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A MATHEMATICAL MODEL FOR ALZHEIMER’S DISEASE:
AN APPROACH VIA STOCHASTIC HOMOGENIZATION OF THE

SMOLUCHOWSKI EQUATION∗

BRUNO FRANCHI† , MARTIN HEIDA‡ , AND SILVIA LORENZANI§

Abstract. In this note, we apply the theory of stochastic homogenization to find the asymp-
totic behavior of the solution of a set of Smoluchowski’s coagulation-diffusion equations with non-
homogeneous Neumann boundary conditions. This system is meant to model the aggregation and
diffusion of β-amyloid peptide (Aβ) in the cerebral tissue, a process associated with the development
of Alzheimer’s disease. In contrast to the approach used in our previous works, in the present paper we
account for the non-periodicity of the cellular structure of the brain by assuming a stochastic model for
the spatial distribution of neurons. Further, we consider non-periodic random diffusion coefficients for
the amyloid aggregates and a random production of Aβ in the monomeric form at the level of neuronal
membranes.
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1. Introduction
The primary feature of several neurological diseases, such as Prion diseases,

Alzheimer’s disease, Parkinson’s disease, Creutzfeldt-Jacob disease is the pathological
presence of misfolded protein aggregates (that is, proteins that fail to configure prop-
erly, becoming structurally abnormal) [9, 32]. In this paper, we focus our interest on
Alzheimer’s disease (AD). Indeed, AD has a huge social and economic impact. Until
2040 its worldwide global prevalence (estimated as high as 44 million in 2015) is ex-
pected to double every 20 years. In particular, existing clinical data support the idea
that amyloid-β peptide (Aβ) has a critical role as initiator of a complex network of
pathological changes in the brain, ultimately leading to Alzheimer’s disease (‘amyloid
hypothesis’, see e.g. [20,28,34]). Although there is no doubt that the presence of fibrillar
Aβ deposition (senile plaques) is the hallmark of the clinical syndrome of AD, the bulk
of human biomarker data reveals the existence of a discrepancy between the appearance
of amyloid deposits and clinical dementia, with Aβ plaques anatomically disconnected
from areas of severe neuronal loss. One of the most reliable explanations, which also
supports the amyloid hypothesis, is that, in addition to fibrillar plaques, oligomeric
forms of Aβ can play a dominant role in triggering a wide variety of pathogenic effects.
Mice, which accumulate Aβ oligomers, but not fibrillar plaques, develop synaptic dam-
age, inflammation and cognitive impairment [43,46]. Despite the biological relevance of
the negative effects produced, the exact mechanisms of misfolded protein aggregation
and propagation, as well as their toxicity, are still not well understood. Furthermore,
the complexity of the underlying processes makes it difficult to extrapolate the effects
of protein misfolding from the microscopic (e.g. molecular) to the macroscopic (e.g.
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organs) scale, preventing the development of effective therapeutic interventions. In or-
der to complement the medical and biological research, the last few decades have seen
the emergence of several mathematical models that can help to provide a better insight
into the laws governing the processes of protein aggregation and the effects of toxic-
ity spreading. The mathematical approaches considered so far can be predominantly
divided into two different classes: on the one hand, there are the models designed to
describe processes at the molecular (microscopic) scale (aggregation kinetics, short-
range spatial spreading, etc.) [1, 9, 14, 25] while, on the other side, there are models
that account for large-scale events characterizing the progression of neurodegenerative
misfolded protein-related diseases [4–6,9].

