. (3.21)

Note that by definition of τ0 we have LG
+
0

τ0 = 0 for all a,d∈A′∪D′. Also, if a∈A′, then
Y εs >0 for all s∈ [0,τ0] with probability one. Hence

sup
a,d∈A′∪D′

∣∣∣−1
2Ea

(
2LG

+
0

τ0 −α
∫ τ0

0
1Q(Zεs )ds

)
+ 1

2Ed
(

2LG
+
0

τ0 −α
∫ τ0

0
1Q(Zεs )ds

)∣∣∣
6α sup

d∈D′
Ed

∫ τ0

0
1Q(Zεs )ds. (3.22)

We claim that the term on the right is bounded by Cε2|lnε|. To avoid distracting
from the main proof, we single this out as a lemma and postpone the proof.
Lemma 3.9. With the above notation,

sup
d∈D′

Ed

∫ τ0

0
1Q(Zεs )ds6Cε2|lnε|.

Using Lemma 3.9 and (3.22) in (3.21) we conclude

sup
a,d∈A′∪D′

|uε(a)−uε(d)|6 (1−δ) sup
r1,r2∈G0

|uε(r1)−uε(r2)|+Cε2|lnε|. (3.23)

To finish proving (3.18), we will now have to control the oscillation of uε on G0 in terms
of the oscillation of uε on A′∪D′.

For this, given Zε0 ∈G0, let τ ′0 be the first time that Zεt hits A′∪D′. By Itô’s formula
again, we have for all r1,r2∈G0:

uε(r1)−uε(r2)6 sup
a′,d′∈A′∪D′

(uε(a′)−uε(d′))

− 1
2Er1

(
2LG0

τ ′0
−α

∫ τ ′0

0
1Qds

)
+ 1

2Er2
(

2LG0
τ ′0
−α

∫ τ ′0

0
1Qds

)
. (3.24)

We claim that the last two terms above are O(ε2). For clarity of presentation we single
this out as a Lemma and postpone the proof.
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Lemma 3.10. With the above notation

sup
r∈G0

∣∣∣Er
(

2LG0
τ ′0
−α

∫ τ ′0

0
1Q(Zεs )ds

)∣∣∣6Cε2.

Using (3.24) and Lemma 3.10, we see

sup
r1,r2∈G0

|uε(r1)−uε(r2)|6 sup
a,d∈A′∪D′

|uε(a)−uε(d)|+Cε2. (3.25)

Combining this with (3.23), we obtain

sup
a,d∈A′∪D′

|uε(a)−uε(d)|6 (1−δ)
(

sup
a,d∈A′∪D′

|uε(a)−uε(d)|+Cε2|lnε|
)

+Cε2.

and hence

sup
a,d∈A′∪D′

|uε(a)−uε(d)|6C
(1−δ

δ

)
ε2|lnε|+ C

δ
ε2. (3.26)

This proves (3.18) as desired.
Now we turn this into an oscillation bound on uε over the interior. Observe that for

any z∈Ωε,

uε(z) =Ez[uε(Zετ ′0)]+ 1
2Ez

(
2LY

ε

τ ′0
(0+)−α

∫ τ ′0

0
1{Y εs 60}ds

)
(3.27)

These last terms can be estimated with the same argument used in Lemma 3.10, leading
to

sup
z∈Ωε
|uε(z)−Ezuε(Zετ ′0)|6Cε2.

The combination of this and (3.26) implies that

sup
z1,z2∈Ωε

|uε(z1)−uε(z2)|6 sup
z1,z2∈Ωε

|Ez1uε(Zετ ′0)−Ez2uε(Zετ ′0)|+Cε2 6Cε2(|lnε|+1).

This implies (3.16), concluding the proof.

For the proof of Lemma 3.8 we will use a standard large deviation estimate for
Brownian motion. We state the result we need below.

Lemma 3.11. Let Wt be a standard Brownian motion in Rd. Let γ∈C([0,T ];Rd) be
absolutely continuous with S(γ) =

∫ T
0 |γ

′(s)|2ds<∞. Then

P

(
sup
t∈[0,T ]

|W (t)−γ(t)|6 δ
)
>

P (K)
2 e−

1
2S(γ)−

√
2S(γ)/P (K)

where K is the event {supt∈[0,T ] |W (t)|6 δ}.

The proof of Lemma 3.11 is standard – it follows from a change of measure, as in
the proof of Theorem 3.2.1 of [25], for example. For convenience we provide a proof at
the end of this section, and prove Lemmas 3.8, 3.9 and 3.10 next.
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Proof. (Proof of Lemma 3.8.) We need to show that for an interval [r1,r2]⊂
[−αε2/2,αε2/2],

inf
z∈A′∪D′

P z
(
Zετ0 ∈ [r1,r2]×{0}

)
>C
|r2−r1|
αε2 .

Suppose z∈D′ (the case z∈A′ is similar but less complicated by the domain geometry).
In order to hit G0, the process must first hit the boundary of B(0,αε2) which is a ball of
radius αε2, centered at the origin (0,0), since G0⊂B(0,αε2). So, by the strong Markov
property, it suffices to show that

inf
z∈B(0,ε2)

P z
(
Zετ0 ∈ [r1,r2]×{0}

)
>C
|r2−r1|
αε2 .

Suppose that [r1,r2] = [r0−κ,r0 +κ]. Let `={r0}× [−ε2,0) be the vertical line segment

γ(T ) γ

G0

(r0,0)

κ

`
z

δ

Fig. 3.2. The curve γ starts on ∂B(0,ε2), goes through the line ` while keeping a distance δ from
the gate G0.

of length ε2 below the desired exit interval. Let T =ε4, δ=ε2/4, and let γ be a curve
parametrized by arc-length such that γ(0) =z and the event supt∈[0,T ] |Zε(t)−γ(t)|6 δ
implies that Zε hits ` before G0 (one example of such a curve is shown in Figure 3.2).
We can choose such a curve γ for which |γ′|6O(ε−2), so that the quantity S(γ) in
Lemma 3.11 is bounded independent of ε and of z=γ(0)∈B(0,ε2). Notice also that the
set K from Lemma 3.11 satisfies

P (K) =P
(

sup
t∈[0,T ]

|W (t)|6 δ
)

=P
(

sup
t∈[0,1]

|W (t)|6 δ√
T

)
by Brownian scaling. Then since δ/

√
T is constant, this probability is bounded below

and Lemma 3.11 states the probability that Zεt hits ` before G0 is bounded below (away
from zero), independent of ε. By the Markov property it now suffices to finish the proof
assuming z0∈ `. Then consider the unique circle with center at z0∈ ` such that the circle
intersects G0 at the points (r0−κ,0) and (r0 +κ,0). By symmetry of Brownian motion,
the exit distribution on the circle is uniform. The probability that Zετ0 ∈ [r0−κ,r0 +κ]
is at least the probability of exiting this circle along the arc above G0, which is the
ratio of the arc length to the circumference. This probability is bounded below by
2κ/(αε2)& |r1−r2|/(αε2).
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Proof. (Proof of Lemma 3.9.) By the Markov property, Lemma 3.9 will follow
from the estimate

sup
z∈Q

Ez

∫ τ0

0
1Q(Zεs )ds6Cε2|lnε|. (3.28)

Let D={±ε/2}× [−ε,0] be the sides of Q, and recall D′ (defined in (3.17)) denotes the
sides of Q′. We consider two sequences of stopping times, ζi, ηi, denoting successive
visits of Zε to G0∪D′ and D respectively. Precisely, let η0 = 0, inductively define

ζi= inf{s>ηi−1 |Zεs ∈G0∪D′}
ηi= inf{s>ζi |Zεs ∈D},

for i∈{1,2,. ..}, and let

M = min{n∈N |Zεζn ∈G0}.

