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NON-DEGENERATE STATIONARY SOLUTION FOR
OUTFLOW PROBLEM ON THE 1-D VISCOUS HEAT-CONDUCTING
GAS WITH RADIATION*

KWANG-IL CHOET, HAKHO HONG!, AND JONGSUNG KIMS$

Abstract. This paper studies the asymptotic behavior of the solution to the initial boundary value
problem of a one-dimensional compressible viscous heat-conducting gas with radiation. We consider
an outflow problem, where the gas blows out the region through the boundary, of the general gases
including ideal polytropic gas. First, we give the necessary and sufficient conditions for an existence of
the non-degenerate stationary solution. In addition, using the energy method, it proves the asymptotic
stability of the solutions under the assumption that the initial perturbation and the boundary data
in the Sobolev space is small. We also demonstrate the convergence rate for the exponential and
logarithmic decay of the solver. Note that it is the result of the outflow problem of the viscous heat-
conducting gas with radiation in the half line.
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1. Introduction and main result

The equations describing the one-dimensional motion of a compressible viscous heat-
conducting gas with radiation in Eulerian coordinates, can be written in the following
form (see [25])

pe+(pu)z =0,

(pw)s+ (pu® +p)y = s,

e+ + [pule+ %) + puls + go = K0p + p(utty) o,
—Gzat+q+(0*)2 =0,

(1.1)

where the unknown functions are the densities p(z,t)>0, the velocities u(z,t), the
temperatures 0(z,t) >0, and the radiation heat flux ¢(z,t). Also, p=p(p,0) and e=
e(p,0) are the pressure and internal energy respectively, while > 0 denotes the viscosity
and x>0 denotes the heat-conductivity.

We consider the system (1.1) on [0,00) replenished with the initial data, the far
field conditions and the boundary condition.

(pauae) |t=0: (pOau0700)(1‘)7 .’,UE[0,00),
hmr—>+oo(p7u;97q)(xvt): (p+au+,9+70);

u|x:0:u77 0'90:0:977 Q|z:0207 (13)
where py >0, uy, 6+ >0 are constants.
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1662 STATIONARY SOLUTION ON VISCOUS HEAT-CONDUCTING GAS

We are interested in the large-time behavior of the solutions for the initial-boundary
value problem (1.1)-(1.3) in the case of u_ <0, that is, outflow problem.
Throughout this paper, we assume that

Pp(p,0) >0, eg(p,0)>0. (1.4)

Notation: Throughout this paper, O(1),c¢ or C represents a generic constant and
Ci(,+) or ¢;(+,-)(i € Z4) denotes general constants relating only to quantities indicated
in parentheses. General Sobolev space with norm ||- ||z denoted by H*:= H*(0,00) and
II-llo=|l-|| denote the usual Ly—norm.

Now, we state the main results of this paper. The stationary solution (ﬁ,ﬁ,é@)(x)
of the system (1.1)-(1.3) must satisfy the following equations:

e+ 5) +Pitle + o =l + (1100, (1.5)

_q$a:+q+(é4)w =0,
(ﬁ,é,(})(O) = (u,,9,70), lim (ﬁvﬁ»éa(j)(x) = (p+au+,0+,0)»

r—r00

where p=p(p,0), é=e(p,0).
The sound speed and the Mach number are defined, respectively, by

c(v,0)= 3p p, =+/- (v,8), M(v,u,)= (|:|9), (1.6)

where s is the entropy.
Then, we first state the result for the following existence and the properties of
solutions (p,4,6,q)(z) to the system (1.5):

THEOREM 1.1 (Existence of non-degenerate stationary solution).  Let u_ <0, p4 >
0,0+ >0. Following equation is a necessary condition for existence of the solution to
the system (1.5).

pi=prus=p(0)u_, Vx>0. (1.7)

If uy >0, then solution of system (1.5) does not exist.

For the case My =M (vy,uy,04)#1, if uyp <0 and (1.4) hold, then there exists
a positive constant 8y and a local manifold M C Ms, :={(u,0) € R%[0<|(u—u4,0—
04)| <o} such that if (u—,0_) € M, then the system (1.5) has a unique smooth solution

(p,1,0,4)(x) satisfying
|0k (p—pysli—uy,60—0,,4)| < Coexp(—éx), k=0,1,2, (1.8)

where § =|(u— —uy,0_—0,)| and C,é are positive constants independent of x,d.

REMARK 1.1.  Equation (1.8) denotes that for My #1, the solution of (1.5) con-
verges to the spatial asymptotic state with an exponential decay rate, this is called
non-degenerate stationary solution. For the case M, =1, the solution of the system
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(1.5) may converge with an algebraic decay rate, this is called degenerate stationary
solution. The case will be pursued by the authors in the future.

Next, we state the result for the stability of the non-degenerate stationary solutions
for the outflow problem (1.1)-(1.4).

THEOREM 1.2 (Asymptotic stability of non-degenerate stationary solution). Let
ugr <0,px >0,04 >0. Suppose that there exists the solution (p,0,0,4)(x) to the system
(1.5) satisfying (1.8). In addition, suppose that the initial data (po,uo,6p) satisfies

(po - ﬁ,uo —d,@o - é) S H1(0,00>, UQ(O) =U_, 90(0) =0_. (19)
If there exists a proper positive constant g, such that
(o — p 10 — 0,60 — 0) |1+ < 0, (1.10)

where 0=|(u_ —u4,0_—04)|, then the system (1.1)-(1.4) has a unique solution
(p,u,0,q)(x,t) that satisfies the following conditions:

(P—ﬁ,U—ﬂ79—é7q7Qx) EC([OaOO);Hl(OuOO)>7
pa € L3(0,00; L3(0,00)), (ug;02,q,¢2) € La(0,00; H' (0,00)).

The solution (p,u,0,q)(z,t) tends time-asymptotically from the stationary solution
(9,1,0,9)(x) in the sense that

lim sup |(p,u,0,q)(z,t)— (p,,0,4)(x)| =0.

t‘“’%e(o,oo)

The next theorem shows the convergence rate of the non-degenerate stationary
solutions to the system (1.1)-(1.4) for My > 1.

