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GLOBAL CLASSICAL SOLUTIONS TO 1D FULL COMPRESSIBLE
MICROPOLAR FLUIDS WITH THE NEUMANN/ROBIN BOUNDARY
CONDITIONS AND VACUUM*

PEIXIN ZHANG' AND CHANGJIANG ZHU?

Abstract. In this paper, we consider the initial boundary value problem for the one-dimensional
micropolar fluids for viscous compressible and heat-conducting fluids in a bounded domain with the
Neumann/Robin boundary conditions on temperature. There are few results until now about global
existence of regular solutions to the equations of hydrodynamics with the Robin boundary conditions
on temperature. By the analysis of the effect of boundary dissipation, we derive the global existence
of classical solution to the corresponding initial boundary value problem with large initial data and
vacuum.
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1. Introduction

In this paper we consider the one-dimensional flow of the non-isentropic compress-
ible micropolar fluid flow being thermodynamically perfect and polytropic. In Eulerian
coordinates, the motion of the fluid under consideration is given by the following system
of four equations [17,20]:

pr+(pu)z =0,

pus+ pully + Py = p1 gy,

Jr(pwi + puwy ) 4 26w = proWsy,

(PE)t+ (puE)s + (Pu)e = (p1utis)o + (2wwe )z + (K02 ),

(1.1)

where t >0 is time and z € [0,1] is the spatial coordinate. Here p=p(x,t),u =u(z,t),w=
w(z,t),P and 6 denote the density, velocity, microrotation velocity, pressure and abso-
lute temperature, respectively. Here j; >0 denotes the microinertia density coefficient;
k>0 is the coeflicient of heat conduction; p; = A+ 2pu, where A and p are viscosity coef-
ficients, they satisfy the conditions: p>0,3\+2u>0; po =co+2cq, where ¢y and ¢4 are
coefficients of angular viscosity, they meet the conditions: cq>0,3co+2¢cq>0; £€>0 is
the dynamic microrotation viscosity (coupling coefficient). Then we deduce that p; >0
and po >0. The total energy E:e+%\u|2 + %|w|27 where e is the internal energy. The
pressure P and the internal energy e have the following expressions:

P=Apo, e=cy0,

where A and ¢, are positive constants. For simplicity we let j;=A=¢c,=1.
There is much literature on the well-posedness of the micropolar system. For the
case of one-dimensional compressible flow, Mujakovié¢ [20-22] studied the local-in-time
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existence and uniqueness, the global existence and regularity of the solutions to an
initial-boundary value problem wherein the boundary conditions for u,w are the Dirich-
let and for 6 is the Neumann, and she also considered the non-homogeneous boundary
conditions in [25-27], wherein the boundary conditions for u,w are the Dirichlet and
for 6 is nonzero. The large-time behavior of the solutions and the stabilization of solu-
tions to the Cauchy problem on the microploar fluids was also analyzed by Mujakovi¢
in [18,23,24]. Recently, Duan [12] published global solutions for the one-dimensional
compressible micropolar fluid model with zero heat conductivity. But all the above re-
sults are free from vacuum. For the case with initial vacuum, Chen [1] proved the global
existence of strong solutions to the Cauchy problem. For three-dimensional model,
Mujakovié and Drazi¢ studied the local existence, global existence, uniqueness, and
large-time behavior of the spherical symmetry solutions [8-11,19]. Chen [2] and Chen-
Huang-Zhang [3] proved blowup criterions for strong solutions to the Cauchy problem.
The global weak solutions with discontinuous initial data and vacuum was established
by Chen-Xu-Zhang in [4]. Recently, Liu-Zhang [16] obtained the optimal time decay of
the three-dimensional compressible flows.

If the microrotation velocity w=0, then the system (1.1) becomes the classical
Navier-Stokes system. There is a lot of literature to study the well-posedness of this
system. Wen-Zhu in [29, 30] obtained the global existence of classical solution to this
system with large initial data and vacuum, where viscosity coefficients are constant and
the coefficient of heat conduction is only a temperature-dependent function. Liang-Wu
[15] also obtained the same result for the case where the coefficient of heat conduction is
constant. Recently, Zhang-Zhu [31] proved the existence of this system with Nuemann
conditions for v and Robin conditions for 6.

In this paper, we consider the global classical solutions of (1.1) with initial vac-
uum and the viscosity coefficients, microviscosity coefficients and the coefficient of heat
conduction are constant or a function of temperature.

For simplicity, we rewrite the system (1.1) as follows:

pt+ (pu)w =0,

pus+ putiy + Pp = p1Ugy,

PWi + puwy + 26W = [oWeg,

P0; + puby + pOuy, = pyu2 + pow? + 26w? + (kb)) -

The system satisfies the initial and boundary conditions:
(p,u,w,@)(w,O):(po,uo,woﬁo)(x), .136[071], (13)

and
~o0, (1.4)

where a,b are nonnegative constants.

To begin with, we briefly review some notation which will be used throughout the
rest of the paper.

Notation:
(1) I=10,1], 9I={0,1}, Qr=1Ix[0,T] for T >0, and [ f(z)dx= [, f(x)dx.
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(2) For pe[l,00], LP = LP(I) denotes the LP space with the norm ||| p». For k>1
and p€[1,00], WFP=WP"P(I) denotes the Sobolev space, whose norm is denoted as
[ llwww, HY=WH2(I).

In this paper we assume that

pOZOa /Podx>07 (15)
and if  is a function of 6, then it satisfies k € C3(RT) and

0<ry(14+07) <k(f) <kr2(1+67), w6)
1.6
0<K(0)<C(1+0971), 0<K"(0) <C(14+0772), ¢>2,

where C, k1 and ko are positive constants.

Now we are in a position to state our main results. The first result is on the global
existence of classical solution of (1.2) with the k=£k(f) for the Neumann boundary
conditions.

THEOREM 1.1. Ifa=b=0 in (1.4), in addition to (1.5)-(1.6), we assume that

p0>0, po€ H?, (\/po)e €L, ug€ HANH?, wo€ HINH?, 0<0y€ H®, (1.7)
er‘zZO :90z|w:1 :0; (18)

and the following compatibility conditions

H1Uozz — [P(panO)]:v = mglv
P2Woza — 2§Wo = \/P0g2, (1.9)
[K(00) 0041, + 1 U, + p2wd, +26wh = \/Pogs

hold for some g; € L? and \/pT)giEH&, 1=1,2,3. Then there exists a global classical
solution (p,u,w,d) to (1.2)-(1.4) such that

peC(0,.T;H?), peC(0,T]HY), /peWH>(Qr),
(u,w) € L=(0,T; HNH?),  (\/pus,/pwi) € L>(0,T;L?),
(pug, pwy) € L=(0,T; HY),  (ug,wy) € L2(0,T; HY), (1.10)
VPO € L=(0,T5L?), pb, € L>(0,T;H"),
§c L(0,T;H%), 6,cL?0,T;H"),
for any 17> 0.

The second result is on the global existence of classical solution for fixed positive
constants a,b.

THEOREM 1.2.  In addition to (1.5)-(1.7), we assume that the initial data also satisfies
(Bow —abo)|e=0 =0, (Boz +b00)|z=1 =0, (1.11)

and the compatibility conditions (1.9). Then there exists a global classical solution
(p,u,w,0) to (1.2)-(1.4) satisfying the reqularities (1.10).

The third result is on the limit behavior of the solution as a,b— 0.
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THEOREM 1.3.  For given a,b>0, we assume that (p® ua L aw®b 91 is the solution

as in Theorem 1.2 with the initial data replaced by (po L ug’ ,wO ,9a b) satisfying

b

(Po —ﬁo,ug’b—ﬂo,wg’b—@o,ﬁg’b—go)‘ < Cmax{a,b}

for some positive constant C independent of a, b, and spatial variables. Then we have
(pa’bvua7bawa,b79a7b) — (p7uaw?9) in LOO (O7T7L2)7

as a,b—0%, where (p,u,w,0) is the solution as Theorem 1.1 with initial data
(Po,to,wo,00) for inf po>0.

The following results are similar to Theorems 1.1-1.3 for the system (1.2) with the
coefficient of heat conduction s being constant.

THEOREM 1.4. Ifa=b=0 in (1.4), in addition to (1.5), we assume that the initial
data satisfies (1.7)-(1.8) and the following compatibility conditions (1.9). Then there
exists a global classical solution (p,u,w,0) to (1.2)-(1.4) satisfying (1.10).

THEOREM 1.5. If a,b are positive constants in (1.4), in addition to (1.5), we assume
that the initial data satisfy (1.7), (1.11) and the following compatibility conditions (1.9).
Then there exists a global classical solution (p,u,w,8) to (1.2)-(1.4) satisfying (1.10).

The last result is on the limit behavior of the solution as a,b—07.

THEOREM 1.6.  For given a,b>0, we assume that (p®°,u®?,w®® 0%%) is the solution

as in Theorem 1.5 with the initial data replaced by (py’ ,ug b, @b gt ) satisfying

(p&® = po, ul® — o, ws — wo, 08 —60)‘§Cmax{a,b}
for some positive constant C independent of a, b, and spatial variables. Then we have
(pa’bvua7bawa,b79a7b) - (p7uaw?9) in L™ (O7T7L2)7

as a,b— 0%, where (p,u,w,0) is the solution as in Theorem 1.4 with initial data
(Po, o, wo,00)-

REMARK 1.1. Theorem 1.6 suggests that the solution obtained in Theorem 1.5 con-
verges to the one in Theorem 1.4 as a,b—07. Theorem 1.3 holds for the case with
nonvacuum, because the term [ ((x—r*?) Gg’b)xﬁdx, which deduces a term [|]|2,,
cannot be dealt with by the Gronwall inequality. But in Theorem 1.6, the term
[ ((r—r"?) Gg’b)zﬁdﬂc is absent, because the coeflicient of heat conduction is constant.
Then, we can obtain Theorem 1.6 with initial vacuum.

2. Preliminaries
In this section, we will recall some known facts and elementary inequalities which
will be used frequently in this paper.

LeMMA 2.1 ( [29]). Let Q=]a,b] (a<b) be a bounded domain in R, and p be a
nonnegative function such that

0<m§/pdm§M7
Q
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for constants m >0 and M >0. Then, for any ve H'(Q), we have

M 1
P (21)
COROLLARY 2.1 ( [29]). Consider the same conditions as in Lemma 2.1, and in
addition assume Q=1 and
vl <e.
Then for any k>0, there exists a positive constant C =C(m,M,k,c) such that
0¥ <C || (0*) || . +C, (2.2)
for any v* € H'.
LEMMA 2.2 ([29]). For any ve H{, we have
[vllzee < Cllve]| s (2.3)
and for any v € H', we have
[0l e <C(lveller +vllz) (2.4)

LEMMA 2.3 (Calderén-Zygmund).  Let Q=[a,b] be bounded. Suppose 0< f€ L*(Q)
satisfies

1
@/Qfdargozo.

Then for any o> g, there exists a sequence (non-overlapping) ; included in Q such
that

1
f(@)<a, ae. 2€Q\Q;, and ag—/ fdr <2a.
1] Jq,

Moreover,

9|

i

U,
J

(67

where |Q] denotes the Lebesgue measure of Q.

Proof. The proof is classical, see, e.g., [ [14], Lemma 3.6, Chap. 3]. We omit the
details here.

LEMMA 2.4 ( [28]). Assume X CECY are Banach spaces and X << E. Then the
following imbeddings are compact:

(1) {p: e LY0,T;X), ¢;€L*(0,T;Y)} = LI0,T;E), if 1<q<oo,

(i7) {p:0€e L>®(0,T;X), ¢1eL"(0,T;Y)}—>—C([0,T];E), if 1<r<oc.
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3. Proof of Theorem 1.1

In this section, we get a global solution to (1.2)-(1.4) with initial density and initial
temperature having, respectively, a lower bound § >0 by using some global a priori
estimates of the solutions based on the local existence. Theorem 1.1 will be obtained
after we do some global a priori estimates uniformly for § and take § —07.

