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EXISTENCE AND STABILITY OF PARTIALLY CONGESTED
PROPAGATION FRONTS IN A ONE-DIMENSIONAL
NAVIER-STOKES MODEL*

ANNE-LAURE DALIBARD' AND CHARLOTTE PERRIN?

Abstract. In this paper, we analyze the behavior of viscous shock profiles of one-dimensional com-
pressible Navier-Stokes equations with a singular pressure law which encodes the effects of congestion.
As the intensity of the singular pressure tends to 0, we show the convergence of these profiles towards
free-congested traveling front solutions of a two-phase compressible-incompressible Navier-Stokes sys-
tem and we provide a refined description of the profiles in the vicinity of the transition between the
free domain and the congested domain. In the second part of the paper, we prove that the profiles are
asymptotically nonlinearly stable under small perturbations with zero integral, and we quantify the
size of the admissible perturbations in terms of the intensity of the singular pressure.
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1. Introduction

This paper is concerned with the analysis of viscous shock waves for the fol-
lowing compressible Navier-Stokes system written in Lagrangian mass coordinates
(t,x) Ry xR (we refer to [20, Section 1.2] for details concerning the passage from
Eulerian coordinates to Lagrangian mass coordinates)

Oiv — 0, u=0, (1.1a)
Opu+ Oppe (V) — 10y <i8xu> =0, (1.1b)

where v is the specific volume (the inverse of the density), w is the velocity, p is a
viscosity coefficient and p. is the pressure. This latter is assumed to be singular close
to the critical value v* =1,

3

Ps(v):m >0, (1.2)

with e < 1. We supplement system (1.1) with initial data

(Uvu) (O’ ) = (UO,UJO) ()7
and far-field condition

(v,u)(t,x) — (U:tvu:l:)' (13)

r—+o0

System (1.1) was introduced in [4] (and [7] for the inviscid case p=0) in the context
of congested flows, that is in the modeling of flows satisfying the maximal density
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constraint p= =1 <1. Equations (1.1)-(1.3) represent an approximation of the following
free-congested Navier-Stokes equations

Opv —0yu=0, (1.4a)
1

O+ 0 p — 10y (&u) =0, (1.4b)
v

v>1, (v—1)p=0, p>0, (1.4c)

with the far-field condition

(Uauap) (t,l’) zﬁoo (U:tvu:bp:t)'

System (1.4) consists of a free boundary problem between a free phase {v>1} satisfy-
ing compressible pressureless dynamics, and a congested incompressible phase {v=1}.
The pressure p which is activated in the congested domain can be seen as the Lagrange
multiplier associated with the incompressibility constraint d,u =0 satisfied in the con-
gested domain. Precisely, the study [4] (extended to the multi-dimensional case in [19])
shows that from a sequence of global strong solutions (ve,ue,pe(ve))e to (1.1) (cast on
Ry x(0,M)), one can extract a subsequence converging weakly as e -0 to a global
weak solution (v,u,p) of (1.4). Note that this convergence result does not imply the
existence of solutions which couple effectively both compressible and incompressible dy-
namics. In other words, it is not excluded that the solutions of (1.4) obtained as limits
of those of (1.1) all satisfy p=0 or v=1. Note also, that the present problem is quite
different from “classical” free boundary problems between two immiscible compressible
and incompressible phases studied for instance in [6,8,22]. Indeed, the interface be-
tween the compressible and the incompressible domains for the congestion problem is
not closed since there are mass exchanges between the free and the congested phases.
This considerably complicates the analysis of the equations. To the knowledge of the
authors, nothing seems to be known concerning the local well-posedness of the gen-
eral free-congested Navier-Stokes equations (1.4), except the recent results of Lannes et
al. [3,13] concerning the one-dimensional floating body problem which can be viewed
as a particular inviscid congestion problem.

Although the rigorous justification of singular limit € — 0 is, to the knowledge of the
authors, an open problem in the inviscid case p=0 (in the case of two immiscible fluids
a similar singular limit has been studied in [6,9] but, as explained before, the congestion
problem in the present paper is rather different since the phases cannot be considered
here as immiscible), the formal link between models (1.1) and (1.4) has been used from
the numerical point of view in [5,7] to investigate the transition at the interface between
the congested domain and the free domain. The study of Bresch and Renardy [5] pro-
vides numerical evidence of apparition of shocks on v and u at the interface when a con-
gested domain is created in the system. The paper of Degond et al. [7] contains an anal-
ysis of the asymptotic behavior of approximate solutions (v, u.) of the inviscid Riemann
problem associated with the initial data (ve,uc)(0,-) = (vZ,u_)1{zc0} + (V4 uq ) Lizs0y
where v —1 and v >v% remains far from 1. Both studies present congested-free
solutions for the compressible-incompressible Euler equations obtained from the singu-
lar compressible Euler Equations (1.1) (#=0) via the formal limit ¢ —0. Up to our
knowledge, nothing seems to be known regarding the stability of such congestion fronts.
Furthermore, no explicit free-congested solution to (1.4) for >0 has been exhibited so
far.

The goal of this paper is two-fold. On the one hand, we study the asymptotic
behavior of traveling wave solutions of (1.1) connecting an almost congested left state
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v =14¢7, to a non-congested right state v, >1. On the other hand, we prove the
non-linear asymptotic stability of such profiles uniformly with respect to the parame-
ter .

The first result of stability of traveling waves for the standard compressible Navier-
Stokes equations

0w — 0, u=0 (1.5a)
Byut 0y P(v) — 0y (%&Cu) —0 (1.5b)
with the pressure P(v)=.%, v>1 and a>0, was obtained by Matsumura and Nishi-

hara in [16]. Matsumura and Nishihara showed that there exists a unique (up to a
shift) traveling wave (v,u)(t,z) = (v,u)(x — st) connecting the two limit states (vi,u4 )
at foo, provided that 0 <v_ <wvy and uy <u_ where vi,uy are related to the shock
speed s through the Rankine-Hugoniot conditions (see (2.6) below). Under some re-
striction on the amplitude of the shock [p(vi)—p(v_)|<C(v_,7), they established
next the asymptotic stability of (v,u) with respect to small initial perturbations
(vo —v,u0 —u) € HY(R)N L' (R) with zero integral, i.e. perturbations for which there
exists (Vo,Up) € H?(R) with

Uo—UzagEVQEL(lJ(R), uo—uzﬁoneLé(R).

The restriction on the amplitude of the shock amounts to assuming that (v —1)x(total
variation of the initial data) is small. In particular for y=1 there is no restriction on
the amplitude of the shock. The result is achieved by means of suitable weighted energy
estimates on the integrated quantities V and U.

Later on, several works generalized this result by considering non-zero mass per-
turbations and shocks with larger amplitude [12, 14, 15]. Besides, the numerical study
carried out in [12] seems to indicate that the profiles should be stable independently of
the shock amplitude. In the case of viscosities depending in a non-linear manner on 1/v,
i.e. u(v)= po~ (@) Matsumura and Wang [17] managed to adapt the weighted energy
method for suitable parameters . Without any smallness assumption on the amplitude
of the shock, they proved the non-linear asymptotic stability for perturbations with zero
mass provided that o> 1(y—1).

The constraint on the parameter a was finally removed in the recent paper of
Vasseur and Yao [23]. The originality of their method consists in rewriting the sys-
tem (1.5) with the new velocity (also called effective velocity) w=u—50,v~* if a#0
and w=u—ud;Inv if a=0:

{atu—aww—aw( H 83511)207 (1.6a)
Opw~+ 0, P(v) =0, (1.6b)

where the specific volume v satisfies now a parabolic equation. The regularization effect
on v induced by this change of unknown was previously identified by Shelukhin [21]
in the case « =0 and by Bresch, Desjardins [1,2], Mellet, Vasseur [18], Haspot [10,11]
for more general viscosity laws. It enables the derivation of an entropy estimate (also
called BD entropy estimate) in addition to the classical energy estimate. In the non-
linear stability study of Vasseur and Yao, the introduction of the effective velocity helps
for the treatment of the non-linear terms (see F' and G in (3.1) below) and consequently
it allows to consider any coefficient o € R which was not the case in [17].
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We show in this paper that the new formulation in (v,w) turns out to be also
interesting when considering singular pressure laws like (1.2). Although our study is
restricted to linear viscosity coefficients («=0), which corresponds to the case initially

B .
e like in [23] without

treated in [4], we could a priori extend our result to viscosities

any substantial difficulty.

Main results. Our first result concerns the existence and qualitative asymptotic
behavior of solutions of (1.1)-(1.3):

PROPOSITION 1.1 (Description of partially congested profiles). Assume that the pres-
sure law is given by (1.2).
(1) Let 1<v_<wg, and let uy,u_ such that

(uy —u_)?=—(vy —v_)(pe(v4) —pe(v)).

Then there exists a unique (up to a shift) traveling front solution of (1.1)-(1.3)
(u,v)(t,x) = (ue,0.)(x —sct). The shock speed s. satisfies the Rankine-Hugoniot con-
dition

(2) Take v_=1+¢'7, vy >1 (independent of €). Let

U+

/vy —1

and define the partially congested profile (i1,b) such that

ri=

- 1 if £<0 U — s
U(f): V4 Zf£>0? a/:_7+ 0/7
14 (vy —1)e7¢ -

which is solution to the limit system (1.4).
Then

;grg)?égég%\vs(@rc)—v(&)l=0- (L.7)
(8) Assume additionally that v>1 and fix the shift in v, by choosing v:(0) such that

v:(0) —1oxe7¥T. There ewist constants C,C,5,0, independent of €, and a number
& such that lim._,o&. =0, such that for all £ <&,

Cel/Vexp(ge /7€) <v.(€) —v_ <Ce/Vexp(ae1/€). (1.8)

REMARK 1.1.
o We recall that v, is defined up to a shift. Taking the infimum over the parameter
C'in (1.7) amounts to fixing this shift.
e Note that the limit profile v is also the specific volume profile for the traveling
wave solution of (1.4).
e In the last item of the proposition we impose the value v.(0), which amounts

to prescribing the shift C. Thanks to the specific scaling that we have chosen,
we will see that p.(ve) converges towards zero uniformly in [0,4occ[, and that
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v — 1 in |—00,0]. This means that in the limit the zone £ <0 corresponds to
the congested zone, in which v =1, while the zone £ >0 is the free zone. Fixing
v:(0) also enables us to get the explicit control (1.8) of the distance between v,
and the end state v_ in the congested zone.

e The end state of the congested zone, v_=v% =1+4¢'/7, is chosen so that
pe(v_)=1 for all £>0. Of course, any choice of sequence (v¢). such that
lim._,op:(ve ) € ]0,400[ would lead to similar results. We refer to Remark 2.4
below for details.

Actually, we are able to give a more refined description of the behavior close to the
transition zone £ =0, and to give a quantitative error estimate. We have the following
proposition, and we refer to Section 2 for more details:

PROPOSITION 1.2. Let v_=1+¢'7 and assume that v>1. We fix the shift in v. by
1

setting v(0) —1oce™+T.