THEOREM 1.3 (Convergence rate of non-degenerate stationary solution).  Let py >
0,ux <0,0L>0. In the case of My >1 suppose that there exists the solution (ﬁ,ﬂ,é)(x)
to the system (1.5) satisfying (1.8). Assume (1.9) and (1.10). Then, we have the
following property:

(1) (exponential decay) If (po— p,uo— 1,00 —0) € L? .. (0,hoc), there is a proper con-

S,exp
stant >0 depending on ¢ such that the solution (p,u,0,q)(x,t) to the system (1.1)-(1.4)
satisfies the following condition.

S(up )I(p,uﬁ,q)(w,t)—(ﬁ,ﬁ,é,d)(%‘)l <Ce Pt
x€(0,00

(2) (algebraic decay) If (po — p,uo — ii,00 — 0) € L%(0,00), then the solution (p,u,0,q)(z,t)
to the system (1.1)-(1.4) satisfies the following condition

sup )I(p7u,9,Q)(x7t)—(ﬁ,d,é,d)(w)lSC(1+t)‘%,
z€ (0,00

where ¢ >0 and
LieXP(O,oo) :={f € L210c(0,00); /0 e f2(x)dx < o0},

L2(0,00) :={f € La,15.(0,00); /000(1 +2)° f?(x)dx < 00}
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Related results: When the radiation effect is involved, the mathematical study of
this field starts from Hamer’s work [5]. The model considered in [5] can be understood
as Burgers equation coupled with an elliptic equation:

{wt+f(w)x+Qx:0a (111)

—Czx +q+wm:07

where w is a scalar unknown function. It is the simplest possible model and the third-
order approximation of the compressible Euler system with radiation (see Appendix A
in [3]):

pt+ (pu)x =0,

(pu)¢ + (pu®+p). =0,

[p(e+ )]s+ [pule+ %) +puly +q, =0,
—Qea+q+ (0% =0.

(1.12)

For the Hamer’s model (1.11), Kawashima-Nishibata [8] proved asymptotic stability
of shock profiles. Kawashima-Tanaka [11] showed the stability of rarefaction waves.
Then this result was extended to multi-D cases by Gao-Ruan-Zhu in [3,4,22]. Recently,
Ohnawa [19] has extended the result in [8] to continuous shock cases. On the other
hand, there are also some results on the nonlinear stability of elementary waves for the
Euler system with radiation (1.12). In [12] the authors proved the global existence of
shock profiles for the Euler-Poison system, and Lattanzio-Mascia-Serre [14] extended
the proof to a general hyperbolic-elliptic system. Lin-Coulombel-Goudon studied the
stability of shock profiles under the zero mass perturbation assumption in [13]. Then
Nguyen-Plaza-Zumbrun removed the zero mass perturbation assumption by using a
Green function method in [18]. The stability of a single “viscous contact wave” is
studied in [21,26] and the stability of a rarefaction wave is considered in [15]. Xie [27]
proved the stability for the combination of viscous contact wave with rarefaction waves.
Also, for the system (1.1) of compressible viscous heat-conducting gas with radiation,
there are a few mathematical results for the stability toward elementary waves. Wang-
Xie [25] proved the stability of a single viscous contact wave and Hong [6] showed the
stability of the combination of contact discontinuity with rarefaction waves. However,
to the best of our knowledge, there is little known about the stability of nonlinear
wave patterns for the initial boundary value problem in half line on the system (1.1)
of compressible viscous heat-conducting gas with radiation, which is of interest in this
paper.

Here, we briefly review some main difficulties of our problem, compared to the
Cauchy problem of the system (1.1) or the outflow problem to the compressible Navier-
Stokes equations. As we know, the Cauchy problem of the system (1.1) can be reduced
into a more simple system in Lagrangian coordinates, which is not applicable for the
outflow problem of the system (1.1). This brings some difficulties in our analysis be-
cause the system in Eulerian coordinates is more complicated than one in Lagrangian
coordinates. On the other hand, when omitting the radiation effect, the system (1.1)
reduces to the classical compressible Navier-Stokes equations. For the outflow problem
of compressible Navier-Stokes equations, there have been many mathematical studies
about the existence, stability and convergence rate of the stationary solutions, please
refer to [2,7,9,10,16,17,20,23,24] and the references therein. Compared to the Navier-
Stokes equations, system (1.5) is more general and more complex for the radiation effect
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is taken into account. For instance, in order to obtain the existence of stationary solu-
tions, they in [10] considered 2 x 2 system of autonomous ordinary differential equations,
but we have to introduce the new variable to deduce the stationary equations to a 4 x 4
system of autonomous ordinary differential equations, and examine dynamics around
an equilibrium by applying the manifold theory (Section 2). Next, to deduce our results
desired for the stability of the stationary solutions by the elementary energy method,
it is sufficient to deduce certain uniform (with respect to the time ¢) a priori estimates
on the perturbations (p,,(,w) around stationary solutions (ﬁ,ﬁ,é,d). In the first step
of a priori estimates, comparing with the Navier-Stokes equations, the main difficulty
is to control the energy form (3.5) so that we get the uniform estimate for Lo—norm

of the perturbations, which is not trivial due to control of the new term —( (% - %)

(see (3.13) in Section 3). Last, the main point in proof of the convergence rate for the
stationary solutions is how to get the lower estimate on the term —w,G"' in weighted
energy form (4.3). For this, in the case of the ideal polytropic gas, they in [10] essentially
utilize the expression p= Rpf, e = R(v—1)716 on the pressure p and the inertial energy
e as the function for independent variables (v,0), where v>1 denotes the adiabatic
exponent and R is gas constant, which is not applicable for the general gas case (see
Section 4).

This paper consists of the following. In Section 2, we prove the existence of the
non-degenerate stationary solutions. Section 3 is devoted to showing the stability result
(Theorem 1.2) of the non-degenerate stationary solutions. In Section 4, for the super-
sonic case, the convergence rate mentioned in Theorem 1.3 is obtained by a time- and
space-weighted energy method.

