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DIAGRAM NOTATION FOR
THE DERIVATION OF HYPERBOLIC MOMENT SYSTEMS∗

JULIAN KOELLERMEIER† AND YUWEI FAN‡

Abstract. We propose a diagram notation for the derivation of hyperbolic moment models for
the Boltzmann equation that yields a better understanding of the resulting moment systems. So far
several hyperbolic moment models were presented, but their derivations are often very technical and
there is little insight into the explicit form of the equations. In our diagram notation, each term in the
moment equations can be explicitly tracked throughout the derivation process and whether the resulting
moment system is hyperbolic can be easily observed from the diagram. We apply the diagram notation
to derive existing moment models, including Grad’s moment equations, hyperbolic moment equations,
quadrature-based moment equations, and a new set of simplified hyperbolic moment equations that was
rarely studied before. The differences in the derivation are easily explained in the diagram notation and
the explicit form of the equations can be computed straightforwardly as opposed to existing frameworks.
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1. Introduction

In gas kinetic theory the moment method was proposed by Grad in 1949 [24] to
derive macroscopic moment equations from the Boltzmann equation and Grad’s 13
moment equations are the most well-known moment model. However, it was pointed out
that Grad’s 13 moment equations for one-dimensional flow are not globally hyperbolic
but only hyperbolic around the equilibrium [24, 40]. In [8], further investigation
showed that the equilibrium is on the boundary of the hyperbolicity region for the
three-dimensional case. For a first-order quasi-linear convection equation, loss of
hyperbolicity indicates the equation with Cauchy data is no longer well-posed even
locally and the uniqueness of the solution is lost [3]. Hence, for a long time, loss of
hyperbolicity became a main obstacle for the development of the moment method.

In the past decades, some research brought new hope for the problem. In [37], the
author proposed a new moment method based on the maximum entropy principle. This
method yields globally hyperbolic moment models but unfortunately, the models beyond
the Navier-Stokes theory cannot be written in analytical form and the equilibrium is on
the boundary of the realizability domain, which leads to the models’ loss of efficiency
in numerical simulation.

To obtain a hyperbolic model from Grad’s moment system, the authors of [6]
investigated the characteristic structure of the coefficient matrix of the moment system
for the one-dimensional case and proposed a hyperbolic regularization by modifying the
last order equation of the moment system to obtain the Hyperbolic Moment Equations
(HME). This method was extended to the multi-dimensional case in two ways [7, 22].
Shortly after that, in [30], a quadrature-based moment method was proposed by
computing the integrals using a suitable quadrature rule instead of exact integration.
This method also yields globally hyperbolic moment equations, called Quadrature-Based
Moment Equations (QBME). It was extended to the multi-dimensional case in two
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ways [21, 31]. These two hyperbolic regularizations have been extended to the more
general case in [9, 21] based on a truncation and an operator projection perspective,
respectively. Numerical simulations [5, 12, 13, 33] demonstrate the efficiency of these
regularizations. In recent years, the hyperbolic regularization in [6,21] has been applied
to a lot of fields besides gas kinetic theory and microflow, including semiconductor device
simulation [10], plasma simulation [14,19], density functional theory [11], quantum gas
kinetic theory [17] and rarefied relativistic Boltzmann equation [36]. However, the
complexity of the regularized moment models limited their further application and the
theoretical and numerical comparison between the regularizations in [6, 7] and [30] is
not rich. In particular the derivation gives little insight into the explicit form of the
equations.

In this paper, we propose a diagram notation to derive the hyperbolic moment
models. In the diagram notation, each term in the ansatz and the equations is denoted
by a node and each operator, for example the time-derivative operator, is denoted by
one or several lines. In this notation, each term of the equations is represented by a path
(from one node corresponding to a term in the ansatz to another node corresponding to
another term in the equations) in the diagram. With the help of the diagram notation,
the derivation of the moment system is explicit, concise and clear, so it yields a better
understanding of the resulting moment systems. Moreover, it is easy to observe in the
diagram whether the resulting system is hyperbolic. The diagram notation is applied to
Grad’s moment system, HME and QBME. We show that these three systems differ in
their choice of discarding nodes in the diagram. The diagram notation also leads to the
system of Simplified Hyperbolic Moment Equations (SHME), first mentioned in [34].
Due to the lack of results for this model in the literature, we study and compare the
SHME to Grad’s moment system, HME, and QBME in a numerical simulation of the
1D shock tube problem. Particularly, we study the behavior of SHME for increasing
number of moments and conclude that its accuracy is not sufficient.

The rest of this paper is organized as follows: Motivational examples explaining
the diagram notation are presented in Section 2. The necessary notation from kinetic
theory and the standard derivation of moment models are briefly explained in Section 3
including a review of the existing hyperbolic models. Section 4 introduces the diagram-
based derivation, which uses special diagrams that visualize every step of the derivation
of the moment model. Existing moment models are derived using the new diagram
notation in this section. For the SHME model, explicit equations, their properties, as
well as numerical simulations addressing accuracy, are given in Appendix A.

2. Motivation of diagram notation

The use of the diagram notation can be motivated with the help of a simple but at
the same time general equation to give an outline of the diagram framework without
defining too much notation and also in order to show the applicability to a wider range
of equations in the context of hyperbolic PDEs.

In the context of spectral methods, especially for linear, hyperbolic PDEs, there
are several applications with a possibly large dimension due to the addition of another
parameter or variable to the phase space. The reason for this can be the physical
application itself or mathematical procedures such as Uncertainty Quantification (UQ),
where a parameter of the PDE is treated as a possible independent variable to assess
the impact of the parameter on the solution of the PDE [25,41,45].

Throughout this paper, we will describe the one-dimensional spatial case, x∈R, we
will discuss and outline the case x∈Rn, n>1 briefly in Section 4.9.

To motivate our diagram notation, we consider the following linear transport
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equation as example

∂tf+c ·∂xf = 0, for f =f(t,x,c). (2.1)

We want to use a special spectral method to resolve the dependency of c for the
numerical solution of the equation. The following procedure will be explained using a
generalized form of the linear transport Equation (2.1) because its treatment is most
similar to the hyperbolic moment models in the next sections.

Remark 2.1. The derivation of the model can also be performed for the wave
equation in the form ∂ttu−c2 ·∂xxu= 0, for u=u(t,x,c). However, the relation to
hyperbolicity is more complicated. A non-linear ansatz requires the use of the form
(∂t+c∂x)(∂t−c∂x)u= 0 in order to show hyperbolicity. Similar complications arise for
other second-order equations like the Klein-Gordon equation or the telegraph equation,
see [47].

We consider the following linear, hyperbolic PDE

∂tf(t,x,c)+p(c) ·∂xf(t,x,c) = 0, for polynomial p(c). (2.2)

As ansatz for the unknown solution f we use the following expansion in the variable c

f(t,x,c) =

M∑
i=0

fi(t,x)Φi(c), (2.3)

where M ∈N is the order of the expansion, fi are coefficients of the solution and Φi
are basis functions, for i= 0,. ..,M , respectively. For the basis functions Φi we only
assume that they are weighted orthonormal polynomials of degree i in the variable c.
The specific definitions of the basis functions are not important here and may depend
on the parameter space (e.g., Hermite polynomials for c∈R or Legendre polynomials
for c∈ [0,1] and respective weight functions).