(1) For all R>0, there exists a constant Cr such that

[[0c = 0[[L(~Rr,R) < CreH.
(2) Let ¥ be the solution of the ODE
¥ = () (1=577), 5(0) =2,
and let £ <0 be a suitable parameter such that £* = O(sﬁ). Then

0c(6)-5(6) -7 (4557 )| <ceThlel veelbnno)

where the number & <0 is such that & ~ _(CerrT.

The proofs of Propositions 1.1 and 1.2 rely on ODE arguments. Combining the two
equations of (1.1), we find an ODE satisfied by v., for which we prove the existence and
uniqueness of solutions. Compactness of solutions easily follows from the bounds on
v, and therefore on its derivative (using the equation), and we pass to the limit in the
ODE in order to find the limit equation satisfied by v. We then use barrier functions
to control the behavior of v, in the congested zone (£ — —00), and energy estimates (in
this case, a simple Gronwall lemma) to control the error between v, and v,p, in the
transition zone.

The second part of this paper is devoted to the analysis of the stability of the
profiles (uc,ve) := (ue,0c)(z — sct) in the regimes where ¢ is very small. To that end, we
follow the overall strategy of [23] and introduce the effective velocity w=u— pd,Inv.
Equations (1.1) are rewritten in the new unknowns (w,v)

Oyw ~+ 0z pe(v) =0,

1.9
00 — Opw — 0y Inv =0. (1.9)

The profile (we =ue — pudy Inve,ve) is then a solution of (1.9).

The second ingredient that we need for the derivation of suitable energy estimates
is the passage to the integrated quantities. Consider an initial data (wg,vo)€
((we) jt=05 (Ve) jt=0) + L N L>(R)?, where L§(R) is the set of L' functions of zero mass.
We can then introduce (Wy,Vp) such that

x

Wo(x):/z (wo(2) —we(2)) dz, Vo(a:):/ (vo(2) —ve(2)) dz. (1.10)

— 00 — 00
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Assuming that this property remains true for all time, that is (w —we,v —v.)(t) € L} (R)
vVt >0, we define

x

W(t,x):/x (w(t,2)—w.(t,2)) dz, V(t,x):/ (Wt 2) —v. (£, 2)) dz.

Then (W,V)(t,z) —0 as |x| — oo, and (W,V) is a solution of the system

8tW+ps(U5 +8IV) 7p6(ve) :07

OV — 0 W — oy ln =%V (1.11)

€

(W, V)ji=0 = (Wo, Vo).
In the rest of the paper, we shall assume that € <ey for a constant ¢y small enough
(depending only on v, u,7).

THEOREM 1.1 (Existence of a global strong solution (W, V).  Assume that (Wy,Vp) €
(H?(R))? with

2 k 2 5
Z k/ [|a = Wol +|05Vo|? | da < 63~ (1.12)

k=0

for some &g small enough, depending only on vy, v and p. Then there exists a unique
global solution (W,V') to (1.11) satisfying

W €C([0;+00); H*(R)),
V eC([0;+00); H*(R)) N L*(Ry; H*(R)).

Moreover there exists C' >0 depending only on vy, u,7,d, such that

2w ok W |2 5
e Sup/( - +I8§V2> dz+/ /(3mv5|6_];W|2+|3f+1V|2)dx dt| <Ce~.
—pL(ve) Ry JR

k=0 t20JR
(1.13)

REMARK 1.2.

e The weight (—p.(v.))~! is of order £'/7 in the congested zone (in which v, —1=
O(e'/7)), and of order e~ in the non-congested zone (in which v, — 1 is bounded
away from zero). Hence the presence of this weight induces an additional loss
of control on W in the congested zone.

e The control by Cs> with C small enough in (1.13) ensures in particular the
lower bound v=wv. 40,V >1. Indeed,

10,V | e <V200:V I 5102V 115
1/2 5 an\1/2
<\f(01/25ﬂ—7) (Cl/%ﬂ—?)
<V201/%et, (1.14)

Hence, if C <1/2, we have v.+09,V > 1.
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Under the previous assumptions, we show the following stability result on the vari-
able (u,v).

THEOREM 1.2 (Nonlinear asymptotic stability of partially congested profiles). Assume
that the initial data (ug,vo) is such that

up — (ue)mo €Wy "(R)NHY(R), vp— (ve)i=0 € Wy (R)NH?(R),

and the associated couple (Wo,Vo) € H? x H?*(R) satisfies (1.12). Then there ezists a
unique global solution (u,v) to (1.1) which satisfies

u—ue €C([0;+00); H(R)N L§(R)),
v— v €C([0;+00); H(R) N LH(R)) N L2 (R, 2 (R))
and
v(t,£)>1 for all t,x. (1.15)

More precisely, there exists C1 >0 only depending on vy, u,y and the initial data, such
that

[l —tte| oo (s () + 10 = Vel oo s ) + 10— Vel L2 sm2Ry) < Ca

and on any finite time interval [0,T], there exists another positive constant Cy depending
additionally on T' and €, such that

llu—tellLoo (0,701 (R)) + 1V = Vel Los (0,721 (R)) < Ca(T€).

Finally

— 0. (1.16)

t—+oo

sup ((u,v)(t,x)—(ug,vg)(t,x))
zeR

REMARK 1.3. Note that the theorem states that (u—wu.)(t) and (v—uv.)(t) are func-
tions of L}(R) which justifies a posteriori the passage to the integrated system (1.11).

REMARK 1.4. If the previous theorem states the stability of the approximate profiles
(ve,ue ), the stability of the limit profile (7,4) remains open. Indeed, the estimates (in
particular (1.14)) that we derive all degenerate as € —0 and therefore do not give any
information in the limit.

The proofs of Theorem 1.1 and Theorem 1.2 rely on several ingredients. First, we
derive weighted H? estimates for Equations (1.11), using the structure of the linearized
system. We then obtain L' bounds by a method similar to the one used by Haspot
n [11]. Eventually, the long-time stability of (u.,v.) follows easily.

REMARK 1.5. Note that the assumption v>1 is used only in the last point of the
Proposition 1.1 and 1.2. The other results still hold for v>0 and more generally for
pressure laws defined on ]1,+o00[ which are singular close to v=1 (provided that v_
is well-chosen for the second point), strictly decreasing and convex on Jv_,vy[. The
convexity of the pressure law on the interval Ju_,v;[ is crucial for the existence of
monotone profiles (v.,u.) joining the states (v_,u_) and (v4,uy) (c¢f. Proposition 1.1).
The monotonicity of the profiles is then an essential property for the stability results
which follow (¢f. Theorem 1.1 and 1.2). The specific form of the pressure (1.2) (which
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blows up close to 1 like a power law) is used in all the results of this paper to exhibit
the small scales associated to the singular limit € —0. Nevertheless, we expect similar
results for more general (strictly decreasing, convex on |1,v4[, singular at 1) pressure
laws. All the estimates will then depend on the specific balance between the parameter
¢ and the type of the singularity close to v=1 encoded in the pressure law.

The paper is organized as follows. Section 2 is concerned with the description of
partially congested solutions of (1.4) and the proof of Propositions 1.1 and 1.2. Sections
3 and 4 are devoted to the proof of the stability Theorems 1.1 and 1.2. Finally, we have
postponed to the last Section 5 the proof of some technical lemmas.

2. Partially congested profiles

This section is devoted to the proof of Propositions 1.1 and 1.2. In the first para-
graph, we study the existence and properties of traveling fronts of the limit system
(1.4). We then investigate the asymptotic behavior of traveling fronts for the system
with singular pressure (1.1). Classically, we prove that such traveling fronts solve an
ODE, and we compute an asymptotic expansion for solutions of this ODE.

2.1. Traveling fronts of (1.4). Let v_=1<wv4, u_>uy and (u,v,p) be a
solution of (1.4) of the form (u,b,p)(z — st) satisfying the far-field condition

(Uau7p)(t7x) x_:éo (Uj:7u:t7pi)7
with py determined below. We look for a profile (u,v,p) whose congested zone is exactly
(—00,£*) for some £* €R (we will justify this simplification in Remark 2.2 below).

In the free zone, i.e. in the domain {v >1}, we have p=0 and

sw/(€) ' (€) =0
N v J
—su'(f)—u(“ ©=0 °7F

which by integration yields

SU(€)+U(§)(£=)SU+ +uy Voot -
o >¢* .
Su(£)+/'j’ U(f) =SU4

using the fact that v’ —0 as £ — +o00. As a consequence, in the free zone, u is a solution
of the logistics equation

1
uw=—(uy —u)(svy +uy—u). (2.2)
I
Using the relation —sv’(£) =u'(£) and (2.1), we find that v satisfies in the free zone
/

S
o' =—0(vy —0).
o

Now, in the congested domain we have v =1 and

W(&)=0 .
{su’(£>+p’<£)uu"<f)o vesen
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Since u is constant in the congested domain, the previous equations are rewritten as

o(§)=v-=1
u(€)=u_ VE< €,
p(§) =cst=:p_

We now find the value of p_ by making the following requirements, which ensure that
(u,v,p) is a solution of (1.4) in the whole domain:

e u and v are continuous at £ =£*;
!/

u
. p—p; is continuous at £ =¢&*.
These conditions lead to the Rankine-Hugoniot condition

U — Uy
=—7>0 2.3
=1 0 (2.3)

and to the initial condition u((£*)*)=w_ for the logistics Equation (2.2). We infer that

= lim
p p tm &)

=s2(vy —1)
_ (o zue)” (2.4)

n ’U_;,_*l

REMARK 2.1. The expression of the pressure (2.4) does not depend on the viscosity
w and is actually the same as the one obtained by Degond, Hua and Navoret [7] for the
free-congested Euler system (cf. Case 2 of Proposition 5 in [7]).

We emphasize that in the limit system, there is no constraint between u_,u and
vy (as long as p_ is free). Conversely, instead of imposing the far-field condition u_,
we could fix the pressure p in the congested domain and deduce the corresponding u_
by (2.4).

REMARK 2.2. Let us now prove that restricting the analysis to profiles whose congested
zone is of the form (—o0,&*) is legitimate. By continuity, the non-congested zone {v > 1}
is an open set, and therefore a countable union of disjoint open intervals. Let I CR
be one of these intervals. We argue by contradiction and assume that I=la,b] with
a,beR. Then, reasoning as above, we infer that u satisfies a logistics equation on
the interval ]a,b[. Furthermore v(a)=1v(b)=1 (otherwise I could be extended), and
thus u(a) =u(b). We deduce that u is constant on I, and as a consequence v is also
constant - and therefore identically equal to 1 - on I: contradiction. Therefore a =—o0
or b=+o00. Since v(—oo)=1 and v(+00)=v4 >1, we deduce that {v>1}= ]&*,+o00]
for some £* € R.