2. The existence of non-degenerate stationary solutions

2.1. Reformulation of stationary problem. Integrating the first, second
and third equations of (1.5) over [z,00) yields

ﬁﬁ:p+u+7 .’IJ>O,

pac +p= piiy + prud +py,
42 w2l 2.1)
5 )+pi+G=rb, +Muuz+P+U+(€++ 5 L) +puy,

g, —E—(0*—6%) =0,

pale+ =

where py =p(vy,04), ex =e(vy,0,), E(x) )=—[=q(y)
Integration of the first equation of (1.5) over [0, x) is as following.
Ju—

1.
=p(0)u_, z>0. (2.2)
By (2.1) and (2.2), (1.7) holds.

We set 4= 320 (0=p"", 04 =p'), &1 =1,. Then, we have from (2.1)

8= 2 (= vy )+ 2 (p(0.0) s ),

MU+ HU N
ém = = (e(0,0) —es) — 22731(75 v+ p (0 —vg) + 14, (2.3)
=E+(0*—0%),
Ex:q.
Also, we have from (1.5)
(8,0,4)(0) = (v_,0_,0) withv_ = —v, (8,0,4,E)(00) = (vs,04,0,0). (2.4)

Uy
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To discuss the solvability of the system (2.3), (2.4) near the infinity asymptotic
state (v4,04,0,0), we need to introduce the stationary perturbation variables given by

(#,0,G, ) := (9,0,4, ) = (v1,6,0,0).

Then, the system (2.3), (2.4) is transformed into the vector equations for (v, 0, (?,E)

v v a1 (7, )
J 7 -
—_— ?, = J_;,_ g + (U 0) 5 xT > 0
dz | ¢ q g3(6) (2.5)
E E 0
(:Jagva)(o) = (’U_ _U+’9— _9-‘1-’0)’ (57578175)(00) = (0,0,0,0),
where J is the Jacobian matrix at an equilibrium point (0,0,0,0) defined by
u2
ﬁ(vi+pj) uu+p9 00 ail ai2 00
Jo=| moler+ps) moef 20| 2|2 azzanl (2.6)
0 12 01 0 asz 01
0 o 10 00 10
and g;(i=1,---,4) are nonlinear terms that

= U4 SO
91(0.0) =~ (P—ps piT—pg0) =0 +06%),
92(0,0) = ——(e—ey —efD—ef0) — ul P =0(0*+6%)
KUy + o 2K03 ’

g3(0)=(0+6,) -0 —4636=0(6%),

where pf =p,(vy,04), ef =e,(vy,04) and so on.

2.2. Proof of Theorem 1.1. By (2.6), we have

all—)\ a2 0 0

| a1 axx—AXaz O
J+ N AI - 0 as2 -1
0 0 1 =X

and the characteristic determinant of J is

ai1—XA a2 0 ai1—XA a2 0
|[J+ —A|=(—=A)| @21 a2—Aas|—| a1 a2 —Ads
0 aso —A 0 0 1
-\ —-Aa
—(\2—-1 aii /\ 12
( ) a21 CL22 >\ +a2s asz|’

Assume that uy <0 and (1.4). Then, the eigenvalues A;(¢=1,---,4) of J; must be
satisfied

M 40N+ b A%+ b3 A+ by =0, (2.7)
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where
V4 U2 U4
+
bi=—(a11+axn)=—— (2 +p3—> ——ey,
MU ’U+ V4

by =a11a22 —a12a21 — 1 —ag3as2

1 Ua— + + 1 + n 493_
~ (3 7t ) =gt o -1 -5, 28)
463 v u
b3—a11+a22+a23a32a11:_bH_+< ++pv>’
Kopug \v2
b= (o102 —azyanz) =~ ﬁﬂ?* e++f(e++p ) v
pr\v: V)0 T uk N +) Py

Using (1.6), we have

2

J\4+>1(<1)<:><32+

m(u,sn) > 0(<0). (2.9)
2

Noticing that

~ + 9+(p[;)2 + +_ .+
Pu(v4,54) =Dy T @ =0,py —p", (2.10)
0

we have

02 /2 02
_ vy fuy T

(11022 — 012021 = — | —5- +pi e(;r - (ej "'I’Jr)p;)F
1K UK

b3
03 (Ui
M-": < +pv(v+,5+)> e, (2.11)
vp (uf 0+ (pg)°
ayp=—— + Py (U4, 84) + —— )
Huy ( -2+ j
From Vieta’s formula, the roots of the system (2.7) have the following properties:

M A Ao+ A3+ =—by,

A A2 A1 A3+ A1 A+ Ao A3+ Ao dg + Az Ay = bo,
A1 A2 A3+ A1 A2 0 + A A3 A + A A3 hg = —b3,

A1 A2 Az Ay =by.

(2.12)

For the case M, >1: Using (1.4), (2.4)-(2.11) and u4 <0, we obtain from (2.8)
b1 >0, b3<0, b4<O,
which implies together with (2.12)

A1 A2 A3 <0,
)\1)\2(>\3+)\4)+(>\1 +)\2))\3)\4>0, (2.13)
A+ A2+ A3+ A <O.

The first inequality of (2.13) implies (2.7) doesn’t have any zero real root and we
can assume A1 >0, A3y <0 without the loss of generality. Also, using the second and
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third inequalities of (2.13), we have A\; + A2 <0. So, without the loss of generality, we
can assume

ReA <0, Redy <0, A3<0 and Mg >0.
For the case M, <1: Using (1.4), (2.4)-(2.11) and u4 <0, we obtain from (2.8)
by <0, by4>0,
which implies together with (2.12)

A1 A2 A3\ > 0,

(2.14)
A1+ A+ ()\1 +)\2)()\3 +)\4) <0.

Using (2.14), we deduce that (2.7) doesn’t have any zero real root and the following
possible cases:
(1) A1 >0, AgAy >0, (/\1 +>\2)()\3 + /\4) <0,

2.15
(2) A2 <0, A3A\y <O. (2.15)

Therefore, we can assume from (2.15), without the loss of generality,

Rel; <0, Reda <0, A3>0 and Ay >0.

Now, we stand in position for the proof of Theorem 1.1. We will only discuss the
case of M, <1 because the case of M >1 is similar and more easy.