We note that every orthogonal polynomial satisfies a three-term recurrence relation
[1]. For the weighted Hermite polynomials, this reads

cΦi(c) =αiΦi−1(c)+βiΦi+1(c), (2.4)

for some αi,βi,i∈N, depending on the scaling of the polynomial. The exact values of
αi,βi are not important here. Without loss of generality, we will use the recursion in
Equation (2.4) for our derivations, other recursion formulas can be treated analogously.

Now we consider three cases:

Case 1: p(c) = c

Case 2: p(c) = c2

Case 3: p(c) = c+c2

Case 1: p(c) = c

Inserting the ansatz (2.3) into (2.2) and using the recursion formula, we arrive at

M∑
i=0

(Φi(c)∂tfi+αiΦi−1(c)∂xfi+βiΦi+1(c)∂xfi) = 0. (2.5)

The use of the recursion formula for each term can be represented in a diagram, see
Figure 2.1, which shows how each basis function Φi(c) times c is transformed into two
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Fig. 2.1: Diagram for p(c) = c.

terms containing the basis functions Φi−1(c) and Φi+1(c) with their respective prefactors
αi and βi (written along the paths). Adding both paths leads to the spatial derivative
summands in (2.5).

The resulting single PDE (2.5) is tested with the orthonormal test functions Φj ,
i= 0,. ..,M and then integrated over c to get a system of equations of the form

∂tf+Ac∂xf = 0, (2.6)

for unknown vector f = (f0,. ..,fM )T ∈RM+1 and system matrix Ac∈R(M+1)×(M+1)

defined by

Ac=



0 β0 0 .. . 0

α1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . βM−1
0 .. . 0 αM 0


. (2.7)

The eigenvalues of Ac can be easily computed and we obtain

λ∈σ(Ac)⇔ΦM+1(λ) = 0, (2.8)

i.e. the eigenvalues of Ac are the real roots of the basis polynomial ΦM+1 with degree
M+1. The system is thus hyperbolic. However, it is only that simple in this first case,
as we will see in the following.

Case 2: p(c) = c2

Inserting the ansatz (2.3) into (2.2) and using the recursion formula twice, we get

M∑
i=0

(Φi(c)∂tfi+(αiαi−1Φi−2(c)+αiβi−1Φi(c)+βiαi+1Φi(c)+βiβi+1Φi+2(c))∂xfi) = 0.

(2.9)
The subsequent use of the recursion formula can again be represented in the diagram
notation, see Figure 2.2. Here, the respective prefactors are multiplied along the way of
the paths as can be seen by comparison with Equation (2.9) and all paths are added in
the end to lead to the spatial derivative terms in (2.9).

After testing and integrating (2.9) the resulting PDE system reads

∂tf+Ac2∂xf = 0, (2.10)
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Fig. 2.2: Diagram for p(c) = c2.

for system matrix Ac2 ∈R(M+1)×(M+1) defined by

Ac2 =



β0α1 0 β0β1 0 .. . 0

0 α1β0+β1α2
. . .

. . .
...

α2α1
. . .

. . .
. . . 0

0
. . .

. . .
. . . βM−2βM−1

...
. . .

. . .
. . . 0

0 .. . 0 αM−1αM 0 αM+1βM+βM−1αM


. (2.11)

However, the eigenvalues of Ac are not as simple as in the previous case. Specifically,
we have

λ∈σ(Ac)<ΦM+1(λ2) = 0, (2.12)

i.e. the eigenvalues of Ac are not the squared real roots of the basis polynomial ΦM+1

with degree M+1, even though the roots are real and the system is hyperbolic.
This lack of structure is caused by the contribution of the polynomial with degree

M+1 during the derivation and can be mitigated by applying a cut-off in the diagram
notation as seen in Figure 2.3.

Fig. 2.3: Diagram for p(c) = c2 with cut-off.

The cut-off eliminates the contribution of the polynomial with degree M+1, i.e.
αM+1βM , changing the last entry of the matrix. The modified system matrix is then
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given by

Ãc2 =



β0α1 0 β0β1 0 .. . 0

0 α1β0+β1α2
. . .

. . .
...

α2α1
. . .

. . .
. . . 0

0
. . .

. . .
. . . βM −2βM−1

...
. . .

. . .
. . . 0

0 .. . 0 αM−1αM 0 βM−1αM


. (2.13)

We see that Ãc2 =Ac ·Ac=p(Ac) and then the eigenvalues of Ãc2 are again simply
evaluations of the polynomial of degree M+1

λ∈σ
(
Ãc2

)
⇔ΦM+1(λ2) = 0. (2.14)

Case 3: p(c) = c+c2 = c ·(1+c)
Combining both derivations from the previous cases, it is not difficult to see that

the system matrix for this case is in fact the sum of the two previous matrices, i.e.

∂tf+Ac+c2∂xf = 0, (2.15)

with system matrix Ac+c2 =Ac+Ac2

This time there is no structure in the eigenvalues due to the additional term from
the polynomial with degree M+1. The exact same cut-off in the diagram solves this
problem at the expense of a change in the last entry of the matrix corresponding to the
previous example.

We can see that the modified matrix is given by
Ãc+c2 =Ac+Ãc2 =Ac+Ac ·Ac=p(Ac). The new eigenvalues of the resulting

matrix Ãc+c2 are then given by

λ∈σ
(
Ãc+c2

)
⇔ΦM+1(λ+λ2) = 0, (2.16)

which leads to a hyperbolic system using the system matrix Ãc+c2 .
It seems that the diagram notation is an easy way to depict the derivation and

the changes required to obtain a particular eigenvalue structure in the motivational
examples shown above. In these examples the success of the diagram notation is based
on the fact that the matrix Ac2 needs to be represented as Ac2 =Ac ·Ac, which goes
back to the operator projection framework [21]. Each multiplication with c needs to be
cut-off or projected to the lower dimensional space separately.

In the following sections, we will extend the notation of the diagram to the more
difficult case of the Boltzmann equation used for moment models that use a very non-
linear ansatz in comparison to (2.3). We will start by recalling the moment method for
the Boltzmann equation.

3. Moment method for the Boltzmann equation
The Boltzmann transport equation describes the motion of particles by the evolution

of the mass density function f(t,x,c). The one-dimensional version of the Boltzmann
equation reads

∂

∂t
f(t,x,c)+c

∂

∂x
f(t,x,c) =S(f), (3.1)
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with position x∈R and microscopic velocity c∈R. The right-hand side operator S(f)
models collisions, e.g., using the BGK collision operator [4]

S(f) =
1

τ
(fM −f), (3.2)

with relaxation time τ ∈R and local Maxwellian fM (t,x,c) given by

fM (t,x,c) =
ρ(t,x)√
2πθ(t,x)

exp

(
− (c−u(t,x))

2

2θ(t,x)

)
. (3.3)

Here the macroscopic quantities density ρ(t,x), velocity u(t,x) and temperature θ(t,x)
are moments of the distribution function f(t,x,c) in velocity space.

