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GLOBAL EXISTENCE FOR
NERNST-PLANCK-NAVIER-STOKES SYSTEM IN RV*

JIAN-GUO LIU** AND JINHUAN WANGT

Abstract. In this note, we study the Nernst-Planck-Navier-Stokes system for the transport and
diffusion of ions in electrolyte solutions. The key feature is to establish three energy-dissipation equal-
ities. As their direct consequence, we obtain global existence for two-ionic species case in R", n > 2,
and multi-ionic species case in R™, n=2,3.
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1. Introduction

The Nernst-Planck-Navier-Stokes (NPNS) system, describing the transport and dif-
fusion of ions in electrolyte solutions, plays an important role in many physical and
biological system [1,5], such as ion particles in the electrokinetic fluids [7, 10], and
ion channels in cell membranes [2,8]. An introduction to some of the basic physical,
biological and mathematical issues can be found in [11].

The NPNS system [6] reads

8tu—|—u-Vu+Vp=Au—(izici)V(Jb, (1.1)
Btci—kV-(ciu):Aci—kV-(:liV(b), i=1,...,N, (1.2)
—Ad):iv:zici, i=1,...,N, (1.3)
V-uszZl (1.4)

where £ € R™, t > 0. We impose the following initial conditions

ci(2,0)=c(x), i=1,...,N, reR™, (1.5)
u(z,0) =ug(z), reR".

Here u=wu(z,t) and p=p(x,t) are the velocity and pressure of electrolyte solutions,
respectively, ¢; =¢;(x,t) are the i-th ionic species concentrations, z; € R is valence of the
i-th ion, 1=1,..., N, and ¢ is the electric potential. In the above system, we choose all
physical parameters to be 1 for simplicity in representation. When initial data ¢ are
non-negative functions, then ¢; are still non-negative, i=1,...,N.
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1744 GLOBAL EXISTENCE FOR NPNS SYSTEM

The system (1.1)-(1.4) has the following two free energy-dissipation relations

d
S 1O+ D) =0, (1.7)
d
2 72(t)+D2(t) =0, (1.8)
where
1 2 1 2
Fit)==[ Ju|*dz+= | |Vo|“dx, (1.9)
2 Jgn 2 Jgn
N N
D (t) :/ |vu|2dx+/ (Zzici)2dx+/ Oz Vol d, (1.10)
R "=l R™ =1
N
fz(t)=2/ ciloge; da, (1.11)
i=17R"
N Veil? N
In the two-ionic species case including one species of cations (z; >0) and one species
of anions (22 <0), denote ¢y =z1¢1 and ¢ =—z3¢2. Then the NPNS system is reduced
to
Ou+u-Vu+Vp=Au—(ct —c_ )V, (1.13)
Orcr + V- (cqu)=Acy +|z1|V - (¢4 Vo), (1.14)
Ope—+V-(c_u)=Ac_ — 22|V - (c_V ), (1.15)
—Ap=cy—c_, (1.16)
V-u=0 (1.17)
with the initial conditions
u(z,0)=ug(z), cy(z,0)=c"(2), c_(2,0)=c"(z). (1.18)

Local existence for the NPNS system coupled from the Navier-Stokes equations in
the whole space was obtained in [9]. In this note, we will prove global existence for
this model in the whole space. There is a family of additional free energy-dissipation
relations for (1.13)-(1.17), i.e., for any p>1

%(I@IIICHI?#\zllllcfll’ip)JrDs(t):O, (1.19)
where
Da0)i= 2 (Jal T3+ a1V )
+(p—1)|zl||zg|/Rn(cﬁ_—c’i)(c+—c,)dx20. (1.20)
For the narrative convenience, we specially take z; =1,z = —1 below. Using the free

energy-dissipation relations (1.7) and (1.19), which will be proved in Section 2, together
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with some standard analysis, we have the following theorem on global existence of
bounded solutions for models (1.13)-(1.17).