Denote pd = po+8 and 63 =60, +6 for 6 € (0,1). Throughout this section, we denote
C to be a generic constant depending on pg,uq,wp,0p, 1 and some other known constants
but independent of § for any § € (0,1).

For any given & € (0,1), let u, w be the solution to the following elliptic equations:

(., — P, = /pogi,
N2w8m - 2511)(5) =/P0g2;
U8|z:0,1 = wg|m:o,1 =0,
02(0,)=0(1,t)=0.

(3.1)

Since p)=po+6€ H?, 03=00+5€ H? and /pog1,+/pogz € H}, by the elliptic theory,
(1.9)1, (1.9)2 and (3.1), we have ud,wl € H} N H? and

(3.2)

ud —ug, wy—wp, in H> as §—07T,
lud — ol gz < C6, ||wd —wol| g2 < C6.

Before proving Theorem 1.1, we need the following auxiliary theorem to construct
a sequence of approximate solutions.

THEOREM 3.1. Consider the same assumptions as in Theorem 1.1. Then for any
given 0 € (0,1), there exists a global solution (p,u,w,8) to (1.2)-(1.4) with initial data
replaced by (p,ud,wd,0), such that for any T >0,

peC([0,T);H?), p,€C([0,T);H"), pr € L*(0,T;L?), p> & >0,
(u,w) € C([0,T); Hy NH?), (us,wy) € C([0,T);HF)NL?(0,T; H?),
(uge,wee) € L2(0,T5L2), € C([0,T); H?), 0>C5>0,
0, C([0,T]; H)NL2(0,T;H?), 6, € L2(0,T;L?),

where Cs is a constant depending on §.

Proof.  The local existence of the solutions as in Theorem 3.1 can be obtained
by the successive approximations as in [6]. We omit it here for brevity. Based on it,
Theorem 3.1 can be proved by the following global-in-time a priori estimates as follows.

a0

In this and the next two sections, for the sake of simplicity, we denote by C' the
generic positive constants, which may depend on v, T, 11, u2,€,k1,k2, the initial data,
llgill2, 1l (v/Pogi)e | 2 (i=1,2,3), and the constants of the Sobolev inequalities, but not
depend on a,b,6. We also sometimes use C'(«) to emphasize the dependence on «.

For any given T € (0,400), let (p,u,w,8) be the solution to (1.2)-(1.4) as in Theorem
3.1. Then we have the following lemmas.

LEMMA 3.1.  Under the conditions of Theorem 3.1, it holds that for any 0<t<T,

/pdm:/pod:t, (3.3)
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/p(9+u2+w2) deC/poEodx. (3.4)

_ 1,2, 1,2
Here Ey =0+ 5uj+ swg-

T00]. ntegrating (1.1); an .1)4 over I x|0,], using (1.5) and the boundary
Proof. 1 i 1.1 d (1.1 Ix|[0 i 1.5 d the bound

conditions (1.4), we have
/ pdx = / podz,

1 1
/pEda::/poEodm:/po <00+2u3+2w§> dx.

Then we have (3.4). d
LEMMA 3.2.  Under the conditions of Theorem 3.1, it holds that for any (z,t) € Qr,

and

0<p<C and 6>0.

Proof. The proof of p is the same as Lemma 3.2 in [29]. We only need to prove
6>0. By (1.2)4, we have

1 pt* 1 pb pe o 26 4
9t+u9$—(m91)x+=< iUy — ——— —w;+—w* >0. (3.5)
P dpr - p Vi 2y p p
Let
9:Kt+1m11n90

with K >0. Denote 0 =60 —0. We find that
Orle=01=0z]c=01, 0li=0>0,

and

K min6, 5 5 minf minfp \ 2
9~t+uéx—1(ﬂ9~x)x—;0+p792+ﬁ' ! O_L I 0
p (Kt+1)2  4p1 2pp Kt+1 4p \ Kt+1
2
[

1
=0;+ub, — — (k) + >
! p( ) I

b

where we have used (3.5). This gives

- 1 . 8 1 mIiHHO
Gy +ufy — (10 0 t5
LUl p(’i )z +p m +2'u1 Kt+1

mlin 0o pminfg

ST ESIE (

Thus using the maximum principle for parabolic equations, we have 6>0 implying that
6>6>0. 0
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Under the conditions of Theorem 3.1, there exists a € (0,1), such that
w2 w? o w?  (1+609)62
L4 T4 — =L N dadt<C,
/QT<9a+oa+9a+ pita )

LEMMA 3.3.

where C' may depend on a.
Proof. Multiplying (1.2)4 by 6~¢, integrating the resulting equation over @7, and

using integration by parts, we have
26w? 62
Sw” | ok I) dxdt

2
lu‘lu N’2wm
T T
=—— [ po~dz —|—/ /p@lf"‘uxdxdt
11—« 0 0
T 2 T
§c+ﬂ/ /ﬁdxdwc/ /p292*°édzdt
T 2 T
§C+ﬂ/ /&mm+C/|wM3%
where we have used the Cauchy inequality, Lemmas 3.1 and 3.2

Then we have
2 2 2 92 T
Sw? | ar “’)d;vdt<0/ 0 cdi+C. (36)
0

M1z :U’Qw:r:
/ /(29(1 [21e% + Qe +01+a

Now we estimate the right-hand side term of (3.6) as follows

/||9|| dt<C+C/ 1070, || 2t
1
2 \2
0
1
o1- 0402 5
<O+0/ (/ e )dt

(1+67)62
<C+— // Jiva dzdt, (¢>1—a),

where we have used Corollary 2.1, Lemma 3.1 and the Cauchy inequality. By (3.6) and
a0

(3.7)

(3.7), we complete the proof.
Under the conditions of Theorem 3.1, it holds that

T
/0 lof4tt—~dt<c,

/(pw2+pu2)da:+/ (u2 4w +w?)dedt < C.

LEMMA 3.4.

sup
0<t<T

Proof. By Corollary 2.1 and Lemma 3.1, we have

T q+1—
P

dt
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T
§C+C/ /eq—l—aegdxdt

(1+607)02
<C’+C// Jiradadt

Multiplying (1.2)5 by u, integrating over I, and using integration by parts, we have

(1.
%di/PUdeJrul/Ui:/Puxdx
ul U dx+C/P292dx
§C+%/uidm+Cll9Hm

<C+0O)0)190 + /;1 /u dx,

where we have used the Cauchy inequality and Lemma 3.2. Then, we have
d
pn pu2dx—|—,u1/ <C+C)f)|et.
Integrating it over [0,7] and using the first inequality, we have the second inequality.

Multiplying (1.2)5 by w, integrating over I, using integration by parts and (1.2);, we
have

1d
prdx+/(2§w + powy )dx 0.
2dt
Then we get the third inequality after integrating this inequality over [0,T7]. |

LEMMA 3.5. Under the conditions of Theorem 3.1, it holds that

sup /(ui+w§+w2+p92(l+0q))dx+/ (pui + pwi + (1+67)62) dzdt < C.
0<t<T .

Proof. Multiplying (1.2)2 by u;, integrating over I, and using integration by parts,
Lemmas 2.2 and 3.2, and the Cauchy inequality, we have

1d [,

/ putdx—&— 2 T uzdr

d
za Puzdr— | puuzuide — [ Prugdx

1 1 d
< — 5 putdx—i— 2u dx—i—d Puydx— | Pougdzx

2

<1/ uZdz +C /quaz d/Pu dx— /P( da:—f—/Pzdx
=g e BT 2 dt

which implies

2
/pufderm;i/uigC(/uidx) +2%/Pumd:cf%/P2dx72/Pt(umfP)dm.

(3.8)
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Using (1.2), and

We are going to estimate the last term of the right side of (3.8).

integration by parts, we have

—2/Pt(uw—P)dxz—?/(p@)t(uw—P)dx

2/ [(Ii@m)$ + U2 + pow? 4-26w? — (pud), — pﬁux] (uy — P)dx

:2/,%9,;(%;,—Pz)dx—Q/(ului+u2wi+2§w2) (uy — P)dx

—2/pu0(um—Px)da:—|—2/p0ux(ux—P)dx

4
S
=1

(1>

By (1.2), (1.4), (2.2)-(2.4), the Young inequality and Wh!— L°° we estimate I; as
follows:

L| <C| [ k0 (pus + puug )dx| < puide+C | K202dx+C [ p*uulde
t T

1
SS/putdaH—C’/ 202d1:—|—0(/ ida:) ,

Bl <Clus = Pl [ (u2-+u2+0%)do
SC(HUr*P”Ll+Hum*PzHLl)/(Uierngwz)dx

< C(||uz — Pl 1 + || pue +puum|\L1)/(ui+wz+w2)d:v

2 2 2
§1/putdx+0</uidx) +C</widw> +C(/w2dx> +C,

o¢)

|13|§C”/p2uut9da: —&—C‘/p wlu,0dz

1
/pufdz+c/u292dx+c/p4u4dz+c/92u§dx

<z
-8
1
Sg/putderC’HGHLoo/u2dsc+C||u||%oo/puzderC’HGH%oo/uid:c
1
<5 [pidderc1ri6)) [udds

/ pOu,dx

<C(|lue = Pllor +[lpus + puue | 1)

|14] < C|lugy — Pllpee

/pﬂu:cdx

/putd:c—i—C(l—i—||9||Loo)/uidx+0.

<

ool —
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Then, we have

—2/Pt(uw—P)dx§%/putdx+C/ 2(92dx—|—C'(1—|—||9||Loo)/u dx
+C (/uidx) +C</widm) +C’</w2dx> +C. (3.9)
By (3.8) and (3.9), we have

1 d
2/putdx—|—,u1% utdzr

gz%/p%dx_a/p%zxw(w|\e||ix)/uidw+0/m29idx

+C(/u§dx)2+c(/wgdx>2+c</w2dx>2+a (3.10)

Integrating (3.10) over (0,t), using the Cauchy inequality and Young inequality, by
Lemmas 3.2-3.4, we have

T T
/ /pufdxds—k,ul/uidxSC/pﬁuxdx—/pQGZdz—FC/ (1+\\9||%m)/uidxds
0 0
T 2 T 2
+C </uidm> ds—!—C/ (/wfdx) ds
0 0
T 2 T
+C/ </w2dx ds+C’/ /n29§dzds+c
0 0
T T 2
SC’/ (1—&-H9||2Loo)/uidmds+0/ (/uidw) ds
0 0
T 2 T 2
+C/ (/widw) ds+C’/ </w2das) ds
0 0

T
+c/ /ﬁegdmﬁcneum +C. (3.11)
0

Multiplying (1.2)s by w;, integrating over I, using integration by parts, Lemmas 2.2
and 3.2, we have

/pwtdac—l— 5%/(ugwi—i-Zgw?)dx:—/puwzwt
1
§2/pwtdx+0||u\|Lm/widx

1 2 2
§2/pwfdx+0</uidx) —I—C'(/widm) ,

after integrating it over (0,t), we have

2 T 2
/ /pw dxdt+/ w2 4w )dm<C+C/ </uidm> dtJrC/ </wzdx) dt.
0

(3.12)
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Multiplying (1.2)4 by fo T)d7, integrating over I, and using integration by parts, we

have
/ / / TVdydrdz + / K202dx
=pu / / deac—i—ug/ / dex—|—2§/ / T)drdz
/p@um/ T)drdx
<C||k8|| o (/uidz—k/widx—i—/dex—&—/p@uxdaj>
C(||kOz |2 +1) (/uidx—&—/wida:-k/wzdx-i-/pﬁuwdx). (3.13)
Integrating (3.13) and using the Young inequality, we obtain that
T
/p02(1+9q)dm+/ /ﬁeid:ﬂdt
0
T 2 T 2 T 2
§C/ </uidm) dt+C/ (/widm) dt+C/ (/w2dx) dt
0 0 0

T
C/ |\9||iw/uidxdt+c. (3.14)
0

Using (3.11), (3.12), (3.14), Lemma 3.4 and the Gronwall inequality, we complete the
proof. 0

LEMMA 3.6. Under the conditions of Theorem 3.1, it holds that
sup /(piqutQ) da:Jr/ uixda:dtgc,
T

0<t<T
/ w?, drdt <C.
Qr

Proof.  The proof of the first inequality is the same as in the Lemma 3.6 in [29].
We prove the second. By (1.2)3 and the L?-estimates, we have

2
/wiwdeC/pwfdx—&—C(/widx) —|—C/w2dx§0.