In order to make the manifold theory directly applicable, we need to reduce the
system (2.5) to block diagonal form. By Jordan theorem in linear algebra, there is a
real nonsingular matrix ¢ = (g;;)ax4 such that

Q~'J,Q=diag(B,A), (2.16)

where A is a 2 X 2 matrix having eigenvalues with positive real part, and B is a 2x 2
matrix having eigenvalues with negative real part. Therefore, the linear transformation

=Q!

Q1D <N

0
0
q
B

—_
—
—

applied to the system (2.5) yields the equivalent boundary value problem

1% 1% H,(V,0,Q,Z)
d|e ) 5 H,(V,0,Q,5)
219 _giaeB.A | © V.o, = 0 2.17
| Q iag(B,A) 0 + Hy(V.6.0.5) | x>0, (2.17)
E E H4(V763Q7:)

411V (0)+¢120(0) + ¢13Q(0) +q14=Z(0) =v
221V (0) + g220(0) + g23Q(0) + q242(0) =0_ — 0., (2.18)
431Q(0) +320(0) +¢33Q(0) +34=(0) =0
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(V,6,Q,E)(c0) = (0,0,0,0), (2.19)

where H;(i=1,---,4) are defined by

1(7.6,G.5) o
Hy(V,0,Q,5) =Q! 92(5,5)
H3(V,0,Q.5) "
Hy(V,0,0,%) 93(() )

For the sake of technique only, it is convenient to introduce an undetermined pa-
rameter Fy:= FE(0), simultaneously add the auxiliary boundary condition g4V (0)+
q420(0) + q43Q(0) + q44=(0) = Eyy which is combined with (2.18) and described very suc-
cinctly as

‘7(0) v_—v

@(0) :Q—l - _91 (2 20)
Q(0) o) '
Z(0) Eo

Since the previous argument proceeds inductively to yield the fact that J; has two neg-
ative eigenvalues \;(i=1,2) as well as two eigenvalues with positive real part. By virtue
of the manifold theory in [1], there exist a C°° local stable manifold W _.(0,0,0,0) corre-
sponding to \;(i=1,2) and a C'™ local unstable manifold W} _(0,0,0,0) corresponding
to A;(i=3,4). More specifically, W} _(0,0,0,0) can locally be represented by a graph
over the (V,0) variables, i.e.,

Wise(0,0,0,0)={(V,6,Q,E) € R*|3C functions hj and hg
s.t. @:h%(f/,é), E=hi(V,0) with h%5(0,0) = DR (0,0) =0,
hZ(0,0)=DhZ(0,0) =0, for |(V,0)] sufficiently small}.

Furthermore, if (V(0),0(0),Q(0),Z(0)) is located on the stable manifold
.(0,0,0,0), then the problem (2.17), (2.19) and (2.20) has a unique smooth solution

Wi
(?,@,Q,E) which approaches the origin (0,0,0,0) at an exponential rate asymptotically
as r — oQ, i.e.,

105 (V,0,Q,2)(€)| < C([V(0)| +]6(0))e°*, for k=0,1,2,---. (2.21)

Next we assert that if

(V(O)7@(0)7Q(0)a§(0)) € {(‘77@7@7§) eRr ‘ @th@(f/vé)’ é:h%(v,@)h

the original stationary problem (1.5) with |[v_ —vy|+|0_ —0,] <1 is equivalent to the
boundary value problem (2.17), (2.19) and (2.20) with |V (0)|+|©(0)| < 1. It suffices to
show that (V(0),0(0)) depends locally and only on the original data (v_ —vy,6_ —6.)
in a continuous differentiable way. In fact, by premultiplying both sides of the equality
(2.16) by Q and using (2.6), we immediately deduce that J.Q=Qdiag(B,A) including



1670 STATIONARY SOLUTION ON VISCOUS HEAT-CONDUCTING GAS
the following algebraic equations:

a11q11 +ai2ge1 +a14qa1 =b11q11 +b21q12,
a21q11 +a22q21 =b11g21 +b21¢22,

(2.22)
a11q12 +a12G22 + a14qa2 = b12q11 +b22¢12,
a21q12 + 022G22 = b12¢21 +b22¢22,
and
g31 =b11qa1 +b21q42, q32 =b12q41 +b22qa2 (2.23)

according to the definition of matrix multiplication, where B = (211 212).
21 D22
q21 422
If the matrix @ is singular, then we know that there exists a real number 8 such
that

Using (2.22) and (2.23), we show that the matrix Q = ((hl qu) is nonsingular.

g1 =PBq2 and g2 =pqo0. (2.24)

Substituting (2.24) into (2.22) yields

a11q11 +a12¢21 + a14qa1 = B1qi2,
a21q11 +az2q21 = B1q22,

(2.25)
a11G12 +a12Ge2 +a14qs2 = Baqi2,
a21q12 +az2q22 = F2q22
with 81 =b118+b21 and Ba =b128+ bao.
By (2.24), (2.25), and (2.25),, we obtain
p1=0Bpa. (2.26)
Using (2.24), (2.26), (2.25), and (2.25), yields
qa1 = Baas. (2-27)
Also, by (2.27), (2.26) and (2.23), we get
q31 = Bq32. (2.28)

By (2.24), (2.27) and (2.28), we obtain the fact that the vector (q11,4¢21,931,¢41)
is parallel to the vector (qi2,922,932,942), which is impossible since the matrix @ is
nonsingular. Therefore, the matrix Q is nonsingular.

Notice that

(V(0),6(0),Q(0),(0) € {(V,6,Q.E) € R* | Q=1(V,0), E=h(V,0)},
therefore the first and second equations in (2.18) can be rewritten as

¢11V (0) +120(0) + 1315 (V (0),0(0)) +14h%(V(0),6(0))

aé - — U4,
421V (0) +4226(0) + 2315 (V (0),0/(0)) + 24 (V(0),©

- 2.29
o=,
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q11 412
q21 422
one easily solves the Equation (2.29) for (V(0),0(0)) to obtain a unique C function of
(v— —vy,0_—0,) in a neighborhood of the origin (0,0). Thus, by using the differential
mean value theorem, we have

Because the matrix ( ) is nonsingular, by using the implicit function theorem,

(o= —vi|+10- 0. ) < [VO)|+16(0)| < Cllo- —vi]+]0-—04]),  (2.30)

if [v_ —wvi|+1]0- —604| < 1. This implies the assertion mentioned at the beginning of
this paragraph holds. In addition, from (2.30), it follows that the condition (2.21) is
also equivalent to (1.8). By combining the information as above, we complete the proof
of Theorem 1.1.