THEOREM 1.1 (Existence for two-ionic species case). Assume that n>2, ug€

L*(R™R™), &,c® e L NL*(R™) and Fy(0) <oco. Then for any T >0, there is a global
weak solution (u,cy,c_) satisfying regularities

u€e L>®(0,00; L*(R™;R™)NL*(0,T; H' (R™;R™)), (1.21)

¢t e € L>®(0,00; L NL*(R™))NL*(0,T; H' (R™)), (1.22)

Vo€ L>®(0,00; L2(R™))NL?(0,T; H' (R™)), (1.23)

(1.24)

(1.25)

duue L2(0,T; W~ 17=1 (R™;R")),
Orcy,Opc_ € L20,T; W11 (R™)).

Moreover, ifcg,c(i € Lﬂ_ NL>(R™), then the weak solutions have the uniform L>°-bound,
i.e., there exists a constant C such that

el zoe (0,0032.00 () F le= [ o0 (0,005 250 (Rm)) < C- (1.26)

For the multi-ionic species system (1.1)-(1.4), recently, Constantin and Ignatova [6],
using the relative entropy method, obtained global existence and stability results in two
dimensional bounded domain with blocking or selective boundary conditions for the
ionic concentrations. In this paper, we will prove global existence for the model (1.1)-
(1.4) in the whole space R™, n=2,3. As usual, we can use the first moment m;(t) to
show the tightness of ¢;, i=1,...,N. Let

N N N
ml(t)::;ml(t):;/w|m|cidac, mo(t)::;/ncidemo. (1.27)

We have the following existence theorem.

THEOREM 1.2 (Existence for the multi-ionic species case). Assume that n=2,3,
ug € L*(R™;R™), ¥ € LY NLlogL(R™), m1(0) <oo, F1(0)<oo and F»(0)<oo. Then
for any T >0, there is a global weak solution (u,cy,...,cn) satisfying reqularities

u€ L>(0,00; L*(R™;R™))NL*(0,T; H (R™;R™)), (1.28)
¢; € L%(0,00; L N LlIog L(R™)), ¢; € L3(0,T;L5(R"™)), i=1,..,N,  (1.29)
V¢ e L*(0,00; L*(R™))NL2(0,T; H*(R™)), (1.30)
dyue L2(0,T; W13 (R™R™), 9,(Veé)e L3 (0,T; W23 (R")). (1.31)

REMARK 1.1. We remark that the family of additional free energy-dissipation relations
(1.19) may not hold for the case with more than two ionic species. The last term in
(1.20) may be negative for the multi-ionic species. For example, taking N=3,z; =

1,29= —%,z;), = —%, we can easily construct three real numbers (a,b,c) such that
bP 4¢P b+c
P— - <0.
(=2 (0 22
REMARK 1.2. Theorem 1.1 and Theorem 1.2 show global existence for two-ionic

species case in R™, n>2, and multi-ionic species case in R", n=2,3, respectively. Re-
search on the uniqueness of solutions will be our further work.
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2. Free energy-dissipation equalities
In this section, we derive mass conservation, two energy-dissipation equalities and
a LP-energy-dissipation equality.

PROPOSITION 2.1 (Mass conservation). Let ¢;(x,t) be non-negative solutions to (1.1)-
(1.4). Then c;i(x,t) has the following conservation of mass

/ ci(x,t)dxz/ A(x)dr=:m), i=1,...,N. (2.1)

The proof of Proposition 2.1 is standard, refer to [3]. The second property below
gives the two free energy-dissipation equalities to the model (1.1)-(1.4).

PROPOSITION 2.2 (Two free energy-dissipation equalities).  Let (u,cy,...,cn) be solu-
tions to (1.1)-(1.4). Then the two energy-dissipation relations in (1.7)-(1.8) hold.