Integrating it over [0,¢] and using Lemmas 3.4-3.5, we get the second inequality. 0

LEMMA 3.7.  Under the conditions of Theorem 3.1, it holds that

sup /(pu§+pw§+(1+oq)29§)dx+/ (u2, +w2, +wi +p(1+67)07) dzdt < C.
0<t<T T

Proof. Differentiating (1.2)s with respect to ¢, we have

PUt + Py + Prully + PUsly + PUUt + Prg = 1 Ugay- (3.15)
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Multiplying (3.15) by u; and integrating the resulting equation over I, we have

1d
3d pufdz—km/uitda:

:72/puuturtdxf/ptuuxutdxf/pufufdij/Ptumtdz

<2||Vpur|| 2 llv/pull Lo l[uatll 2 + utl oo l[ull Lo [ o] L2 1w || L2 + [t || Lo /Put dx

HOl Lo [t 2 [t ]l L2 + |62 | L2 [t 2
1231
< S luallze +ClliVpwlze + Clluae 72 Vol 2 + Cllpbe 72 + 1017 +C.
Here we have used (1.2); and Lemmas 2.2, 3.2, 3.5-3.6.

Using integration by parts, the Holder inequality, the Cauchy inequality, the Sobolev
inequality, Lemmas 2.2, 3.2, 3.5 and 3.6, we have

T pufderul/uitdx
< Cllvpullzz +Clluas|lLz | vpuelZz + Cllpbe |72 + 10117 + C- (3.16)

Integrating (3.16) over (0,t), and using Lemmas 3.4-3.5, we have

/putdx—i—,ul/ /u (dadt

T
/putdx —I—C/ /u dx/pufda:dt—&-C/ /p@fdxdt—l-H@H%oo—i—C. (3.17)
0

Multiplying (1.2)2 by (y/p)~!, taking t —0T, and using (3.1) and (3.2), we have
5 )
w, 2.09)
a0y < 182~ '00 Lt fobludud|

|f91 +\/>}“0U0x

S|.gl|—"_c(a

which implies
/puf(x,O)szC’. (3.18)

Substituting (3.18) into (3.17), we have

/putd:rJrul/ /u (dadt
T
SC/ /uiwdm/pufdxdt—i-C/ /p@fdxdt—i—HGH%x—i—C. (3.19)
0 0

Differentiating (1.2)s with respect to ¢, we have

PWit + PrWi + PrUWg + PULWZ + PUWge + 28Ws = oWzt - (3.20)
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Multiplying (3.20) by w; and integrating the resulting equation over I, we have

1d
2 pwfderug/witdeer/thdz

:—2/puwthtd:ﬂ—/ptuwmwtdx—/putwmwtd:c

<2||Vpwe|[ 2 |v/pull Lo |wael £z + [[wel[ Lo [l L | pel| 2 [ wa | 22
Hlwall Lo [Vouell Lz Vw2
M2

< 7\\th|\%z +C ([wae 72 +1) (IWVpwell72 + | Vowe||72) +C

Similar to (3.19), we have

/pwt dx—l—/ /wmdmdt—&—/ /wfda?dt
§C’/ /wixdx/putdxdthC’/ /wixdx/pwtdzdt+0 (3.21)
0

Multiplying (1.2)4 by k6;, integrating the resulting equation over I, and using integra-
tion by parts, Lemmas 2.2, 3.2 and 3.5, and the Cauchy inequality, we have, for suitably
small £ >0,

1d
2 ia 292
/pn@ dx—i—zdt/n 0;dx
:/Fa&tuidm—i—/nﬁtwidac—l—//iﬂthdx—/Kpu9z9tdx—/mp0ux9tdx
/ prOZdr+ — T ( / / T)drd + / / T)drdz + / / dex>

—2/u1umt/ T)drdx — Q/wmwm/ T)drdr — 2/wwt/ T)dTdz

+/pn(92+92 dx

/ prOZdr + — ( / / T)drdx+ / / T)drdz + / / dex)

+€/uitdx+6 witdx—l—C/(l—i—@q)QHidx—i—C. (3.22)

Integrating (3.22) over [0,7], and using Lemmas 2.2, 3.5-3.6 and the Cauchy inequality,
we obtain
T
/ /p(1+9q)9§d:cdt+/(1+9‘I)29§dx

[ [ strriraas [z [ smparies [u2 [ m]

+/(1+9‘1)29§dx +Cs/ /uitdmdt—i—Ce/ /wgtdxdwrc
t=0 0 0

<C
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T T
<C||(1461)0| L~ +C€/ /uitdxdwrcs/ /wfctdxdt—kC
0 0

T T
<C|(14690,]| 12 +C'E/ /uitda:dt—i—C'E/ /witdxdt—FC

%/(14—9‘1)202(1;10—1—05/ /umtdxdt—i—Cs/ /wmdxdt—i—C

Then, we have

T
/ /p(1+9q)93d:¢dt+/(1+0Q)29§,dx
0

T T
SC&/ /uitdxdt—i-Ca/ /witdxdt—i—C’. (3.23)
0 0
By (3.19), (3.21) and (3.23), choosing suitably small € >0, using the Gronwall inequality
and Lemma 3.6, we complete the proof of Lemma 3.7. ]

With Corollary 2.1, Lemmas 3.1-3.7, one can easily derive the following estimates
of the solution (p,u,w,f) in a similar manner as those obtained in [29]. More precisely,
we get the following proposition.

ProprosITION 3.1.  Under the conditions of Theorem 3.1, it holds that
101 o< (@) < C,

lullwioe(@ry +wllwio (@) + sup /(u +w )dx+ 0 dxdt < C,
0<t<T QT

T
LEMMA 3.8.  Under the conditions of Theorem 3.1, it holds that

sup /p@fdx—f—/ (14696, dedt < C.

0<t<T

Proof. Differentiating (1.2), with respect to ¢, we have
P0s + pe0r + (puby )t + (pOuy )t = 21 Ugtgy + 210w Wat + 4 WwW1 + (KO ) 1t (3.24)

Similar to [29], multiplying (3.24) by k6, integrating over I, and using integration by
parts, (1.2);, Proposition 3.1, Lemmas 2.1, 3.2, and the Holder inequality, we have

d
o pnede/\ (1469)0,)|* da:

2
gc/agmdﬁ()(/pefdm) +C(/u§tdx+/wfctdx+/wt2dz> +C.  (3.25)

Integrating (3.25) over [0,T], using Proposition 3.1, we obtain

T T 2
/p@fd:r—i—/ /|[(1+0q)9m]t|2dxdt§ /pn@fd:r —|—C’/ (/p@fdm) dt+C. (3.26)
0 +=0 0
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/ prb2dz

Substituting (3.27) into (3.26), using the Gronwall inequality and Proposition 3.1, we
complete this proof. ]

From [29], we have

< C/ggdx+c/egmdz+c <C. (3.27)
t=0

With the help of Lemmas 3.1-3.8 and Proposition 3.1, one can easily derive the
following estimates of the solution (p,u,w,0) in a similar manner as those obtained
in [29].

PropPOSITION 3.2.  Under the conditions of Theorem 3.1, it holds that

T
/ [|0¢]| Loodt < C,
0

602,dxdt < C,
Qr

0llw1. (@) + sup /Giwdaﬂ— 9326mdxdt§0,
0<t<T Qr

(V) I (@r) + | (VP)¢ | o (@) < C-

LEMMA 3.9. Under the conditions of Theorem 3.1, it holds that

sup /p2|(/€0$)t\2da:—|—/ p*0%drdt < C.

0<t<T

Proof.  Multiplying (3.24) by p?(k;):, using integration by parts, Propositions
3.1-3.2 and the Cauchy inequality, we have

d
G [P P [ 03

<C/|(/€9I)t2dw+0/9§tdx+0(/uitd:r—&—/wgtdm—i—/wfdx)

+C0¢|| 1 + C. (3.28)
Integrating (3.28) on [0,77], by (1.6), (1.8), Lemmas 3.7, 3.8, Propositions 3.1-3.2 and
the Young inequality, we have

T
/p2|(/£9x)t|2dx+/ /pgﬁftdmdtg/p2\(f§9$)t|2dx +C.
0

t=0

By [29], pr\(mez)t|2da;|t:O < C. Then we complete the proof. O

With the help of Lemmas 3.1-3.9, and Propositions 3.1-3.2, one can easily derive
the estimates of the solution (p,u,w,#) in a similar manner as those obtained in [29].

ProrosiTiON 3.3.  Under the conditions of Theorem 3.1, it holds that

sup /(Ogmqtp?&it)dng,
0<t<T
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sup /pQ’LLitdl‘—F/ pPudrdt < C,
0<t<T r

sup /uimdx <C.

0<t<T

From all the above estimates, we get
1 (VP) lzoe +11(v/P) oo + ol 2 + [l pell oo A Null e 4l pwell 1o 4 IV Puell L2 + 1161 12

+1Iv/P0¢ || 2 + [| B¢ 12 +/ (ue + piy +07 + 02+ pPufy + p°07) dedt < C. (3:29)

T

COROLLARY 3.1.  Under the conditions of Theorem 3.1, there exists a positive constant
Cs depending on 6 such that for any (z,t) € Qr, it holds that,

p> & >0,
0>Cs>0.

Proof.  The proof is the same as in the Corollary 3.9 in [29)]. o

Then from (3.29), the above lemmas and corollary, we have

S (lollaz+llpel e+ llullmo + el +lwlles + lwel o+ 100z + o0 )

(a2 b+ O O Ot 4 ) dude
T
<0(5). (3.30)
With (3.30), we complete the proof of Theorem 3.1.

Proof. (Proof of Theorem 1.1.) Consider (1.2)-(1.4) with initial data replaced by
(pd,ud,ws,03). We obtain from Theorem 3.1 that there exists the solution (p®,u®,w®,6°),
such that (3.29) and (3.30) are valid when we replace (p,u,w,0) by (p°,u’,w?,6%). With
the estimates uniform for §, we take § — 0% (take the subsequence if necessary) to get
a solution to (1.2)-(1.4) still denoted by (p,u,w,d) which satisfies (3.29) by the lower
semicontinuity of the norms. This proves Theorem 1.1. a

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by the same method as in Section 3.

Denote pd = po+8 and 63 =60, +6 for 6 € (0,1). Throughout this section, we denote
C to be a generic constant depending on pg,ug,wp,8y,T and some other known constants
but independent of ¢ for any ¢ € (0,1).

For any given & € (0,1), let u, w be the solution to the following elliptic equations:

Ulugacz _ng =/ Pog1,
M2w8xz72§wg:\/%92’ (41)
ug|x:0,1 =0, wg|z:0’1 =0.

Since pd=po+0€ H?, 0)=00+56c H* and /pogi,~/pog2 € H, by the elliptic theory,
(1.11) and (4.1), we have ul,w$ € H} N H? and

(4.2)

ud —ug, wy—ug, in H® as J—0%,
[t —uol| > < C6, ||wh —wol| > < C6.
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The boundary conditions of #° is
(02 —ab®)(0,t)=—asd, (02 +0b6%)(1,t)=bd, (4.3)
Before proving Theorem 1.2, we need the following auxiliary theorem to construct
a sequence of approximate solutions, which is the same as in Theorem 3.1.