Notice that ζM = τ0. Using the strong Markov property, and the fact that Zεs /∈Q for
s∈ (ζi,ηi) for all i<M , we obtain

Ez

∫ τ0

0
1Q(Zεs )ds=Ez

M∑
i=1

∫ ζi

ηi−1

1Q(Zεs )ds=Ez
M∑
i=1

E
Zεηi−1

∫ ζ1

0
1Q(Zεs )ds

6 (EzM)
(

sup
d∈D

Ed

∫ ζ1

0
1Q(Zεs )ds

)
. (3.29)

Since ζ1 is bounded by the exit time of a one dimensional Brownian motion (the first
coordinate of Zε) from an interval of length 3ε/2, we know

sup
d∈D

Edζ1 6Cε
2.

Using this in (3.29) shows

Ez

∫ τ0

0
1Q(Zεs )ds6Cε2EzM. (3.30)

We now estimate EzM . Notice that

P z(M >n) =P z(Zεζ1 6∈G0, Z
ε
ζ2 6∈G0, ... , Z

ε
ζn 6∈G0)

=Ez
(

1{Zε
ζ1
6∈G0, Zεζ2

6∈G0, ..., Zεζn−1
6∈G0}P

Zεηn−1 (Zεζ1 6∈G0)
)

6P z(Zεζ1 6∈G0, Z
ε
ζ2 6∈G0, ... , Z

ε
ζn−1
6∈G0)

(
sup
d∈D

P d(Zεζ1 6∈G0)
)

=P z(M >n−1)
(

sup
d∈D

P d(Zεζ1 6∈G0)
)
.

Thus, by induction

P z(M >n)6
(

sup
d∈D

P d(Zεζ1 6∈G0)
)n
.

Now we claim that there exists a constant c0>0, independent of ε, such that

sup
d∈D

P d
(
Zεζ1 6∈G0

)
<1− c0

|lnε| . (3.31)
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This is the key step in the proof. Once established, it implies

EzM =
∞∑
n=1

P z(M >n)6
∞∑
n=1

(
1− c0
|lnε|

)n−1
= |lnε|

c0
,

which when combined with with (3.30) yields

sup
z∈D

Ez

∫ τ1

0
1Q(Zεs )ds6 Cε2|lnε|

c0
. (3.32)

This proves (3.28) and finishes the proof of Lemma 3.9.

Thus it only remains to prove (3.31). We will prove it by showing

inf
z∈D

P z
(
Zεζ1 ∈G0

)
>

c0
|lnε| . (3.33)

We will prove this in three stages. First, by scaling, it is easy to see that the probability
that starting from D the process Zε hits B(0,ε/4) before D′ with probability c0>0.
Next, using the explicit Green’s function in an annulus we show that the probability
that starting from B(0,ε/4), the process Zε hits B(0,αε2) before exiting B(0,ε/2) with
probability c0/|lnε|. Finally, by scaling, it again follows that starting from B(0,αε2) the
process Zε hits G0 before exiting B(0,2αε2) with probability c0>0.

For the first stage, consider the stopping times

σε/4 = inf
{
t>0

∣∣∣Zεt ∈B(0, ε4

)}
,

σD′ = inf{t>0 |Zεt ∈D′}.

By rescaling, it immediately follows that

inf
z∈D

P (σε/4<σD′ |Zε0 =z)>p1, (3.34)

for some p1>0, independent of ε.
For the second stage suppose Zε0 ∈∂B(0,ε/4). Consider the stopping times σαε2 and

σε/2 defined by

σαε2 = inf{t>0 |Zεt ∈∂B(0,ε2)},
σε/2 = inf{t>0 |Zεt ∈∂B(0,ε/2)}.

The function

f(z) = ln(2|z|/ε)
ln(2αε)

is harmonic in B(0,ε/2)−B(0,αε2) and satisfies f =1 on ∂B(0,αε2), and f =0 on
∂B(0,ε/2). This implies that for all z∈B(0,ε/4) we have

P z(σαε2 <σε/2) =f(z) = ln(1/2)
ln(2ε) . (3.35)

Finally, for the last stage, let σ2αε2 be the first time Zε exits B(0,2αε2). By scaling,
it immediately follows that for all z∈∂B(0,αε2)

P z(τ0<σ2αε2)>p2, (3.36)
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for some constant p2>0, independent of ε.
The strong Markov property and (3.34), (3.35), and (3.36) imply

inf
z∈D

P (Zεζ1 ∈G0 |Zε0 =z)>p1 ·
ln(1/2)
ln(2αε) ·p2.

By the time-homogeneity of the Markov process Zε, this establishes (3.33), finishing the
proof.

Proof. (Proof of Lemma 3.10.) To estimate the local time term, consider the
function

w(x,y) =
{
αε2−y, y∈ [0,αε2],
αε2, otherwise,

which satisfies ∂yw(x,0+)−∂yw(x,0−) =−1 for x∈ [−αε2/2,αε2/2]. Let τA′ be the first
hitting time to the set A′, where we know w= 0. Using Itô’s formula we obtain

EzLG0
τA′

=w(z), z∈G0.

Clearly τA′ > τ ′0, and so

sup
z∈G0

EzLG0
τ ′0

6 sup
z∈G0

EzLG0
τA′

=αε2.

Next, we estimate the term

sup
z∈G0

Ez

∫ τ ′0

0
1Q(Zεs )ds. (3.37)

Let τD′ =inf{t>0 |Zεt ∈D′}, so that τD′ > τ ′0. Let H={(x,y)∈R2 |y=−ε} denote the
bottom boundary of Ω0, and let H ′=[−3ε/4,3ε/4]×{−ε}= Q̄′∩H. We now consider
repeated visits to H ′ before hitting D′. For this, define the stopping times {ζk}∞k=0
inductively by

ζ0 = inf{t>0 |Zεt ∈H},
ζk = inf{t> ζk−1 +ε2 |Zεt ∈H}, for k= 1,2,3,. ..,

and define

M = min{k∈N |Zεζk ∈H−H
′}.

Observe that if Zε0 ∈G0, then τD′ 6 ζM . Indeed, since ZεζM ∈H−H
′ and trajectories of

process Zε are continuous, they must must have passed through the set D′ at some time
before ζM .

Now, to bound (3.37) we observe∫ τ ′0

0
1Q(Zεs )ds6

∫ ζ0

0
1Q(Zεs )ds+

M∑
k=1

∫ ζk

ζk−1

1Q(Zεs )ds. (3.38)

On the event {M>k−1} we must have Zεζk−1
∈H ′. Using this observation, the strong

Markov property, and the time-homogeneity of the process, we see that for any z∈G0
we have

Ez

∫ τ ′0

0
1Q(Zεs )ds6Ez

∫ ζ0

0
1Q(Zεs )ds+Ez

M∑
k=1

∫ ζk

ζk−1

1Q(Zεs )ds
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=Ez

∫ ζ0

0
1Q(Zεs )ds+Ez

M∑
k=1

E
Zεζk−1

∫ ζ1

ζ0

1Q(Zεs )ds

6Ez

∫ ζ0

0
1Q(Zεs )ds+Ez

M∑
k=1

sup
z′∈H′

Ez′
∫ ζ1

ζ0

1Q(Zεs )ds

=Ez

∫ ζ0

0
1Q(Zεs )ds+(EzM) sup

z′∈H′
Ez′

∫ ζ1

ζ0

1Q(Zεs )ds. (3.39)

We now bound the right-hand side of (3.39). Note

EzM =
∞∑
j=1

P z(M > j) =
∞∑
j=1

P z(Zεζ0 ∈H
′, Zεζ1 ∈H

′, ... , Zεζj−1
∈H ′). (3.40)

By the Markov property

P z
(
Zεζi+1

∈H ′, Zεζi ∈H
′)=Ez

(
1Zε

ζi
∈H′P

Zεζi (Zεζ1 ∈H
′)
)

6
(

sup
z′∈H′

P z′(Zεζ1 ∈H
′)
)

P z(Zεζi ∈H
′) (3.41)

Now using Lemma 3.11 and the fact that ζ1 >ε2, one can show that

sup
z′∈H′

P z′(Zεζ1 ∈H
′)61−c0,

for some constant c0>0, independent of ε. Combining this with (3.41) and using
induction we obtain

∞∑
j=1

P z(Zεζ0 ∈H
′, Zεζ1 ∈H

′, ... , Zεζj−1
∈H ′)6

∞∑
j=1

(1−c0)j−1.