Proof. Multiplying v and z;¢ to (1.1) and (1.2) respectively, integrating them in
R™ and using V-4 =0, we obtain that

N
i1l . .
a2 - - i) 2.2
dt 9 Rn|u\ dx /R"|VU| dx /n(;zzcl)u Vodz, (2.2)

/zi(batcidx—&—/ ziqbV-(ciu)dm:/ ziqSAcidx—&—/ 20V - (z;;Vo)dz, (2.3)
n Rn n R™

i=1,...,N. Summing (2.3) from 1 to N, we have
N
(Zzici)2dx
1

d1 a
R 2 = -Cr . —
dw/w\v(;s\ da /Rn(;zzcl)u Vodz / i

—/Rn(z,z?cmV(b\zdx. (2.4)

Hence by (2.2) and (2.4), we deduce

N N

dF, 5 ) , .
W+/n\VU\ d$+/n(ZZiCi) dx+/n(Zzi ¢i)|Vo|*dz=0. (2.5)

i=1 R™ =1

Now we prove the second free energy-dissipation relation (1.8). Taking 1+logc; as
a test function on both sides of (1.2), summing them and using V-« =0, we have

AF; & al
d—t2+42/ \V\/cﬂzdac—i—/ (Zzici)zdaczo. (2.6)
i=17/R" R™ =1

This completes the proof of Proposition 2.2. 0

Moreover, for two-ionic species case we also have the LP-energy-dissipation relation
(1.19).

PROPOSITION 2.3. Let (u,cy,c_) be solutions to the model (1.13)-(1.17). Then the
L?-energy-dissipation relation (1.19) holds.

Proof. Multiplying pcf’f1 and pc?~? (p>1) to equations (1.14) and (1.15) respec-
tively, integrating them in R", and using V-u=0, we get

4(p_1)/ \Vcﬁ/2|2dx=/ pcﬁ_1V(C+V¢)d$» (27)
R™ R™

d
el +
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%H@H]Zp—F@/ |Vc’i/2|2dx:—/ pP IV - (c_V ) d. (2.8)

n

A simple computation gives that

| w9 Vo de=—-1) [

/chflV-(c,qu)da::—(p—l)/ Fepde+(p—1) | & de. (2.10)
R" Rn

R™

cﬂ“dm—i—(p—l)/ cie_de, (2.9)

n n

Hence summing (2.7) and (2.8), and using (2.9) and (2.10), we have
d 4(p—1) 2 4(p—1) 2
grlle 1o +lle-NEn) + === / VP Pder === | [V P da
+(p—1)/ (AP —Fem —Pey)dr=0. (2.11)

Due to
I e — ey =(cf — ) (ep —c) >0,

hence (1.19) holds. d

3. Global existence for the two-ionic species case

In this section, we show global existence of bounded solutions for the model (1.13)-
(1.17) by using the energy-dissipation equalities (1.7) and (1.19), in order to prove
Theorem 1.1. The process is standard. For completeness, we outline a proof below.

At first, a regularized problem for (1.13)-(1.17) is constructed as follows

Optbe + e - Ve + Vpe = Aue — (¢, — £ )V, (3.1)
O +V - (cGue) =Act +Jo+ (V- ((Jex ) S+ Ve)), (3.2)
Oyt +V- (CE_'UJE) =Ac® —J. % (V ((Js *CE_)JE *VQSE))’ (3'3)
—A¢p.=c —c°, (3.4)
Vou. =0, (3.5)
& (2,0)=cP(2) = (z) x I, & (2,0)=c0(2):=c" () % Je, (3.6)
e (2,0) =uco(x) :=ug(x) * J2, (3.7
where J.(x) is defined by the standard mollifier J(z) satisfying [p, J(z)dz=1.
Since ug € L?(R™;R™), ¢9,c® € LY NL>®(R™) and F;(0) < oo, we have
lucoll 2wy < lluollp2n),  F1(0) < F1(0), (3.8)
||Cip||L1mLoo(]Rn) S Hcg||leLoo(Rn), ||Cio||L1mLoo(]Rn) S |‘Cg||L1mLm(R7L)7 (3.9

where F£(t) is defined by

1 1
}—f(t):§/R |us|2clsﬂ—i-§/lR \V¢s|2dm.