2.2. Existence and uniqueness (up to a shift) of traveling fronts.  Assume
that (u,v) is a solution of (1.1) of the form (u.,v.)(z—s.t). Plugging this expression
into (1.1), we find

Ssu/s(g)‘i’(ps(ng))’(g)M(]‘uls) (5):0 (25)
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Fic. 2.1. Asymptotic behavior of the profiles ve with v¢ =1+¢1/7, v+ =1.5 and y=2. The shift
1
is fized by prescribing v:(0)=1+e7+1.

where £:=x — s.t. We integrate the previous equations over (+00,£) to get

Sele +Us =S4 + U4 (2.6a)
i

u
—Sele +p6(ne> _Mf:_saui 'H%(Ui) (26b)

€

using the fact that u. —0 as |£| — co. This leads to the condition

Ugp —U— :_pe(U+) _pe(v—)

Vy —U— Uy —U—

and therefore (uy —u_)%2=—(p:(vy)—p:(v_))/(vy —v_). The shock speed is then

55_#_%@1%@—)_ e

Vy —U—

If s¢ >0 (resp. s <0), the traveling front is moving to the right (resp. to the left). The
ODE satisfied by v, follows from the relation u, = —sv. inserted in (2.6b)

0 = = (204 —02) +pe(02) —pe(02))
- :S (82 (v= —02) +pe(v-) —pe(v.)). (2.8)

Now, assume that v_ <wvy, and let vy €Ju_,v4[ be arbitrary, and consider the Cauchy
problem (2.8) endowed with the initial data v.(0)=wv. It has a unique maximal solu-
tion according to the Cauchy-Lipschitz theorem. Since v =vy is a constant solution of
(2.8), we infer that v, €]v_,v4[, and therefore the solution is global. Since the function
pe is convex, it is easily proved that s2(vy —v)+pe(vy)—pe(v) >0 for all vejv_ vy
Therefore v, is a monotone function. Since we require that v_ <w,, this implies that v,
is necessarily increasing, and consequently s >0. Hence v.:R—]v_ v [ is one-to-one
and onto. Classically, all other solutions of (2.8) satisfying the far-field conditions (1.3)
are translations of this profile. This proves the first statement of Proposition 1.1.
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2.3. Qualitative asymptotic description of traveling fronts. In the rest of
this paper, we are interested in the case when vy >1 is a fixed number, independent
of € (the zone on the right is not congested), and lim._,ov= =1 (the zone on the left is
asymptotically congested). We focus on traveling fronts such that s, — 5€]0,+o0], or
equivalently liminfp.(v_)>0. It is easily checked that this implies v= = 1+ Coel/7 +
o(e'/7) for some positive constant Cy. This justifies our choice v® =14¢'/7 which
yields 52 = (v, —1)~L. In the sequel, we will abusively write v_ in place of v in order
to alleviate the notation.

REMARK 2.3. Note that if we choose v_ =1+ Coe'/7, we obtain a different asymptotic
speed 5, namely

I —
Coos—1)°
In that case, the pressure p_ :=lim._,op.(v_) is equal to C; . These relations should

be compared with (2.3), (2.4).

In order to fix the shift, let us consider the solution of (2.8) with v.(0)=(1+v,)/2€
Ju—,v4] for & small enough. Then according to the previous paragraph, we have

v:(8) € Ju_,ui[ C ]l VEER, Ve>0.

Thus v, is uniformly bounded in L*°(R), and 0 <p.(v.) <1. Looking back at (2.8), we
deduce that v, is uniformly bounded in W°°(R). Therefore, using Ascoli’s theorem,
we infer that there exists b € W1°°(R) such that up to a subsequence

0. —0 in w* — W2 (R),
v.—0bin C(—R,R) VR>0.
Furthermore, v is nondecreasing, v € [1,v1], and 9(0)=(1+v4)/2>1. We define
E:=inf{€€R, 0(¢£)>1} €[—00,0[.

Since 0(£) > 1 for £>£, using the above convergence result, we deduce that p.(v.)—0
in L2 (]€,+00[). Hence we can pass to the limit in (2.8), and we obtain that on ]§,+o0],
0 is a solution of the logistic equation

s
o'=—b(vy —0). 2.9
m (v —0) (2.9)
Consequently, we have an explicit formula for v, namely
b(§) =1 v E<E,
_ V4 —_
o(l)=———7+ vV E>
O=1r=  VE>E

where r:=5v, /i and a is determined by the initial condition. Since v(0)=(1+wvy)/2,
we have a=(vy —1)/(vy +1). This allows us to find an explicit expression for £, namely

g: _ IH(U_/A;—F 1)

Translating the profile b by £ (i.e. £+ &—¢) and keeping the same notation b for the
new shifted profile, we recover the expression given in Proposition 1.1, that is

B(¢)=1 v £<0,

_ - V4
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2.4. Control in the congested zone thanks to barrier functions. In this
1
paragraph, we fix the shift in v, by choosing v.(0) such that v.(0) — 1 xe7+7, which will
be compatible with our ansatz in the next subsection'.

In the domain ¢ <0, we have, since v, is a monotonous function, v_ <v.(£) <v.(0).
Define

5:(Q) =7 (v.(70) 1)
Then
Te(—00) =1, 7(0)=(0.(0)—1)c "> (2.10)
and U, satisfies the ODE

1+et/7% 1
g 1et o (Sggmu_@gm_w) |
HSe Ve
Now, for ( €R_, we have

147 <14eY7%.(¢) <v.(0),
1—-0.(¢) <0.

Furthermore, since the function v+ v7 is convex (y>1), for all v>1, we have

1 v —1v—-1 v—1
-—== >
VY v—1 v VY

Therefore, for all { <0,

~—1

(o]« O (1),

Note that thanks to the assumption on v.(0), e~ 7 (v.(0) —1)Y < 1. Gathering all the
inequalities, we infer that for ¢ <0,

where

Pe:
pse

1/y -t —_1)Y
14 (1555 7 (0-(0)— 1) ) &::05(0)

so that lim._,qp. =lim_,q p.= (us)~t.

Now, consider the barrier functions v., v,, defined as solutions of the ODEs
I 1 1
UL =pe <1_vg>’ v=p, <1—U3>»
7:(0)=w.(0)=2.

=1
L Actually, the results of this subsection remain true as long as v— —1<v.(0) —1<e ¥ .
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According to the Cauchy-Lipschitz theorem, these two ODEs have unique solutions on
R such that v, > 1, v, > 1. Furthermore, 7., v, are increasing on R and it is easily proved
that the two functions have the following asymptotic behavior

Jim 7:(0)= lim v.(¢)=1,
Ue(Q)~peC, v (()~p ¢ as (—+oo.

As a consequence, there exist (., CE such that

() =0.(¢) = 5(0) = (0-(0) = 1)e 7.

Note that (. ~¢_~ps(ve(0) — 1)6_% > 1 since v.(0) —1>¢'/7. We also stress that as
e—0, U, and v, both converge uniformly on sets of the form ]—oo,a] for all aeR
towards the solution of

1 1
v (1o wo=2
us VY

We conclude our analysis of the barrier functions by investigating more precisely
their behavior as ( - —o0o. Using once again the inequalities

<y i<y Ywell2),

vY

1
V27TV <A77 < <1 )
v—1

we infer that there exist constants C,C,&,0, independent of € such that
7:(¢) =1< Cexp(6¢), v.(¢)—1=Cexp(a() V(<O
Note furthermore that it is possible to take g = P because of the inequality

v’ —1

Indeed, we have

and therefore, for all (<0,

(ve(¢) = Dexp(—p ) = 1.

However, concerning v., the control on & is not as good, because the reverse inequality
reads

—— >y 7 >9277 Yue(l,2).

Of course, as v, converges to 1, the constant in the exponential bound improves.
~ Let us now go back to the bounds on 9.. We have constructed Lipschitz functions
F., F., such that ¥, U:(-+¢:), vo(-+¢_) satisfy, for all (<0

ye('JrCs))v
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Classical arguments then ensure that for all { <0,

0 (CH+€ ) <0:(¢) LT(CHCe)

Going back to the original variables, the statement of Proposition 1.1 follows, tak-
1 _ 1 1

ing & :=—¢e7 max((.,¢_). We recall that €7 (. ~e7¢_~ps(v:(0) —1) <1, and therefore

lim. 08 = 0.

REMARK 2.4.  The above construction can easily be generalized to the case where

lim._,op:(v_) €]0,+00]. In that case, (2.10) must be replaced by

v_—1

i =t 5:(0) = (b (0)— 1) 7.

Ue(—00) =
After straightforward computations, one can check that

5o 1 (1525—31@5(0)1)7)

° HSe : Y-

Note that the property lim._,op. = (£5) ! remains true, so that the rest of the analysis
is unchanged.

2.5. Finer description in the transition zone. We now compute a more
precise asymptotic expansion of v. in the vicinity of 0. Indeed, there is no explicit
formula for v. and therefore our purpose is to exhibit an approximation of v. which
highlights its small scale dependencies in the vicinity of the transition zone £ =0. Our
goal is two-fold: firstly, since b, has C! (and even C°°) regularity for all >0, it is
natural to look for a C! approximation of v., while the derivative of b has a jump at
£=0. Secondly, the convergence in Subsection 2.3 is only qualitative, whereas we wish
to derive a quantitative error estimate.

We define an approximate solution v,,, by taking the following ansatz

Dapp 1= B(E) + 51%(55/% ife<0, (2.11)
o Kewy(€) if €>0,

where £*, K are real numbers that remain to be determined, together with the corrector
0, x €C§°(R) is an arbitrary cut-off function such that x(0)=1 and x'(0)=-1, and b
is the profile defined in Proposition 1.1. We make the following requirements on these
three unknowns (K, £&* and 0):

(1) bapp must be a C! function on R;

(2) vapp must be an approximate solution of (2.8) (in the sense that it satisfies the
equation with a small, quantifiable remainder).

We first identify K,£* and ¢, and then prove a quantitative error estimate between b,
and vapp.
REMARK 2.5.

e The cut-off profile in the non-congested zone £ >0 is merely a technical correc-
tor, which has no actual physical or mathematical relevance.

e One important choice in the ansatz above is that v,,,(0) — 1 747 This choice
is justified by mainly two arguments. Firstly, this ensures that p.(v) remains
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bounded for all v>1,,,(0), which will be crucial in the energy estimates. Sec-
ondly, another natural ansatz would be to choose v,,,(§) =0(§+¢.) in the
region ¢ >0, with 0 <. < 1. Keeping ¢. as an unkown and writing the con-
tinuity of vapp, 05, at £=0 leads to gasowﬁ in the case 5>1 (i.e. vy <2),
which is compatible with the Ansatz (2.11). However, this alternative ansatz

fails when §<1 (i.e. vy >2), and therefore we have chosen to work only with
(2.11).