Thus, using (3.40) we see

EzM 6
1
c0
.

Using this in (3.39) we have

Ez

∫ τ ′0

0
1Q(Zεs )ds6Ez

∫ ζ0

0
1Q(Zεs )ds+ 1

c0
sup
z′∈H′

Ez′
∫ ζ1

ζ0

1Q(Zεs )ds

6Ez

∫ ζ0

0
1Q(Zεs )ds+ 1

c0

(
ε2 + sup

z′∈Ω
Ez′

∫ ζ0

0
1Q(Zεs )ds

)
. (3.42)

To bound this, consider the function

v(x,y) =
{

1
2 (ε2−y2), y∈ [−ε,0],
1
2ε

2, y>0.

and observe that for any z∈Ωε,

Ez

∫ ζ0

0
1Q(Zεs )ds6Ezζ0 =v(z)6 ε2

2 .
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Substituting this in (3.42) shows

Ez

∫ τ ′0

0
1Q(Zεs )ds6

(1
2 + 3

2c0

)
ε2,

completing the proof.

Finally, for completeness we prove Lemma 3.11. The proof is a standard argument
using the Girsanov theorem, and can for instance be found in [25] (see Theorem 3.2.1,
therein).

Proof. (Proof of Lemma 3.11.) Define Y (t)=W (t)−γ(t). Let B(t) be an
independent Brownian motion in R with respect to measure P . Let us define a new
measure Q by

dQ

dP
=e
−
∫ T

0
γ′(s)dB(s)− 1

2

∫ T
0
|γ′(s)|2ds

Let K̃ be the event K̃= K̃T,δ ={supt∈[0,T ] |B(t)|6 δ}. Let S(γ) =
∫ T

0 |γ
′(s)|2ds. Accord-

ing to the Girsanov theorem,

P ( sup
t∈[0,T ]

|Y (t)|6 δ) =Q(K̃)

=EP

[
1K̃e

−
∫ T

0
γ′(s)dB(s)− 1

2

∫ T
0
|γ′(s)|2ds

]
=e−

1
2S(γ)EP

[
1K̃e

−
∫ T

0
γ′(s)dB(s)

]
Now, by Chebyshev’s inequality and the Itô isometry,

P

(∫ T

0
γ′(s)dB(s)>α

√
S(γ)

)
6

1
α2

So, if 1
α2 6 1

2P (K̃), we have

P

(
sup
t∈[0,T ]

|Y (t)|6 δ
)
>e−

1
2S(γ)−α

√
S(γ))1

2P (K̃)

In particular, by choosing α=
√

2/P (K̃)>0, we have

P

(
sup
t∈[0,T ]

|Y (t)|6 δ
)
>e−

1
2S(γ)−

√
2S(γ)/P (K̃) 1

2P (K̃)

Note that P (K̃) =P (K) since B and W have the same law under P .
3.6. Local Time on Teeth Boundaries (Lemma 3.7). The last remaining

lemma to prove is Lemma 3.7 which is the local time balance within the teeth. We again
use the symmetry and geometric series arguments as in the proof of Proposition 3.1.

Proof. (Proof of Lemma 3.7.) As with (3.6), we will estimate

Ik
def= Ez

(∫ t

0

1
2∂

2
xf(Zεs )1{Y εs >0}1{|Xεs−εk|<ε/2}ds+

∫ t

0
∂xf(Zεs )1{|Xεs−εk|<ε/2}dL

±
s

)
(3.43)
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for any z∈K∩Ωε. As before, Lemma 3.7 will follow if we can show that for any
finite M ,

∑
ε|k|<M Ik vanishes as ε→0. Since there are O(1/ε) terms in the sum, it

suffices to bound each Ik by o(ε). Without loss of generality, assume k= 0 and let T0 =
[−αε2/2,αε2/2]× [0,1] denote the tooth centered at k= 0. Define the function f̃ : T0→R
by

f̃(x,y) def= f(x,y)−f(0,y)−x∂xf(0,y),

Note that for all (x,y)∈T0 we have

f̃(0,y) = 0, ∂xf̃(0,y) = 0, and ∂2
xf̃(x,y) =∂2

xf(x,y).

and hence ‖f̃‖∞=O(ε4). Moreover,

∂2
y f̃(x,y) =∂2

yf(x,y)−∂2
yf(0,y)−x∂x∂2

yf(0,y) =O(ε4),

assuming ∂2
yf ∈C1, and ∂y f̃(x,0) =O(ε4) for x∈ [−αε2/2,αε2/2].

We now extend the definition of f̃ continuously outside of T0 (into the spine) to a
O(ε2) neighborhood of G as follows. Let η(x,y) be a smooth, radially-symmetric cutoff
function, vanishing outside of B2(0,0) and such that η(z) = 1 for |z|61. Then, for y60
(i.e. outside the tooth T0), define

f̃(x,y) def= η
( x

αε2 ,
y

αε2

)(
f(x,0)−f(0,0)−x∂xf(0,0)

)
.

In this way, f̃ has the additional properties that
(1) f̃ vanishes outside of T0∪B2αε2(0,0),
(2) ∂y f̃ = 0 on (∂Q)−G,
(3) The jump in ∂y f̃ across G is O(ε4),
(4) ∆f̃ =O(1) in the region B−2αε2 ={y60}∩B2αε2(0,0).

This last point stems from the fact that |f(x,0)−f(0,0)−x∂xf(0,0)|=O(ε4). In view
of this construction, we see that

I0 =Ez
(∫ t

0

1
2(∂2

xf̃+∂2
y f̃)(Zεs )1{Zεs∈T0}ds−

∫ t

0
∂xf̃(Zεs )1{Zεs∈T0}dL

+
s

)
+Ez

(∫ t

0
∂xf(0,Y εs )d(L−s −L+

s )
)

+O(ε2)t

=R1 +R2 +O(ε2)t.

Notice how we have introduced the ∂2
y f̃ term for the price of O(ε2)t. We also still have

∂y f̃(x,1) = 0 on the top boundary of the tooth. By Itô’s formula applied to f̃ , we have

R1 =Ez[f̃(Zεt )− f̃(Zε0)]+Ez
(∫ t

0
∂y f̃(Xε

s ,0)dLG
)

+Ez
(∫ t

0
O(1)1B2αε2

(Zs)ds
)

=O(ε4)+O(ε2)Ez
(
LGt

)
+O(1)Ez

(∫ t

0
1B−

2αε2
(Zs)ds

)
=O(ε4)+O(ε2)+O(1)R3,

since EzLGt =O(1) by (3.11).
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We now estimate the term R2. By symmetry with respect to reflection in the y
coordinate, we note that

Ez′
(∫ t

0
∂xf(0,Y εs )d(L−s −L+

s )
)

= 0

for any z′=(0,y) on the axis of the tooth T0. Thus by symmetry and the Markov
property, it suffices to estimate

Ez
(∫ τ

0
∂xf(0,Y εs )dL+

s

)
,

where τ =inf{t |Xε
t =0} is the first time that Zεt reaches this x-axis {0}×R, and z is

to the right of the y-axis. Clearly this is bounded by ‖∂xf‖∞EzL+
τ . Moreover, using

x∧αε2/2 as a test function, we immediately see EzL+
τ 6αε2/2. This shows R2 =O(ε2)

as desired.
Finally, we estimate the term

R3 =Ez
(∫ t

0
1B−

2αε2
(Zs)ds

)
,

where B−2αε2 ={y60}∩B2ε2(0,0). The geometry of the domain Ωε makes this estimate
a little tedious. Since the proof is very similar to the arguments used in the proof of
Proposition 3.1, we do not spell out all the details here.

We will show that R3 6O(ε3| log(ε)|). For this, we first claim

sup
z∈Ωε∩K

Ez
(∫ τ4αε2

0
1B−

2αε2
(Zs)ds

)
6O(ε4)

where τ4αε2 =inf{t |Zεt ∈D−4ε2}, and D
−
4αε2 ={y60}∩∂B4αε2(0,0). This follows by di-

rectly applying Itô’s formula with a function f satisfying ∆f 60 in {y60}∩B4αε2(0,0)},
with ∆f 6−c<0 in B−2αε2 .