ρ(t,x) =

∫
R
f(t,x,c)dc, (3.4)

ρ(t,x)u(t,x) =

∫
R
cf(t,x,c)dc, (3.5)

ρ(t,x)θ(t,x) =

∫
R
|c−u|2f(t,x,c)dc. (3.6)

Macroscopic conservation laws for mass, momentum and energy like the Euler equations
can be derived by multiplication of Equation (3.1) with monomials in c and integration
over the velocity space, see e.g., [44].

Non-equilibrium effects occurring in rarefied gases cannot be described by simple
models like the Euler equations [42]. Instead, moment methods can be applied to enlarge
the number of unknowns and derive PDEs for the evolution of the additional variables.
Grad’s ansatz for the distribution function is an expansion around local equilibrium
using a series of Hermite basis functions and yields the following expression for the
distribution function [21,24]

f(t,x,c) =
∑
α∈N

fα(t,x)H[u(t,x),θ(t,x)]
α (c), (3.7)

with expansion coefficients fα(t,x), α∈N, and weighted Hermite functionsH[u,θ]
α defined

by

H[u,θ]
α (c) = (−1)α

dα

dcα
ω[u,θ](c), α≥0, ω[u,θ](c) =

1√
2πθ

exp

(
− (c−u)2

2θ

)
. (3.8)

The properties of the weighted Hermite polynomials are listed in Appendix B. Note
that expansion (3.7) is more complex than (2.3), because the ansatz explicitly includes
moments of f like u,θ.

Definition (3.8) leads to the following constraints for the first three coefficients due
to orthogonality of the basis functions, see (B.5),

f0 =ρ, f1 =f2 = 0. (3.9)

Substitution of the expansion (3.7) into (3.1) and application of suitable derivative (B.7)
and recurrence relations (B.6) for the Hermite polynomials leads to explicit PDEs for
the evolution of the coefficients fα(t,x) by matching coefficients. Alternatively, the
equations can be projected onto Hermite test functions via integration over velocity
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space, more details can be found in [6]. The final moment system has the following
form according to [21]

∂fα
∂t

+θ
∂fα−1
∂x

+u
∂fα
∂x

+(α+1)
∂fα+1

∂x
+fα−1

∂u

∂t
+(θfα−2 +ufα−1 +(α+1)fα)

∂u

∂x

+
fα−2

2

∂θ

∂t
+

1

2
(θfα−3 +ufα−2 +(α+1)fα−1)

∂θ

∂x
=Sα, α≥3, (3.10)

where the term Sα can be derived by the same expansion of the substituted collision
term S(f).

Due to the constraints (3.9), a finite set of equations can be obtained by using only
M+1 variables wM = (ρ,u,θ,f3,f4,. ..,fM )∈RM+1 and setting all other occurring
terms in (3.10) to zero. After some simplifications the moment system can then be
formulated in compact notation as

∂wM

∂t
+A

∂wM

∂x
=S, (3.11)

where the matrix A∈R(M+1)×(M+1) can be computed using (3.10) and the vector
S∈RM+1 contains the corresponding right-hand side terms in ascending order of the
index α. We refer to [6] or [33] for further details.

The expressions in Equation (3.10) make clear, that this moment method has
many more terms than a standard (global) discretization using Grad’s method using
constant (u,θ) = (u0,θ0). The benefits of this version using locally shifted and scaled
basis functions as in (3.8) are explained in detail in [30].

Remark 3.1. Note that the subsequent analysis of the moment system can be readily
extended to a more general kinetic equation of the form ∂tf+p(v(c))∂xf =S(f) for
v(c) a function of c and p(·) a polynomial. The same holds for the multi-dimensional

case ∂tf+
∑D
d=1pd(v(c))∂xdf =S(f) for which x,c∈Rn. This also includes the radiative

transfer equation. Details about these extensions can be found in [21]. We focus on the
form (3.1) in order to present a concise derivation here.

3.1. Brief review of hyperbolic moment models. Grad’s system (3.11)
is only conditionally hyperbolic, as has been shown in [6, 8, 33]. The characteristic
polynomial and thus the eigenvalues of the system matrix A depend on the highest
coefficients which leads to complex eigenvalues and a lack of hyperbolicity already
for moderate non-equilibrium states. This can cause the breakdown of numerical
simulations [32] and renders Grad’s system inappropriate for applications.

Several new hyperbolic models have been derived based on Grad’s ansatz. In [21]
a systematic approach for the derivation of hyperbolic moment models is given and the
HME model [6, 8], as well as the QBME model in [30], are examples for this approach.
The derivation of the new hyperbolic moment models is based on subsequent projections
of the equation during the derivation. This leads to changes in the last equations of the
model hierarchies that suffice to render the models globally hyperbolic.

However, the derivation using projections is very theoretical and does not give direct
insight into the explicit terms of the equation. It is therefore necessary to provide a more
understandable method to derive the hyperbolic moment models in order to facilitate
further development of existing models and derivation of new models.

In this paper, we want to show an alternative approach for the derivation of moment
models in general and hyperbolic moment models in particular by means of the diagram
notation described in the next section.
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Remark 3.2. We note that only the left-hand side of (3.11) is important for the
hyperbolicity and its structure is determined by the non-linearity of the basis functions.
The right-hand side collision operator should not be changed due to its conservation
properties. The collision operator especially plays an important role in numerical
simulations later and when analyzing the stability of the methods, see e.g., [18, 46].
More difficult collision operators can readily be used for simulations without changing
the diagram framework.

4. Diagram-based derivation
The derivation of the hyperbolic moment models briefly described in Section 3.1 was

based on two different methods so far. One is the original derivation of HME in [6, 8]
and QBME in [30], which is a straightforward approach to derive hyperbolic models
but is very complicated. The other one is the operator projection framework detailed
in [21] and seems rather technical at first sight. Both methods have in common that
there is only little insight into the explicit forms of the equations as they merely act
as black box approaches. A third and more comprehensive way of deriving hyperbolic
moment models is with the help of a special diagram notation that allows to visualize the
deduction for further insight and variation of the models. The diagram-based method
will furthermore lead to another hyperbolic moment model, the so-called Simplified
Hyperbolic Moment Equations (SHME).

We start by recalling the derivation of Grad’s method and use the newly developed
diagram notation to depict the different steps exemplarily for each term.

4.1. Preliminaries. We define the transformed velocity variable

ξ=
c−u√
θ
, (4.1)

then the weighted Hermite function can be denoted by

φ[θ]α (ξ) :=H[u,θ]
α (c) =

1√
2π
θ−

α+1
2 Heα(ξ)exp

(
−ξ

2

2

)
, (4.2)

and Grad’s expansion (3.7) is reformulated as

f(t,x,c) =

M∑
α=0

fα(t,x)φ[θ]α (ξ). (4.3)

Similar to the notation in [21], the superscript means that the basis functions φ
[θ]
α (ξ)

depend on the macroscopic quantity θ(t,x). To simplify notation, we omit the
superscript θ hereafter.