THEOREM 4.1. Consider the same assumptions as in Theorem 1.2. Then for any
given 6 € (0,1), there exists a global solution (p,u,w,d) to (1.2)-(1.4) with initial data
replaced by (p,ud,wd,0), such that for any T >0,

peC([OvT]7H2)7 ptec([O7T]7H1)a Ptt€L2(0»T7L2)» p2%>03
(u,w) € C([0,T); HENH?), (ug,wy) € C([0,T); HY)NL2(0,T; H?),
(utt,wtt) €L2(O7T;L2)7 960([0,T],H3)7 020§>0,
0, €C([0,T); HYYNL2(0,T; H?), 04 € L?(0,T; L?),

where Cs is a constant depending on §.

For any given T' € (0,4+00), let (p,u,w,d) be the solution to (1.2)-(1.4) as in Theorem
4.1. Then we have the following lemmas.

LEMMA 4.1. Under the conditions of Theorem 4.1, it holds that for any 0<t<T

/pdmz/podm, (4.4)

/p(9+u2+w2)dx+/ [ak1(1+69)0(0,t) +bk1(14+07)0(1,t)]dt<C.  (4.5)
0

Proof. Integrating (1.1); and (1.1)4 over I x[0,¢], using (1.6) and the boundary

conditions (1.4), we have
/pdm:/pOdQ:?

/pEdmz/poEodx—/O [ak(0—06)(0,s)+br(0—0)(1,s)]ds,

and

then we have
T
/pde+/ [ary(14+609)0(0,t) +br1 (1+69)0(1,t)]dt
0
T
g/pOEde-i-é/ (area(1469)(0,) + brea (14 69) (1,8 dt.
0

Using the Young inequality to the last term in the above inequality, then we have (4.5).
O

Similar to Lemma 3.2, we give the following lemma.

LEMMA 4.2.  Under the conditions of Theorem 4.1, it holds that for any (z,t) € Qr,

0<p<C and 6>0.
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LEMMA 4.3.  Under the conditions of Theorem 4.1, there exists o€ (0,1),

+—+e—a+ e

2 2 2 q
/ (Za - (A+696; )d it<C,

where C may depend on «.
Proof. Multiplying (1.2)4 by 6~%, integrating the resulting equation over Qr, and

using integration by parts, we have
2 26 2 Jp: T 0 !
pau? szx w aRb, KUy
dxdt dt
/ /< 604 + 904 +91+0¢> €z +A 904
T T
= +/ /p&l_auwdxdt
1-«a 0
T 2 T
§C+&/ /ﬁd:cdmc/ /p292_adacdt

L T U2 T
§C+—/ /—”dde—C/ 16]11=dt,

where we have used the Cauchy inequality, Lemmas 4.1 and 4.2. From (1.4), we have

0

POt~ dx

(4.6)

/OT;Z% :dt:_/OT [W(l7t)+w(0at)] dt. (4.7)

From (4.6), (4.7) and the Young inequality, we have
2 2
pau? ,ugwx 2¢w? omﬂ / an
/ /( 0o + 0o 91+ )d dt+o ( )| dt
g/ (b0~ (1,t) +arf'~*(0,t)] dt+%/ /z—gda:dwc/ 10]|}-2dt+C
0 0 0

T L1 T u2 T
gc/ [(1+9‘1)9(0,t)+(1+9q)0(1,t)]dt+7/ /e—id:cdt—i—C/ [10]|5=>dt + C.
0 0 0
(4.8)

Equations (4.8) and (4.5) yield

2 2 2 T
pu L 26w*  akxb; a

The rest is the same as in Lemma 3.3. Then we complete the proof of this lemma. 0O

LEMMA 4.4. Under the conditions of Theorem /.1, it holds that

T
/0 lgfett—dt<c,

sup /qudw—i—/ uidmdtSC,

0<t<T

sup /prder/ (w +w )dxdt<C’
0<t<T T
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Proof. The proof of this is same as that of Lemma 3.4. ]
LEMMA 4.5. Under the conditions of Theorem /.1, it holds that

sup /(ui+wg+w2+p92(1+0q))dx+/ (pui + pwi + (1+67)62) dzdt < C.
0<t<T T

Proof. Similar to (3.8), we get

2
/pufdx—l—uljt/ui<0</uidx) +2%/Puxdx—%/Pde—Q/Pt(ux—P)dx.

Using (1.2) and integration by parts, we have

—2/Pt(u$—P)dx:—2/(p0)t(ux—P)dx
:—2/[(n@x)r+u§f(pu9)xfp8um] (ugy — P)dx
:—2/{0x(um—P)|(1)—|—2//<o9:,3(um—Pm)dx—2/ui(um—P)d:v

—2/,0u9(um—Pm)dx+2/p9um(uz—P)dx
5
2N
i=1

By (1.2), (1.4), (2.2)-(2.4) and the Young inequality, we estimate the right-hand side of
the first term of above equality as follows:

|J1]=2{K0z [uz — P](1,t) — Kb [ue — P](0,1) }
=2|{bk(0—0)[u, — P](1,t) + ar(0 — &) [us — P} (0,t) }]
<Cla+b)|luy — Pll=[(14+67)(0 — )| L=
<C(a+b)|luy — Plre= (|[bzr2 +1)
<C(a+Db)([[us — Pllrr + [l put + purty || 1) (|| 50z 2 +1)
<[ )

w0t ) ( [ustos [Pacs [pudes [ puc)
2
(/uidm) —&—/p@%lm—k/pufdx—i—||u||2Loo/uidm—|—1

1 2
Sl—o pufd;v—i—C(/uidm) +/p€2d$+0(a+b)2(HKHQJH%Q—|—1)—|—C’,

<C(a+b)(||kbz] L2 +1)

Then, combining Lemma 3.5, we get

T T T 2
/ /pufdxdt—i—ul/uideC/ (1+||9||2Loo)/uidxdt+0/ (/uidm) dt
0 0 0

T
+C/ /Iigeidxdt-i-CHeHLoo-‘rC, (4.9)
0
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T
/ /pwfdmdtJr/(,ugwiJr?wa)dx
0
T 2 T 2
SC’/ (/uidx) dt+C/ </widx> dt. (4.10)
0 0

Multiplying (1.2)4 by fo T)dr, integrating over I, and using integration by parts, we

have
0 1
/ / / dydea:—l—/fiQQida:— [&9 / k(T )dT‘|
—,ul/ / dex—l—ug/ / dex—FQf/ / T)drdx
/p@ux/ T)dTdx
<C||kb| = </uidm+/widw+/wzdx—k-/peumdx)
C(||k0z|z2 +1) </uidx+/wfcdz+/w2dx+/pﬂuxd;z:>. (4.11)

From (1.4), we have

and

1

0 0 0
[591/0 ﬁ(T)dT} =-b (m(&—é)/o Ii(T)dT) (Lt)—a(&(@—d)/o H(T)dT) (0,%).

0

Then, from (4.11), we get

pe/ drdx+/ 292dx+b(m9/ d7> (1, t)+a<m9/ )(O,t)
<C(||K0]| 12 +1) (/ 2dz+/ 2da:+/ 2dx—|—/p9uxdx>
+6b< /0 k(T )dT> (1,t)+da <ﬁ/0 k(T )m) (0,1).

By (1.6), we can deduce that

b a
2,2 2(1409)292(1 2(1409)2p2
p9/ dex-i-/H exdx+—+1f<1( +69)0%( ,t)+—q+1n1( +69)6%(0,1)

/ / T)drdx — /p@ux/ (7)drdx+6bk3 (14609) 0(1,t) + dar (1469)*0(0,t)

<C (w0l +1) ( [z [uzaes [urars [ peurdm)

+6bk3 (146092 0(1,t) + dar (1469) 6(0,t)

2 2 2
%Hm& 2. JrC’(/uidx) +C</w§daz) +C</w2dx> +C’/p202uidx
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+0br2 (1+609)°0(1,t) +dar3 (1+69)*6(0,t) +C

S%Hmﬁzﬂiz +C (/uidm)z—i—c(/widaﬁ)z—l—C(/dex)Q—i-C9||%oo/uidx
+6bk2 (146092 0(1,8) +bar2 (14+607)6(0,t) +C. (4.12)

Using the Young inequality, we obtain from (4.12) that

T
/p02(1+0q)dx+/ /HQHidl‘dt
0
T 2 T 2 T 2
SC’/ (/uidm) dt—l—C/ </wida¢> dt+C/ (/dex) dt
0 0 0

T
+C’/ H9||2Lx/uidxdt+0. (4.13)
0
Using (4.9), (4.10), (4.13), Lemma 4.4 and the Gronwall inequality, we complete the

proof. O
LEMMA 4.6. Under the conditions of Theorem /.1, it holds that

sup /(pi—i—pf)dx—i—/ u?, drdt<C,
0<t<T T

/ w2, drdt <C.

T

Proof. The proof of this lemma is the same as in Lemma 3.6. ]

LEMMA 4.7.  Under the conditions of Theorem 4.1, it holds that

sup /(puf—i—pw?—l—(l—i—@q)QQi)dx—i—/ (w2, +w2, +w; +p(1+67)607) dzedt < C.

0<t<T Qr

Proof. From Lemma 3.7, we have

T
/pufder/ /uitdmdt
0

T T
SC’/ /uizdx/pu?dxdt—i-C/ /pﬂ?dmdt—l—HQH%x—i—C, (4.14)
0 0

T T
/pw?dx—i—/ /wgtd:ﬂdt—k/ /w?dzdt
0 0
T T
SC’/ /wimdx/pufdmdt—i—C/ /wi$dx/pwt2dxdt+0. (4.15)
0 0

Multiplying (1.2)4 by k6;, integrating the resulting equation over I, and using integra-
tion by parts, Lemmas 2.2, 4.2 and 4.5, and the Cauchy inequality, we have, for suitably
small £ >0,

and

1d
2 1 242
/pf@ﬂt dz+ 5 | # 0;dx
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:/@29x9t|(1)+/Aﬁtuidz—F//i@twidx—i-/Hﬁthdx—/npuﬁxﬁtdz—/fipﬂuxﬁtdx

< [ [ worinaes [z [ ortract [ot [ stinas)
/pl-@@de Q/UTuTt/ T)drdx — 2/wrwzt/ T)drdx

—Q/wwt/ dex+/p/<c(02+9§)d:c+/<52010t|(1)

Sdi (/ / dex+/ / de:c+/ / dea:>
/pm‘)zdx+5/uitdx+5/w3tdx+0/(1+0q)20§dx+n29m9t|;+0. (4.16)

From (1.4), we have

|, = K20,0,(1,) — k26,6, (0,)
= —br2(0—0)0,(1,t) —ar®(0 —6)0,(0,t
=—br2(0—0)0:(1,t) —ar?(0 —8)0:(0,t) +bdk>0;(1,t) — adk*0:(0,t).
)

k20,0,

Integrating the above equality over (0,t), using the Young inequality, choosing § >0
small suitably, we have

t
7/ I€29z9t(l’,8)|(1)d5
0
>Cb (02 + 60912 +0%9T2] (1,¢) + Ca [0° + 0972 +62912] (0,¢)
—Cb[0%+6972 + 62772 (1,0) — Ca [6? + 6972 +62972] (0,0) — C
>Cb[0%+67T2+6%12] (1,t) + Ca [0+ 697> +6%112] (0,t) — C. (4.17)

Integrating (4.16) over (0,t), and using Lemmas 2.2, 3.5-3.6, (4.17) and the Cauchy
inequality, we obtain

T
/ /p(1+9q)9§dxdt+/(1+0q)29§daz
0

+CH[07 +67T2+612] (1,T) 4+ Ca [0 + 677> +6>112] (0,T)

[ / Ao [ / Ao [ / mw}
+C'E/ /uitdxdt—i—C'E/ /witda;dt—I—C
t=0 0 0

T T
g0\|(1+9Q)9HLm+05/ /uitdxdt—i-Cs/ /witd:cdt—i-C
0 0

<C

+ /(1+9q)29§da:

T T
§C’H(1+0q)9r||L2+Cs/ /uitda:dHC’e/ /witdxdtJrC’

1
— | (1+61 92dm+05 u? dwdt—i—Cs w2, dzdt+C.
2 xt xt



1360 GLOBAL CLASSICAL SOLUTIONS ON MICROPOLAR FLUIDS

Because the third and fourth terms on the left-hand side are positive, then we have
T
/ /p(l+9q)0§dxdt+/(1+9‘1)29§dz
0

T T
§C’£/ /uitdxdt—i—CE/ /witdacdt—i—C. (4.18)
0 0

By (4.14), (4.15) and (4.18), choosing suitably small ¢ >0, using Grénwall inequality
and Lemma 3.6, we complete the proof of Lemma 4.7. 0

Like Proposition 3.1, we get the following proposition.