Next, we claim that there is C>0 such that

inf
z∈D−

4αε2

P z
(
σε/2 6 τ2αε2

)
>

C

|log(ε)| ,

where σε/2 = inf{t | |Xε
t |=ε/2} and τ2αε2 = inf{t |Zεt ∈B−2αε2}. This is the narrow escape

asymptotics [30], and follows from a direct calculation with the Green’s function in a
manner similar to the proof of (3.31). Finally, we claim that for any t>0, there is C>0
such that

inf
{|x|=ε/2}

P z(τ2αε2 > t)>Cε.

This follows from comparison between Xε
t and a standard Brownian motion on R, via

Lemma 3.4. Thus, starting from z∈D−4αε2 , with probability at least Cε/| log(ε)| the
process Zt will make a long excursion such that it doesn’t return to B−2αε2 before time t.
Using the same geometric series argument as in the proof of Lemma 3.9, we have

R3 6C(log(ε)/ε)sup
z

Ez
(∫ τ4αε2

0
1B−

2αε2
(Zs)ds

)
=O(ε3| log(ε)|),

as claimed.
Finally, combining all these estimates we conclude that for any k, Ik (defined

in (3.43)) is at most O(ε2). Consequently
∑
ε|k|<M Ik→0 as ε→0, concluding the proof.
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3.7. Remarks about other scalings. Consider a comb-shaped domain with
the general scaling described in Remark 1.2. For clarity, let us suppose that

wS(ε) =εσ, and wT (ε) = αε1+σ

2 ,

for some σ>0. Theorem 1.1, which we have proved already, pertains to the case σ=1.
In the cases σ<1 and σ>1, the same arguments may be applied, showing that the limit
process is the same as with σ= 1. Only a minor modification of Proposition 3.1 and its
supporting lemmas are required, and we sketch those modifications here.

Analogous to the previous definition (3.12), we define the sets

Q=
[
−ε2 ,

ε

2
]
×
[
−εσ,0

]
and G0 =

{
(x,0)

∣∣∣−αε1+σ

2 <x<α
ε1+σ

2

}
. (3.44)

Notice that Q is no longer a square if σ 6= 1. In the case σ>1, the bound 06uε6Cε2| lnε|
in Proposition 3.1 remains unchanged. The proofs of Lemma 3.8, Lemma 3.9, and
Lemma 3.10, extend in a straightforward way. In particular, the lower bound in Lemma
3.8 becomes ρ(z,r)> δ/(αε1+σ). In the proof of (3.33) within Lemma 3.9, the balls
B(0,εσ/4) and B(0,αε1+σ) fill the roles of B(0,ε/4) and B(0,αε2) in the previous proof.

In the case σ∈ (0,1), the bound on uε in Proposition 3.1 becomes 06uε6Cε1+σ|lnε|.
Nevertheless, this bound is still o(ε), so that the rest of the argument for the proof
of Lemma 3.3 proceeds as before. To prove this modification of Proposition 3.1, we
can modify Lemma 3.8, Lemma 3.9, and Lemma 3.10, as follows. First, A′ and D′ are
defined to be the sets

A′
def=
[
−αε

1+σ

2 ,α
ε1+σ

2

]
×{αε1+σ} and D′

def= {±εσ}× [−εσ,0].

With these definitions, the lower bound of Lemma 3.8 becomes ρ(z,r)> δ
αε1+σ . In Lemma

3.9, the analogous bound becomes O(ε1+σ| ln(ε|). Here, the logarithmic factor arises
in the same way as before. The ε1+σ factor comes from the fact that for a Brownian
motion on R, the expected time spent in [−ε,ε] before hitting ±εσ is O(ε1+σ). Similarly,
the bound in Lemma 3.10 is O(ε1+σ). Together these imply the O(ε1+σ|lnε|) upper
bound in Proposition 3.1.

4. Comb-shaped graphs (Theorem 1.2)

4.1. An SDE description of Zε. We begin by constructing the graph diffusion
Zε on the comb Cε. Following the approach of Freidlin and Sheu [23], let Lε be the
linear operator defined by

Lεf =


1
2∂

2
yf if (x,y)∈εZ×(0,1),

1
2∂

2
xf if (x,y)∈R×{0}.

(4.1)

Let the domain, denoted by D(Lε), be the set of all functions

f ∈C0(Ωε)∩C2
b (Ωε−Jε)

such that Lεf ∈C0(Ωε) and

αε∂yf(x,0)+∂+
x f(x,0)−∂−x f(x,0) = 0 for x∈εZ, (4.2a)
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∂yf(x,1) = 0 for x∈εZ (4.2b)

The general theory in [20, §4.1–4.2] (see also [24, Theorem 3.1]) can be used to show the
existence of a continuous Fellerian Markov process Zε= (Xε,Y ε) that has generator Lε.

In the teeth, and in between the nodes, it is clear that Zε is simply a Brownian
motion. The flux conditions (4.2a)–(4.2b) introduce local time terms at junction points
and ends of the teeth. This can be stated precisely in terms of an Itô formula as in the
following Lemma.

Lemma 4.1. Let F be the set of all functions f ∈C(Cε) such that f is smooth on
Cε−Jε and all one sided derivatives exist at the junction points Jε. There is a Brownian
motion W such that for any for any f ∈F we have

df(Zεt ) =1{Y εt =0}∂xf(Zεt )dWt+
1
21{Y εt =0}∂

2
xf(Zεt )dt

+1{Y εt >0}∂yf(Zεt )dWt+
1
21{Y εt >0}∂

2
yf(Zεt )dt

1
2+αε

(
∂+
x f(Zεt )−∂−x f(Zεt )+αε∂yf(Zεt )

)
d`t.

Here ` defined by

`t=LZ
ε

t (Jε) (4.3)

is the local time of the joint process Zεt = (Xε
t ,Y

ε
t ) about the junction points εZ×{0}.

Remark 4.1. The coefficients of each of ∂−x , ∂+
x and ∂y in the local time term above

can heuristically be interpreted as the chance that Zε enters the teeth.

Proof. (Proof of Lemma 4.1.) We refer the reader to Section 2 (and specifically
Lemma 2.3) in Freidlin and Sheu [23] where stochastic calculus for graph diffusions is
developed in a general setting.

Notice that choosing f(x,y)=x and f(x,y)=y in Lemma 4.1 yields the following
SDEs:

dXε
t =1{Y εt =0}dWt, (4.4a)

dY εt =1{Y εt >0}dWt+
αε

2+αε
d`t−dLY

ε

t (1) (4.4b)

Note that (4.4a) and (4.4b) are coupled through the local time term d`, which is the local
time of the joint process Zε=(Xε,Y ε) at the junction points Jε. We claim that with
the additional assumption that the process spends 0 time in junctions, weak uniqueness
holds for (4.4a)–(4.4b), and thus this system can in fact be used to characterize the
process Zε. Since this will not be used in this paper, we refer the reader to Engelbert
and Peskir [19] for the proof of similar results.

4.2. Proof of convergence (Theorem 1.2). We now prove Theorem 1.2. As
with the proof of Theorem 1.1, we need to prove tightness and a “generator estimate”.
We state the results we require as the following two lemmas.

Lemma 4.2. Let Zε= (Xε,Y ε) be the process on the comb-shaped graph Cε, as defined
above. Then for any T >0, the family of processes Zε is tight on C([0,T ];R2).



1850 ANOMALOUS DIFFUSION IN COMBS

Lemma 4.3. Let A be the generator (2.9). If f ∈D(A), and K⊆Ω0 is compact as a
subset of R2, then

lim
ε→0

sup
z∈K∩Cε

Ez
(
f(Zεt )−f(Z0)−

∫ t

0
Af(Zεs )ds

)
= 0

Proof. (Proof of Theorem 1.2.) Using Lemmas 4.2 and 4.3 as replacements
for Lemmas 3.1 and 3.3 respectively, the proof of Theorem 1.2 is identical to that of
Theorem 1.1.