Next, we give some uniform estimates of solutions to the model (3.1)-(3.7). The
process is similar to that of obtaining the energy-dissipation equalities (1.7) and (1.19).
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PROPOSITION 3.1. Assume that ug € L*(R™;R™), ,c° € LY NL*(R™) and F1(0) < co.
Let (ue,c5.,c%) be solutions to (3.1)-(3.7). Then u. and ¢. satzsfy the following uniform
estimates

l[te || Los (0,005 22 (R )) + | Ve | L2 (0,002 (R7)) < C, (3.10)
Vel Lo 0,00;L2(r7)) < C. (3.11)

Proof. Multiplying u., ¢. and —¢. to (3.1), (3.2) and (3.3) respectively, integrating
them in R™ and using V-u. =0, we obtain that

d1

79 \u5|2dx— /|Vug|2dx /(ci—ci)uE-V(bde, (3.12)
Rn

d)eatci_ dx:/ Voo - (cGu)ds+ P AcS dx
Rn Rn R'Vl

— V(Jexpe) - (Jex eV (Joxde))de, (3.13)
R"

p0ic de= [ Vo (cCu)dx+ o Act dx

+ | V(Jexde) (JexEV(J*de))dx. (3.14)

R™

Subtracting (3.14) from (3.13), we have

dt2/ V. |*da — / (c§ —c)uec-Voodx
:—/ (ci—ci)de—/ Jox (¢ +¢2)|V(Jo* )| da. (3.15)
n ]Rn

Hence by (3.12) and (3.15), we deduce

d (1 9 9
dt( Rn|u€\ dx+ = / V.| dx)
—/ |Vua|2dm—/ (ci—ci)de—/ Jor (64 )V (exgo)Pdz,  (3.16)

which implies the estimates (3.10) and (3.11). 0

PROPOSITION 3.2. Assume that ug € L*(R™;R™), ,c° € LY NL*(R™) and F1(0) < co.
Let (uc,c ,c2) be solutions to (5.1)-(5.7). Then c5. and c2. satisfy the following uniform
estimates

1L (0,00:L1 L2 (R )) 1€ | oo (0,002 L2 R7)) < C, (3.17)

||VC§r ||L2(0,oo;L2(R")) +||VcE ||L2(0700;L2(]Rn)) <C, (3.18)
n 2n

IV oell Loe (0,00;L (R7)) < C, 71< <f2 (3.19)

where C' is a constant independent of €.

Proof. Multiplying 2¢5 and 2¢ to equations (3.2) and (3.3) respectively, integrating
them in R", and using V-u. =0, we get

d
chiHQLQ—FQ/Rn |Vc§r\2dx:2/Rn(JE*ci)V~(Jg*ciV(JE*qbg))dx, (3.20)
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%HCH@ +2/ IVeE [2da= —2/ (Jek NV (LorE V(Lxo))dr.  (3.21)
R™ Rn

A simple computation gives

n

2/n(,]g*cj_)v.(Je*cj_V(Je*qSE))dx:—/ (Joxc)?(Je* (¢ — ) da, (3.22)

Z/n(JE*cE_)V.(JE*CE_V(JE*QﬁE))d:r:f/ (Joxc® ) (Je* (5 — ) da. (3.23)

n

Hence summing (3.20) and (3.21), and using (3.22) and (3.23), we have

dt(
:—/n ((Jg*ci)2—(Jg*ci)2> (Jg*ci—JE*ci)dxgo’

which implies (3.17) and (3.18).
Moreover, using the Equation (3.4) and the weak Young inequality, we obtain

1 -1 1
Le, —+1:n—+7, 1<s<2.
T n S

d
4 ||ci||i2+\|ci||i2)+z/ IVE P+ Ve Pde
Rn

Vel

1
e [T .