Definition of the approximate solution. Let us first identify the corrector v.
Plugging the Ansatz (2.11) for £ <0 into Equation (2.8) and identifying the main order

terms leads to
1 1
{)/ _ (1 - ,_) .
ns VY

We endow this ODE with an initial condition in |1,4+oc0[, say ©(0)=2 (this arbitrary
choice will simply modify the definition of £* hereafter). Following the same reasoning
as in the previous paragraph, it is easily proved that the ODE has a unique global
solution v, which is increasing on R. Furthermore, there exists a constant ¢ >0 such
that © exhibits the following asymptotic behavior at +oo

9(¢)=140(exp(c¢)) as (— —o0, @(C)N% as (— +oo0. (2.12)

Now, the parameters {* and K are determined by requiring that v, is continuous
at £€=0, with a continuous first derivative. This leads to the system

et/ (25 — 14 ke
e/ ’ (2.13)

Let us set

Then, using the ODEs satisfied by v and b, the system becomes
ey =K e ,
1 K 2
—_— v .
7 usKe
We therefore obtain
1
(us) 7 (n3) 77
Eventually, let us compute the asymptotic behavior of £*. Note that w.>1 as € =0,
so that lim._,o—e~1/7¢* =400. As a consequence, using (2.12), we infer that

1
We = e 0+D . K=

(2.14)

and thus

=&~ (u§) e, (2.15)
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Error estimate in the non-congested and transition zones. In the vicinity
of £=0, the idea is the following: we write Equation (2.8) in the form

o, =A(v.),
where A.(v) = (us:) tv(s2(vy —v) +pe(v) —pe(v)), and we write b,p, as an approxi-
mate solution of (2.8), namely

/

Vapp =

As(napp) +7e,

for some small remainder r.. We then use the form of A, to estimate v, — v, close to
& =0 through a Gronwall-type Lemma.
Let us first compute r.. By definition of b and v, we have

/ {;}S(l_ps(napp)) if £<0,

o] =
app pﬁ(v+—ﬁ)+K5ﬁx’ if £>0,
so that
1 v 1—p(v [N .
re= (— app) Pe(Vapp) +(v_—0app)7(ppse if £€<0,
5 s I I
and
b Se— S8 _ _
re= =2 (. (04) = pe(oagy) ~ = 0(0 )

1
Kev+t _
_SeXRET [U+—20—XKEﬁ +Keviy if €>0.
I
Now, note that v,p, is bounded in L*°, uniformly in e, and that there exists a
constant C' >0 such that

|§_36| SCEI/’Y»
VE>0, ps(napp(g)) < C€ﬁ7
VESO, 0<0app(E) —1<CeiT,

Gathering these estimates, we deduce that ||7¢||ec < Cevi.

We now perform the error estimate. Without loss of generality, we can always fix the
shift in v, by requiring that (v, —v,p,)(0)=0. We treat separately the non-congested
and the transition zone. Indeed, A, is uniformly Lipschitz in the non-congested zone,
whereas the estimates on AL (v,pp) degenerate in (£*,0).

e Non-congested zone (£>0): First, recall that x is compactly supported. As a
consequence, if ¢ is small enough, v,p, is strictly increasing in (0,+00), and we recall
that v, is also a monotone increasing function. Hence, in the non-congested zone, we
have v: >0,5,(0), Vapp > 0app(0). Using the computations of the previous paragraph,
we infer that |[p.(v)| <C for all v>10,,,(0), and thus |AL(v)| < C for all v>10,,,(0). We
deduce that

[(0c —0app)'| = Ac(0:) = Ac(Vapp) — 7]

< CeT +C|o. — bapp|.
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The Gronwall lemma then implies that
0. — Dapp| < Ce7T [exp(CE) —1],

which leads to a good estimate on compact intervals.

e Transition zone (£ €(£*,0)): In this zone, the situation is more complicated be-
cause the derivative of the pressure might become singular. We use a bootstrap argu-
ment together with a Gronwall-type lemma to control the error |v, —tapp|.

First, note that as long as € —&* > Me'/7, where M is some large but fixed constant,
independent of € (say M =100) and &* is defined by (2.13) and satisfies (2.15), then
Vapp(£) — 1~ (u5) "1 (€ —€*). Therefore, we introduce the following bootstrap assump-
tions

‘06 _Uapp| < (4N§)_1(§_‘5*)7

e o, (2.16)

As long as the assumptions (2.16) are satisfied, we have
Vapp — 1> (2u8) 1 (€—€%), 0. —1>(4u5) "1 (£ &)

and therefore there exists a constant C, depending only on p and +, such that

Ce
/
(V)| S —5 YveE[b(),0, .
lpe(v)] ey [02(€); Papp (€)]
We infer that as long as the assumptions (2.16) are satisfied, we have
€ 1
(02 ~0upe) (120 (14 cg— Gy ) 10— unnl(€) +CE 7.

Note furthermore that the assumptions (2.16) are satisfied at £=0, and therefore by
continuity they are also satisfied on a small interval in the vicinity of 0. Hence, as long
as the assumptions (2.16) are satisfied, the Gronwall Lemma ensures that

P c: __c
01~ <0 Lo (0 -0+ Sy ) €

A similar bound holds from below. We infer that as long as the inequalities (2.16) hold,

1 Ce C 1
0 —v <Cevtt — | <C — e+ ]
92(6) v (€ < C=Ielexn oSy ) <o (57 ) 771
Without loss of generality, we choose the constant M so that exp(%) <2, and we
obtain

102(€) = Dapp ()| < CeT+1¢| (2.17)

on the interval on which assumptions (2.16) are valid. Using classical bootstrap argu-
ments, we deduce that inequalities (2.16), and therefore (2.17), are valid as long as &
satisfies

csﬁ(—os%(&—g*) and  £—¢">Me'/7,

VAl
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or equivalently

(2.18)

f—f*>max<M51/"Y —C&e )

" Cev + (2u5) !

Using the estimate(2.15) on £* of the previous paragraph and the inequality v>1, we
infer that the estimate (2.17) is valid on an interval [£,,i,,0], where & :=&* + Mel/7.

Note that in the interval [£,,in,0], Vapp is & good approximation, in the sense that
0e — Vapp is smaller than all terms appearing in v,p, (namely the main order term 1 and

the corrector term of order sﬁ)

For £ <&in, the singularity in p. becomes too strong to apply the Gronwall lemma.
However, we can use the control by barrier functions from the previous paragraph to
estimate v —b,p,.

3. Global well-posedness of small solutions (W,V) of (1.11)
The goal of this section is to prove Theorem 1.1, that is the existence of a global
strong solution (W, V') to the system

atW+pe(vs +8IV) _p€<U5) =0,

0,V
OV — 0, W — pdyIn %Y _¢

g

(Wav)\t:O = (Wo,‘/o),

where ve(t,2) =v.(x — sct), under a smallness assumption on (Wy,Vp). As explained in
the introduction, we follow the overall strategy of [23], tracking the dependency of all
estimates with respect to €. Of course, the main difficulty lies in the singularity of the
pressure term in the congested zones. The main ideas are the following:

e Since we are working close to a congested profile, it is natural to investigate
the stability properties of the linearized system close to this congested profile.
Therefore we rewrite the previous system as

atW—l—pIE(UE)aIV:FE(an),
awV) _G.(0,V),

g

(3.1)

8tV—8xW—u6w<

where

Fs(f) ::_[ E(Ua+f)_pa(vs)_pla(va)f]a

Ge(f) = pon {ln <1+f> f]. (3.2)

Ve Ve

Hence the main order part of the energy and of the dissipation term is the
one associated with the linearized system. The nonlinear part of the operator,
contained in F; and G, is then treated as a perturbation, assuming that the
distance between the congested profile and the actual solution remains small
enough (in a way that needs to be quantified in terms of ).

e In order to close the estimates thanks to a fixed point argument, we need to
work in a high regularity space. Therefore we differentiate the equation and
derive estimates on the first-order derivatives. However, the system is not stable
by differentiation, and we will need to compute some commutators.
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3.1. Properties of the linearized system. As announced above, the starting
point lies in the derivation of energy estimates for the linearized system. Therefore we
define the linearized operator

(V)= (o (o)

The cornerstone of our analysis is the following energy estimate.

LEMMA 3.1 (Energy estimates for the linearized system). Let T'>0,
fFeL=(0,T;L*(R)), g€ L>(0,T;L*(R))NL*(0,T;H' (R)),
and S¢,S, € L*(0,T;L*(R)) such that

()< ()-(2)
Then

[ [t viop] vo [ Y o2
Lé[pngua2+maﬂ%g£ A;Fﬁnii)+5¢4' (34)

-
Proof.  To get (3.4), we test Equation (3.3) against p’e( .) | and we obtain

L[] o) oo
‘”A@(iﬂgféﬁ%£;+%4~

Using then integration by parts and 0;v. = —s.0, v, this equality is rewritten as

d f2 I€/€ amz
&[] o, [ 2 0015742 [ 220

dt Jr p/s(vs) R p/e(v&‘)) e

AF%&;+%4'

which leads to (3.4) after integration in time. |

We will apply Lemma 3.1 with (f,g) =0%(W,V) and with k=0,1,2. Therefore it is
important to compute the commutator of £, with the differential operator 0,.

LEMMA 3.2 (Properties of the commutator [L.,d,]). Forall (f,g)€ L? (Ry,H'(R))?,

f _ _axvepg(ve)axg
o0l <g> - (—uaz (22t0.9)

L., 07 (g ) =9[L,,0,] (gmg ) (_iﬂéﬁéﬁ%@%ﬁ{i)) .

and
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As a consequence, we have the following bound: there exists a constant C1 depending
only on p,vy and vy such that for all 6 >0, for all T >0,

[4[@%@- A <a/0 [ ovtonrp+ G, // [10:9. (35)

Lemma 3.2 will be proved in Subsection 5.1.

REMARK 3.1. Let us stress that the term 9,v.p/ (v:)0,g in the commutator [L.,d,] is
responsible for a loss of €2/7 in the second integral of (3.5). It means that we will have
to multiply our energy estimate at each iteration by £2/7. In other words, our total

energy will be
Z 2k/'y/|:

3.2. Construction of global strong solutions of (1.11). In this paragraph,
we construct global smooth solutions of (1.11) under a smallness assumption. Following
Lemma 3.1, we derive successive estimates on (V,WW) and their space derivatives up to
order 2. Hence, we define

W ()2 +105V (1)

Bsvn)= [ [ —lotw <>|2+|azzv<t>|2]dx,
pL(v

Dk(t;V,W)::/vae\8§W|2dx+/(6§+1V)2dx.
R R

Note that

pe(e) _ (v AD(we—1)"  4+1 v+l
p{g(ve)z e 'Ypa(ve) Y

As a consequence, there exists a constant Cy, depending only on 7, i and v4, such that
for £ small enough, for all (W,V) € H*(R) x H*1(R),

7 k+1 2
DLV, W) < Cy (ss / (pe(”5)281v5|a’;vv|2+2ﬂ / " V) )
R

r (P(v2)) Ve

The goal is to prove, by a fixed point argument, existence and uniqueness of global
smooth solutions of (1.11), under the assumption that Ej(0) is small enough for k=
0,1,2. Given the couple (W7,V}1), we introduce the following system

o (v v (V) = (6o @9
(W2, V2) =0 = (Wo, Vo)
and the application
AT (W, V1) € X (W, Vo) € X
where

X:={(W,V)e L= (R, ;H*(R))?; Dp(t;W,V)e L'(R) for k=0,1,2}.
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We endow X with the norm

(W, V)3 = sup [ch 2 |:Ek (t,W(t / Dy(s,W(s),V(s))ds H7

te[0,+o0[ | 120
(3.7)

where ¢ is a constant to be determined, which is meant to be small but independent of
e, and for § >0, we denote by Bs the ball

By={(W,V)eX, |(W,V)||lx<d2%}. (3.8)

The result of Theorem 1.1 will be achieved with the proof of the following proposition.