3. Asymptotic stability of stationary solutions

We rewrite (1.1) and (1.5) as
pr+ (pu): =0, t>0, x>0,
P(Ut + Uu:z:) + Dz = fUgy,
p(et_'_uez)"i'pum +Q$:K/9x;v+:uu3;? (31)
pO(st +usy) +qw = KOze + pu2, s=s(p,0),
ez +q+ (0 =0

and

(pii), =0, x>0,t>0,
PUly + Py = +pllyy, ﬁ:p(ﬁ70)7
Pl + Py + o = KO+ 12, é=(p,0), (3.2)

~Gue+q+(0%),=0.
Perturbation (p,1,(,w) and the solution space X (1) is as following, respectively.

(0, C,0) (1) =(p,1,0,0) () — (5,1,0,) (<)
Pz S L2(17L2)7 (quvCvaawz) S LQ(Ile)}
for any interval IC [0,00).
Local existence of the stationary solution to the system (1.1)-(1.4) can be established

by the standard iteration argument and hence will be skipped in the paper. To prove
Theorem 1.2, a crucial step is to show the following a priori estimate.

PrOPOSITION 3.1 (A priori estimate).  Suppose that (p,u,0,q) is the solution of the
system (1.1)-(1.4) satisfying (6,9,(,x) € X([0,T]). Then, there is a suitable positive
constant €1 that satisfies

sup [[(¢,9,Cw,wz) ()1 <er and §=|[(u_ —u4,0-—04)]<en, (3.3)
0<t<T

for any t€[0,T), it that

||(<P,¢,C7w,wz)(t)\|?+/0 (DI + 11 (Wa, o w,wa) (1) [17) dr
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+ / (9102)(0,7) [2dr < Ol (0,16, O) O] (3.4)

In the remainder of this section, we will prove Proposition 3.1.

3.1. Energy form. Let

E:=(e—é)— 9(8—8)—|—¢+p<p—;>
(e~ )+ +p(v—0) (e~ 05), (3.5)

from (3.1) and (3.2),
(PE)t + (pu&)z = p&i + (pu) &y
=p ((et +ueg) —0(s: + usw)) — pusOy 4 pi(ug + iy — ity — Gidiy)
+ ppve+pu(p(v—12)), — pu (é—%)z

0 ) A
= (1 - 9> (Hoacar +,uui) —Pugz — <1 - z> Qo — pusty

+ e+ il (v —0) — Pl — p1) (‘“" - p) +px

+ g + pu (P (v — D) — Pig) — pu <é$—9w§—6§z). (3.6)
Using the calculation results in the literature [2], the Equation (3.6) can be written
as
(D)4 (PUE )+ 02 02— Art Bt A (Z-%), e
where
Ay =papipg + Hﬁ —(p—D),
Ag= oJe ;fx (KO + p2) ;Z +2u<wxuz + 1l (0 =) — Pyl
A== (p=P)ite = popa (v =)+ pu (o (v = 0) = b (5 5) ) + pitsaC.
3.2. The proof of Proposition 3.1.  We prove Proposition 3.1 by the following
five steps.

Step 1: Energy estimate.

For notational simplicity, we introduce A < B if A<CyB holds uniformly on the
constant Cy independently of t,z,T,e;.

Due to the assumptions of Proposition 3.1, it is easy to check that

(" +92+ %) SE@ D) S(P* +9* 4+ ). (3.8)
from (3.8), u— <0 and (¢,() |x=0=0, we have

Ailp=0=0, —(pu&) =02 *(0,t). (3.9)
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Using the last equations in (3.1) yields

403C, = Wy —w— 40, (93 —93) . (3.10)
Noticing that
v Qo ¢ A CQ
A N [ N SR N B 3.11
C( 0 ) T (311

and using (3.10), (1.8), (3.3) and the inequality

[F@)I<IFO)[+ vzl foll, V€ H' (0,00), (3.12)

we have
* (4 1 o (2
— ——— |dz= / © d;v—i—/ w( ) daj—i—/ »—dx
foo( =)o e i
ooww OOWQ [ee) 93
= mdw—/ —dw—/ Ow (1—)dx
/ 4604 0 404 0 93
ow 0 WC /ooA <2
705 - 0y —dx+ v —dx
/ ‘ / o2 o oh
< — x — i) )
< / Tprde / 494dx+co/0 o] (I 16|+ Lo 18] + 165 ) v

+Coer [ wliGlda+Co [ (Bellwlll +ladl ) da
0

oo 2 0o ) oo
g—/ e o / 404da:+0051/ (|ww|+|w|)|g‘$|d:v+006/ e Jw|da
0 0 0
+Cos [ wtder Cod | wexp(—e) (el -+ 16 )
0 0
Oowazc * w? 2 2 2
g—/ LA / Y+ Coler +6) (Jlwal>+ ]2+ G 1) (3.13)
Y o 40

After integrating (3.7) for (z,t), using (3.8), (3.9) and (3.13) yields

1 OB + / | Conwsio) () P+ / 0(0,7) Pdr

3 t [e’s)
Sle OO+ / / Ay |dadr (3.14)

Using (1.8) and (3.12) yields

|A2| S61(¥a,Ca)|* +01(0,%,¢) | exp(—cx)
S0l (W, Co)* +819(0,7) 2 + 61| (a, ¥, G ) P wexp(—e). (3.15)

By (3.15), we have

t ee] t t
// |A2|dxd7-§5/ ||<%,¢w,<w)(7)|\2d7+5/ 10(0,7) [2dr. (3.16)
0 0 0 0
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Let us estimate Ags.
From p?0,(p,s) =ps(p,s) and po =p,(p,8)pz+ps(p,8)82, Upe=—Tizp,