The remainder of this section is devoted to proving Lemmas 4.2 and 4.3.

Proof. (Proof of Lemma 4.2.) We write both Xε and Y ε as time-changed
Brownian motions as follows. Let S(t)=

∫ t
0 1{Y εs =0}ds. Then letting S−1(t) be the

right-continuous inverse, by the Dambis-Dubins-Schwartz time change theorem (see
for instance [34, Section 3.4.B]), W̄t=Xε

S−1(t) is a Brownian motion and Xε
t =W̄S(t).

Similarly we can time change Y ε using R(t)=
∫ t

0 1{Y εt >0}ds. Equation (4.4b) tells us
that B̄t=Y εR−1(t) satisfies

dB̄t=dB∗t +dLB̄t (0)−dLB̄t (1).

where B∗t is a Brownian motion and hence B̄t is a doubly-reflected Brownian motion on
[0,1] such that Y εt = B̄R(t). Since S(t)−S(s)6 t−s and R(t)−R(s)6 t−s holds with
probability one, the moduli of continuity of Xε and Y ε over [0,T ] are no more than
those of W̄ and B̄ over [0,T ], respectively. This implies tightness.

Proof. (Proof of Lemma 4.3.) We claim for any k∈N we have

LZ
ε

(εk,0) =LX
ε

(εk,0)+LY
ε

(εk,0), and LY
ε

(εk,0) = αε

2 LX
ε

(εk,0).

The first equality is immediate from the definition, and the second equality is proved
in [23]. (The second equality can also be deduced from the independent excursion
construction in Section 5, below). Consequently

LZ
ε

(εk,0) = 2+αε

2 LX
ε

(εk,0) = 2+αε

αε
LY

ε

(εk,0). (4.5)

For any f ∈D(A), Lemma 4.1 gives

f(Zεt )−f(Zε0) =
∫ t

0
∂yf(Zεs )1{Y εs >0}dY

ε
s +

∫ t

0
∂xf(Zεs )1{Y εs =0}dX

ε
s

+
∫ t

0

1
2∂

2
yf(Zεs )1{Y εs >0}+ 1

2∂
2
xf(Zεs )1{Y εs =0}ds

+
∑
k∈Z

( αε

2+αε
∂yf(εk,0)+ 1

2+αε

(
∂+
x f(εk,0)−∂−x f(εk,0)

))
LZ

ε

t (εk,0). (4.6)

The first integral on the right of Equation (4.6) can be rewritten as∫ t

0
∂yf(Zεs )1{Y εs >0}dY

ε
s =

∫ t

0
∂yf(Zεs )1{Y εs >0}dWs−

∫ t

0
∂yf(Xε

s ,1)dLY
ε

s (1)

=
∫ t

0
∂yf(Zεs )1{Y εs >0}dWs.
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Here we used the fact that ∂yf(x,1) = 0 for any f ∈D(A).
Returning to (4.6), we note that f ∈C2(R×{0}) implies ∂+

x f(εk,0)=∂−x f(εk,0).
Thus for (x,y)∈K∩Cε, taking expectations on both sides and using (4.5) gives

E(x,y)
(
f(Zεt )−f(Zε0)−

∫ t

0
Af(Zεs )ds

)
=1

2E(x,y)
(∫ t

0
∂2
yf(Zεs )1{Y εs >0}+∂2

xf(Zεs )1{Y εs =0}−∂2
yf(Zεs )ds

+ε
∑
k∈Z

∂yf(εk,0)LX
ε

t (εk,0)
)

=α

2 E(x,y)
(
−
∫ t

0
∂yf(Xε

s ,0)1{Y εs =0}ds+ε
∑
k∈Z

∂yf(εk,0)LX
ε

t (εk,0)
)

= I+II ,

where

I
def= α

2
∑
k∈Z

E(x,y)
∫ t

0

(
∂yf(εk,0)−∂yf(Xε

s ,0)
)
1{Y εs =0, |Xεs−εk|< ε

2}ds,

II def= α

2
∑
k∈Z

∂yf(εk,0)E(x,y)
(
εLX

ε

t −
∫ t

0
1{Y εs =0, |Xεs−εk|< ε

2}ds
)
.

Note that there exists Brownian motion W such that Xε
t =WS(t) where S(t), defined by

S(t) def=
∫ t

0
1{Y ε(s)=0}ds,

is the amount of time the joint process spends on the spine of the comb up to time t. To
estimate I, for any δ>0 we choose sufficiently large compact set C⊂R such that

sup
(x,y)∈K

Ex
(∫ t

0
1{Ws /∈C}ds

)
<

δ

‖∂yf‖∞
.

Then since S(s)6s, it follows that

P x(Xε
s /∈C)6P x(Ws /∈C)

and so the above estimate can be applied for Xε independent of ε. Then use uniform
continuity of ∂yf in C along with the above estimate.

In order to estimate II , we again use the above representation to see

E(x,y)
∣∣∣εLXεt (εk,0)−

∫ t

0
1{Y εs =0, |Xεs−εk|< ε

2}ds
∣∣∣

=Ex
∣∣∣εLWS(t)(εk)−

∫ S(t)

0
1{|Ws−εk|< ε

2}ds
∣∣∣, (4.7)

where S(t), defined by

S(t) def=
∫ t

0
1{Y ε(s)=0}ds,
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is the amount of time the joint process spends on the spine of the comb up to time t.
Thus to show II→0, it suffices to estimate the right-hand side of (4.7) as ε→0. Also,
by shifting the indices of the sum to compensate, we can assume that x= 0.

To this end, let fε be defined by

fε(x) def=


ε(εk−x)− ε

2

4 if x<εk− ε2 ,

(x−εk)2 if εk− ε2 6x6εk+ ε

2 ,

ε(x−εk)− ε
2

4 if x>εk+ ε

2 .

By Ito’s formula we have,

fε(Wt)−ε|Wt−εk|−(fε(W0)−ε|W0−εk|)

=
∫ t

0
(f ′ε(Ws)−εsign(Ws−εk))dWs+

∫ t

0
1{|Ws−εk|< ε

2}ds−εL
W
t (εk).

Using the Itô isometry and the inequalities∣∣fε(x)−ε|x−εk|
∣∣6 ε2

4 ,

|f ′ε(x)−εsign(x−εk)|6ε1[εk− ε2 ,εk+ ε
2 ],

we obtain

E0
∣∣∣εLWt (εk)−

∫ t

0
1{|Ws−εk|< ε

2}ds
∣∣∣6 ε2

4 +ε

(
E0
∫ t

0
1{|Ws−εk|< ε

2}ds

) 1
2

6 c(t)ε 3
2 ,

since

E0
∫ t

0
1{|Ws−εk|< ε

2}ds=
∫ t

0
P 0
(
|Ws−εk|<

ε

2

)
ds6 c

∫ t

0

ε√
s
ds= 2cε

√
t.

We break up the sum in II and estimate as follows,

II 6‖∂yf‖∞
( ∑
|k|>N/ε

E0[εLX
ε

t (εk,0)]+
∫ t

0
P 0(|Xε

s |>N−
ε

2
)
ds+ 2N

ε
c(t)ε 3

2

)
.

We can again use that Xε has the same distribution as a Brownian motion with a time
change S(t)6 t to replace Xε with W , i.e.

II 6‖∂yf‖∞
( ∑
|k|>N/ε

E0[εLWt (εk)]+
∫ t

0
P 0(|Ws|>N−

ε

2
)
ds+Nc(t)ε 1

2

)
.

Setting N sufficiently large and then sending ε→0 gives us II→0 as ε→0. This
completes the proof.