The derivation of the moment equations in general form now needs the computation
of the terms in the Boltzmann Equation (3.1). The terms ∂tf and ∂xf are computed
in the following way: for s=x,t and for each term fαφα in (4.3)

∂s(fαφα(ξ)) = ∂sfαφα(ξ) + fα∂sφα(ξ)
= ∂sfαφα(ξ) + fα∂θφα(ξ)∂sθ + fα∂ξφα(ξ)∂sξ,

P2a P2b P12

(4.4)

where the important adaptivity [28] is ensured by the last part

∂sφα(ξ) =∂θφα(ξ)∂sθ+∂ξφα(ξ)∂sξ. (4.5)
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The definition of the transformed velocity (4.1) indicates

∂sξ=− 1√
θ
∂su−

ξ

2θ
∂sθ. (4.6)

Here the symbols P12, P2a and P2b in (4.4) are operators defined by

P12(fαφα) = P2(P1(fαφα)), (4.7)

P1(fαφα) = P f1 (fα) ·Pφ1 (φα) = fα ·∂ξφα(ξ), (4.8)

P2(fαφα) = P f2 (fα) ·Pφ2 (φα) = fα ·φα(ξ)∂sξ, (4.9)

P2a(fαφα) = P f2a(fα) ·Pφ2a(φα) = ∂sfα ·φα(ξ), (4.10)

P2b(fαφα) = P f2b(fα) ·Pφ2b(φα) = fα ·∂θφα(ξ)∂sθ. (4.11)

The multiplication of a distribution function with microscopic velocity c ·f included
in the term c ·∂xf is straightforward and reads

c ·fαφα(ξ) =
(
u+
√
θξ
)
·fαφα(ξ). (4.12)

Similar as the definition of P1,P2, we define the operator P3 as

P3(fαφα) =P f3 (fα) ·Pφ3 (φα) =fα ·
(√

θξ+u
)
φα(ξ). (4.13)

We remark here that all the operators P1, P2, P2a, P2b and P3 are linear operators.
From the computations above we can identify two necessary parts to deduce the

moment system

(1) the derivative with respect to t and x: ∂sf , for s= t,x in (4.4),

(2) the multiplication with the microscopic velocity c: c ·f in (4.12).

We note that the second part can also include multiplication by any polynomial function
p(c) as outlined in Section 2.

The definition of the operators P1, P2, P2a and P2b (4.8), (4.9), (4.10) and (4.11)
indicate

∂s(fαφα) =P2a(fαφα)+P2b(fαφα)+P2(P1(fαφα)), (4.14)

and the definition of the operator P3 (4.13) indicates

c ·fαφα=P3(fαφα). (4.15)

Here we point out that the critical difference to previous approaches like in [6,21] is
the additional subdivision into more than just the two combined steps (4.4) and (4.12).
The specific form of the operators defined above will be made clear, once the basis
functions are chosen.

Before the introduction of the diagram notation, we list some properties of the basis
functions φα(ξ). More details are provided in the Appendix B.

• ξ derivative:
∂

∂ξ
φα(ξ) =−

√
θφα+1(ξ), (4.16)

• θ derivative: ∂

∂θ
φα(ξ) =−α+1

2θ
φα(ξ), (4.17)

• multiplication with ξ:
ξφα(ξ) =

√
θφα+1(ξ)+

α√
θ
φα−1(ξ). (4.18)



J. KOELLERMEIER AND Y. FAN 1159

4.2. Diagram-based framework. In this subsection, we introduce the diagram
notation and prepare the tools for studying the moment systems.

First we introduce the four base elements of the diagram notation: node, serial
number of the node, arrow and label of the arrow (see Figure 4.1 for samples). We
take Figure 4.1b as example. There are two nodes in Figure 4.1b: the serial number of
the top-left node is α and that of the botton-right node is α+1. Each node represents
an expression gkφk with k to be the serial number of the node. Due to the linearity
of the operator, the value of gk for the top-left node does not matter, so we assume
it is fα without loss of generality. The value of gα+1 for the bottom-right node is
determined by the label of the arrow, e.g., using multiplication. In our notation, the
arrow must start from the top to bottom, and the label of the arrow determines the
value of the end node of the arrow. In this example, gα+1 =a ·fα for the bottom-right
node. To sum up, the serial number of the end point of the arrow determines the basis
function φserial number of the end point and the label of the arrow determines the value gk
of the end point gk = value of the start point× label of the arrow, i.e. if the start point
denotes fαφα, the operator is

P (fαφα) = label of the arrow×fαφserial number of the end point. (4.19)

The diagram in Figure 4.1b thus corresponds to an operator P̃1 with
P̃1(fαφα) =afαφα+1.

(a) I(fαφα) =fαφα (b) P̃1(fαφα) =afαφα+1

(c) P̃2(fαφα) =afαφα−1 +bfαφα+1 (d) P̃3(fαφα) =∂sfαφα+1

Fig. 4.1: Samples of diagram notation for linear operators.

Here we show more examples to explain the diagram notation more clearly. In the
diagram, the identity operator I(fαφα) =fαφα is denoted by Figure 4.1a. In Figure 4.1c,
there are two arrows. The meaning of each arrow has been defined above. Since the
operator is a linear operator, the sum of two linear operators is also a linear operator,
which indicates P̃2(fαφα) =afαφα−1 +bfαφα+1. Instead of a value, the label of the
arrow can also be a linear operator, which stands for applying the operator to the value
of the start point. Thus, the diagram in Figure 4.1d denotes P̃3(fαφα) =∂sfαφα+1. We
note that the bent arrow in Figure 4.1d is only a variation of the straight arrow and
its purpose will be made clear later. With the definition of the four base elements, we
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(a) fα
∂
∂ξ
φα(ξ) =−

√
θfαφα+1(ξ) (b) fα∂θφα(ξ) =−α+1

2θ
fαφα(ξ)

(c) fαξφα(ξ) =
√
θfαφα+1(ξ)+ α√

θ
fαφα−1(ξ)

Fig. 4.2: Diagram of (4.16)-(4.18).

(a) P1 as in (4.8) (b) P2 as in (4.9)

(c) P2a as in (4.10) (d) P2b as in (4.11) (e) P3 as in (4.13)

Fig. 4.3: Diagram of the operators Pk, k= 1,2,3, P2a and P2b.

can directly denote the relations (4.16)-(4.18) by the diagram notation in Figures 4.2.
These relations will be the building blocks of the diagram for the whole transformed
Boltzmann equation. Next, we express the operators Pk, k= 1,2,3, P2a and P2b in the
diagram notation. Noticing (4.6), we have

P2(fαφα) =− α

2θ3/2
∂sθfαφα−1−

∂su√
θ
fαφα−

∂sθ

2
√
θ
fαφα+1. (4.20)

So the diagrams can be directly obtained from (4.8), (4.20), (4.10), (4.11) and (4.13).
It is worth to remark that in the diagram of P2a and P2b, both the arrows are straight
top to bottom, so bent arrows are only used to distinguish these two operators.
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As all the building blocks for the derivation of the moment system are prepared, we
can combine the blocks to represent composite operators. In fact, several operators can
be applied in one step by simply adding up two diagrams as seen in the next figures. For
simplification, from now on we omit the labels of the arrows for a better presentation.
The labels can be seen in the previous Figures 4.3a-4.3e. The respective operator applied
is always visible on the right side of the diagram.

1

3
2

0

Fig. 4.4: Diagram notation for single basis function.