=pp(5.8)(p— P)its — 0,(.8) pits. (p— ). (3.17)

s, (8—0—0,(p—p) —0(5—8)) + (i — pu)i(s — 5), (3.18)

whete pu =ps(p,5), 03 =04(p.3), =P, (5,) and 0, =0,(p,3).
Using (3.18), by the same methods as in (3.16), we have

/ / |A3|d:rd7<5/ / (|o? 4+ [ [* +1¢|?) exp(—éz)dadr
<0 [ Nt N2 5 [ (0.7
0 0
By the estimations for Ay (k=2,3) and (3.14), we have

II(%MC)(t)II?Jr/O ||(1/fz,Cz,w7wz)(T)ll2dT+/O |0(0,7)[2dr

Sll(so,wyé)(O)IIQM/O lw ()| dr. (3.19)

Step 2: Estimation of ||y, (¢)]].
Using the calculation results in the literature [2], we have

2 W > D 3
(“‘p§+% >+<“ ‘ﬁ”—%w> +2502 =" fi,
t p x p k=1

2p p 2p

(3.20)
o= =5 (PoCat he by =)+ 02 (0 —0) )

By using 1;(0,t) =0, u(0,t) =u_ <0 and (1.8), we have

[e'e] 2
pups Pt pu
- dr=— 0,t 0,t
/o <2p3 P )m 23(075)%( JZ:(01)

|[1l S dexp(—éx) (v + 97 +¢° +47), (3.21)
ol Sdexp(~2a) ) (92442 + 0% +47) + 02 + e 2,
| f3| < dexp(— ((p +( )-i—eapw—i-e (jw,Ve>O.

After integrating (3.20) for (z,t) and using p,(p,0) >0 and (3.21), by the same
arguments as in step 1, we have

t t
loa (D) + / lpa(r) |2+ / (0 (0,7) Pdr
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t
§W%®MMWMMW+AHW%@MﬂWM. (3.22)
By (3.22) and (3.19), we get

t t
||soz(t)|\2+/0 ||¢z||2d7+/0 |02(0,7)[2dr S 11 (0,4, 02) ()12 (3.23)

Step 3: Estimation for ||¢,(t)||. Subtracting the second equation in (3.2) from the
second equation in (3.1) and multiplying it by —t,,p~! yields

(z/@) — (Pete)a+p b, = fi
2/, o wr (3.24)
f4=u¢m1/)m+/)_1(17—]3)m¢m +P_1(ﬁﬁ—PU)ﬁx1/)m
By using (1.8) and ¢ |,=0=0, we have
-/0 (’lptwm)mdxzoa (325)

|fal S(e+0)30 +€ (0w, ¥a, o) [P +dexp(—x)| (10,9,)|?, Ve>0.

After integrating (3.24) for (z,t), using (3.25), we have

t
0

t t
MOl o |2 dT < |12 (0)]2 s, Co) |12 d 2(0,7)dr.
M%)H+AH¢H T\W()H+AH@ wC)HT+/w(’ﬂT

Step 4: Estimation for ||(.(¢)]|.
Also, subtracting (3.2), from (3.1), and using e; =eq(p,0)0; — e, (p,0)(pu), we have

peg(p,0)Ce+ puls — Ko +waz = pe,y(p,0) (pu— pit),
+ (6p — pu)és — (pug — piiy) —I—/l,(ui - ﬁazc)

Multiplying it by —m yields

Cg) — ﬁcgiv _ wa:L’:c
( 2 . (CtCz)z + pea (p,o) = peo (p’e) +f5, (326)
where
f5 :pefg,ﬁ) (puCy + (pug — Pliz) — pe,(p,0)(pu— pit) ;)
B pefaig) ((@p— pu)éq + p(us —i3)).

By using (1.8) and ¢ |,—0=0, we have

/OOO (CtCa)adz =0,

|fs] S (4 0)Con + € (900, Ca)* + dexp(—cx)| (¢, 4,C) |, Ve >0.

Noticing that

(3.27)

—Wap+w+403C, +4(0% +00+6) 0, =0



1676 STATIONARY SOLUTION ON VISCOUS HEAT-CONDUCTING GAS
due to (3.1); and (3.2),, we have

(0% +00+02)
93

Weg w

Co= o5 — 15— Cla

=15 1 . (3.28)

Therefore, using (3.28) yields
* welas > W
dr= —/ (o () dx
/0 pea(p,0) 0 peo(p,0) ),
e w? ® Wapw 1
=— — dw—/ d w( ) dx
/0 403/)69 (p,g) 0 463 peeo (P,e) x
Crw Wy [ . (024600+62) Wy
— — dx—/ 0, dx
/(; <403 )93 pe@(p70) 0 < 63 - peo(p79)
Yo de+1 + 15+ 1. (3.29)

o] 2
o /0 463 peq (p,0)

After integrating (3.26) for (z,t), using (3.29), (3.27) and egy(p,0) >0, we have

I (012 + / | Comrivas) |2

t
0

t 3 t
NGO+ [ NpwtelPar+ [ F0nar+Y. [nlar @0
0 =10
We estimate I;(j=1,2,3). Using (3.3), (1.8) and (3.12), we have
1S [ el el (gl + 6o +152]+ 6s])do
0

<el / (wral(a] + [Cal )z +6 / (|l d
0 0
5(51 +5)||(wxzv¢zvcszz)”2‘ (3'31)

Also, by the same lines as in (3.31), we have

L)< / [wa P+ ](1Co + 18 e 1z
<l 2 1 1(Coroa) 12+ ()2 (3.32)

and

|15 5/0 (1o 18]+ 16118 |+ €162 (1Go | + 162 D] welda S 811 (G wa ) 1. (3.33)

Substituting (3.31)-(3.33) into (3.30) yields

G012+ / 1(Comsiwan) |2

t
0

t
<11 ()2 + / (st o) 2+ / 22(0.7)dr. (3.34)
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The proof of Proposition 3.1: By (3.19), (3.23), (3.30) and (3.34), we get

||(<P,¢,C)(t)\\?+/ (Ilsoz||2+||(¢1,Cz,w,wz)|lf)d7+/ |(0,02)(0,7)[*dr
0 0
S, ,0)(0)]3. (3.35)

Noticing that
= —46%C, — 40, (6~ 0%),

it is easy to check that

| @2 eitydos [ (161416161 wlds S 16l
9 e ? (3.36)
| @tridyans [ (16116001 oo do S e e

By (3.35) and (3.36), we get (3.4) which completes the proof of Proposition 3.1.