5. Excursion description on the comb graph
In this section we describe how the diffusion Zε on the comb-shaped graph Cε

(defined in Section 1.2) can be constructed from the point of view of Itô’s excursion
theory (c.f. [32,37]). We identify the components of Zε as a trapped Brownian motion
in the framework of Ben Arous et al. [4], and use this to provide an alternate description
of the limiting behavior as ε→0.
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5.1. The excursion decomposition of Zε. The trajectories of Zε can be
decomposed as a sequence of excursions where each excursion starts and ends at the
junction points Jε=εZ×{0}, and travels entirely in the teeth, or entirely in the spine.
The excursions into the teeth of the comb (excursions of Y ε into (0,1] while Xε∈εZ)
should be those of a reflected Brownian motion on [0,1]. The excursions into the spine
(excursions of Xε into R−εZ with Y ε=0) should be those of a standard Brownian
motion on R between the points εZ. Thus one expects that by starting with a standard
Brownian motion X̄ on R and an independent reflected Brownian motion Ȳ on [0,1],
we can glue excursions of X̄ and Ȳ appropriately and obtain the diffusion Zε on the
comb-shaped graph Cε. We describe this precisely as follows.

Let X̄ be a standard Brownian motion on R and let LX̄t (x) denote its local time
at x∈R. Let LX̄t (εZ), defined by

LX̄t (εZ) def=
∑
k∈Z

LX̄t (εk) = lim
δ→0

1
2δ

∫ t

0

∑
k∈Z

1(εk−δ,εk+δ)(X̄s)ds,

denote the local time of X̄ at the junction points εZ. Let τ X̄,ε be the right-continuous
inverse of LX̄t (εZ) defined by

τ X̄,ε(`) = inf
{
t>0

∣∣LX̄t (εZ)>`
}
, `>0.

Notice that the functions t 7→LX̄t and ` 7→ τ X̄,ε(`) are both non-decreasing.
Let Ȳ be a reflected Brownian motion on [0,1] which is independent of X̄. As above,

let LȲ (0) be the local time of Ȳ about 0, and let τ Ȳ , defined by

τ Ȳ (`) = inf
{
t>0

∣∣LȲt (0)>`
}
,

be its right-continuous inverse. Given α∈ (0,1), we define the random time-changes ψX̄,ε
and ψȲ ,ε by

ψX̄,ε(t) = inf
{
s>0

∣∣s+τ Ȳ
(αε

2 LX̄s (εZ)
)
>t
}
, (5.1)

and

ψȲ ,ε(t) = inf
{
s>0

∣∣s+τ X̄,ε
( 2
αε
LȲs (0)

)
>t
}
. (5.2)

Note both ψX̄,ε and ψȲ ,ε are continuous and non-decreasing functions of time.

Proposition 5.1. The time-changed process Zε defined by

Zε(t) def=
(
X̄(ψX̄,ε(t)),Ȳ (ψȲ ,ε(t))

)
is the same process Zε in Theorem 1.2. Namely it is a Markov process with generator
Lε (defined in Equation (4.1)), and is a weak solution of the system (4.4a)–(4.4b).

This gives an alternate and natural representation of Zε=(Xε,Y ε). One can view
this time-change representation as the pre-limit analogue of the representation (2.2a) for
the limit system (2.3a) – (2.3c). For clarity of presentation, we postpone the proof of
Proposition 5.1 to Section 5.4.

Remark 5.1. For simplicity, throughout this section we assume the initial distribution
of Zε is δ(0,0), and denote expectations using the symbol E without any superscript.
The main results here (in particular Theorem 5.1, below) can directly be adapted to the
situation for more general initial distributions as in Theorem 1.2.
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5.2. Description as a trapped Brownian motion. We now show how this
representation can be explained in the framework of trapped Brownian motions as
defined by Ben Arous et al. [4] (see Definition 4.11 therein). Recall that a trapped
Brownian motion, denoted by B[µ], is a process of the form B(ψ(t)) where B(t) is a
standard Brownian motion and the time-change ψ has the form

ψ(t) = inf
{
s>0

∣∣φ[µ,B]s>t
}
,

where

φ[µ,B]s=µ
(
{(x,`)∈R× [0,∞) |LB(x,s)> `}

)
,

and µ is a (random) measure on R× [0,∞) called the trap measure. For example, when
µ is the Lebesgue measure on R× [0,∞), then φ[µ,B]= t, and ψ(t)= t. Alternately, if
µ has an atom at (x,`) of mass r>0, then B(ψ(t)) is trapped at x for a time r at the
moment its local time at x exceeds `.

To use this framework in our scenario, we need to identify a trap measure under
which Xε is a trapped Brownian motion. We do this as follows. First note that the
process τ Ȳ` , appearing in the time change (5.1), is a Lévy subordinator. Thus, there exists
a function ηȲ (s) : (0,∞)→ (0,∞), and a Poisson random measure N Ȳ on [0,∞)× [0,∞)
with intensity measure d`×ηȲ (s)ds, such that

τ Ȳ` =
∫

[0,`]

∫
[0,∞)

sN Ȳ (d`×ds). (5.3)

In the definition of ψX̄,ε(t) above, we have

τ Ȳ
(αε

2 LX̄s (εZ)
)

= τ Ȳ
(∑
k∈Z

αε

2 LX̄s (εk)
)
.

Because τ Ȳ` has stationary, independent increments, this is equal in law to

τ Ȳ
(αε

2 LX̄s (εZ)
)
d=
∑
k∈Z

τ Ȳk
(αε

2 LX̄s (εk)
)
,

where {Ȳk}k∈Z are a family of independent reflected Brownian motions on [0,1]. That is,
the time change ψX̄,ε(t) has the same law as

ψ̃X̄,ε(t) = inf
{
s>0

∣∣s+
∑
k∈Z

τ Ȳk
(αε

2 LX̄s (εk)
)
>t
}
. (5.4)

Each of the processes τ Ȳk can be represented as in (5.3) with independent Poisson
random measures N Ȳk :

τ Ȳk` =
∫

[0,`]

∫
[0,∞)

sN Ȳk(d`×ds). (5.5)

Since each of the random measures N Ȳk is atomic, we may define {(`j,k,sj,k)}∞j=1 to be
the random atoms of N Ȳk by

N Ȳk =
∞∑
j=1

δ(`j,k,sj,k). (5.6)
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Then define a random measure on R× [0,∞):

µX̄,ε=dx×d`+
∑
k∈Z

∞∑
j=1

sj,kδ(εk,(2/(αε))`j,k). (5.7)

Returning to (5.4), we now have the representation

s+
∑
k∈Z

τ Ȳk
(αε

2 LX̄s (εk)
)

=µX̄,ε
(
{(x,`)∈R× [0,∞) | `6LX̄s (x)}

)
.

It is easy to check that µX̄ defines a Lévy trap measure, in the sense of [4], Definition
4.10. This proves the following:

Proposition 5.2. Let X̄ be a standard Brownian motion on R and let X̄[µX̄,ε] be
the trapped Brownian motion (see Definition 4.11 of [4]) with trap measure µX̄,ε defined
by (5.7). Then the law of Xε coincides with the law of X̄[µX̄,ε].

The process Y ε admits a similar representation as a trapped (reflected) Brownian
motion. To this end, we first note that τ X̄,ε` is also a Lévy subordinator which can be
written as

τ X̄,ε` =
∫

[0,`]

∫
[0,∞)

sN X̄,ε(d`×ds), (5.8)

where N X̄,ε is a Poisson random measure on [0,∞)× [0,∞) with intensity measure
d`×ηX̄,ε(s)ds.

Lemma 5.1. The excursion length measure ηX̄,ε satisfies the scaling relation,

ηX̄,ε(s) =ε−3ηX̄,1(ε−2s), s>0.

Proof. This follows in directly from the standard scaling properties of Brownian
motion and its local time, and we omit the details.

Letting {(sj ,`j)}∞j=1 denote the atoms of N X̄,ε we then define a random measure on
[0,1]× [0,∞) by

µȲ ,ε=dy×d`+
∞∑
j=1

sjδ(0,(αε/2)`j). (5.9)

This also is a Lévy trap measure in the sense of [4] (replacing R by [0,1]), and one can
easily see that the associated trapped Brownian motion is precisely the process Y ε.