PROPOSITION 3.1. Assume that

5

Eo(0;Wo, Vo) +e%/7 E1(0;Wo, Vo) +e*/ 7 Eo (0;Wo, Vo) < 6ge ™.
for some 69 >0. There exist two positive constants 6* and cqy, depending only on vy,
and v, such that if 0<dy < d*, 0<c<coy, then there exists § =5(do,v4,1,7y) such that

e The ball By is stable by A°.
o The application A° is a contraction on Bs.
As a consequence, A° has a unique fixed point in By.
Note that we are able to prove a global result. This comes from the fact that our

system is dissipative, which allows us to circumvent the use of the Gronwall Lemma.
As a preliminary, let us recall that

<eg 1/ 3.9
/UE_]'HOO_E ’ ( )

so that |pL(v.)| <ve~/7. Additionally, differentiating (2.8), we have
|0%0.| < Ce™ Y78, (3.10)
Hence, if (W,V) € X then for k=0,1, m=0,1,2,

142m

107V || oo 12y S Ce™™ (W, V)| 2, 00 W || o2y < Ce™ 2

1/2 1/2
105V | e, <CIOSVI 2 L |05 V2

WV)llx,  (3.11)

_ Lk —L
<Ce™H||(W,V)| e (W, V)|

<Ce™ 5 |(W,V)] ;s (3.12)
|07+ s < Ce (W, V)]s (3.13)
1OEW ||, < Ce™ 5 (W, V) s, (3.14)

where the constant C' depends only on ¢ and v. We will use this remark repeatedly
when estimating the source term (F;,Ge).
Note in addition that if

(W, V)l <02
then the following inequality holds

10,V || Lo, < e ~37 <Coe™ <en (3.15)
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provided that ¢ is small enough. In other words, for sufficiently small § the perturbation
v=v. + 0,V will never reach the critical value v*=1.

In order to prove Proposition 3.1, we rely on the energy estimate from Lemma 3.1,
and we treat the right-hand side (F.(9,V1),G-(0: V1)), defined in (3.2), as a perturbation
that we estimate thanks to Lemmas 3.3 and 3.4 below. The largest part of the proof
is devoted to the stability of the ball Bs by the application A.. We derive successive
estimates for Ej(t;W2,V2) in terms of ||[(W1,V1)|lx and [[(W2,V2)||x. Note that we
cannot close the estimates before performing the estimate on Fs. Furthermore, when
addressing the bound on E; (resp. Es), we will use the commutator result of Lemma 3.2
together with the control on 9,V (resp. 92V) in L7 , coming from lower order estimates.
Eventually, we prove that A, is a contraction on Bg.

Tools and heuristics for the control of non-linear terms. One of the main
technical difficulties of the estimates comes from the nonlinear terms F, and G.. We
will rely on the following Lemma (see also Lemma 3.4):

LEMMA 3.3.  Let us write Ge(f) = u0z(H:(f)), where
Hazln(l—kf)—f,

Ve Ve

and recall that F.(f)=—[pe(ve+ f) —pe(ve) —pL(ve) f]. Provided that |f| < 512/7, there

exists a constant C, independent of €, such that the following estimates hold:

f2
|Fe(f)| < Cpe(ve) (v.—1)2
/ f? |f110:f]
|aer(f)|SCaz”s|pa(ve)|m+cpe(ve)m,
_ / 2 0xf)? 0?2
(1)1 <O 0yl s + o) 2 0

and

[H-(f)I < CIfI%,
0. H-(f)| <C|f10: f1 +CIfI%,

02 ()| < CIFI02 1+ C (| 1+10:.£1) 102 £1+ C (1410201 ) 112

When we perform L? estimates, taking into account Lemma 3.3, we need to control
terms of the type

t
| [ feokva oo oz vl
0 JR

with k,l,me{0,1,2}, U;=V; or W, and f.[v.] is a function of v. and its derivatives.

In order to guide the reader, we establish the following (ordered) rules to control such

terms:

(1) If a term contains a factor of the form 9,v.0XW;, this factor is controlled through
Dy;

(2) The (remaining) term with the smallest number of derivatives is controlled in L3°,
and the other(s) in LZ;

(3) Note that |95V |2 for k> 1 could be controlled either through Ej, or through Dj_;.
Nevertheless we will always use Dy_1 to ensure uniform-in-time estimates.
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Estimate for £=0. For k=0, the estimate from Lemma 3.1 applied to f=Ws,
g=Va, Sy =F.(0,V1) and S, =0, H. (0, V1), entails that for all >0,

t
Eo<t;W2,V2)+C;1/ Do (s W, Va) ds
0

[ . W)

Using estimate (3.9) and Lemma 3.3, we infer that
(0: V1) ——W>

IAGESer

(0. V1
sc/ /( _1) W2|+|3wV1II<9§V1|V2|+|awv1|2|v2|)

<C (™ Walloae 10:VAIZ +Vallue, 10aVa 2 192VAllzz + Valles 10 VAIZ, ).

t
SEO(O;WO,V0)+2/ (
0

‘/6‘H (0: V1) V4

)

0, H(0.)Va

Using estimates (3.12) and (3.14) together with the assumption (W5,V1) € Bs, we infer
that the right-hand side above is bounded by

Ce™ 5 || (W, Va) | (W, Va) 3 < CO%27 || (W, Vo) -

Therefore we obtain

t
sup (Bt Vo) + [ Dofsii Vo) s ) <€ (Bu(0iW, Vo) 225 (W2 Vo))
te[0,400 0

(3.16)
Estimate for k=1. We apply now Lemma 3.1 to

[=0:W2, g=0,Va,
(51) = Gttt )+ 20 (i)

t
E1<t;W2,v2>+051/ Dy (5 Ws,Va) ds
0

and get, for all ¢ >0,

t
gEl(O;WO,VO)JFZ/ /p w )8 F.(0,V1)0,. Wa|+2p /8 H. (0, Vl)(’)QVQ
R Me
t 83:W2
w2 [ [liecor () 7200 || (3.17)
0 JR 2 0, Vs

The term involving the commutator is controlled via inequality (3.5), and is bounded
by

071 t t
%/ Dl(s;Wg,Vz)ds—l—SCHCgs_QM/ Do(s,Wa,Va)ds.
0 0
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The first integral can be absorbed in the left-hand side of (3.17).
By using Lemma 3.3 we can estimate the integrals of nonlinear terms of the right-

hand side of (3.17), namely
t ) t
L oo+ |
e [ [ 2HS

t
SC//@IUE
o JR

t t
+0/ /|azv1|\aﬁv1||azv2|+c/ /|axv1|2\a§v2|.
0 R 0 R

/ 0, H.(0,V1)02V5
R

ax Vl
ve—1

e —

We follow the guidelines stated at the beginning of the proof, and use estimates (3.9)-
(3.12) repeatedly. We infer that these nonlinear terms are bounded by
1
R Pe

/ot (vr) *“/ot

: 1/2
sc[( / D1<s;W2,v2>ds) /70, Vill e, 9 VA | 2
0 5 t,x

0, Wall e 19 Villsz 102Vl e

/ 0, H.(9, V)32V
R

10Tl 102Vl [02Valzp, + 102V, 0.Vl 1020a |

<Ce™# || (W, Va) |l x| (W1, 1) 1%
<C§2%7 || (Wa,Va) | x-

Therefore
071 t
sup El(t;wz,vmi/ D (5;Wa, Va) ds
>0 2 Jo

00
SEl(O;Wo,VQ) +80102€_2/7/ Do(S;W27‘/v2)+Cé2€% ||(W27‘/2)||X
0

Note that without loss of generality, we can always choose Cy>1/2, so that the above
inequality becomes

t
sup |:E1(t;W2,V2)+/ Dl(s;Wg,Vg)ds}
>0 0

o0
§2CQE1(0;WO,VO)+16(ch§s-2“/ Do (5:Wa, V) +C8277 || (Wa, Va) | x-
0
Hence, choosing ¢ < ¢y < (3207C%)~! and using (3.16)

sup [Eo(t;WQ,Vz)+852/7E1(t;W27V2)} +/ (Do(S;Wz,Vg)+ce2”D1(8;W2,V2)> ds

teRy Ry

<C [ Eol0;Wo, Vo) +&%/7 Ey (0:Wo, Vo) + 8% % [ (W, Vo) (3.18)
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Estimate for £k =2. We apply once again Lemma 3.1 to
f=0Wa, g=0Vs
with the source term (see Lemma 3.2)
Si\ [ O2F. (0, V1) o [ Wa
(sg) = (uaSH @) Ty,

Oz = O ( /a/(ve)a V)02 Vo
_ (u%%’};fi?@:/‘l/z)) +2[L.,0,] <%:VV;) _ (_M o (0. () 0. V2)>

Observe first that from (3.5), we have
—92Ws
0. W- £
/ / [Le, 0] ( 2)- pL(ve)
02V,
—1 t t
g(’i/ /8xv5|8§W2|2+8401025’2/7/ /|a§v2\2.
4 Jo Jr 0o JR

Concerning the additional commutator term, we have on the one hand, using the con-
trol (3.10) on Q%v.,

—02W,
Oz (Pl (V) O30 ) 0 VA
A fominr 28

] [0 (oo 22 i

SC?)&_Q/’Y/ /axvewaZ‘ |83W2|
0 JR

o=l ot t
g%/ /3rvg|a§W2|2+C§026_4/7/ Do(s;Wa,Va)ds,
0 JR 0

for some constant C'5 depending only on p,v4 and 7. On the other hand

[ . ( (8 ”E)a VQ) 92V,
(8 v5>
) t
Si/ /\5‘£V2|2+C’5*2/7/ Do(s;W2,V2)ds

4 Jo Jr 0

We now address the nonlinear terms. From Lemma 3.3, we have, concerning the re-
mainder involving F,

[ | L zravon,

2
*W//amvs (9:V1) 2|52W|+o// 0V |82W\

e / / 10, V2 10°VA | |02 W
0 JrRVe—1

<2u 107 Vel
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Using the inequalities (3.9)-(3.12) together with classical Sobolev embeddings, we infer
that the remainder involving F. is bounded by

. 1/2
c= ([ Datsiavayds) 10,V 104V iz,
0

t
+Ce [ (102l + 10Vl 102Vall2 ) 102 Wl oz
0
<07 e [(Wa, Vo)l x e~ 3 [ (W, V) 13
+Ce 2 Wal ey (I02VAITE 102V + 104N 192VA IS 103Vills )

<Ce™ 5 ||(Wa, Vo) ||| (W1, V1) 1%
<C6% 3 ||(Wa,Va) | x-

Now we deal with the integral coming from H., namely

t
p / / O2HL (0, V)||02Val
0 R

t t
<c / / PRALAA A ATe / / (182VA]+[82VA ) |02V4 [102Va|
0 R 0 R

t
o[ [a+ezpiomiPi
0
<Cl0Vallzz, (10:Valleas, (102Villz, +1102Val 2+ 10Vl )
AR CAA

_u
<Ce™ 2 ||(W, V1) |3 [(W2, Vo) | x
<C6% 7 ||(Wa, Vo) .