4. Convergence rate of the stationary solutions

In this section, we show the convergence rate stated in Theorem 1.3 by using a time-
and space-weighted energy method.

The a priori estimate obtained in the weighted Sobolev space X, (0,7") defined by

X,(0,7) =={(0,9,¢,w) € X(0,T) | V¥(,9,¢,w) € C([0,T]; L2(0,00))}.

For the weight function v(x):=(1+x)“ or v(z) =e**, we use the following notation

|f‘2,u = <A V(ZL’)fQ(.’E)diC) i ) ||f||a,a = |f|2,(1+x)‘1, ||fHe,a = |f‘2,ea1~

For proof of Theorem 1.3, we show the following weighted norm estimates.

PROPOSITION 4.1.  Suppose that the same assumptions as in Theorem 1.3 hold.

(1) (Exponential Decay) Suppose that (p,u,0,q) is the solution to the outflow problem
(1.1)-(1.4) satisfying (p,0,(,w) € Xes=(0,T) for certain positive constants >0 and T >
0. Then there are frown positive constants e1,a(<¢s),3(< a) such that

if  sup [|(¢,0,¢,w,we)(t)][1 +0 <eq,
te[0,T)

then the following weighted estimates are satisfied:

P (1(0,,¢w,wa ) ()13 + 11 (0,4, C) (B 12.0)
<C (Ilte, 1, )O3+, (0)I2.)

where C' is a positive constant independent of t,z, T e1.

(4.1)

(2) (Algebraic Decay) Suppose that (p,u,0,q) is the solution to the outflow problem
(1.1)-(1.4) satisfying (p,v,(,w) € X(142)<(0,T) for certain positive constants ¢ >0 and
T >0. Then there exist positive constants €1 such that

if  sup [|(¢,0,¢,w,we) ()1 +0<eq,
te[0,7]
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then the following weighted estimates are satisfied:

L+, Cw,wa) ON1T < C (2,8, O+ (9,2, O (07 6) » (4.2)

where C' is a positive constant independent of t,z, T e1.

In the remainder of this section, we will prove Proposition 4.1. As in Section 3, we
denote A < B if A<CyB holds uniformly on the constant Cy independent of t,2,T,e;.

Step 1: Weighted energy estimates.

Suppose that 7(t) and v(z) is the weight function like (1+t)8 (or €P*) and (1+4z)*
(or e*®, < 5, where ¢ is the positive number in (1.8)) respectively.

Setting w(x,t) =n(t)v(z), from (3.7), we have

(wp€) ¢ +{w(pu€ — A1)} o —w G +w (u@fléwi + /19*29(33)
=wip€ —w,G* +w(Ay + Az) —w( <9q$—éq}>, (4.3)
where
G'=puE+(p—p)y, G*=ppp, +rCGO™

Using (3.9) yields

/0 " (wlpu€ — A }ade 2 (1) (0.,0). (4.4)

Using the calculation results from [2], we obtain

- / w, Gz 20()| (6,6, 0)12., (4.5)

It is easy to check that

/ 0, G2\ Sn(t) (e (,0) 3, + € (WharCa) 2, ) Ve >0,
0 (4.6)

| it <ol OF..
By (3.11), we get
- 2
—w¢ (%= 5 ) (o)t (e @)

Using (4.7), we have
© (@ 4
Sf e ()
< w > 1
= vvd ~) vd
oe) [ s entt) [~ o () v

[e'S) 0 2
—|—77(t)/0 %Jumdx—l—n(t)/o (jm%udaa (4.8)
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We estimate the right-hand side in (4.8). Using (3.10), (1.8), (3.3) and (3.12), we

have
e’} w e’} Wy [es} W2 0 03
(w—udx:/ Vdgc—/ —Vdsc—/ 0w (1—A> vdz
g—/o @de_/o @de—l—Co/O |wg ||w|vda
(o) . o0 R
+Co [ lollwal (1o + 162l vo o [ Bsllelicle
0 0
[es} w; [e e} w2 9
Si/o @ydzf/o @Vd:rJrC’oKw,wr)b%

+Cole1+0)|(w,wz, )13, +Co5/ wexp(—cx)v(z)|we ||| Cxlldx
0

oo, .2 oo 2
<- | pmvde- [ e Cal@wn)l, + Coler +O)(wa G (09)
0 0

where we used the fact that if v(z)=(1+x)?, then

/Oxexp(féx)l/(x)de/O zexp(—éx)(1+x)%dx < oo

Also, we have

[e’e) 1 OOC(.AJ OOA CQ
wl = ydx+/ —dea:—k/ »—=vdr
/0 ¢ (9>w o 0 0 e 00
< / ¢l (G 16l + / (Cllwlvadz+ / lGulC2vda
0 0
<614+ )| (s, o) By 101G B (4.10)

Integrating (4.3) for z,t and using (4.4), (4.5), (4.6), (4.8)-(4.10), we have

n(t)lé(t)liﬁ/o (1) (12(7) 13,0, + (e, Cosw,wa) (T) 3, + |0(0,7)[?) dr
SI¢(0)I§,V+/O (' (123, + 1), Corw,002) (T3, ) dr
+/0 77(7')/0001/(|A2+A3|)d1:d7-, (4.11)

where ® = (¢,¥,().
Using (3.15) and (3.18), it is easy to check that

/0 V(18] + | As 1)z S0 (9 thasCo) ()12 + 8160(0, 1) 2. (4.12)
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By (4.11), (4.12) and ||| <|-|2..., we have

n(t)I‘P(t)lg,ﬁ/o (1) (12(1) 3., +1(Wa,Cow,w2) (T3, + (0, 7)) dr

t
<|B(0)2, + / (710 0] (s Corcor02) B, ) A4 / n(r)ll g Pdr.