Proposition 5.3. Let Ȳ be a reflected Brownian motion on [0,1], and let Ȳ [µȲ ,ε] be
the trapped Brownian motion with trap measure µȲ ,ε defined by (5.9). Then the law of
Y ε coincides with the law of Ȳ [µȲ ,ε].

5.3. Convergence as ε→0. We now use Theorem 6.2 of [4] to study convergence
of Xε and Y ε as ε→0. The key step is to establish convergence of the trap measures,
as in the following lemma.
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Lemma 5.2. Let N Ȳ
∗ be a Poisson random measure on R× [0,∞)× [0,∞) with intensity

measure dx×d`× 1
2η
Ȳ (s)ds. As ε→0, the random measures µX̄,ε on R× [0,∞), defined

in (5.7), converge vaguely in distribution to the random measure µX∗ defined by

µX∗ (A) =
∫
R

∫ ∞
0

1A(x,`)dxd`+ α

2

∫
R

∫ ∞
0

∫ ∞
0

1A(x,`)sN Ȳ
∗ (dx×d`×ds) ,

for all A∈B(R× [0,∞)). The random measures µȲ ,ε on [0,1]× [0,∞), defined in (5.9),
converge vaguely in distribution to the measure µY∗ defined by

µY∗ (A) =
∫ 1

0

∫ ∞
0

1A(y,`)dyd`+ 2
α

∫ ∞
0

1A(0,`)d` A∈B([0,1]× [0,∞)).

Momentarily postponing the proof of Lemma 5.2, we state the main convergence
result in this section.

Theorem 5.1. Let R(t) be a Brownian motion on [0,1] reflected at both endpoints
x= 0,1, and B be a standard Brownian motion on R.

(1) As ε→0, we have Y ε→Y vaguely in distribution on D([0,∞)). Here Y =R[µȲ∗ ]
is a reflected Brownian motion that is sticky at 0.

(2) As ε→0, we have Xε→B[µX̄∗ ] vaguely in distribution on D([0,∞)). The limit
process here may also be written as B((2/α)LYt (0)).

Remark 5.2. Using the SDE methods in Section 4 we are able to obtain joint con-
vergence of the pair (Xε,Y ε) (Theorem 1.2). The trapped Brownian motion framework
here, however, only provides convergence of the processes Xε and Y ε individually.

Proof. (Proof of Theorem 5.1.) The convergence of Y ε to R[µȲ∗ ] is an immediate
consequence of Theorem 6.2 of [4], Lemma 5.2 above, and the properties of Poisson
random measures. To identify the limiting process R[µȲ∗ ] as a sticky Brownian motion,
observe that the time change has the form

µȲ∗
({

(y,`)∈ [0,1]× [0,∞)
∣∣LR(y,s)> `

})
=s+ 2

α
LR(0,s).

Thus, the limit process is Y (t) =R(ψ(t)) where

ψ(t) = inf{s>0 |s+ 2
α
LR(0,s)>t}.

This is precisely a sticky Brownian motion (see Lemma 2.1).
For the second assertion of the theorem, the convergence of Xε to B[µX̄∗ ] is again

an immediate consequence of Theorem 6.2 of [4] and Lemma 5.2 above. Thus we only
need to show that the trapped Brownian motion B[µX̄∗ ] has the same law as the process
Xt from Theorem 1.2. To compare the two processes, we first write them in a similar
form. Let LB̄t (0) is the local time of B̄ at 0, and let τ B̄` be the inverse

τ B̄` = inf{t>0 |LB̄t (0)>`}.

Then, we have

Xt=W̄ 2
αL

B̄
T (t)

=W̄ (h−1(t))
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where

h−1(t) = inf{r>0 | r+τ B̄rα/2>t}.

The fact that (2/α)LB̄T (t) =h−1(t) follows from the definition of T (t), which implies
(2/α)LB̄T (t) +T (t) = t.

Therefore, the two processes are

B[µX̄∗ ] =B(φ−1(t)) Xt=W̄ (h−1(t))

where φ is:

φ(r) =φ[µ∗,B]r =µ∗
(
{(x,`)∈R× [0,∞) |LB(x,r)> `}

)
.

If ABr ={(x,`)∈R× [0,∞) |LB(x,r)> `}, then by definition of the trap measure µ∗,

φ(r) = r+ α

2

∫
ABr ×[0,∞)

sN Ȳ
∗ (dx×d`×ds) (5.10)

The last integral has the same law as τ B̄rα/2. Hence, h and φ have the same law.
Notice that h is independent of W̄ . We claim that φ is also independent of B. To see

this observe that the distribution of φ(r) only depends on B through the volume of ABr ,
which equals r almost surely. This shows φ is independent of B, and thus B(φ−1(t))
and W̄ (h−1(t)) have the same law.

It remains to prove Lemma 5.2.

Proof. (Proof of Lemma 5.2.) It suffices to show for rectangles A=[x0,x1]×
[`0,`1] that

µX̄,ε(A)→µX∗ (A)

in distribution. We calculate the characteristic function using [35, Thm 2.7],

E[eiβµ
X̄,ε(A)] = exp

(
iβ|A|+

∑
εk∈[x0,x1]

∫ ε
2 `1

ε
2 `0

∫ ∞
0

(1−eiβs)ηȲ (s)ds
)

= exp
(
iβ|A|+

(⌊x1

ε

⌋
−
⌈x0

ε

⌉)ε(`1−`0)
2

∫ ∞
0

(1−eiβs)ηȲ (s)ds
)

→ exp
(
iβ|A|+ |A|2

∫ ∞
0

(1−eiβs)ηȲ (s)ds
)

as ε→0. We note that this last formula is the characteristic function for µX? (A). The
calculation for µȲ ,ε(A) uses Lemma 5.1 and a change of variables as follows

E[eiβµ
Ȳ ,ε(A)] = exp

(
iβ|A|+1[y0,y1](0)

∫ 2
ε `1

2
ε `0

∫ ∞
0

(1−eiβs)ηX̄,ε(s)ds
)

= exp
(
iβ|A|+1[y0,y1](0)2(`1−`0)

ε4

∫ ∞
0

(1−eiε
2βs)ηX̄,1(ε−2s)ds

)
= exp

(
iβ|A|+1[y0,y1](0)2(`1−`0)

ε2

∫ ∞
0

(1−eiε
2βs)ηX̄,1(s)ds

)
.
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Notice that by switching the integrals, we find

1
ε2

∫ ∞
0

(1−eiβε
2s)ηX̄,1(s)ds= 1

ε2

∫ ∞
0

(−βiε2
∫ s

0
eiβε

2rdr)ηX̄,1(s)ds

=
∫ ∞

0
eiβε

2r

∫ ∞
r

ηX̄,1(s)dsdr.

Since ηX̄,1 has exponential tails, we can send ε→0, use dominated convergence and
switch the integrals again to find

lim
ε→0

1
ε2

∫ ∞
0

(1−eiβε
2s)ηX̄,1(s)ds=

∫ ∞
0

sηX̄,1(s)ds= 1

and hence

E[eiβµ
Ȳ ,ε(A)]→E[eiβµ

Y
∗ (A)].

This finishes the proof.

5.4. Proof of the excursion decomposition (Proposition 5.1). To abbre-
viate the notation, we will now write LX̄t and LȲt for LX̄t (εZ) and LȲt (0), respec-
tively. Notice that LX̄t depends on ε while LȲt does not. Let Xε(t)= X̄(ψX̄,ε(t)) and
Y ε(t) = Ȳ (ψȲ ,ε(t)). The proof of Proposition 5.1 follows quickly from Itô’s formula, and
the following two lemmas:

Lemma 5.3. For every t>0, we have

LX
ε

t = 2
αε
LY

ε

t . (5.11)

Lemma 5.4. The joint quadratic variation of Xε and Y ε is 0.

Momentarily postponing the proof of these lemmas, we prove Proposition 5.1.