Ln n—1
Together with (3.17), this implies (3.19). |

Furthermore, using the regularized equations (3.1)-(3.3), and the uniform estimates
in Proposition 3.1 and Proposition 3.2, we can directly obtain the following proposition.
Since the estimate is standard, we omit the details.

PROPOSITION 3.3. Assume that ug € L*(R™;R™), ,c° € LY NL*(R™) and F1(0) < oco.
Let (ue,c%,c%) be solutions to (3.1)-(3.7). Then for any T>0 there is a constant C
such that (ue,c%.,c%) satisfy the following estimates uniformly in €

|0puc | w20, (3.24)

" (R) =
10| 06N g gy 225 gy <C- (3.25)

L2(0,T;W

-1 n
L2(0,T;W D=1 (Rn))

Finally, we use compactness argument to complete the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Since the solutions (u.,c5 ,c® ) of the regularized
problem (3.1)-(3.7) satisfy all the estimates in Proposition 3.1, Proposition 3.2 and
Proposition 3.3, using the Aubin-Lions lemma, we can obtain that there is a subsequence
still denoted as u., c5 and ¢ and limit functions u, ¢y and c_ satisfying the regularities
(1.21)-(1.25) such that

u. —u in L?(0,T; L3 .(R™)), (3.26)
& —cy in L*(0,T;L (R™)), (3.27)
¢ —c_ in L*(0,T; L% .(R™)). (3.28)

Hence the standard compactness argument implies that there is a global weak solution
(u,cq,c_) for the model (1.13)-(1.17), and they satisfy all the regularities (1.21)-(1.25).

Now we prove that weak solutions have the uniform L*°-bound. Using (2.11), we
can get for any ¢t >0 and p>1, it holds that

t
||0+||’£p+||07||1£p+/O Ds(s)ds<lleg 7o + o 7,
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Due to ¢%,c% € L' N L>(R™), we know that there is a constant C' independent of p such
that

llexCllLe@n) +lle- GOl r@ny <C, - €[0,00), (3.29)

which means (1.26). |

4. Global existence for the multi-ionic species case in R", n=2,3

As usual, we first show the bound of the first moment m; (¢) and use it to determine
the boundedness of the Fisher information, in order to give weak convergence of ¢ in
the Sobolev space L2(O,T;L%(R”). Moreover, we estimate the time derivative of V¢,
for proving its strong convergence in L?(0,T; Lf‘oc(R”). Let us begin from estimating
the first moment m (¢).

PROPOSITION 4.1 (Estimate of the first moment).  Let (u,c1,...,cn) be solutions to
(1.1)-(1.4). Then for any o >0, there is a constant C(o) such that the first moment
mq(t) satisfies the following relation

N
d
thml( )<C(o +UZ||V\FHL2(R”)+U”V“HL2 R™)
i=1
N
+aZ/ 22¢i|Vo|?dr, i=1,...,N. (4.1)
i=17/R"
Proof. Multiplying |z| to the Equation (1.2), integrating in R™, we have

d T-u z-Ve;

—mj (t):/ —c;dx— / 7dxf/ zzcl -Vodx. (4.2)

dt ! n |z i n |z]

Notice that for any 0 <t < oo, it holds that
x

5 mciudx‘ <lleill 3 g Il e, (4.3)

,/ ;Vcida:‘g/ IVeil dw < 2llcll £ gy IV v/l 2&m), (4.4)

7/ zlcl| | V¢dm’< / zizci\v¢|2dx)%(/ cldx)
n R

Plugging (4.3)-(4.5) into (4.2), and using (2.1) and (1.7), we obtain

w\»—A
—~
-~
ot
~

d . ;
—mi(t) <lleill, 4 oo lullLe@ny +C ||V\/C7;||L2(Rn)+(/ zlci| Vol da) (4.6)
dt i @) -