1.1. Smoluchowski equation and stochastic homogenization. In 2013,
Achdou et al. proposed in [1] a mathematical model for the aggregation and diffusion
of β-amyloid peptide (Aβ) in the brain affected by Alzheimer’s disease (AD) at a mi-
croscopic scale (the size of a single neuron). This model relies on the following special
form of the Smoluchowski equation, originally proposed in [40] to describe the binary
coagulation of colloidal particles [13,31,45]:

∂ui
∂t

(t,x)−di4xui(t,x) =Qi(u) in [0,T ]×Q, (1.1)

where Q is the spatial domain and [0,T ] a time interval. The variable ui(t,x)≥0 (for
i≥1) represents the concentration of i-clusters, that is, clusters consisting of i identical
elementary particles, and

Qi(u) =Qg,i(u)−Ql,i(u) i≥1 (1.2)

with the gain (Qg,i) and loss (Ql,i) terms given by

Qg,i=
1

2

i−1∑
j=1

ai−j,j ui−j uj (1.3)

Ql,i=ui
∞∑
j=1

ai,j uj (1.4)

where u= (ui)i≥1. The kinetic coefficients ai,j represent a reaction in which an (i+j)-
cluster is formed from an i-cluster and a j-cluster and, in general, they are determined by
the statistical probabilities of bond formation, depending upon the details of the physical
process being considered. Possible breakup of clusters is not taken into account. The
term Qg,i, given by (1.3), describes the creation of polymers of size i by coagulation of
polymers of size j and i−j. The term Ql,i, given by (1.4), corresponds to the depletion
of polymers of size i after coalescence with other polymers. These clusters can diffuse
in space with a diffusion constant di which depends on their size. In general, since
the size of clusters is not limited a priori, the system of Equations (1.1) consists of an
infinite number of nonlinear equations. In the mathematical model proposed by Achdou
et al. [1], it is assumed that ‘large’ assemblies do not aggregate with each other (this
assumption prevents blow-up phenomena for solutions at a finite time and it is also
consistent with experimental data), therefore only a finite discrete system of evolution
equations is considered.

Since the development of modern imaging techniques (useful to evaluate the pro-
gression of Alzheimer’s disease) requires the need to test the predictions of mathematical
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modeling at the macroscale, in the present paper we have applied the homogenization
method to the model presented by Achdou et al. [1], in order to describe the effects of
the production and agglomeration of the Aβ at the macroscopic level. The homoge-
nization theory, introduced by the mathematicians in the seventies to perform a sort of
averaging procedure on the solutions of partial differential equations with rapidly vary-
ing coefficients or describing media with microstructures, has been already successfully
applied in [14, 15] to derive a limiting model from that proposed by Achdou et al. [1],
in the context of a periodically perforated domain. In particular, in [14, 15] we have
constructed our set Qε, starting from a fixed bounded domain Q (which represents a
portion of cerebral tissue) and removing from it many small holes of characteristic size
ε (the neurons) distributed periodically. Then, we have rewritten the model problem
derived in [1] as a family of equations in Qε and we have performed the limit ε→0
in the framework of the two-scale convergence, first introduced by Nguetseng [35] and
Allaire [2]. The peculiarity of the two-scale convergence method, used in [14,15], is that
one can simultaneously find the homogenized equations and prove the convergence of
a sequence of solutions to the solution of the limit problem. The notion of “two-scale
limit” refers to a separation between microscopic and macroscopic effects, both in the
limit problem and in the limit function which depends on two variables. Thus, the
two-scale limit contains, on the one hand, the same information as the usual weak limit
and, on the other, it can also reveal the rapid oscillations of the sequence in question.
Therefore, in the limit, the original problem automatically splits into a problem on the
macroscale and a microscopic cell problem. Since the picture presented in our previous
works [14, 15] is a too crude oversimplification of the biomedical reality, in the present
paper we have chosen to resort to a stochastic parametrization of the model equations:
that is, we account for the non-periodic cellular structure of the brain. In particular,
the distribution of neurons is modeled in the following way: there exists a family of
predominantly genetic causes, not wholly deterministic, which influences the position
of neurons and the microscopic structure of the parenchyma in a portion of the brain
tissue Q. Also, we consider non-periodic random diffusion coefficients and a random
production of Aβ in the monomeric form at the level of neuronal membranes. This
together defines a probability space (Ω,F ,P).