Now the operators corresponding to Figures 4.3a-4.3e have to be applied
subsequently to compute the terms in Equations (4.4) and (4.12). If only a single basis
function fαφα(ξ) of fixed degree α was used as ansatz for the distribution function, i.e.
f(t,x,c) =fαφα(ξ), the diagram notation for the transport term c ·∂xf in the Boltzmann
equation would look as shown in Figure 4.4. The diagram in Figure 4.4 would then
correspond to the computation of

c ·∂xf =P3(P2a(fαφα(ξ))+P2b(fαφα)+P2(P1(fαφα(ξ)))). (4.21)

On the first level, the operators P1, P2a, P2b are applied and the result of P1 will be
applied to P2 subsequently. As the results of P2a, P2b and P2(P1) have to be added, the
curved arrows (corresponding to P2a and P2b) skip one step and do not already end at
the next level. Finally the operator P3 depicts the multiplication with c.

According to Figure 4.4, the result in the bottom line of the figure includes five basis
functions of degrees α−1, α, α+1, α+2 and α+3 multiplied with the basis coefficient
fα. Testing the result with orthogonal basis functions φβ(ξ), β∈N, or equivalently
matching coefficients of basis functions will lead to the appearance of coefficient fα in
the corresponding five equations.

The red paths in Figure 4.4 can be used to derive the contribution to the equation
corresponding to φα in the result as all coefficients in front of φα are matched. There
are four paths connecting the root node with the result node for equation α. Each path
is one term in the result and they have to be added in the end. Each one is computed
starting from the root node and using the operators for fαφα as follows

0 : fαφα
P2a( x)
99K ∂xfαφα

P3(↓)
99K u∂xfαφα,

1 : fαφα
P2b(

y

)
99K − α+1

2θ
∂xθfαφα

P3(↓)
99K

(
−α+1

2θ
∂xθ

)
ufαφα,
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2 : fαφα
P1(↘)
99K −

√
θfαφα+1

P2(↙)
99K

(
−
√
θ
)(
−α+1

2
√
θ
3 ∂xθ

)
fαφα

P3(↓)
99K

(
−
√
θ
)(
−α+1

2
√
θ
3 ∂xθ

)
ufαφα,

3 : fαφα
P1(↘)
99K −

√
θfαφα+1

P2(↓)
99K

(
−
√
θ
)(
−∂xu√

θ

)
fαφα+1

P3(↙)
99K

(
−
√
θ
)(
−∂xu√

θ

)
(α+1)fαφα, (4.22)

where only the red arrows in Figure 4.4 are included in the computation, as denoted
by the small arrows (↘,↙,↓,

y

, x) in brackets next to the operators. Summarized, the
equation corresponding to testing with φα will include the terms 0 + 1 + 2 + 3 , i.e.

u∂xfα+
α+1

2θ
(−∂xθufα+∂xθufα+2θ∂xufα) (4.23)

=u∂xfα+(α+1)∂xufα (4.24)

Notice, that two terms cancel out in step (4.23). The expression in Equation (4.24)
is exactly the same as the sum of terms in Equation (3.10) that correspond to spatial
derivatives including the coefficient fα.

On the other hand, all entries in one equation can be obtained with the following
procedure: After the application of all operators, the coefficients of basis functions are
matched. This means that all coefficients in the result in front of one basis function of
degree α are contributing to this equation. This is depicted by Figure 4.5 for the term
c ·∂xf . The term ∂tf is obtained respectively without the last operator P3.

Fig. 4.5: notation for single equation.

Figure 4.5 contains all paths ending at the result node that is representing the basis
function of degree α. We see that equation α does only include the basis coefficients
fα−3,fα−2,fα−1,fα,fα+1 in addition to the unknowns u and θ.



J. KOELLERMEIER AND Y. FAN 1163

Using the above notation all terms in the Boltzmann equation can be explicitly
computed. Afterwards, a set of moment equations is obtained by matching the
coefficients of basis functions. In the following, we explain the procedure for the
previously derived moment systems in terms of the diagram notation.

4.3. Algorithmic description of diagram notation. The usage of the
diagram notation can be explained in only a few steps, which algorithmically define the
derivation of the resulting moment system. In the first phase, the respective diagram
notation is created before the resulting moment system is derived in the second phase.
The first phase reads as follows:

Phase 1: construction of diagram

(1) Use polynomial ansatz f(t,x,c) =
∑
αfα(t,x)φα(ξ) and transformed variable ξ

(2) Insert ansatz into BTE and use chain rule and transformation

(3) Define operators Pi(·) using recursion and derivative formulas

(4) Build diagram for single terms using operators

(5) Sum up single terms to whole system

After the definition of the ansatz and the corresponding basis functions, all other
steps are straightforward and the result is the final diagram that can be used for the
derivation of the moment system as explained in the next phase:

Phase 2: derivation of moment system

(1) Start with M ∈R coefficients as root nodes of the diagram

(2) Identify paths to leafs of order j≤M
(3) Optional: Discard cut-off terms for hyperbolicity following [21]

(4) Sum up contributions of single paths
(4.1) Start with root node of path
(4.2) Apply arrow labels along pathes
(4.3) Add result to respective equation j

The derivation thus only needs the number of moments and then follows an automated
procedure that makes use of the previously constructed diagram. The result will be the
moment equations. Examples are given in the following section.

For hyperbolicity, cutting off necessary terms in phase 2 step (3) is the crucial point
and will be explained later. It requires to follow the operator framework in [21] during
the cut-offs. See also Section 4.8 for the relation between hyperbolicity of moment
models and the diagram notation.

Note that it is possible to use other types of kinetic equations instead of the
Boltzmann transport equation (BTE) throughout the algorithm, and some examples
can be found in [21] or by varying the polynomial p(c) in Section 2. The only condition
is that the ansatz has to be a weighted polynomial in the microscopic velocity variable
c, such that a maximum entropy ansatz as in [15, 38] is not possible in the current
setting. However, many of the moment methods in various applications are based on
the expansion with a weighted polynomial basis, see for example [17, 23, 36, 43]. An
extension of the diagram notation towards maximum entropy models is an open question
and we will focus on weighted polynomial expansions here.

4.4. Application: Grad’s method. Grad’s system is obtained by using
the diagram notation without any modifications, cut-offs or projections during the
derivation similar to the operator projection framework [21]. Only in the end, all the
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basis functions with degrees larger than M are cut off. This will be denoted by red
crosses in the following figures.

The time-derivative term ∂tf is computed according to Figure 4.6.

Fig. 4.6: Diagram for ∂tf in Grad’s method.

Starting from expansion (4.3) using M+1 basis coefficients f0,. ..,fM , the operators
P1,P2,P2a and P2b are applied successively and the derivation follows the same steps as
in the previous diagrams. After the last step the resulting basis functions with degrees
M+1,M+2,. .. are set to zero corresponding to the usual cut-off of Grad’s method.

The computation of the transport term c ·∂xf is illustrated similarly in Figure
4.7. The only difference is the additional operator P3, which corresponds to the
multiplication with c. Only after the last step the resulting basis functions with degree
M+1,M+2,. .. are cut-off. Grad’s system can be obtained by formal summation of
both diagram components.

Fig. 4.7: Diagram for c ·∂xf in Grad’s method.

Note that there is no cut-off after the space derivative and thus the gray shaded
space-derivative part of Figure 4.7 is treated differently than the time-derivative part
in Figure 4.6. According to [21], this is the main reason for the lack of hyperbolicity of
Grad’s method.