Gathering all the terms, we obtain, for all ¢ >0,

t
Eg(t;Wg,vg)w;l/ Da(s;Wa,V5) ds
<E5(0; Wy, V) +—/ Do(s;Wo, Vo) ds+84C, Cac™ 2/7/ D (s;Wo, Vo) ds

+(C2C e~ +Cs_2”)/ Dy(s;Wa,Va) ds+Co% % (W2, Va)|| x-
0

Therefore, for € small enough and recalling that Cy > 1,
t
sup |:E2(t;W2,‘/2)+/ Dy (s;Wa,Va) ds]
>0 0

<205 B (0;Wo, Vo) + Co%e ™% || (W, Va) v
t t
+128010225—2/7/ Dl(s;WQ,‘/'z)ds+4C§C§5_4/7/ Do(s;Wa,Va)ds.
0 0

Now, choose ¢ =1 min((128C;C3)~1,(4C3C3)~1/2). If ¢ < ¢y, using (3.18), we obtain
2

t
sup » _cFe?*/ [Ek(t;wg,vm / Dy (5;Wa,V5) ds]
t20 120 0
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2
<O B (0;Wo, Vo) +C %% || (Wa, Va) |- (3.19)
k=0

Recalling the definition of the ||-||x norm and using Young’s inequality, we infer that

2
(W2, Vo) |13 < Ca Y 27 By (0;Wo, Vo) + C'e
k=0

where the constant Cy depends only on v,v4 and u. Hence, if initially
Eo(0;Wo, Vo) +>/ Y Ex (0;Wo, Vo) +&*/7 B (0;Wo, Vi) < 53¢

with 8,8 such that Cy62 +Cd* <5< 1, we ensure by (3.19) that

1(Wa, Va)llx <8277 (3.20)
Therefore the ball By is stable by A°.

A. is a contraction. Consider (W1,V1)€ Bs, (W{,V{)€ Bs, and the associ-
ated solutions (Wa,Va)=A.(W1,V1), (W3, V5)=A(W{,V{). Then (Wo—W3,Vo—
V3) is a solution of (3.3) with the source term Sy=F.(0,V1)—F.(9;V{), Sg=
w0y [He (0, V1) — Ho(0;V])]. The next lemma provides bounds on the new source terms.
LEMMA 3.4. For all f1,fa€ HE (R) such that |fi]+|fa] < #,

F(f) - Fo(f)| < 022 b ()12

(ve—1)?
E(UE)
(ve—1)?

Oy Ve

|02 (F=(f1) = Fe(f2)) | <C —fi=Fl(ful+112])

+10: (f1 = f2)[ | f1] 40z fa |f1—f2|]

|02(F.(f1) = F.-(f2))| <C pe(v:) 8 o Ve

(vs*l)2

|f1— fal(Lfr]+f2l)

+m(\0m<f1ff2>||f1|+|f1—f2\|axf1\)
102 (f1 — f2)| (102 f1] 4102 fo]) + [ f1 — f2] 102 f1

1021~ f2) |fz|+v1_1(8xf2)2|f1—fz|]
and

|He(f1) —He(f2)| Ol fr = fol (L frl 4+ f2])
0:(H=(f1) = He () S Cf1l10:(fr = )|+ [ il [f1 = fol + (10z fol + | f2)) | f1 — fol]
|02(He(f1) = He(f2))| < C| 1l (L4070 ) fr = fal + 102 (f1 = f2) [ +102(f1 = f2)])
+ C((1+|07ve )| fal + 10 f2] 102 f2] )| f1 = o]
+C10:(fr— f2)| (10 f1l + 102 ) + C (| fo* +|0u fo| )| f1 = fal.
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We postpone the proof of the lemma to Subsection 5.2. Using these estimates,
the control of Ey(t;We—W3,Va—Vy) for k=0,1 follows the same lines as the one of
Ey(t; WQ,VQ) above In particular, since (Wy—W3,Vo—V5);—0=0, we find that for
C < CO (3201 CQ ) ,

supz kg2k/v {EktWQ W4, Va—Vy) /Dksw2 W4, Va—Vi)ds
teR+ .o

< COl|(Wy = W1 Vi = V) | l[(Wa = W3, Va = V) | &

However, concerning the estimate for k=2, there is a difference, stemming from the
term

O P @RV 0, Vi~ 0.V
(resp. C((0:V{)?+(97V1)?)]0: V1 — 0. V)
coming from 02(F.(9,V1)—F.(0,V])) (resp. from 0?(H.(9.V1)— H.(9:V}))), see
Lemma 3.4. As a consequence, following the estimates of the case k=2 above, we
find that for all £>0,

t
E2(t;W2—W2’,V2—V;)+C;1/ Do(s;Wo— Wy, Vo —Vy)ds
0
C*l t t
<2 /DQ(S;WQ—WZ;,I@—VQ’) ds+64clcgs—2/7/ Dy (s;Wo = W3, Vo —Vy)ds
0 0
t
+(O§025*4/V+05*27)/ Do(s;Wo — Wy, Vo — V) ds
0
+C<5€‘4”||(W1—W{,V1—V{>|Ix|I(Wz,Vz)Hx

+q// 2 (BRV2 10, Vi~ 0.V |2 W = 13

+q//’am (02V])2)[0, Vi — 0, V]| |03 (Va — V).

The first additional nonlinear term is bounded as follows, using (3.9)-(3.12)

t
1
//ﬁ(ai"f)Z‘ale*@xV{\Iai(Wz—Wz'n
0 R(UE )
<00, Vi =0V ||, 103 (Wa = W) oo (2) 102V 172 11
§C€_2/’y||8xv1_azvll”L?C_r”ai(Wg—W2/)||LOO(L2)H82‘/1||3/2 ‘63‘/1”1/2

_ 17
< Ce™ T ||[(Wy — Wi, Vi = Vi) | x| (Wa — Wg, Vo — Vi) || (W, V) 1%
soyfﬁwwrﬂam—mmﬂM@ww%—wmx

For the second additional nonlinear term, we have in a similar way

//'am RV Vi = 0a V7|0 (Ve — V)
<C0Vi 0,V e |02 (Va VD) a1 W2y +102VH 2, )
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<O110:Vi = 0: V]Il 102 (Va = V)2 10 VH 15 10:VH e o 102V 1
+C110:V2 =0V 1z 102V = Va)lluz 102VI1L° 192Vl uay 102VA 1,5
<O AWy — W], Vi~ V) L (W~ W Vo~ V) OV V)
<OOe™ 3 [[(Wr = Wi Vi = V)|l (W — W5, Vo = V)| .-
As a consequence, gathering all the terms, we infer that
1(W — W5, Va = V3) || < CO|| (Wh = W, Vi = V)| v,

and therefore, A, is a contraction on Bs for § <¢* small enough. This concludes the
proof of Proposition 3.1.

4. Asymptotic stability of the profiles (u.,v.)

Our goal in this paragraph is to prove the existence and uniqueness of solutions of
the original system (1.1) (rather than the integrated system (1.11)), and to investigate
their long-time behavior. At this stage, we have proved the following:

o If (u,v) is a smooth solution of (1.1) such that v—v.,w—w. € L§(R) for all
times, then we can write system (1.11) for the integrated quantities (W,V);
o If the initial energy of the system is small enough, there exists a unique strong
solution of (1.11) (see Proposition 3.1).
Therefore, our strategy is as follows: we start from the unique solution of (1.11). Under
additional assumptions on the initial data, we derive bounds on u—u.,v —v.. In partic-
ular, we prove that if initially (u—wc)|i—o,(v—ve) =0, (W —we) =0 € L}, this property
remains true for all times. These local L' bounds rely on arguments similar to the
ones used by Haspot in [11]. This justifies the equivalence between the original system
(1.1) and the integrated system (1.11). Eventually, we prove that (u—u.)(t)—0 and
(v—2.)(t) =0 as t =00 in L2NL>®(R).

Initial perturbations. Let ug, vy satisfy the hypotheses of Theorem 1.2 and
introduce the integrated quantity Uy such that 9,Up(-) =ug(-) —ue(0,-). We have then
(recall that ve—o =10;)

% 0.V, 0.V
WozUo—uUO—p[ln<l+ °>— 0].

g g UEZ

By assumption (Up, Vp) € H2(R) x H?(R) and condition (1.12) in Theorem 1.1 is fulfilled,
that is

[ |05 [?
Z /[' o +|akvo|2}<50m

Moreover, since Vo € H?(R), we have

0 Vi
8ZW0+;181( o 0

> +0,H:(0: V)

||<u—ua><o>|L;=\
L2

<110 Wollz +C102Voll +10:Voll ) + 102 He (92 Vo) 2
<C[l02Woll 22 +1102Voll 2 + 19 Voll 2

€

+ 19 Voll s (10:Vollzz +192Vallz2)
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1
< (7(5()6:‘ﬂ 5 (4 1)
and

10 (u— 1) (0) | 2 < |02 Wo| 2 +C 102 He (9. Vo) |2
+C(|03Voll L2 +102Voll 2 +e~ 1/7“39:%”&;)
<[2Wollz +C (14102 Vol 1) [92Vol 2 +Cl192Vh 174
+Ce (0. V| 1 102 V0 2
<[02Woll 12 +C (1+ 02 Voll g ) 103Vo | 2 + ClIO2Vo 75 103V I
+Ce™V)0, Vol Lo 10 Vo | 22
<Coo+C|03Vol L2 (4.2)

using the result of Lemma 3.3.

Stability of the wvelocity profile u.. The perturbation u—u. satisfies the
parabolic equation

=)0, ( T0n(u-u.))
~0,0:0) = p02) 410, (5 - )0 ). (1.3

Ve

where v=v.409,V, and (W,V) is a solution of (1.11).

LEMMA 4.1.  Assume that initially (Up, Vo) € H*(R) x H3(R) s such that (1.12) is
satisfied by the couple (Wy, Vo) and consider the solution (W,V)eBsCX of (1.11)
given by Theorem 1.1. Then there exists a unique regular solution u—u. to (4.3) which
is such that

w—u. €C([0,+00); H (R)) N L2([0,+00), HX(R)), y(u—u.)€ L2([0,4+00) xR). (4.4)

Moreover the following estimate holds

sup | [[(u— ) (8) |2 + / 10— ) ()2 dis

teER 4
C(ll(u—ue)(O) 32 +6%7). (4.5)
Proof. Under the initial condition (1.12), Theorem 1.1 applies and yields

the existence of a unique couple (W,V)e€ Bs. For this V, we define v=v.4+09,V.
Then infv>1+ce'/7 for some positive constant ¢, and using (3.12), we also have
vl Loy w0 @) S C-

First, we test the Equation (4.3) against u—u. to get

/(u—us)(t)Q_/ |(u_u€)(0)|2+,u/t/1|8x(u—u5)|2
//pa —Pe(ve)) 0z (u—ue) //(—)@ug D (u—1u.)
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where the right-hand side can be estimated as follows, using the relation 0, us = —$:0,v.
to bound |0y u.|

|RHS|§M/t/1|61(uu5)2+0/t/|ps(vs+5zv)Ps(vs)}Q
+c/ /

S*/ /*|8$(u—u5)‘2+0572/7H833V||22 +C0.V |32
2 0 RV t,x t,

poft 1
gf/ /—|8x(u—u5)\2+C<§253/7.
2 0 ]RU

Therefore we have

o

v5+a Vo vg

sup [ Iu= )01+ [ 10su=0 )0 5| < u-u) ) + 0%, (1)

teR L

To obtain an estimate at the next order, we test Equation (4.3) against —02(u—u,):

/Raz(u—;s)(tﬂz/ﬂj | (u— Us +u// 02 (u—u)|
:M/t/afar(u—ue (u—ue) / /8 Pe(ve+0,V) —p-(v:)) 02 (u—u.)
7”// (<v5+8 v v)arus) Orlu—ue)

As previously we estimate the right-hand side by means of Cauchy-Schwarz and Young’s

inequalities
u [t t
ras|<h [ [ Seu-wytec [ [ ot
2Jo Jrv 0o JR

+Ce 0,V |7: +Ce* 02V |72
+Ce 20, VIIZ, +ClOIV T,

¢ ¢
SH/ /£|8§(u—u5)\2+0/ /|3z(u—u5)|2+05251/7
2J)o Jrv 0o JR

using the relation 0 u. = —s.0,v. to deduce that |92u.|<Ce~'/7. Combining this in-
equality with the previous estimate (4.6) we obtain (4.5). As a consequence, we also
deduce from Equation (4.3) that

10, (u—ue) 13
<C (1020 =uo)lzz, +10u(u—w)llzz_ +e 0V lzz, +e 7102V 112, )
<C5e? .