Since
2(1-6
leill, 8 gy =IVEI? 3 ) S CIVENZEGD IVV/El ) < CIVVE o gny, (A7)
where 92% for n=2, and 0= for n=3. And using the Young inequality, we know

that for any o >0, it holds that

d . o
25 ()< Clo) +olVValagn +o [ alVoPdor TIVulbi.  (3)
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i=1,...,N. Summing (4.8) from 1 to N, we get (4.1).
Combining (2.5), (2.6) and (4.1) and taking o =1, we deduce

4

N
1 2 2
= (Fu+ Pt 2ma(t)+3 / e [ (Y se)ds

R™ =1

1751

N N
1 7
+5/ (Zz?ci)\v¢|2dx+52/ VValPde<C.  (4.9)
R =1 = Jrn

Based on Proposition 4.1 and the free energy-dissipation relation (1.8), we will
deduce a series of a prior estimates, which are helpful for proving global existence of

weak solutions to the model (1.1)-(1.4).

LEMMA 4.1.  Assume that uge L*(R™;R"), €Ll NLlogL(R"), mi(0)<oco and
F1(0),F2(0) <oco. Then for any T >0, there is a constant C such that the following

estimates hold

[[ull Lo (0,00;2 @)y + VUl L2(0,00;12(R7)) < C
IVveillezoriz2@ny <C, i=1,...,N,
leill 5 o4 gy SCo i= LoV,

V@I Lo (0,052 () + VDIl 20,1311 (R )) < C.

Proof. By (1.7), we easily know that (4.10) holds, and thus

1l £4(0,00;24 (R Y) < C, for n=2,

llu|l s ))SC, for n=3.

L5 (0,00;L4(R"
Using the Carleman-type inequality [4]

/ ci\logci\dxgm’i(t)—i—S—w,
{ei<1} €

we obtain that there is a constant C' independent of ¢ such that it holds that
N
i=1 /R

Combining (4.9) and (4.17), and using the initial assumptions, we have

N T T N
Z/ / |Vﬁ|2dxdt+/ / () zici)?dedt <C.
=170 JR® 0 JRY =

Hence the Equation (1.3) and (4.18) imply that (4.11) and

/OT/n(A¢)2dzdt§C.

/ (A¢)?dx = 5 |V2¢|2dx, for any 0<t<T,

The fact

(4.17)

(4.18)

(4.19)
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together with (4.19) imply that (4.13) holds. Moreover, combining (4.7) and (4.11), and
noticing 260 < %, then by the Holder inequality, we obtain

/ncz\ dt<0/ \\V\/Ell%dt—c/ Ivyalgd<c.

That is (4.12). |
Now using (4.10)-(4.13), we derive some estimates on time derivative of V¢ and u.

LEMMA 4.2.  Assume that ug € L*(R™;R"), ¢ € L1 NLlog L(R™), m1(0) < oo, F1(0) <
oo and F2(0) <oo. Then for any T >0, there is a constant C' such that

10:(V O 5 o w24 oy S C (4.20)

Hatu||L2((],T;W71’§(]R")) SC (421)

Proof.  For any ve C(R™;R™), v can be decomposed into
v=w+Vy, V-w=0.

Hence
N
(0,00(V9)) = (V),0,(V)) = (1,0, ( — A¢)) = <¢73t(zzicz')>' (4.22)

Multiplying z; to the Equation (1.2) and summing them from i=1 to N, we deduce
that