4.5. Application: HME. During the derivation of Grad’s method the
treatments of the time derivative and the spatial derivative are different because there
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is no cut-off after the spatial derivative. This observation was already made in [9] and
is one reason for the HME regularization explained in Section 3.1.

The diagram notation yields another viewpoint that allows for understanding the
HME regularization. The computation of the term ∂tf is exactly the same as for
Grad’s method, see Figure 4.7. The transport term c ·∂xf , however, changes due to an
additional cut-off after the operators P1,P2,P2a and P2b are applied. This is depicted in
Figure 4.8. The additional cut-off (or projection as it is called in the frame of [21]) leads
to a change in the last equation corresponding to basis function φM as seen by the red
marking in the last step of the diagram. The other equations are kept unchanged and
the small modification to the last equation suffices to render the system hyperbolic.

Fig. 4.8: Diagram for c ·∂xf in HME.

In contrast to Grad’s method, the HME method uses the same treatment for the
space and time derivatives as can be seen in the gray shaded areas comparing Figures
4.6 and 4.8. This guarantees hyperbolicity as shown in [21].

The differences in the last equation of the HME system can be computed following
the paths leading to the M -th equation that were cut-off. Only two paths need to be
taken into account. According to Figure 4.9, the two paths are computed in similar
ways as the paths in Equation (4.22) as

1 : fMφM 99K (M+1)∂xufMφM ,equal to path 3 in (4.22),

2 : fM−1φM−1
P1(↘)
99K −

√
θfM−1φM

P2(↘)
99K

(
−
√
θ
)(
− ∂xθ

2
√
θ

)
fM−1φM+1

P3(↙)
99K

(
−
√
θ
)(
− ∂xθ

2
√
θ

)
(M+1)fM−1φM .

(4.25)

By leaving out the two paths computed in (4.25), the last equation of the HME
system thus gets an additional regularization term

RHME
M =−(M+1)∂xufM −

M+1

2
∂xθfM−1. (4.26)

4.6. Application: QBME. The QBME model can be written by a different
modification of the previous diagram including one additional cut-off after the operator
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1

2

Fig. 4.9: Changes of term c ·∂xf in HME.

P1. First, we consider the time-derivative term ∂tf of the Boltzmann equation, which
can be derived in the diagram notation for QBME as shown in Figure 4.10. As opposed

Fig. 4.10: Diagram for ∂tf in QBME.

to Grad’s model and HME, the additional cut-off leads to a change in the last equation
of the time-derivative term that can be computed similarly to the HME changes in
Equation (4.25).

The transport term c ·∂xf also uses this additional cut-off, which is consistent to
the time-derivative term. Figure 4.11 visualizes the derivation. The early cut-off now
leads to changes in the last two equations as can be seen by the red circles in the last
line.

The cut-off of all terms including basis functions of degree M+1 leads to vanishing
terms of degree M+2 as well and thus, similar as for HME, the same treatment of the
time and space derivatives in Figures 4.10 and 4.11 ensures hyperbolicity of the QBME
model.

The changed terms are computed using Figure 4.12a. The time-derivative change
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Fig. 4.11: Diagram for c ·∂xf in QBME.

is derived as follows

0 : fMφM
P2(↘)
99K −

√
θfMφM+1

P2(↙)
99K

(
−
√
θ
)(M+1

2
√
θ
3 ∂tθ

)
fMφM

=
M+1

2θ
∂tθfMφM .

(4.27)

The changes in the transport term are derived using Figure 4.12b, respectively. The
contributions are from both fM−1 and fM , where the term for fM is split up into three
single paths. The terms read

1 : fM−1φM−1 99K
M+1

2
∂xθfM−1φM , equal to path 2 in (4.25),

2a : fMφM 99K (M+1)∂xufMφM , equal to path 1 in (4.25),

2b : fMφM 99K u
M+1

2θ
∂xθfMφM , equal to path 2 in (4.22),

2c : fMφM
P2a(↘)
99K −

√
θfMφM+1

P2(↙)
99K

(
−
√
θ
)(
−M+1

2
√
θ
3 ∂xθ

)
fMφM

P3(↙)
99K

(
−
√
θ
)(
−M+1

2
√
θ
3 ∂xθ

)
MfMφM−1

=
M(M+1)

2θ
∂xθfMφM−1.

(4.28)

The regularization term in equation M−1 is thus given by

RQBME
M−1 =−M(M+1)

2θ
∂xθfM (4.29)

and the sum of all terms added to equation M in the QBME model reads

RQBME
M =−M+1

2
∂xθfM−1−(M+1)∂xufM −u

M+1

2θ
∂xθfM . (4.30)
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0

(a) ∂tf

1
2

2c
2b

2a

(b) c ·∂xf

Fig. 4.12: Changes of terms ∂tf 4.12a and c ·∂xf 4.12b in QBME. Only the paths for changed
equations are displayed.

4.7. Application: SHME. The transformation (4.1) that leads to Equations
(4.4) and (4.12) allows for an efficient discretization on the one hand. However, the
resulting system of equations becomes more difficult on the other hand as seen by the
recursion formulas that include derivatives of θ and u. This introduces some non-
linearity into the equations. Unfortunately, the lack of hyperbolicity makes it necessary
to regularize the equations so that some terms need to be neglected or cut off as derived
in the previous sections. Following the ideas in [34] where mainly the five-moment case
was described, another approach is to keep the simple form of the equation and use only
a small part of the non-linear features of the fully transformed Boltzmann equation.

The non-linearity of the transformed Boltzmann equation enters the derivation at
two different points. One is the transformation of the derivative ∂sf for s= t,x in
Equation (4.4) and the other is the multiplication with c=u+

√
θξ in Equation (4.12).

The non-linearity in the multiplication is relatively easy to handle as it does not lead
to additional derivatives of u or θ due to the chain rule. The transformation of ∂sf ,
however, includes ∂su and ∂sθ, which lead to two almost full columns in the system
matrix as we will see in the next section.

A straightforward modification is to neglect the non-linearity in the transformed
derivative [34], which leads to simplified physics. It corresponds to setting

∂s(fαφα(ξ)) =∂sfαφα(ξ)+fα∂sφα(ξ)≈∂sfαφα(ξ), (4.31)

where the dependency of the basis function on the macroscopic variables u and θ (and
thus all terms ∂su and ∂sθ) is neglected in (4.31) with respect to (4.4). The resulting
moment system is called the Simplified Hyperbolic Moment Equations (SHME) in the
following.

The macroscopic conservation laws of mass, momentum and energy must not be
changed. The approximation in Equation (4.31) is therefore only applied to basis
functions with polynomial degree α<2.

The approximation in Equation (4.31) is equivalent to a cut-off of the terms
produced by the operators P1,P2b and P2, this can be seen in Figures 4.13 and 4.14
where the respective paths marked in red are cut off. Note that the term from P2a is
not neglected, according to (4.31).
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Fig. 4.13: Diagram for ∂tf in SHME.

Fig. 4.14: Diagram for c ·∂xf in SHME.

The time and space derivatives in the shaded areas of Figures 4.13 and 4.14 result
in the same treatment and again indicate hyperbolicity of the SHME model as there
is no contribution of terms coming from the basis function of degree M+1 after the
derivative.