Proof. (Proof of Proposition 5.1.) For any f ∈D(Lε), Itô’s formula gives

Ef(Zεt )−f(Zε0) = 1
2E

∫ ψX̄,ε(t)

0
∂2
xf(X̄s,Ȳs)1X̄s 6∈εZds

+ 1
2E

∫ t

0

(
∂xf((Xε

s )+,Y εs )−∂xf((Xε
s )−,Y εs )

)
dLX

ε

s (εZ)

+ 1
2E

∫ ψȲ ,ε(t)

0
∂2
yf(X̄s,Ȳs)1Ȳs∈(0,1)ds+E

∫ t

0
∂yf(Xε

s ,(Y εs )+)dLY
ε

s (0).

Here we used the fact that 〈Xε,Y ε〉= 0 (Lemma 5.4) and ∂yf(x,1) = 0 (which is guaran-
teed by the assumption f ∈D(Lε)). Using (5.11) this simplifies to

Ef(Zεt )−f(Zε0) =E

∫ ψX̄,ε(t)

0
∂2
xf(X̄s,Ȳs)1X̄s 6∈εZds+E

∫ ψȲ ,ε(t)

0
∂2
yf(X̄s,Ȳs)1Ȳs∈(0,1)ds

+ 1
2E

∫ t

0

(
∂xf((Xε

s )+,Y εs )−∂xf((Xε
s )−,Y εs )+αε∂yf(Xε

s ,(Y εs )+)
)
dLX

ε

s (εZ).
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Since f ∈D(Lε) and LXε only increases when Y ε= 0 and Xε∈εZ, the last integral above
vanishes. Consequently,

lim
t→0

1
t
E
(
f(Zεt )−f(Zε0)

)
=Lεf(0,0),

showing that the generator of Zε is Lε as claimed. The fact that Zε satisfies (4.4a)
and (4.4b) follows immediately by choosing f(x,y) =x and f(x,y) =y respectively.

It remains to prove Lemmas 5.3 and 5.4.

Proof. (Proof of Lemma 5.3.) We first claim that for any t>0, we have

ψX̄,ε(t)+ψȲ ,ε(t) = t. (5.12)

To see this, define the non-decreasing, right-continuous function

H(t) def= τ Ȳ
(αε

2 LX̄t (εZ)
)
.

Using the properties of τ Ȳ , LX̄ , τ X̄,ε, and LȲ , it is easy to check that the right-continuous
inverse of H is

H−1(t) = inf{s>0 | H(s)>t}= τ X̄,ε
(

2
αε
LȲs (0)

)
.

Therefore, ψX̄,ε and ψȲ ,ε are the right-continuous inverse functions of t 7→ t+H(t) and
t 7→ t+H−1(t), respectively, meaning that

ψX̄,ε(t) = inf {s | s+H(s)>t},

ψȲ ,ε(t) = inf
{
r | r+H−1(r)>t

}
.

In general, H(H−1(r))> r and H−1(H(s))>s must hold, but equality may not hold
due to possible discontinuities in H and H−1.

Fix t>0, and let [t0,t1] be the maximal interval such that t∈ [t0,t1] and ψX̄,ε is
constant on the interval [t0,t1]. Possibly t0 = t1 = t, but let us first suppose that the
interval has non-empty interior, t0<t1. This implies that H(s) has a jump discontinuity
at a point s=ψX̄,ε(t1) such that s+H(s−)= t0 and s+H(s+)=s+H(s)= t1. Also,
H−1(H(s)) =s must hold for such a value of s. So, for `=H(s) =H(ψX̄,ε(t1)) we have

`+H−1(`) =H(s)+s= t1.

Therefore, ψȲ ,ε(t1) = `, since

ψȲ ,ε(t1) = inf
{
r | r+H−1(r)>t1

}
.

This means that ψȲ ,ε(t1) =H(s). Therefore,

ψȲ ,ε(t1)+ψX̄,ε(t1) =H(s)+s= t1

must hold. Now let us extend the equality to the rest of the interval [t0,t1]. By assumption,
ψX̄,ε(t)=ψX̄,ε(t1) for all t∈ [t0,t1]. Since H has a jump discontinuity at s, this means
H−1(r) is constant on the interval [H(s−),H(s)]. Hence, the function r+H−1(r) is affine
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with slope 1 on the interval [H(s−),H(s)] = [ψȲ ,ε(t1)−(t1− t0),ψȲ ,ε(t1)]. Therefore, for
all t∈ [t0,t1], we must have

ψȲ ,ε(t) =ψȲ ,ε(t1)+ t− t1.

This shows that for all t∈ [t0,t1], we have

ψX̄,ε(t)+ψȲ ,ε(t) =ψX̄,ε(t1)+ψȲ ,ε(t1)+ t− t1 = t.

Applying the same argument with the roles of ψX̄,ε, ψȲ ,ε, H and H−1 reversed, we
conclude that ψX̄,ε(t)+ψȲ ,ε(t)= t must hold if either ψX̄,ε or ψȲ ,ε is constant on an
interval containing t which has non-empty interior. The only other possibility is that
both ψX̄,ε and ψȲ ,ε are strictly increasing through t. In this case, H must be continuous
at ψX̄,ε(t) and H−1 must be continuous at ψȲ ,ε(t). Thus, H−1(H(ψX̄,ε(t)))=ψX̄,ε(t)
and H(H−1(ψȲ ,ε(t)))=ψȲ ,ε(t) holds. The rest of the argument is the same as in the
previous case. This proves (5.12).

Now, since Xε and Y ε are time changes of X̄ and Ȳ respectively, we know that the
local times are given by

LX
ε

t
def=LX

ε

(εZ) =LX̄
ψX̄,ε(t), and LY

ε

t
def=LY

ε

(0) =LȲ
ψȲ ,ε(t).

By definition of ψX̄,ε, we know

t=ψX̄,ε(t)+τ Ȳ
(αε

2 LX̄(ψX̄,ε(t))
)
.

Using (5.12) this gives

ψȲ ,ε(t) = τ Ȳ
(αε

2 LX̄(ψX̄,ε(t))
)
,

and using the fact that τ Ȳ is the inverse of LȲ , we get (5.11) as desired.

Proof. (Proof of Lemma 5.4.) Fix δ>0, and define a sequence of stopping times
0 =σ0<θ1<σ1<θ2<σ2<... inductively, by

σ0 = 0
θk+1 = inf {t>σk | either Y εt = δ or d(Xε

t ,εZ) = δ}, k= 0,1,2,3,. ..
σk+1 = inf {t>θk |Yt= 0 and Xε

t ∈εZ}, k= 0,1,2,3,. ..

Then for T >0, we decompose the joint quadratic variation over [0,T ] as

〈Xε,Y ε〉[0,T ] =
∑
k>0
〈Xε,Y ε〉[σk∧T,θk+1∧T ] +〈Xε,Y ε〉[θk+1∧T,σk+1∧T ].

We claim that for all k,

〈Xε,Y ε〉[θk+1∧T,σk+1∧T ] = 0 (5.13)

holds with probability one. Hence,∣∣〈Xε,Y ε〉[0,T ]
∣∣6∑

k>0

∣∣〈Xε,Y ε〉[σk∧T,θk+1∧T ]
∣∣
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6
∑
k>0

1
2 〈X

ε,Xε〉[σk∧T,θk+1∧T ] +
1
2 〈Y

ε,Y ε〉[σk∧T,θk+1∧T ]

6
∑
k>0
|(θk+1∧T )−(σk∧T )|

6
∣∣{t∈ [0,T ] | |Ȳt|6 δ, and d(X̄t,εZ)6 δ

}∣∣ . (5.14)

As δ→0, the latter converges to 0 almost surely, which proves that 〈Xε,Y ε〉= 0.
To establish the claim (5.13), we may assume θk<T , for otherwise, the statement

is trivial. At time θk, we have either Xε
θk
/∈εZ or Yθk = δ. In the former case, we must

have Xt /∈εZ for all t∈ [θk,σk). Hence, ψȲ ,ε(t) and Y εt are constant for all t∈ [θk,σk).
In the other case, Yt>0 for all t∈ [θk,σk) while Xt is constant on [θk,σk]. In either case,
this implies that 〈Xε,Y ε〉[θk∧T,σk∧T ] = 0 holds with probability one.
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