8t(Zzici) +V- ((Zzzcz)u) = A(Zzici) +V- ((szc,)V@

So, we can compute
N N
(,0:>_ zici)) = (Vi ( Zzlcz + (A9, Zzzcz (V. (D Ze)Ve)).  (4.23)
i=1 =1
Noticing that
N N . L
(Vo (Y 22 Vo) <[ V0] (Z( [ ([ z?ci|v¢|2dx)2>, (4.2
i=1 i—1 YR R™

and using the Holder inequality for the right-hand side of (4.23), we have

N
(¥, 0 Zzzcz < A zali( Zzzcz )l g+|\V¢||Lw||(zzici)llL§HUIIL4
i=1

i=1

+C|VY - Z / el Vo dr)E. (4.25)
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By the free energy-dissipation relation (1.7), (4.12), (4.14) and (4.15), we deduce

T N
/ I8l ()l S CIA 3 1y (4.26)
T N
IVl reell(D zici) |l 4 llull Lo dt < CIVY] Lao,1;n00 ) (4.27)
0 L
=1
T N N
/ HVl/}HLoo(Z/ Z?Ci|v¢|2d;p)2dt§C||V1D||L2(O7T;Lm(]gn)). (428)
0 i=17R"
Hence it holds that
T N
/O<w>at(zzici)>dt§CH¢HL4(O,T;W?‘4(R”))~ (4.29)
=1

Therefore (4.22) and (4.29) imply that

T
/<Uaat(v¢)>dt§CHUHL“(OaT;Wz"‘(]R"))’
0
which means that (4.20) holds. Using (4.10)-(4.13), a similar process can also give
(4.21). This completes the proof of Lemma 4.2. 0

Proof. (Proof of Theorem 1.2.) A regularized problem for (1.1)-(1.4) is given
by the following equations

N
atus+us'vu6+vpe:Ausf(zzicf)(Js*V(bs)a (430)
i=1
5 +V - (Gue) =Ac5+V - (%65 Je x Ve ), (4.31)
N
—Ape=(>_zc5)* e, (4.32)
i=1
Vue =0, (4.33)
& (2,0) =c0(x) :=cl(x) * J., (4.34)
e (2,0) = tzo() = g (1) # . (4.35)

Since ug € L*(R™;R"), ¢%,¢% € L NLlog L(R™), m4(0) < o0, F1(0) < 0o and F»(0) <

oo, we have

lucollL2®n) < lluollLz@ny, €50 i@y = llcbll L @y (4.36)
mi(0)<my(0)+C, Fi(0)<Fi(0),  F5(0)<F2(0), (4.37)

where C' is independent of ¢, mi(t) and F5(t) are defined by

2/ |z|cfdz,  F5(t Z/ c$logcs du.

It is directly checked that the solutions (ue,cf,...,c%) of the regularized problem
(4.30)-(4.35) for n=2,3 satisfy the energy-dissipation relations (1.7) and (1.8), and the
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property of the first moment. Thus we have all the estimates in Lemma 4.1 and Lemma
4.2, i.e.,

l|te || oo (0,00; 12 (R7)) + [ Ve | 2 (0,00; 12 (R7)) < C (4.38)
IV 2,2 @y <C, i=1,..,N, (4.39)
16115 0 pnd gy SCv i= 1oV, (4.40)
IV el Lo (0,00;22(®7Y) + VPl 20,7551 (R )) S O, (4.41)
||3t(V¢a)||L§(O’T;sz,g(w)) <C, (4.42)
18cvell o o 1.8 ny) < C- (4.43)

Hence using the Aubin-Lions-Simon lemma [12, Corollary 4] and the uniform esti-
mates (4.38)-(4.43), we can obtain that there is a subsequence still denoted as u., ¢,
¢§ and limit functions u, ¢ and ¢; satisfying the regularities (1.28)-(1.31) such that

ue—u in L*(0,T;Li (R™)),

loc

V¢.—Veé in L*(0,T;Li.(R™)).

loc

Furthermore by the estimate (4.40), we deduce

¢ —¢;, i=1,..,N, in L*(0,T;L3(R"™)). (4.44)

Hence the standard compactness argument implies that there is a global weak solution

for the model (1.1)-(1.4). This completes the proof of Theorem 1.2. |
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