In Figure 4.13 it is important to note that the equation for α= 3 does not change,
as both deleted paths ending at the result node for that equation already canceled out
previously. This can be seen by the following computation

1 f3φ3
P2b(

y

)
99K − 4

2θ
∂tθf3φ3,

2 f3φ3
P1(↘)
99K −

√
θf3φ4

P2(↙)
99K

(
−
√
θ
)(
− 4

2
√
θ
3 ∂tθ

)
f3φ3

=
4

2θ
∂tθf3φ3.

(4.32)

From (4.32) it is clear that both terms cancel out so that the equation for α= 3 does not
include any changes in the time-derivative term, in comparison of Figure 4.4 and the
cancellation in Equation (4.23). The same holds true for the spatial derivative terms
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in the equation for α= 2 as seen in Figure 4.14. This means that the conservation laws
are not changed and only higher-order equations include regularization terms.

With the help of the diagram notation, it is directly clear that the space and time
derivatives are obviously treated the same and thus SHME is hyperbolic, as the condition
for hyperbolicity from the operator projection framework is fulfilled [21]. In Appendix
A we give a concise analysis of the resulting system. As expected, neglecting much of
the non-linear physics leads to a loss of accuracy of the higher-order models, despite
satisfying hyperbolicity.

4.8. Relation between hyperbolicity and diagram notation.

Hyperbolicity of the resulting equations can be shown with the help of the more
theoretical framework in [21]. The actual derivation is then depicted by the diagram
notation following the steps outlined by the operator projection framework.

As shown in [21] hyperbolicity requires the same treatment of the time-derivative
term and the spatial derivative term in the Boltzmann Equation 3.1. For a resulting
system of hyperbolic moment equations it is therefore paramount to apply the same
cut-off to both terms in the Boltzmann equation during the derivation using the diagram
notation. By comparison of the gray-shaded part of the diagrams for Grad, HME,
QBME and SHME in Section 3 it can be seen that Grad’s method does not fulfill the
condition for hyperbolicity. On the other hand, the hyperbolic models HME, QBME and
SHME use the same cut-off for the gray-shaded parts in the time-derivative term, as well
as in the spatial derivative term. The same is true for motivational example in Section
2, where each multiplication is cut-off separately as proven by operator projection in
[21] and depicted by the diagrams. The hyperbolicity can thus easily be spotted by
inspection of the diagrams. This is another beneficial property of the diagram notation.
It is an easy tool to visualize not only the derivation but also the effect of the different
cut-off strategies on the resulting equations and hyperbolicity, respectively.

4.9. Discussion. The diagram notation is a beneficial tool for the derivation
of hyperbolic moment systems. It helps to understand the effects of the different
regularizations and allows for a quick and simple computation of the regularization
terms without a lot of difficult matrix notation involved. It furthermore opens up new
possibilities for the derivation of other methods. The SHME system is only one example
and many more are possible.

The new diagram notation can be seen as another language for the hyperbolic
moment model reduction. The first framework [9] studied the hyperbolicity using
functional algebra and PDE language, whereas the operator projection framework [21]
was relying on operators and linear algebra language. The PDE language was the first
rigorous statement, while the linear algebra language was very concise and abstract. The
diagram notation will now provide the interested reader with the necessary hands-on
intuition to understand the model derivation. Its existence is a justification to regularize
Grad’s moment model using one of the hyperbolic models HME, QBME, SHME.

As previously stated in Sections 3.1and 4.3, the diagram notation can also be applied
to other equations similar to the projection procedure in [21], provided a polynomial
ansatz is used. The choice of basis functions has to be made accordingly and the
recursion and derivative formulas in Equations (4.16), (4.17) and (4.18) need to be
computed from the properties of the basis function. However, as every set of orthogonal
polynomials has a three-term recurrence relation and formulas for the derivatives, this
extension is straightforward. One example of this is the recently developed shallow water
moment model, where Legendre polynomials are used to allow for a vertical change of
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the velocity and similar problems with hyperbolicity occur, see [35]. Further results can
be obtained by applying the notation to other moment models, e.g., [17, 20,26].

The multi-dimensional case can be done in a similar way, but we will not show
the results in the scope of this paper. In general, the multi-dimensional case will use
the description of the basis functions as spherical harmonics in tensor notation, see
e.g., [27, 29]. The available recursion formulas for the respective tensor formulation
allow for a concise notation in applications for 2D or 3D velocity space.

5. Conclusion
We introduced a new way of deriving hyperbolic moment models by means of a

diagram notation. The notation dissects the derivation process in small steps and
makes it easy to spot differences between various existing models. All the ideas of
the model reduction frameworks in [9, 21, 30] are reflected in the new notation. The
diagram notation is thus a new visualized and concise method to study derivation and
hyperbolicity of moment systems.

We exemplified the derivation of the standard Grad model and the hyperbolic HME
and QBME models using the new diagram notation. Additionally, we showed a general
derivation of the Simplified Hyperbolic Moment Equations (SHME). The model was
derived by neglecting large parts of the non-linearity during the derivation. Preliminary
numerical results showed that despite the hyperbolicity of the model, its accuracy is not
sufficient.

The diagram notation supplements the previous frameworks in analysing and
deriving existing and new moment models. As opposed to the existing frameworks, it
is a straightforward method to derive the explicit form of the resulting moment models.

Appendix A. SHME model equations and properties. We will briefly discuss
the SHME system first mentioned in [34], analogously to [33] for HME and QBME.

Written in the form of Equation (3.11), the SHME system derived in Section 4.7
reads

ASHME =



u ρ
θ
ρ u 1

2θ u 6
ρ

0 ρθ
2 u 4

0
... 0 θ u 5

...
...

... 0
. . .

. . .
. . .

...
...

...
... θ u M

0 0 0 0 θ u


(A.1)

The red entries mark differences with respect to the standard Grad’s method. ASHME

is much simpler than all other hyperbolic models (i.e. HME and QBME) due to the
many zero entries in the first four columns, which include the main non-linear parts.

The SHME system is hyperbolic, as the system matrix is the same as Grad’s system
matrix evaluated at equilibrium

ASHME(wM ) =AGrad(weq
M ), (A.2)

so it is the linearization of the matrix at equilibrium. The work in [18] indicates that
SHME is also linearly stable around equilibrium and satisfies Yong’s stability condition
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[46]. Due to (A.2), the characteristic polynomial of SHME is equal to the characteristic
polynomial of Grad’s system evaluated at equilibrium (compare [6])

χM (λ) =θ
M+1

2 HeM+1

(
λ−u√
θ

)
. (A.3)

The eigenvalues are the real roots of the corresponding Hermite polynomial, like for
the HME and QBME models. This leads to a hyperbolic system. The eigenvalues
still adaptively adjust to the flow, even though a lot of the non-linearity of the
transformation was neglected during the derivation. The eigenvectors vk corresponding
to the eigenvalues λk =u+ck

√
θ with ck the k-th root of HeM+1(c) are given by

vk,1 =ρHe0(ck), vk,2 =θ1/2He1(ck), vk,3 =θHe2(ck),

vk,j =
1

(j−1)!
ρθ(j−1)/2Hej−1(ck), j= 4, ·· · ,M+1,

equal to evaluating the eigenvalues of the HME model at equilibrium [6]. Direct
calculations yield

∇wM
λk ·vk = 1 ·vk,2 +

ck

2
√
θ
·vk,3 =

√
θ

2
ck(c2k+1), (A.4)

thus ∇wM
λk ·vk = 0 if and only if ck = 0, which indicates each characteristic field of the

SHME is either genuinely non-linear or linearly degenerate. The properties of each kind
of elementary wave can be studied following [6]. Since the first three equations of the
SHME remain unchanged and the first three elements of the eigenvectors are the same
as those of HME, most of the analysis in [6] holds for SHME.