PRrOPOSITION 4.1.  Under the conditions of Theorem /.1, it holds that
HHHL‘X’(QT) < Ca

lullwi.0o (@) + lw][wiee (@) + sup /(uix—i—wfm)daﬁ—&— 0ppdxdt < C,
0<t<T Qr

ollwroe(@r) + el Lo (@ry + sup /(P§w+pit)d$+/ (P +ulyy) dodt <C.
0<t<T Qr

LEMMA 4.8.  Under the conditions of Theorem 4.1, it holds that

sup /p@?dm—k/ (1 +090,];* dzdt < C.

0<t<T

Proof.  Multiplying (3.24) by x0, integrating over I, and using integration by
parts, (1.2);, Proposition 4.1, Lemmas 2.1, 4.2, and the Holder inequality, we have

d
a4 pn@?dw+/|[(1+9q)91]t|2dx

2
<[(K)1Kb:]o+C / 02, dz+C ( / pefda:)

+C (/uitdﬂc—f—/wgtdm—f—/wfdx) +C. (4.19)

The first term in the right-hand side can be estimated as follows:

[(K62) e ]o=r[(K02):6:]) (1,) — 5 [(K0.):0:] (0,1)
=—bk[(k(0—19))0:] (1,t) —ar[(k(0 —6)):6:] (0,7)
=—b(K'0+k)0Z(1,t) —a(k'0+ k)02 (0,t) +bdK'67(1,t) +adk 02 (0,t).  (4.20)

Then, from (4.19) and (4.20), we have

%/pnﬁfdm—i—/ [(1469)0,)|> dz+b(K' 0+ £)62 (1,t) + a(x' 0+ £)62(0,1)

2
<b6/~@’9t2(1,t)—|—a5/$’9?(0,t)+C/932md96+0(/pﬁ?dw)

+C (/uitder/witder/wtzdm) +C.
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Noticing that the third and the fourth term on the left-hand side of the above inequality
is nonnegative, by the Young inequality and Lemma 4.7, we have

;lt pl€92dl‘+/| (14690, da:
SC’/@izdx-l-C(/pQ?dx) +C(/u§tdx+/w§tdx+/w§dx> +C. (4.21)

Integrating (4.21) over [0,T7], using (4.20) and Proposition 4.1, we obtain

T T 2
/p@fdm—i—/ /|[(1+0q)0x]t|2dazdt§ /;m@fdm —|—C/ </p0t2dx> dt+C
0
<C/ (/p92d$> dt+C. (4.22)

Using the Gronwall inequality and Proposition 4.1, we complete the proof. ]

Similar to Proposition 3.2, we have the following proposition.

ProrosITION 4.2.  Under the conditions of Theorem /.1, it holds that
T
/ 10: || o dt < C, / 02,dxdt <C,
0 Qr

0llw1. (@) + sup /Giwdaﬂ— 62, drdt < C,
0<t<T Qr

(V) I (@r) + | (VP)¢ Lo (@r) < C-

LEMMA 4.9. Under the conditions of Theorem /.1, it holds that

sup /p2|(/<;9m)t\2dx+/ p20%drdt < C.
T

0<t<T

Proof.  Multiplying (3.24) by p?(kf;):, using integration by parts, Propositions
4.1-4.2 and the Cauchy inequality, we have

d
= [ P02 P / P06} da

< [p?(K02)e(K0;):] +C/| K0.) |2dm+0/92 dx

+C (/uitdx—k/witdx—k/wfdx) +C|6]| L~ + C. (4.23)
By (1.4), we have

(0% (502 )o(500)e] o= —bp® [5(0 — 8)], (504), (1,) — ap? [(0 — O)], (s6;), (0,1)
£ _bM(1,t) —aM(0,t),

where the function M(x,t) is defined as follows:

M (z,t)=p? K"+ (K')20] 0F + p*(k* + kK'0) 0,0, — 5p* (K)?07 — 6 p* kiK' 0,04
d
A

& L 10)0) + N (0)6}
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with H(0)=1p? [k*+kk'(0 —0)] and
N(#)= —%pz (k"0 — (K')2(0—6) — kK" (60— 6)] — 2pp¢ [K* + kK (0 —0)] .
Then, from (4.23) and the definition of M, we have
G [ AUt Pz [ a5 0 O] (1) +a [H0)67] 0.0)
gbN(O)&f’(l,t)+aN(9)9§’(07t)+C/|(n€z)t\2dx
+C/0§tdm+0(/uiﬂx—i—/wiﬂx—#/wfdm) +C||6¢||L~+C. (4.24)

Integrating (4.24) on [0,¢], by (1.6), (1.11), Lemmas 4.7, 4.9, Propositions 4.1-4.2 and
the Young inequality, we have

T
1 1
/,02|(n€z)t|2dx+/0 /p39t2td:vdt+ ibp2 (k% + kK'0)] 0?(1,t)+§ap2 (k% +kK'60] 07(0,t)

T
gc/ [N (0)63 (1,t) +aN (8)6;(0,t)] dt—l—/p2|(fi9x)t\2da:
0

t=0

+b[H(0)67] (1,0)+a[H(0)67](0,0)+ %bép%ﬁ:’@f(l,t) + %aép%n:’@f(O,t) +C

T
1 1
gc/o ||9t||imdt+/p2|(ﬁ91)t|2dﬂc S BPRA 03 (1,1) 4 Labp?n'62(0,T) +

t=0

1 1
§/,02|(/£91)t|2dx +§b5p2nm'9t2(l,t)+§a5p2mm'0t2(0,t)+0. (4.25)

t=0

Using the Young inequality, by (1.6), the Proposition 4.2, we deduce from (4.25) that

T
/p2|(/{91)t|2dx+/ /p?’ﬁftdxdtg /p2|(n91)t|2d9€
0

Then we complete the proof. 0

+C<C.

t=0

Similar to Proposition 3.3, we get the following proposition.
PROPOSITION 4.3.  Under the conditions of Theorem /.1, it holds that

sup /(ﬁm—i—pzeit)deC,
0<t<T

sup /pzuitder/ pPu? drdt < C,
0<t<T Qr

sup /uimdx <C.

0<t<T
From all the above estimates, we get

sup (/[ (V) llLo +11(v/p), leoe + ol ez + ol rr + i s + llowe | s + [l v/Puel 2

0<t<T

+||9|\H3+\|\/ﬁt9t\|Lz+||p0t||H1)+/ (uli+pie+07 + 02, +p°ui +p°07,) dedt < C. (4.26)

Qr
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COROLLARY 4.1. Under the conditions of Theorem 4.1, there exists a positive constant
Cs depending on 0 such that for any (x,t) € Qr, it holds that,

p=>2>0,
0>Cs>0.

Then from (4.26), the above lemmas and corollaries, we have

ollzz + lpell e+ [l s + 1wl o+ 1wl s + 1wl [z 41101 225 4[| 08 211
b [ (0w O 02 O 4 08 dads
gC(d).QT (4.27)
With (4.27), we complete the proof of Theorem 4.1.

Proof. (Proof of Theorem 1.2.) The proof is similar to that of Theorem 1.1. 0O

5. Proof of Theorem 1.3

Assume that (p®° u®? w»? §%b) is the solution as in Theorem 1.2, and that
(p,u,w,0) is the solution as in Theorem 1.1 and inf py > 0.

Denote p=p—p*®, i=u—u®", w=w—w*?, §=0—0%". Then we can obtain that
(p,u,w,0) satisfies the following system:

P+ (pu)s +(p™*a), =0,
ity + pu® + puiiy + puu®? + pustust + (pf+ ph®t)y = 1 ligg,
Py + pwi’ + pu, + puaws? + puwsb 4 260 = 1o s, (5.1)
00y + PO + pull, + pud + pu®be%b + pAu, + ph®Pa, + phsbus

= p1 (g +uL?) + poy (Wy +w2?) + 26w (w + W) + (K0, ) o + ((k — £4P) 02F) .

x

Multiplying (5.1)1 by p, integrating over I, by (3.30) and (4.27), we have

1d 1
5%/\/6\%‘%:f§/ﬁ2uzd:rf/pg’bﬂﬁdxf/p“’bﬂxﬁdx

< Cllugll o l1pll72 + 05" 2 llall o 1All 2 + 6% | Lo o |2 1] 2
<etllall7 +Clen)llplze, (5:2)

where we use the inequality ||@||p~ < C||tz| 1 < C||tz| L2, which can be obtained by
(2.3) and the Holder inequality.

Multiplying (5.1)s by 4, integrating over I, by (3.30) and (4.27), we have

1d
:—/ﬁﬂuf’bdx—/pﬂgug’bdx—/ﬁﬂua’bug’bd:ﬁ—i—/péﬂxdac—i—/ﬁea’bﬁmdm

Sl b . — :
<lIpllee Nl zee lug N2 + Iv/pul 2 /ol Lo l[all L= flug |l 2

Hpll 2 @l oo [lu®® ) oo g | 2 +1V/P8l 22|/l oo | | 22+ 171 22 1090 ]| Lo [l | 2
<eolltz |22 +Cle2) (I1Al1Z: + IVpallze +[vpdlIZ2) (5-3)
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Multiplying (5.1)3 by w, integrating over I, by (3.30) and (4.27), we have

1d
2dt/pw2dx+u2/ 2dm+2§/ o2 dx
z—/ﬁwwf’ dx—/pﬁww;’bdx—/pwu b dx

Sl b . 7 :
<|pllze ] o lwy ||L2+H\fUIlmII\fIILwHWIILwllw‘;b||L2
+Hpll 2 @] oo [[u®® || e [y

< coll0alBa + Clea) (19125 + 17l (5.4)
Multiplying (5.1)4 by 6, integrating over I, by (3.30) and (4.27), we have
1d o o
3d po dx—|—/m9mda:

:Kﬂx@%—/ﬁéﬂf’bdx—/pﬂéﬁg’bdx—k/ﬁua’bgﬁg’bdx—/p§2uxdm
—/p@a’béﬂmdxf/ﬁ@a’béug’bderpl/ﬂz(uzJrug’b)édz
—|—,u2/wm(wm+wg’b)§dm+2§/w(w+wa’b)§dx+/((/{—n“’b) ag"’) Odx

< k005164112l 21900 167 12+ [1v/Dill 2 /PO 2 105 | e + [13/PON T [l e
H1pllz2 100z a2 ll6g Lo + /P02 e 2 lv/pll o 6% oo
H|pl 2 101 oo [[ug 1 22109 | Low + CNO] Lo 10| 22 (sl 22 + [lug®l =)
+C10l| 2 [ | £z (el 2 + 1wl z2) + OO Lo 1] 22 (wll 22 + w ]| 22)
+Cmax{|w'],|(x“°) [0all 2105 o 10] 22 +C (16l + 1650 | oe ) 10521l 22116]] 2
<esllfallZz +Cey (Il + 1@allZ2 + 1B1172) +COI1Z:

+Coy (10 13+ 1021 22+ 1) (1o + 1/l + VP01 (55)

Then, choosing suitably small £1,e2,63 >0, we obtain from (5.2)-(5.5) that

d _ _ _ N _ _ _,
5 (s + I VBalE+ VA3 + [ (@402 + 0%+ n82) do
<C (10" 132+ 1051122 + 1) (1713 + IVl + I VABIE) +CIlVADI-,  (5.6)

where we have used that p is bounded away from zero since its initial data pg is assumed
to be positive.
Using Gronwall inequality over (5.6), we complete the proof of Theorem 1.3.