The existence and uniqueness of u derives classically from these a priori estimates. 0O
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REMARK 4.1. Combining Equation (4.3) with (the = derivative of) (1.11), we infer
that the quantity w—u+pd;(Inv) is a solution in the sense of distributions of the
parabolic equation

1
Oy (w—u~+ pdy(Inv)) — udy | — 0z (w—u+ pdy(Inv))| =0.
v

Furthermore, by definition of Wy, we also have (w—u+udy(Inv)),_o=0. As a conse-
quence,

w—u+ oy (lnv)=0 for a.e. t>0, zeR.

L' estimates. The previous lemma is based on the existence and uniqueness of
a regular v=v.+09,V and thus on the passage to the integrated quantities (W, V).
Nevertheless, we did not justify the equivalence between the system
Or(w—we) 4+ 0z (pe(v) —pe(ve)) =0 (4.7a)
8t(v—v5)—8z(w—ws)—,u8§1n£:0 (4.7b)
v

€

and the system (1.11) satisfied by the integrated quantities. Initially, we assumed that
(wo —we(0),v9 —v:(0)) € L§(R) to justify the introduction of (Wp,Vp) (note that the as-
sumptions of Theorem 1.2, namely ug —u.(0) € W,'" and vy —v.(0) € W' N H?, ensure
that wo —w.(0) € L}). The goal of this paragraph is to prove that this property remains
true for all times. This result relies on a combination of estimates on the both velocities
u—u. and w—w,, similar to the estimates in [11].

LEMMA 4.2.  Assume that the conditions of the previous lemma are satisfied. Suppose
in addition that

up—u-(0) € LE(R), vo—v.(0) € Wy (R).
Then for all times t >0, (u—wu.)(t) and (w—we)(t) belong to LE(R) and

=) (1)l 23 + 11w = we) (B 23 < Ce [ lluo = e (0)]| s + llwo —we (0) |2 | €7 (4.8)

where the constant C. tends to +o0o as € — 0.
Proof. The functions u—u. and w —w, satisfy the equations
1 1 1
Outu=10) =0, (10, (0 1) ) ==0,(:0) ~po02) +10s ((5 = ) 0w ) (49)

Ve
O (w—we) = =05 (pe(v) = pe(ve))- (4.10)
For n >0, we introduce j, € C%(R) defined by

1 1
jn(z):\/zQ—i——\/» VzeR
n n

which is a smooth, convex approximation of the function r— |r| as n — +oo. Note that
j,’l(z):z(\/zQ—i-l/n)_l is an approximation of the sign function. Testing equations
(4.9)-(4.10) against j, (u—u.) and j/ (w—w,) respectively, we infer that

/at[jn(u_us)"i_jn(w_we)]"":u/ %j;{(u_ue)‘al(u_UE)'Q
R R
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- / B (e (v) — pe (02)) [ (= ) + s (w —w,)]

+u/Raz ((i - ;) axua)j:xu—ue).

Since j// >0, the second integral of the left-hand side has a positive sign. On the other
hand, since the profile (ve,u.) satisfies O¥v., OFu. € L'(R), k>1, the right-hand side

can be controlled by
1 1
on((G-)ee)
v Ve

o2
v Ve

|RHS|S/R|aa:(pa(v)_pa(va)|+,u/R

< [ 19 000u0= ) + G0~ )0+ |
1

+u/
R|V

—— —||0?u,|
<Ce™ V7 (100l 12 + [100ve| 11 )

€

+ Cllo=vell o ey i ) (71000 2y + 185uc 2y + 110202y )

where
v v
Oy =—0, Ve + — [(ufus) —(w— ws)]
Ve H
so that
1020l <C (100l o + llu—re 22 + [l = w1y ).
Hence

[ U= O+ =) 0)] = [ [fu= el 0)+ e[ 0)
gcg(IlaxvslL1+|I8§vsllL1+At4[uu5|+lwwel]>

where we have used the fact that j,(r) <|r|. Passing to the limit n— 400 and using
Fatou’s lemma, we finally obtain (4.8) thanks to a Gronwall inequality. Since the
Equations (4.9)-(4.10) are conservative, we ensure that

/R(ufus)(w:o, /R(wfws)(t):o >0,

0
Observe that the previous lemma gives L' bounds on u—wu. and w —w, but not on
v —v. Since v — v, satisfies

O(v—ve) —0p(u—ue)=0,
the derivation of a L! estimate requires a control of 9, (u—wu.) in L..

LEMMA 4.3. Assume that the conditions of the previous lemmas are satisfied. Suppose
in addition that

0z (up —uc(0)) € LY(R), 0, (wo—we(0)) € L*(R).
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Then for all times t >0, (v—v:)(t), Ox(u—wu:)(t) and O, (w—w)(t) belong to Ly(R) and

I =) (Ol + (= ) (Ol 2 + =0 (0 2
<Ce[llvo = ve(0) 123 +lluo = e )21 + llwo —we () +1] € (4.11)

where the constant C. tends to +o0 as € — 0.

REMARK 4.2. The previous estimates (4.8) and (4.11) are local in time and depend
on ¢ but in fact, we will never use them in a quantitative fashion. Note that the only
point we are interested in is the fact that u(t,-) —uc(¢,-) and v(t,-) —v(t,-) are in L' (R)
for all t>0.

Proof.  The proof of this result follows the same lines as before. It relies on a
combination of L'-estimates for the three following equations

3,5(1)—115) :az(u_us)v

0t0, (u—ug) — 10y (185(11— u5)>
v

= 020.0) o) 4002 (1= Yo ) =0 (200 ).

Ve

040 (w—we) = _83(196(”) —pe(ve)).

As in the previous proof, the key ingredient is the control of §2v in terms of % v, % (u —
ue), OF (w—w.), k=0,1:

Ozv 00w v Oz v
2 zU x Ve 92 T _ _ _
3957}_ < Ve U? ) a:n'l}g"_ Ve af/us + M [(u uE) (w U}g)]

—l—z[ax(u—ua)—az(w—wg)]
and therefore
107l 2 SCE(II(%UEHL; +110%vellps + llu—uel £y +Jw—we | £y
119 (w10l 3 + 10 (w=w2) 2 )
Thanks to this bound, we can estimate

02 (pe (v) = pe(ve)) = PL (V)3 (v —ve) +pL (1) (Fav)* — L (ve) (Dve)?
+(pL(v) = pL(ve)) 07 ve

as follows

||a§(ps(”u) —pe(ve)) ”L;
<C[ 1o =)y + (| Bsoll gy + 10svc )+ R

<Ce™*/ [H&CUE”L; H107vell Ly + [l —uel| s + [lw —wellzs

19 (u =) | 23 + 100 (w = w212 ]
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Furthermore, using Lemma 4.1,

Ozv
‘ Oy (ﬁ@x(u— u€)>

<CN|0av| L2((0,4) xRo) |02 (=) | £2((0,1) xR, )
+C1020| 12 0,6y xR 102 (10— 1e) [l L2((0,1)x Ro)

L((0,t)xRy)

+C||6$U||2L2((O,t),L4(]Rm)) 102 (u—ue) | oo ((0,), L2 (o))

<C(I(uw—ue)(0)| g2 +6e3) | 102vell L2((0,0), 1 (Ro)) + 102V | 2 ((0,0), 12 (R0 )

2
+(”a:cvs‘|L2((O,t)7L4(Rw))+”ai‘/”LQ((O,t),L“(Rm))) ]

<C..
Equipped with these estimates we easily deduce (4.11). d

Proof of the first part of Theorem 1.2. Let us now recap the conclusion of the
previous steps.

Let (ug,vo) be an initial data satisfying the assumptions of Theorem 1.2, and let
Uy, Vo, Wy be the associated integrated quantities. Let (V,W) be the solution of (1.11).
Then according to Lemma 4.1, the associated couple (u,v):=(0,U +ue,0,V +ve) is a
solution of (1.1) and belongs to (ue,v.)+C([0,00), H1(R)?), and v—v. € L?(Ry,H?).
Lemmas 4.2 and 4.3 ensure that for all t>0, (u,v,w)(t) € (ue,ve,we) + L§(R).

Conversely, let (u,v) € (ue,v:) +C(Ry, H' N L{(R)) be any solution of (1.1) such that
v—v. € L2(Ry,H?), and assume that the initial data (ug,vo) satisfies the assumptions
of Theorem 1.2. Define the integrated quantities
U(t,x)::/ (u(t,z) —ue(t,2))dz, V(t,x)::/ (v(t,z) —ve(t,2))dz,

— 00 — 00

and

W::U—,uawv—,u[ln(l—i—

Ve

0,V 0.V
)%
Then (V,W) is a solution of (1.11). Furthermore, 9,V € C(Ry,H*NL{)NL*(R4,H?)
and 9,W €C(Ry,H'NL}). In order to conclude that (V,W) is the unique solution
of (1.11) in By, we first need to prove that (V,/W)eX. The regularity assumptions
on (u,v) ensure that 9;(V,W)eC(R,,H?'), and therefore (V,W)eC(R,,H?). We infer
that (VW)€ X. A simple bootstrap argument then ensures that (V,W) € Bs, and thus
(V,W) is uniquely determined as the fixed point of the application A%, see Proposition
3.1. The uniqueness of (u,v) follows easily.

As a consequence, we have proved that for any initial data (ug,vo) satisfying the
assumptions of Theorem 1.2, there exists a unique solution (u,v) of (1.1) such that

u—u. €C(Ry, H' NLY),
v—v. €C(RL,H' NLH)NL*(Ry, H?).
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Long-time behavior. We have shown in the previous section that
v—v.=0,V € L*([0,+00); H*(R)).
Combining this bound with the control of
Or(v—v.) =0, (u—u.) in L3*([0,+00); H(R)),
we infer that

(=) (O)llz, 0.