The transformation of the SHME system to a different set of variables does not lead
to a simpler system as is the case for HME and QBME [33]. Instead the system written
in convective variables yields a full lower diagonal part of the system matrix.

Only the first three equations of the SHME remain unchanged and can thus still be
written in conservative form, while the other equations cannot. In numerical simulations
we expect larger differences between the SHME and Grad’s method because of the large
simplification of the SHME model. The number of entries that are changed also increases
with increasing M affecting convergence of the model. For smaller M , however, there
are not too many differences also in comparison with QBME and HME and simulation
results are expected to give satisfactory approximation quality.

A brief numerical comparison of the SHME model with respect to existing models
is performed using the one-dimensional shock tube test case also used in [6] and [33].
The results can be seen as an extension of the first preliminary results in [34].

The initial conditions are chosen as

wM (0,x) =

{
wL
M = (7,0,1,0,. ..,0)

T
if x<0,

wR
M = (1,0,1,0,. ..,0)

T
if x>0,

(A.5)

for variable vector wM = (ρ,u,θ,f3,. ..,fM )
T
, M ≥4. The non-linear relaxation time τ is

chosen as τ = Kn
ρ , where we consider different Knudsen numbers Kn1 = 0.05 representing

a small Knudsen number and Kn2 = 0.5 for a relatively large Knudsen number.
The computational domain [−2,2] is discretized using 4000 cells and the following

figures show the numerical solutions at end time tEND = 0.3 using constant ∆t= 0.0001
corresponding to a CFL number of ca. 0.45.
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All numerical results are computed using the first-order, non-conservative PRICE
scheme as described in [16] and also employed for the one-dimensional tests in [33], from
which all other settings, e.g., for the computation of the non-conservative products, are
also adopted. It was shown that these settings allow for stable and accurate solutions
to the non-conservative moment systems. For details we refer to the aforementioned
papers.

We recall the results from [34], and show solutions for M = 4 and M = 9, i.e. five or
ten variables, respectively, and small Knudsen number Kn1 = 0.05.
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(a) M = 4
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Fig. A.1: Moment model comparison for Grad, HME, QBME, SHME and DVM reference solution,
Kn = 0.05. The left y-axis is for ρ and p, the right y-axis is for u, compare [34].
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Fig. A.2: Moment model comparison for Grad, HME, QBME, SHME and DVM reference solution,
Kn = 0.5. The left y-axis is for ρ and p, the right y-axis is for u, compare [34].

The results for the five-moment case M = 4 in Figure A.1a show that the SHME
model has similar accuracy as the other hyperbolic models HME and QBME and the
deviation from the reference DVM solution (taken from [6]) is small. However, increasing
the number of variables using M = 9 in Figure A.1b does not lead to a very accurate
SHME solution, whereas the other models converge to the reference solution.
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The results of all hyperbolic models for the larger Knudsen number Kn2 = 0.5 in
Figure A.2 differ more from the reference solution due to stronger non-equilibrium effects
caused by the larger Knudsen number. In addition, Grad’s model loses hyperbolicity in
this setup and fails to produce a solution. For M = 4 in Figure A.2a the SHME results
lie between the HME and the QBME model with comparable accuracy. For the larger
M = 9 in Figure A.2b differences are more obvious in the right half of the domain. The
HME and QBME results are relatively close to each other whereas the SHME model
differs substantially.

The convergence study in Figures A.3a and A.3b uses averaged solutions obtained
by two subsequent values of M in the same way as performed in [2] and the plots for
HME and QBME are taken from [33]. The SHME model clearly fails to converge and

4+5 5+6 6+7 7+8 8+99+10

10
−2

10
−1

rho
u
p
theta

(a) QBME (solid) + HME
(dashed)

4+5 5+6 6+7 7+8 8+99+10

10
−2

10
−1

(b) SHME

Fig. A.3: Averaged solution convergence of HME and QBME and no convergence for SHME, for
Kn = 0.5.

shows constant or even increasing errors with larger M . This can be attributed to the
drastic simplification and large number of changes made in the system matrix in (A.1).
It turns out that the neglected non-linearity, which was set to zero during the derivation
of the SHME model, is in fact necessary for convergence of the solution in this test case.

Appendix B. Hermite polynomials and weighted Hermite functions. In
this appendix, we list some properties of the Hermite polynomials and weighted Hermite
functions without proof. Details can be found in [1, 22,39].

The generalized probabilists’ Hermite polynomials He[u,θ]n (c), θ>0 are defined as

He[u,θ]n (c) =
(−1)n

ω[u,θ](c)

dn

dcn
ω[u,θ](c), n∈N, ω[u,θ](c) =

1√
2πθ

exp

(
− (c−u)2

2θ

)
, (B.1)

which are orthogonal with respect to the weight function ω[u,θ](c), i.e.∫ +∞

−∞
He[u,θ]n (c)He[u,θ]m (c)ω[u,θ](c)dc=

n!

θn
δm,n ∀m,n∈N. (B.2)
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The generalized Hermite polynomials satisfy the three-term recursion relation

cHe[u,θ]n (c) =θHe
[u,θ]
n+1(c)+uHe[u,θ]n (c)+nHe

[u,θ]
n−1(c), n≥1. (B.3)

If we define weighted Hermite functions H[u,θ]
n (c) as

H[u,θ]
n (c) =ω[u,θ](c)He[u,θ]n (c), (B.4)

then these functions satisfy the orthogonality relation∫ ∞
−∞
H[u,θ]
n (c)H[u,θ]

m (c)/ω[u,θ](c)dc=
n!

θn
δn,m, ∀m,n∈N, (B.5)

and the three-term recursion relation

cH[u,θ]
n (c) =θH[u,θ]

n+1 (c)+uH[u,θ]
n (c)+nH[u,θ]

n−1(c), n≥1, (B.6)

as well as the differential relation

dH[u,θ]
n (c) =H[u,θ]

n+1 (c)d(u−c)+
1

2
H[u,θ]
n+2 (c)dθ, n∈N. (B.7)

If u= 0 and θ= 1, the generalized Hermite polynomials reduce to the classical
Hermite polynomials, and we denote them by Hen(c).

If we let ξ= c−u
θ and define

φ[θ]n (ξ) :=H[u,θ]
n (c) =

1√
2π

exp

(
−ξ

2

2

)
Hen(ξ)θ−(n+1)/2, (B.8)

then φ[θ] is also orthogonal with respect to exp(ξ2/2) and satisfies the three-term
recursion relation

ξφ[θ]n (ξ) =
√
θφ

[θ]
n+1(ξ)+

n√
θ
φ
[θ]
n−1(ξ), n≥1, (B.9)

and the differential relation

dφ[θ]n (ξ) =−
√
θφ

[θ]
n+1(ξ)dξ− n+1

2θ
φn(ξ)dθ, n∈N. (B.10)
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