6. Proof of Theorem 1.4

In terms of the local existence (Lemma 6.1), we can complete Theorem 1.4 by com-
bining the global a priori estimates with continuity arguments (cf. [6]). Therefore, in
this section we only need to achieve the global a priori estimates, and for this purpose
we assume that (p,u,w,0) is the classical solution over [0,T] for any T € (0,00). Ad-
ditionally, let C' be a generic constant in this section and the next two sections which
depends only on T, pu1,2,§,K,7, the initial data, and ||g;||z2,[/(v/Pogi)e|r> (i=1,2,3),
but does not depend on a,b; we also use C'(«) to emphasize that C relies upon «a.

The first lemma is for the local well posedness of classical solutions.
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LEMMA 6.1 (See [5-7]). Under the same assumptions given in Theorem 1.4, the
problem (1.2)-(1.4) has a unique classical solution (p,u,w,8) over [0,Ty] for some (small)
time T, >0 which satisfies the regularities (1.10).

For any given T € (0,400), let (p,u,w,d) be the solution to (1.2)-(1.4) as in Theorem
1.4. Then we have the following lemmas.

LEMMA 6.2. Under the conditions of Theorem 1.4, it holds that for any 0<t<T,

/pdx:/podx, (6.1)

1 1 1 1
/p<9+2u2+2w2) dxg/po <90+2ug+2w3> dr2&. (6.2)

Proof. The proof of this lemma is similar to that of Lemma 3.1. a0

LEMMA 6.3. Under the conditions of Theorem 1.4, it holds that for any (z,t) € Qr,
0<p<C and 60>0. (6.3)

Proof. The proof of this lemma is similar to that of Lemma 3.2. ]

LEMMA 6.4. Given a> (y—1)&, there exists a sequence of (non-overlapping) intervals
Q, in I such that for every t€[0,T)],

P(x,t)<a, xEI\LJJQj and a§|$j| o P(x,t)dx <2a. (6.4)
Moreover,
uQ;| < M. (6.5)
J !
Proof. The proof comes from P =pf and Lemmas 2.3, 6.2. O

LEMMA 6.5. Under the conditions of Theorem 1./, it holds that,

T
sup /p(u4+w4+92)da:+/ /(uluQui—l—ungwi—i—mﬁi—i—fu}‘l) dxdt<C. (6.6)
0

0<t<T
Proof. Rewrite (1.1)4 as follows:

(PE)t+ (puE) s+ (Pu)y = K Epr — (111 — K) (Utig) . — (12 — K) (Wwy,) 5. (6.7)

Multiplying (6.7) by E, integrating by parts over I x (0,t), by (1.4), (6.1)-(6.3), (2.1)
and the Young inequality, it yields that

T T
/pEQd:E-i-/i/ /|Ez|2dxdt§C+C/ /(p292u2+u2u§+w2w§)dxdt.
0 0

On the other hand, we multiply (1.2); and (1.2)3 by u® and w?, respectively, integrate
by parts over I x (0,t), to deduce that

T T
/pu4dgc—|—,u1/ /uzuidxdtSC—i—C/ //)292u2d35dt7
0 0
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T T
/pw4dx+,u2/ /w2w§dxdt+§/ /w4dmdt§C.
0 0

From the last three inequalities, we have
T
/p(u4+w4+92) dx—i—/ /(,u1u2ui+,u2w2wg+ﬁ9§+£w4)dxdt
0
T
SC—FC’/ /p292u2dmdt
0
T
§C+C/ / +/ PP0%uldedt 2 C+ Ay + As,
0 I\L]JQJ UQJ'

where the intervals 2; are as in Lemma 6.4.
From (2.1), (6.1) and (6.2) that

mg;{@SC’/|€x|dz+C’/p9dz§C’+C/|0x|dx.

Together with (6.1), (6.2), (6.4), (6.9) and the Cauchy inequality, deduces

T T
A < Ca/ / pOuPdadt < C’Ozé’o/ 16| . dt
0 JI\uQ, 0

c (" )
<— |05 | dxdt + C ().
@ Jo

Next, we estimate As.
If p<e<1,V xe€Q;. Then, we have

/ p292u2dx§€||9||2Loo/ putdr < Ce (1+/|9$|2dx)/ pudz.
Q Q; ;

3J Q;

(6.8)

(6.9)

(6.10)

(6.11)

If there exists at least a a7 €€; such that p(a:;f,t) > ¢, since p is uniformly continuous

in I x[0,T7], one has

. €
‘p(l'vt) _p(l'jvt)‘ < §a

for all z € U(x;,é) with ¢ independent of 27 or . On the other hand, by Lemma 6.4 we

may choose « so large as to

1)&
oyl <|yn;| < OB <
J e
Then, for all z €y, p(z,t) > p(x},t) — 5 > 5, from which we obtain

C
101 L= 2,;) OOzl L1 (0;) +CllONLr (@) < CllOzl L1 (o)) +;/Q Pdx
J

<CeY?)|04| L2 (a,) +Clase).

So, we have

Q; J

| <l [ pilda < (Celbalae,+Cle)) | puida.

(6.12)
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Combining (6.11) and (6.12), we have

/ p20*uPdr < <05/|0x|2dx+0(a,5)>/ pu’dz. (6.13)
Q; Q.

J J

Since ;NQ,; =0 for i # j, it satisfies from (6.13) that
T
AQS/ (C€/|6x2da:+0(a,e)>2/ puldadt
0 79

T
:/ (Cs/|€x2dx+0(a75)>/ puldxdt
0 v

J
T
gcsos/ /|0x\2da:dt+0(a,s,50,T). (6.14)
0
By (6.11) and (6.14), choosing £ >0 small first and then « large, we have

T o (T
/ /p292u2dxdt§C+§/ /\GI\dedt. (6.15)
0 0

Substituting (6.15) into (6.8), choosing £ >0 small enough, we get the desired (6.6). 0O
COROLLARY 6.1.  Under the conditions of Theorem 1.4, it holds that

T
sup (Il + Al + / (10 = +llus |32 + w3 ) de<C. (6.16)

Proof. Tt follows from (2.1), Lemma 6.2 and (6.6) that

T T T T
/ H0||Loodt§0/ /|9I|dxdt+0/ /pedxdtgc/ /|0x|2dxdt+C§C.
0 0 0 0

Multiplying (1.2)2 and (1.2)3 by v and w, respectively, integrating by parts, we have

T T T
sup ||¢/3u||%2+u1/ I\%IlizSC/ ||peu'izdt§c/ 101 dt +C<C
0<t<T 0 0 0

and
T
sup [[Vpwlts+ [ (nalluwe o+ 26wl de<C.
0<t<T 0
Then we complete the proof of Corollary 6.1. ]

LEMMA 6.6. Under the conditions of Theorem 1./, it holds that
g 2 2
s (sl ol + [ (WAl +I Vil + <) de<C. (617)

Proof.  Multiplying (1.2); by t, where f=8,f+ud,f, integrating over I x (0,t),

we have
M1 2 T .12
/(7|uw\ —Puw> (x,t)da:—i—/ /p|u| dxdt
0
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W T
:/ (71|ux‘2 — Puz) (z,0)dx —/ /(Pt +(Pu)y) (p1ug — P)dxdt
0

+ /0 ' / (P, +(Pu),) Pdadt + /O ' / (Pluel? = Bt (u2)?) dadt. (6.18)

Using (6.3), (6.6) and the Cauchy inequality, we get

/( [ug|? — Puw>dx> /|u$| dx — C’/ 2024z > L 1 /\uw|2da§—C. (6.19)

By (1.2)2, Lemma 6.2 and the Sobolev inequality W11« L it yields that
[11us — Pllre <C([|p1ue — Pl + [ p1tee — Pel[r1) < C+C/(|Uz| +pluf)dz. (6.20)

By (6.20), we have

T
//P\umﬁ—&(um)?’)dwdt
/ /P|um| dxdt+ - / /P 1 Uz ) [ug |2 dedt

SC/ (||9HL°°HU$”L2)dt+C/ (e = Pl llug||72) dt

1 .
< 6/ /p|u|2dmdt+0/ (L4100 2 + e 22 ] 2t (6.21)
0 0

Next, it follows from (1.4), (1.2), (6.3) and (6.6) and the Cauchy inequality, choosing
suitably small € >0, we get

T
/ /(Pt—i—(Pu)z)(muz—P)dxdt
0
T
:/ /(fiﬁm—i-,ului—i-ugwi—Fwaz—Pux) (1ug — P)dxdt
0
T T
:m/ /QM(pluw—P)dxdt—l—/ /(ului—i—ugwi—l—waz—Pum)(ulux—P)da:dt
/ /|0 |2d:rdt+5/ /| (1ug — P), |*dodt
+C’/ |1 e — P||Loo/(P2+ux+wx+w ) dzdt
0

1 [T ) T
sg/ /p|u|2dxdt+0/ |1tz — Pl poo (1+ ||t ||32 + [|w]| 3 )dt +C. (6.22)

From (6.3) and (6.6), it yields that

//Pt + (Pu)y) Pdxdt == / dt/PQdacdt—i— //PZdexdt

1
§/P2d$+0/ 1012« (a2 +1) de +C
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T
<C [ 100~ (sl + 1) de .
0
Taking (6.19) and (6.21)-(6.23) into (6.18), we deduce
T
sup (ualluslft) + [ Vil
0<t<T 0
T
<C [ (sl 101 +1) (sl + ol + 1) de+C.
Using the Gronwall inequality and (6.16), from (6.24) we can deduce that
T
swp (ualuslf) + [ IVilade<C.
0<t<T 0
Consequently, it yields from (6.16), (6.21) and (6.25) that

T T
/ sl dt<C / (l1ts — P2 013 ) d < C.
0 0

Multiplying (1.2)3 by w, integrating by parts, we have
1d (

2 dt

:—uz/uggwidw—%/wuwacdx

pallwa |22 +2€]|wl|22) + || v/puwl|7

< C(uallfe +lwallzz + g2+ [lwws|72)

<C (luallzoe + llwallzs + lusl72 + llwwsl|Z2).

By (6.6), (6.16), (6.26) and the Gronwall inequality, we have from (6.27)

T
sup (il s+ 2€ i) + [ IVpilade<c.
0<t<T 0

Combining (6.25), (6.26) and (6.28), we complete the proof of Lemma 6.6.