Setting v =1 in (4.13), we get
DO+ | ) (12 o soion) (DI +100,7))
<O +5 [ wllea(Par+ [ 0 Par

Step 2: Weighted estimation of ||¢, (¢)]].
By (3.20), we have

2 2
Hps soa,»w) ( puQs oy ) ne(p,0) 5 3
+ + —Zyy ) + 2 =GB,
<n( 5 T, ) t n( 2 p ) ) G

where

@;¢> =G +G3.

3 / ,Lupi
G =nt)(fr+ fa+ f3)+7' (1) 259 +

Using (3.21) and the assumptions of Proposition 4.1 yields
/O |Gildz S (6 +e)n(t)l|a | + ()0 (0,8) + Cen(t)l| (v G )1,
| 1681 S @l ) P, veo.
0

Integrating (4.15) for (z,t), and using (3.21) and (4.16), we obtain

t

w01 + [ () e () P + | ety
Slle: O+l + [ ) (W Co) (1)
+5 [ e Par+ [ W@l e) D
By (4.14) and (4,17), we obtain
WO+ [ ) (a4 22001 dr
Sl O + [ 0 ) (19 + (D) dr

where © = (¢,7,().
Step 3: Weighted estimation for |[1),(¢)].

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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By (3.24), we have

2
3 (102),—ni)o+nt 2 =Gt (419)

where G* =n/(t) f1+ %77/(75)1/)3'
By (3.25), we have

/0 G\ S(8) (e +8) |||+ 1(8)5]0(0,8)
() (@t o) 12 (8) 46 2, Ve > 0. (4.20)

Integrating (4.19) for (z,t), and using (4.20) and (3.25), we obtain
t t
U(t)\|1/)m(t)\|2+/ TI(T)H%z(T)HQdTSH%(O)Her/ 0 () [ (7) | *dr
0 0
t
+ [ alete G Par +5 [ nle(0.7)ar (1.21)

Step 4: Weighted estimation for ||(,(¢)]|.
By (3.26), we have

Y - T )x = G 5 4.22
(n 2 )t NG a0.0) " oealp,) (4.22)

where G* =n(t) f5+ %77/(75)(%
By (3.27), we have

/ 16 de <n(t) e+ 8) | el + (D310,

(eI (@as ¥ G) |2 +0' ()], Ve >0. (4.23)
By (3.29), (3.31)-(3.33), we have
/ wasz dx
o rea(p.0)
[ee} w2
- — 2+ Cy(e140)||wes||* +C 2 Casw,wz ) ||? 4.24
| et Coler + o)l + Coll (ool (420

Integrating (4.22) for (x,t), and using (4.23), (3.27), ep(p,0) >0 and (4.24), we
obtain
¢

(Ol (1 + / O Corrora) ()P S [C (O + / 7 (0)1Co(7) |2

/ 0| (@ rtbns Coss002) (1) [P +6 / l(0.7)|dr. (4.25)
0

The proof of Proposition 4.1:
Using (4.14), (4.18), (4.21), (4.25) and (3.36), we have

t

n(®) (12O + lw®13) + | 1(7) (1221 + [|(Yar, Caa) I +|ll) d

0
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¢ ¢
+/ 77(7)\(907%)(077)\26175H‘P(O)H?Jr/ 0 (7)| @4 (7) |2 dr,
0 0
where &= (¢p,1,(). Also, by using (4.13), (4.26) and |- || S| |2,., we get
n(t) (12(1)13,, + 12 ()] + lw(®)13)

(4.26)

+ / D7) (1) 2., + (W G (7). + (01 00) (0,7)[2)
+ / 1) (180 ()12 | (s Coa) (1) 12+ ]1Z) dr
<Oy (|B(0) 2, + [ @,(0)[2) +Cs / 7 (1) ®(7) 2, dr

t t
+C3/0 77(7—)I(wzvcrvwawz)(T)‘%,ude+C4/O 1 (7))@ ()| dr,

where C;(i=1,---,4) are positive constants independent of ¢,z,T,e;.
We first prove (4.1). Setting v(z)=e®® and n(t) =", we obtain from (4.27)

(4.27)

t
P (D)2 o+ B (1)2+ [0(®)]2) + (2 — CaB) / 7D (1) 2 pdlr
t
(1 Cya) / 7 (e, Cort0,002) (1) |2
0

L (1-CiB) /O 70, ()27 < Oy (|2(0) 2.0 +[|22 (0)]]2).

(4.28)
If we choose o and 3 (0< 8 < a <) satisfying

1 1
C!—CQ,BZO, 1—C30[2§, 1_046257
then (4.28) yields (4.1).

Next, we prove (4.2). Setting v(z)=(1+2)* and n(t)=(1+t)?, we obtain from
(4.27)
L+ (I E)IZ o + 122 (6) >+ [lw(®)]13)

+/0 (L+7)7 (@ ()7 a1+ 1 (¥, Cosw,wa) (T)7,0 + | (0502) (0,7) %) d

+/O (1+7)7 (192 (NP + | (s Caa) (NP + | w(T)13) dr
5(II@(O)\Ii,a+|\<Pm(0)II2)+a/0 (L+7)7 (W Corw, w0 ) (7) ]2 01T

8 / A+ 7)1 (|07 2.0+ |00 () |2) dr.

(4.29)
Setting

Eo(t)? = 2(#)|Z o +122()],
D()? =[x (0)I* + | (Y, Caa) (DI +1(2,02) (0,8) 2,
Do (t)*=D(t)* +al| @7 a1+ (Wa:Carwwa) ()13

a,a
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we rewrite (4.29) as
(1+1)° (Ea(t)2+||W(t)||§)+/0 (L1+7)7 (Da(m)* + lw(r)13) dr

<E. (0% +a / (U 7)8| (sCortort0) (1) |2+ B / (14+7)7 LBy (r)2dr. (4.30)
0 0

Using (3.4) and (4.30), we have
(10 (EertP +IwIB) + [ 17 (DeosrP+ B dr SEOP  (431)
and
(1+t)k(Eo(t)2+\|w(t)||§)+/0 (L+7)* (Do(1)? +|lw(7)[3) d7 S Ec(0)? (4.32)

for any ¢ >0 and integer k=0,1,2,---,[c]. (Refer to [2]).
We will obtain (4.2) from (4.32). The proof of Proposition 4.1 is completed.
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