As a consequence, we have

(0 =) ()| S Cll(w—v) O 2100 (0—v) @) 15— 0. (4.12)

T t~)+oo

Similarly for u —u., the bounds obtained in Lemma 4.1 yield

=) t) 2z, — 0

and therefore

[(u—ue)(t,2)| < Cll(u—ue) (O] 100 (w—ue) |12 12— 0. (4.13)

t—)+oo

5. Proofs of Lemmas 3.2, 3.3 and 3.4

5.1. Structure of the commutator. Let us prove the three properties claimed
in Lemma 3.2. A direct calculation gives first

. (0 f
()2 () o= (0)
B p/s(vs)a%g , pe (vs)a VeOy g—i—pg(vg)a%g
"\ 02y -po, (%2) ) T\ 02 r o, (%2) + p (%= 0u9)

_p/g/(ve)axvsamg
N _:U/ax (620);}5 xg> '
Next, we have

2202 (F) =leoao. (1) +auizaon (1)
g g g
_p,e/(vs)amvaaa%g _az(pg(ve)azveazg>
B <_Naw (8,355339)> * < A G ) )
_QPZ(UE)amveagg O (p/s/ (Us)am’us)amg
- (S et ) - (o o ()0

X O (P (0e)0yve ) Oy
=2[L,0;] (gﬂé) - < Maxp(a ( xvg)aj;)> .

€
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For the third point,
O f

[ fieaa(3) f;%ai“i
:/OT/RZiEZE)acvsaxg@xf—u/T/895<ax = xg> 0.9
- [} [t [ for(%

) iousl
where the right-hand side can be estimated as follows

[o.(%5" ) 0.0

x 6

yee \(/ I Ml@fﬁ) (M@wﬁ)w
relo- ()], Lo

T 2
af oo S|l (L) oo
o Jr o \lve— v?

Using (3.9) and (3.10), we obtain the result announced in Lemma 3.2.

1

oo

5.2. Estimates on the nonlinear terms.
Proof. (Proof of Lemma 3.3.) We recall that

Fe(f)=—[pe(ve + f) —pe(ve) _p/s(vs)f]a

and that the function p. is C* in |1,4+00[. As a consequence, we will extensively
use Taylor identities to bound F. and its derivatives. Let us also mention that we
will only consider functions f such that ||f||o <de'/7 for some constant § <1, so that
|f|<é(ve—1). As a consequence, for all k€N and for all § <1/2, there exists a constant
C}, such that

Oy M (v)| < [p) (v + )] < Cilp™ (ve) -

As a consequence, we infer easily that

|FL(£)] < Cp! (ve) f2 <C(f}”:(_”§))2f2.

The estimates on 0% (F.(f)) follow from similar arguments after differentiation. We have

0z (Fe(f)) = —0x0: [plg(ﬂs +f) _pé(va) _p/s/(ve)f]
=05 f[PL(ve + f) —pe(ve)],

and therefore

0 (Fe()] < C [ 000 p) (0| 72+ 2 () 11021
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In a similar manner, we have for the second derivative

O2F-(f)) = =02 I (v + f) = pl(v2) = Pl (v2) ]
= (Da0e)? [P (0ot ) = (0) ~ 2 (0.)
—20,0:0,.f [p! (v + f) — P! (v.)]
— (02 f)?pL (ve + f) = 02 f [PL (v + ) = pr(ve)].

As a consequence, using inequalities (3.9) and (3.10), we obtain

|02(F.(f))| < Ce™ 70,0 |pt (ve) | 2
+C,vp™ (v2) £
+C O, [pt) (ve)| | £] 10 f |
+Cp (v)(0: )2+ CPY (ve)| 1107 f1.

Using Young’s inequality, we obtain the estimate announced in the lemma. The esti-
mates on G, are similar and are left to the reader. 0

Proof. (Proof of Lemma 3.4.) Once again we focus on F.. The estimates for
F.(f1)—F-(f2), 0z(F-(f1) — F=(f2)) go along the same lines as above and are left to the
reader. The only novelty in 02(F.(f1)— F-(f2)) comes from the term (9, f2)?p” (ve +
f2) = (0xf1)?p” (ve+ f1), for which we write

(0 f2) P! (v + fo) — (0 1) DY (v + f1)
=00 f2)? [P (v + f2) = DL (ve + f1)] + (Ou fo — Ou 1) (O fo + O f1)PL (ve + f1),

and therefore

(0 f2)* P! (ve + f2) = (0 1) DL (v + f1))]
<C (0 (@0 f2)?1 1 = fol + 0L (019 fo = D 1] 02 2 + 0 1)

|

Acknowledgements. This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation
program Grant agreement No. 637653, project BLOC “Mathematical Study of Bound-
ary Layers in Oceanic Motion”. C. P. was partially supported by a CNRS PEPS JCJC
grant. This work was supported by the SingFlows project, grant ANR-18-CE40-0027
of the French National Research Agency (ANR).

REFERENCES

[1] D. Bresch and B. Desjardins, On the construction of approzimate solutions for the 2D wvis-
cous shallow water model and for compressible Navier—Stokes models, J. Math. Pures Appl.,
86(4):362-368, 2006. 1

[2] D. Bresch, B. Desjardins, and C.-K. Lin, On some compressible fluid models: Korteweg, lubrica-
tion, and shallow water systems, Comm. Part. Diff. Egs., 28(3-4):843-868, 2003. 1

[3] D. Bresch, D. Lannes, and G. Metivier, Waves interacting with a partially immersed obstacle in
the Boussinesq regime, arXiv preprint, arXiv:1902.04837, 2019. 1

[4] D. Bresch, C. Perrin, and E. Zatorska, Singular limit of a Navier-Stokes system leading to a
free/congested zones two-phase model, C. R. Math., 352(9):685-690, 2014. 1, 1, 1


https://doi.org/10.1016/j.matpur.2006.06.005
https://doi.org/10.1081/PDE-120020499
https://arxiv.org/abs/1902.04837
https://doi.org/10.1016/j.crma.2014.06.009

(5]

[6]

[7]

(8]

(9]

[10]

(11]

[12]
13
[14]
[15]
[16]

(17]

(18]

(19]

20]
(21]
(22]

(23]

ANNE-LAURE DALIBARD AND CHARLOTTE PERRIN 1813

D. Bresch and M. Renardy, Development of congestion in compressible flow with singular pressure,
Asymptot. Anal., 2014(1-2):95-101, 2017. 1

R. Colombo, G. Guerra, and V. Schleper, The compressible to incompressible limit of one dimen-
stonal FEuler equations: The non smooth case, Arch. Ration. Mech. Anal., 219:701-718, 2016.
1

P. Degond, J. Hua, and L. Navoret, Numerical simulations of the Fuler system with congestion
constraint, J. Comput. Phys., 230(22):8057-8088, 2011. 1, 1, 2.1

I. Denisova and V. Solonnikov, Local and global solvability of free boundary problems for the
compressible Navier—Stokes equations mear equilibria, in Y. Giga and A. Novotny (eds.),
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 1-88,
2018. 1

G. Guerra and V. Schleper, A coupling between a 1D compressible-incompressible limit and the
1D p-system in the non smooth case, Bull. Brazilian Math. Soc., New Series, 47(1):381-396,
2016. 1

B. Haspot, Ezistence of global strong solution for the compressible Navier-Stokes equations with
degenerate viscosity coefficients in 1D, Math. Nachr., 291(14-15):2188-2203, 2018. 1

B. Haspot, Vortex solutions for the compressible Navier-Stokes equations with general viscosity
coefficients in 1D: regularizing effects or not on the density, preprint, hal-01716150v3, 2018.
1,1,4,4

J. Humpherys, O. Lafitte, and K. Zumbrun, Stability of isentropic Navier—Stokes shocks in the
high Mach number limit, Commun. Math. Phys., 293(1):1-36, 2010. 1

T. Iguchi and D. Lannes, Hyperbolic free boundary problems and applications to wave-structure
interactions, arXiv preprint, arXiv:1806.07704, 2018. 1

T.-P. Liu and Y. Zeng, Time-asymptotic behavior of wave propagation around a viscous shock
profile, Commun. Math. Phys., 290(1):23-82, 2009. 1

C. Mascia and K. Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-
parabolic systems, Arch. Ration. Mech. Anal., 172(1):93-131, 2004. 1

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional
model system for compressible viscous gas, Japan J. Appl. Math., 2(1):17-25, 1985. 1

A. Matsumura and Y. Wang, Asymptotic stability of viscous shock wave for a onedimen-
sional isentropic model of viscous gas with density dependent viscosity, Meth. Appl. Anal.,
17(3):279-290, 2010. 1, 1

A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional
compressible Navier—Stokes equations, SIAM J. Math. Anal., 39(4):1344-1365, 2008. 1

C. Perrin and E. Zatorska, Free/congested two-phase model from weak solutions to multi-
dimensional compressible Navier-Stokes equations, Commun. Part. Diff. Egs., 40(8):1558—
1589, 2015. 1

D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge
University Press, 1999. 1

V. Shelukhin, On the structure of generalized solutions of the one-dimensional equations of a
polytropic viscous gas, J. Appl. Math. Mech., 48(6):665-672, 1984. 1

Y. Shibata, On the R-boundedness for the two phase problem with phase transition: Compressible-
incompressible model problem, Funkc. Ekvacioj, 59(2):243-287, 2016. 1

A.F. Vasseur and L. Yao, Nonlinear stability of viscous shock wave to one-dimensional compress-
ible isentropic Navier-Stokes equations with density dependent viscous coefficient, Commun.
Math. Sci., 14(8):2215-2228, 2016. 1, 1, 1, 3


https://content.iospress.com/articles/asymptotic-analysis/asy1421
https://link.springer.com/article/10.1007%2Fs00205-015-0904-8
https://doi.org/10.1016/j.jcp.2011.07.010
http://dx.doi.org/10.1007/978-3-319-10151-4_51-1
http://dx.doi.org/10.1007/978-3-319-10151-4_51-1
https://www.onacademic.com/detail/journal_1000038974488910_fa80.html
https://www.onacademic.com/detail/journal_1000038974488910_fa80.html
https://doi.org/10.1002/mana.201700050
https://www.hal.inserm.fr/INSMI/hal-01716150
https://link.springer.com/article/10.1007%2Fs00220-009-0885-2
https://arxiv.org/abs/1806.07704?context=math
https://link.springer.com/article/10.1007/s00220-009-0820-6
https://link.springer.com/article/10.1007%2Fs00205-003-0293-2
https://www.onacademic.com/detail/journal_1000034967840710_8f63.html
https://dx.doi.org/10.4310/MAA.2010.v17.n3.a3
https://doi.org/10.1137/060658199
https://doi.org/10.1080/03605302.2015.1014560
https://doi.org/10.1080/03605302.2015.1014560
https://doi.org/10.1017/CBO9780511612374
https://doi.org/10.1016/0021-8928(84)90031-5
https://www.onacademic.com/detail/journal_1000040291873610_858a.html
https://dx.doi.org/10.4310/CMS.2016.v14.n8.a5