LEMMA 6.7. Under the conditions of Theorem 1.4, it holds that

OiltlgT(H\/ﬁulliz Hlullwre +IVowllZe + wlwe + 102172 + 0]l )

T
b [ (Mol i+ i+ 01+ VB ) de <.
0

1369

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

Proof. Operating 8+ 8, (u-) to (1.2)s, utilizing P, + (Pu), = pd, we calculate

(pt) ¢ + (putt) s — p1 0
:_M1(|ua;|2)ac+(Pum)m_ (Pt+(Pu)I)I
:_M1(|UI|2)1+(PUE)I_(Pa)a:~

(6.30)
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Multiplying (6.30) by @, using (1.9), (6.6), (6.16), (6.17) and integrating by parts, we
have

1 ) T

NG oy TR

1 T .

= Ll + / [ (sl pi = P ) e

_’”;1 ||uz||L2dt+C’/ / \um|4+p|9| +p494)dxdt+C

_,u21 ||ux||L2dt—|—C’/ /p|9|2dmdt+0

which implies

T T
sup H\/ﬁuH%erm/ Hmllizdtgc/ /p|0|2d;z:dt+C. (6.31)
0<t<T 0 0

Operating 0 + 9, (u-) to (1.2)3, we calculate
(pw)t + (PUW)L - Mwaz + 2§IU = — U2 (ule)L - 2€U.Lw (632)

Multiplying (6.32) by w, using (1.9), (6.6), (6.16), (6.17) and the Poincaré inequality,
integrating by parts, we have

Lo P .
SBR[l 26 013) e
1 T
:*ngﬂiz —I—/ /(uguﬁwwwm—%umww)dmdt

H22 ||wm||L2dt+C’/ / ut 4w +w )d:cdtJrC’

“22 i 2adt 4+,
which implies
T
sup |Vl + [ (il + 260l de<C. (6.33
0<t<T 0

Multiplying (1.2)4 by 6, and integrating the resulting equation over I x (0,1), it gives
K 2 g i112
SI0clze [ 1Al

1 T .
<5loals+C [Oualwal+uw?)doC [ [ (fuslleu + o]l
0

+0|us | + 0 ug | iy| + 0|y |[wy |* + 0w ||tz + 0 w| |+ 0|uy ||w]?) dedt + C.
(6.34)

From (6.17) and (2.1), we get

/9 (e P+ a4 0?) da <01 < 51103 +C, (6.35)
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and then
T .
C [ [ (1l pBlual 61+ Bl + 1 + O
0
Ol i |+ O]+ O]y 0] ) ddt
1 T 1112 T . 2 T . 2
=R VR R e R
0 0 0
T
+0(6) [ (el +10=) (1013 + 10l )
1 4 1112 T . 2 T . 2
<o [ IWEBIBadtve [ ubladite [ lielFade
0 0 0
T
+0(6) [ (el +1001=) (105 32+ 1) . (6.36)
Combining (6.34)-(6.36), we have
T .
1013+ [ 13t
T T T
<e [ Nialadere [ lialBadi+C [ (sl +10]2) (16212 + 1) de+C. (637
0 0 0

From (6.31), (6.33) and (6.37), choosing & > 0 suitably small, we have

T
s (101 + Vil Ipilge)+ [ [ (plof+ i P+ i) o

T
<c / (sl + 1011~ (6222 +1) i+ C.

In terms of (6.16), (6.17) and the Gronwall inequality, we have

T
(10132 + /pill3 + | /pil32) + / [ (o641 P+ ) dade <. (6.38)

sup
0<t<T
From (2.1), (6.4), (6.17), (6.20) and (6.38), we deduce

l[ullw.ce +[[wllwro +[6]] Lo

sc/<P+|uz|+p|u|+p\w|+|wz|+|w\+\9x|>dxsa (6.39)
By (2.1) and (6.38), we have
T
/0 (3o + 16|20
T T
gc/o (Hmllizﬂmmu%z)dwc/o ([lv/pulliz+llvpul72)dt<C.  (6.40)

Combining (6.31), (6.33) and (6.38)-(6.40), we complete the proof of Lemma 6.7. O
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LEMMA 6.8. Under the conditions of Theorem 1.4, it holds that

T
sup (VB + [0t + 10ull= ) + | (1Bualfat 16212+ 1015 ) dt <. (6.41)
0<t<T 0

Proof. Operating 0; +9,.(u-) to (1.2)4 and using direct calculation, we have

=—kK(ugby)e — (P4 (Pu)z)uy +P|um|2 — Pty +2p1u, 0y —/Jl(um)‘3
+20pW 0y, — otz W +AEWth — 2Euw?. (6.42)

Multiplying (6.42) by 0, using the initial compatibility conditions (1.9) and P, + (Pu), =
P, we have

T
/p|9|2dm+ﬁ/ /|0'1.|2dxdt
0
T . T . .
gc/ /|uz|\0m\|9|dxdt+0/ /(p\0||um\+P|uz|2+P|u\+\ux||um\+\ux|3)|9|dxdt
0 0
T .
+c/ /(|wm||u'1$\+\uz|wi+|w||u'1|+|ux|w2)|9\dxdt+C||gg||2L2+C. (6.43)
0

From (6.29), we have

T . T .
/ /|ux”0m||99c|dxdt+/ /p|um‘|9|da:dt
0 0
s [ ) |2 ! 2 2 3112
gg/o /|9z| dxdt+C/O (luz |7 +1) (||em|\L2+||\/59IILz)dt-

By (2.1), (6.6), (6.17) and (6.29), it yields

T T T
/ /(P\u$|2—|—\uz|3)|9|dxdt§C/ 16| Lo dt < g/ /|ém|2dxdt+(],
0 0 0

and

T T T
| [Pl s fldnde < § [ 16813 wde4C [ o
0 0 0

k [T .
gf/ /|9m|2dxdt+0.
8 Jo

Similarly, we have

T T
/ /(|wx\|wx|+|uw\w§+|w\|w|—|—|ux\w2)|0|dxdt§g/ /|9x|2dxdt+0.
0

0

Taking the last four inequalities into account, from (6.43) we infer

T
N AR (6.44)
0<t<T 0
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From (1.2)4, (6.6), (6.29) and (6.44), we have
/|9m\2dxgc/p\é\2dx+0gc
and

T T T
/ /|9tx\2da:dt§0/ /\éx\Qdmdt+C/ /(|u\2|0m\2+|ux|2\9$|2)dxdt§0.
0 0 0

Due to (2.1), we use (6.19) and the above inequalities to conclude

T
s [l + / 1612 dt < C.

The last three inequalities and (6.44) complete the proof of Lemma 6.8. ]
LEMMA 6.9. Under the conditions of Theorem 1.4, it holds that

T
sup ([lpallZ> + |t |22 + [lwasll72) +/ (lutall7e + llwes||72) dt < C.
0<t<T 0
Proof.  Differentiating (1.2); with respect to x yields

Do+ Prztt+ Pty + plize =0. (6.45)

Multiplying (6.45) by p., and using integration by parts, we infer
T T
/|pz|2dx§C’—|—C/ (1+||ux||Loo)||pm||2L2dt—|—/ /\um\Qd;vdt. (6.46)
0 0
By (1.2), (6.2) and (6.39), we have
[ sa waaP) e <C [ (plif? 4 P24 g+ [wP) da <Closlfia +C. (647)

Combining (6.46) with (6.47) together, and using the Gronwall inequality, we have

sup (”pw”%2 + ”UMH%? + ”wzr”%2) <C.
0<t<T

Then, together (6.29) and (6.39), it yields

/ /|um| da:dt<0/ /\ul| dxdt—i—C/ / (el + [l g ) dadt < €,
/ /\wm| dxdt<0/ /|w$\ dxdt+0/ / ot Pl ? + [l g ) drdt < C.

Then we complete the proof of Lemma 6.9. ]

LEMMA 6.10. Under the conditions of Theorem 1.4, it holds that

T
sup (||PrH2L°°+||PMH%2)+/ (”PttH%ZJr”Urmr”%ﬁ+||wmr||2L2)dt§C~ (6.48)
0<t<T 0
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Proof. Differentiating (6.45) by = and multiplying it by 2p,, gives rise to

T
J1pasPa<C [ [ Quellprsl? +lpallocalftsal+ plpos uerel) dodt. (649

By (6.9), we have

92l SC([lpallz> + |pzellL2) < C([prallL2 +1)- (6.50)

By (6.3), (6.29), (6.39)-(6.41) and (6.50), we deduce from (1.2), that

T
/ / U |2 dadt
0

T
2 \2
SC’/O /(|P’I"I'| + (pi)3) dadt

T
SCK;/“WﬁWFHumﬁ+mﬂ%ﬁ+mﬁmﬁ+mmm%mm

IN

T T
c?jg ]f(nthZ+¢aﬁ42+waxﬁ)dzdt+«7]€ (pall? o + 13 ) dt

T
gc/)/mmﬁmm+c, (6.51)
0

a.

nd
T T T
| [Aosllissalisat<c [ omalislussslisdt<c [ [1pssPdsderc.
0 0 0

Then, by (6.49), we have

T T
/mMRMSCA O+Wuhwwmﬂéﬁ+04 el 1Pz 1 22 itz 2t +-C
T
soé (Ut etal 2w e |20t +C. (6.52)

Combining (6.50)-(6.52) and (6.16), we have

T
MM%HMmN§+C/ e |22t < C.
0

By (6.5), (6.6), (6.16), (6.17) and (1.2)3, we have
T T ,
/0 ||wzm||2L2dt§C/0 (I(p)all L2 +[[welL2)"dt < C.

By (1.2), (6.17), (6.41) and (6.9), one has

T T
/l/%ﬁ@wéC/t/WAH%AH%AH%AmeWﬁSG
0 0

Then the proof of this lemma is completed. ]
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The proof of the following lemma about p is the same as that of Lemma 3.10 in [29].
LEMMA 6.11.  Under the conditions of Theorem 1.4, it holds that

sup ([|0zy/pl L +18:/Pll L) <C.

0<t<T

LEMMA 6.12.  Under the conditions of Theorem 1.4, it holds that

T
sup (19822 + [Bsnall22) + / Iv/70u 2 dt < C.
0<t<T 0

Proof.  Differentiating (1.2)4 with respect to ¢ and multiplying it by p?6y, using
Lemmas 6.2-6.11, Corollary 6.1 and the Cauchy inequality, integrating by parts, we have

Kk d
S P2|9xt|2dx+//)39t2td$
§C/Hitdx—kC’/uitdm+0/w§tdm+0||9t||%oo+C. (6.53)

Integrating (6.53) on [0,t], by Lemmas 6.2-6.11, Corollary 6.1, the compatibility condi-
tions (1.9) and the Young inequality, we have

T
/p2|91t|2dm+/ /p39t2tdxdt§ /p2|91t|2d33
0

Differentiating (1.2), with respect to x, we have

+C<C. (6.54)
t=0

From the above equation, by Lemmas 6.2-6.11, Corollary 6.1, (6.54) and the Young
inequality, we have

/|0zm|2dm§C/p2|9mt|2d:r+0§C. (6.55)

Combining (6.54) and (6.55), we complete the proof. 0
The proof of the last lemma is similar to the one in [29].

LEMMA 6.13.  Under the conditions of Theorem 1.4, it holds that

sup (HpUmH%z + ”pwmt”%2 + ||umm||2L2 + mexH%ﬂ)
0<t<T

T
[ (WPl + |V wnl: ) de<c.
0

Proof. (Proof of Theorem 1.4.) Collecting Lemmas 6.2-6.13 and Corollary 6.1,
we have

S (lollaz +lipel e+ llullmo + el +llwlles + lwel w100 e + o0 )

T
+ / / (12 122y 0% A0y 2y 00 0%, 462, 1%, 162, dadt < C. (6.56)
0

Then we complete the proof of Theorem 1.4. ]
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7. Proof of Theorem 1.5
Similar to the proof of Theorem 1.4, we prove the following Lemmas. The first
lemma is for the local well posedness of classical solutions.

LEMMA 7.1 (See [5-7]). Under the same assumptions given in Theorem 1.5, the
problem (1.2)-(1.4) has a unique classical solution (p,u,w,0) over [0,Ty] for some (small)
time T, >0 which satisfies the regularities (1.10).

LEMMA 7.2.  Under the conditions of Theorem 1.5, it holds that for any 0<t<T,

/pdx:/podx, (7.1)

T
/p<9+;u2+;w2> dx+n/ [af(0,t)+b0(1,t)] dt
0

1 1
§/p0 <00+2u3+2w3> dr2&. (7.2)
Proof. Integrating (1.1); and (1.1)4 directly, and integrating by parts over I x [0,¢],
we have
/pdx:/podxv
and

1, 1 1, 1 r
/p(9+2u2+2w2) dx:/po (90+2u%+2w3> dx—/-e/ [aB(0,5)+b0(1,5)]ds,
0

which implies (7.1) and (7.2). d

LEMMA 7.3 ( [13,29]).  Under the conditions of Theorem 1.5, it holds that for any
(J?,t) € QT7

0<p<C and 60>0. (7.3)

LEMMA 7.4. Given a> (y—1)&y, there exists a sequence of (non-overlapping) intervals
Q, in I such that for every t€[0,T)],

1
P(x,t)<a, x€I\UQ; and ag—/ P(z,t)dr <2a.
j 1951 Jq,

Moreover,

< (7—1)50.
01

U,
J

LEMMA 7.5.  Under the conditions of Theorem 1.5, it holds that,

T
sup /p(u4+w4+02)dx+/ /(p1u2ui+u2w2wi+/€9§+§w4)d:cdt§C. (7.4)
0<t<T 0
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Proof. Multiplying (6.7) by E, integrating by parts over I x (0,t), by (1.4), (7.1)-
(7.3), (2.1) and the Young inequality, it yields that

T
/pE2d$+KZ/ /\EI\Qda:dt
0
T T
§C+/<;/ EzE|5dt+C’/ /(p292u2+u uZ 4+ ww?) dedt
0 0
T T T
SC’—aFa/ 92(0,t)dt—lm/ 92(1,t)dt+C'/ /(p292u2—|—u u +ww?) dedt
0 0 0

T
§C+C/ /(p202u2+u u? 4+ ww )dmdt
0

where we note the second and third terms in the second step are negative, so we omit it
in the next step. And the remaining proof of this lemma is the same as that in Lemma
6.4. Then, we complete the proof of this lemma. 0

COROLLARY 7.1.  Under the conditions of Theorem 1.5, it holds that

T
S (IIWUHLNLII\waLz) /O (1012 + lluz |72 + [[wllF ) dt < C.

Pmof. The proof is the same as that in Corollary 6.1. ]
LEMMA 7.6. Under the conditions of Theorem 1.5, it holds that

T
sup (sl olff) + [ (B + [Vpal3e + sl dt<C.
TS 0

Proof.  Multiplying (1.2); by t, where f=8,f+ud,f, integrating over I x (0,t),

we have
H1 2 g 12
/<?|ul\ —Puw) (x,t)dm—I—/ /p|u| dzdt
0

:/(%MIP_PUI) (fvo)dx—/oT/(Pt+(PU)x)(u1um—P)dxdt

+/OT/(Pt+(Pu)I)dedt+/OT/(P|ux2—’“‘21(%)3) dedt. (7.5

By (1.1), (1.4), (7.3) and (7.4) and the Cauchy inequality, we get

/()T/(Pf+(Pu)w)(u1uw—P)dg;dt

T
:/ /(n0m1+u1ui+u2wi+2§w2—Puz)(ulum—P)dxdt

T

S/@/ 2 (pug — P)|ydt+C(e / /|9 |2dxdt+5/ /| piug — P), |*dzdt
0

+C/ Hulugc—PHLoo/(PQ—i—ui,—&—wa—|—u;2)dacdt7
0
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and

T
/i/ 0 (1 — P)|(1)dt
0

T

e / {02 (1115 — P} (L1) — 6 [jrrz — P) (0,6)}|dt.
0
T

SC/ {0 [p1us — P](1,t) 4+ ab [uyu, — P)(0,t) } dt
0
T

<c / ity — Pl o [10] o dt
0

1 T T T
Sé/o /p|u\2dxdt+C/0 ||9||2Lmdt+0/0 lua|2adt +C

1 [T
g—/ /p|u\2dxdt+C’,
6./o

which implies

/OT / (Pi+(Pu),) (1, — P)dadt

1 /T . T
<i [ [oaPduderc [ =Pl 4 sl + ol C.
0 0
The rest of the proof of this lemma is the same as that in Lemma 6.6. O
LEMMA 7.7.  Under the conditions of Theorem 1.5, it holds that

OiltlgT(H\fpdlliz Hllullwre + Vol 7z + [wliwre + 1102172 + 6] )

T
b [ (Vial Bt e + i+ 013 + VB ) de <
0

Proof.  Multiplying (1.2)4 by 6, and integrating the resulting equation over I X
(0,%), it gives

k 2 g j112 g y1
S10cl3a+ [ IVIade—r | 0.0l

1 T .
< Gloals+C [0 (ualwal+w?)do [ [ (fuslloal + o8]l
0
+9|uz|3+9|uw\|uw|+9|uw||w$|2+9|ww||u}z|+9|w|\w|+9|u$||w|2)d$dt+0.
By (1.4), we have

T 1 k(T d 2 2
k| 0.0)gdt=—= [ — (aB?(0,t)+b6%(1,t))dt

—g (a62(0,T)+b6°(1,T)) +g (a62(0,0)+b62(1,0)).

By Lemma 6.7, we have

T
162122+ / /3612 dt
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T T T
gs/ ||iLzH2L2dt+s/ ||wz||%2dt+0/ (luz | oo +110] £ ) (|102]22 +1) dt+C.
0 0 0

The rest of the proof is the same as that in Lemma 6.7. ]

LEMMA 7.8.  Under the conditions of Theorem 1.5, it holds that
. T . .
sup (VB + 160+ 16~ ) + [ (16ua 162 2+ 1013 ) e <.
0<t<T 0

Proof.  Multiplying (6.42) by 0, using the initial compatibility conditions (1.9) and
P+ (Pu), = pf, we have

T
/p|é|2d.’lﬁ+/i/ /|9w|2dxdt
0
T . . T . T .
gn/ 910|(1)dt7n/ uz9I9|édt+C’/ /|um||0z||0|dxdt
0 0 0

T
4C [ [ (plollual + Plua? + P+ ]+, *) 6]
0
T .
A€ [ [ (sl uah + ]+ ) |l dode + Clgal +C.
0
Reminding that f = f, +uf,, by (1.4), we obtain,
T T ) T v [T
H/ 9$9|(1,dt—m/ u$9z6|5dt:n/ 9t19t|(1)dt:f/ (0:]2)dt
0 0 0 2 0
K T
:75/ (ab7(0,t) + 07 (1,¢)) dt < 0.
0

Thus we can omit this term. The rest of the proof is the same as that in Lemma 6.8.0
The proof of the following lemma is the same as those in Lemmas 6.9-6.10.

LEMMA 7.9. Under the conditions of Theorem 1.5, it holds that
T
2 2 2 2 2
sup_([lpallZ2 +[[tsallze + lwee [IZ2) +/ (lueallze +llwes l72) dt < C.
0<t<T 0
T
2 2 2 2 2
sup (HPIHLOO + ”PMHLZ) +/ (||Ptt||L2 + ||ua:x:rr||L2 + szmHLZ) dt<C.
0<t<T 0
s (Ha VLo +10e/pllL) <C
LEMMA 7.10. Under the conditions of Theorem 1.5, it holds that

T
0 (ol + s )+ [ IVl <C:



1380 GLOBAL CLASSICAL SOLUTIONS ON MICROPOLAR FLUIDS

Proof.  Differentiating (1.2)4 with respect to ¢ and multiplying it by p?6;, using
Lemmas 7.2-7.9, Corollary 7.1 and the Cauchy inequality, integrating by parts, we have

wd
2 dt
gn[p2gzt9tt};+c/9§tdx+c/u§tdx+c/wgtdm+0||0t||m+C. (7.6)

P00t *da + / P07 da

By (1.4), we have
1
K [pzﬂthtt] 0= —brp?0:05 (1,1) — arkp®0:04:(1,)(0,1)
— B (b262(1,8)+ ap?62(0,1)) + brepp63(1,8) + arppy6(0,0).

Then, from (7.6) and Lemma 7.9, we have

d K d
@/P2|9zt|2d$+/P39t2td$+ Sd [bp°67 (1,1) +ap67(0,1)]

gC/Gitdx—&-C/uitdx—&-C/witdx—i—CHQtH%w el (7.7)

Integrating (7.7) on [0,7], by Lemmas 7.2-7.9, Corollary 7.1 and the Young inequality,
we have

T
/p2|9wt|2dl'+/ /p39§tdxdt+g [bp?07(1,T) +ap?67(0,7)]
0

< / P l0clPdr| 5 [bp*03(1,0) +ap?02(0,0)] + C<C.

t=0
The rest of the proof is the same as that in Lemma 6.7. 0

LEMMA 7.11.  Under the conditions of Theorem 1.5, it holds that

sup (HputhQL? + ||pth||%2 + ”umac”QL2 + mewwH?ﬂ)
0<t<T

T
[ (VP + IV ual3:) de<c.
0

Proof. (Proof of Theorem 1.5.) Collecting Lemmas 7.2-7.11 and Corollary 7.1,
we have

OiltlgT(||PHH2+HPt||H1+||U||H3+||ut||H1+||w|\H3+||thH1+H9||H3+||P9t||H1)

- T

+ / / (U2 + Dy +WE Wy + P+ 07 02, + 02, +uf+07,) dedt <C. (7.8)
0

Then we complete the proof of Theorem 1.5. ]

8. The proof of Theorem 1.6
Assume that (p,u,w,0) is the solution as in Theorem 1.4, and that
(p®,u®b wb §2b) is the solution as in Theorem 1.5.
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Denote p=p—p»*, u=u—u™", w=w—w*", §=60—0*". Then we can obtain that
(p,u,w,0) satisfies the following system:
pr+ (/}U’)x + (pa’bﬂ)m = Oa
Py + pu’ + puiiy + puud’ + puPud? + (pf + V) = 11 U,
Py + pwi® + puity + paw??® + puPw + 26w = iy Wy, (8.1)
PO, + ﬁ@ta’b + publy, + puf= 4 pu®tO2° + phu, + p°a, + ph*Pul
= p1 8y (Ug + U ) + 21, (W +wPP) + 26w (w +wP) + K4,

Multiplying the first three equations of (8.1) by p,u,w, respectively, integrating over
I, by (6.56) and (7.8), we have the same results as (5.2)-(5.4).
Multiplying (8.1)4 by 6, integrating over I, by (6.56) and (7.8), we have

1d — —
§£/p9 d.’L’—l—/Iiaxd.’L'
:méwéhl)—/ﬁé@f’bdac—/pﬂéeg’bda:—f—/ﬁu“’bé@g’bdx—/péZuwdx
—/p@“’béﬂxdﬂc—/ﬁ@“’béug’bda@—i—ul/ﬂx(ul%—ug’b)édaﬁ
—|—,u2/wx(wx+w$’b)§da€+2£/w(w+w“’b)§daj

_ I B ) _ 7 _
< w005° 16+ 117l 221011 < 1677 | 2 + | /ol o2 I /pBll 2 105l 2 + ||/ 72 || v
HIpll 2 100z lu®?l L2105l Lo + VPOl 2 il 2 | v/Pll o 167 v
HIpl 216l oo [l 1 2160 [ ow + OOl e N1t 22 (luz 22+ [lug® 22)

+CN0)| L= 10 | 22 (Jweell 2 + 1w | 22) + ClNO) L= 1o 2 ([[wl]| 22 + [w| £2)
<esl0:)72 +Coy (el 72 + @2 |72 + |01 72)
a,b a,b — — n
Oy (1603 41050 e +1) (10132 + Pl + 1 V/5AI%). (32)

Then, choosing suitably small £1,e9,e3 >0, we obtain from (5.2)-(5.4), (8.2) that
d . _ - _ I _
B+ VBT + IVAI3e) + [ (02402 + 0 ) d
< (107713 + 105122 +1) (1913 + |7l + /A1) (83)

Using Gronwall inequality over (8.3), we complete the proof of Theorem 1.6.
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