Denoting by ω∈Ω the random variable in our model, the set of random holes
in Rm (representing the neurons) is labeled by G(ω). The production of β-amyloid
at the boundary Γ(ω) of G(ω) is described by a random scalar function η(x,ω) and
the diffusivity, in the brain parenchyma, of clusters of different sizes s is modeled by
random matrices Ds(x,ω) on Ω. For technical reasons, we assume that the randomness
of the medium is stationary, that is, the probability distribution of the random variables
observed in a set A⊂Rm is shift invariant (all variables share the same distribution in A
and A+x, x∈Rm). As shown by Papanicolaou and Varadhan [37] (who introduced this
concept), the assumption of stationarity provides a family of mappings (τx)x∈Rm : Ω→Ω
such that η(x,ω) =η(τxω) and Ds(x,ω) =Ds(τxω). The periodic homogenization can
be recovered in this frame considering Ω = [0,1)m with τxω=x+ω mod [0,1)m, where
one canonically chooses ω= 0 (see also [22]).

The above mentioned findings can be interpreted in the sense that the stationar-
ity of the coefficients and the resulting dynamical system τx transfer some structural
properties from Rm to Ω such that we could formally identify Ω≈Rm. Accordingly, a
stationary random set in Rm corresponds to a subset of Ω and a random Hausdorff mea-
sure on Rm corresponds to a measure on Ω. In order to prevent confusion, let us note
that, all the similarities we mention here are of algebraic and measure-theoretic nature
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and not in the sense of a vector space isomorphism. With the above short overview,
we just want to point out that many useful tools in periodic homogenization find their
counterpart in the stochastic setting. The stochastic homogenization theorems can be
formulated in a very similar way to their periodic version, if we rely on the above connec-
tions and similarities, though the mathematics behind differs sometimes significantly.
In this framework, we have studied the limiting behavior of the system of nonlinear
Smoluchowski-type equations describing our model by using a sort of stochastic version
of the two-scale convergence method (where the meaning of ‘two-scale’ is the same as
in the setting of periodic homogenization, that is, it refers to the information contained
in the limit).

1.2. A mathematical model for the aggregation of β-amyloid. We
consider in the following a system of anisotropic diffusion-coagulation Smoluchowski-
type equations which describes the dynamics of cluster growth. Throughout this paper,
ε will denote the general term of a sequence of positive reals which converges to zero. In
particular, we introduce the vector-valued random function uε : [0,T ]×Qε→RM , uε=
(uε1,. ..,u

ε
M ) (with M ∈N being fixed) where the variable uεs≥0 (1≤s<M) represents

the concentration of s-clusters, that is, clusters consisting of s identical elementary
particles (monomers), while uεM ≥0 takes into account aggregations of more than M−1
monomers. We assume that the only reaction allowing clusters to coalesce to form larger
clusters is a binary coagulation mechanism, while the movement of clusters results only
from a diffusion process described by a stationary ergodic random matrix(

dsi,j(t,x,τ xε ω)
)
i,j=1,...,m

=:Ds(t,x,τ xε ω) 1≤s≤M,

where (t,x)∈ [0,T ]×Q. Here Ds(t,x,τ xε ω) is the realization (see Remark 2.1) of a
random matrix. Indeed, aging (as well as the AD itself) yields atrophy of the cerebral
parenchyma, inducing changes in the diffusion rate of the amyloid agglomerates. In
addition, this rate may vary for different regions of the brain. Finally, we have to take
into account that Aβ aggregates do not diffuse freely in an uniform fluid: the cerebral
tissue consists of large non-neuronal support cells (the macroglia) and the Aβ polymers
move within the cerebrospinal fluid along the interstices between these cells that, in
turn, are stochastically distributed.

With these notations, our system reads:

∂uε1
∂t
−div(D1(t,x,τ x

ε
ω)∇xuε1)+uε1

∑M
j=1a1,ju

ε
j = 0 in [0,T ]×Qε

[D1(t,x,τ x
ε
ω)∇xuε1] ·n= 0 on [0,T ]×∂Q

[D1(t,x,τ x
ε
ω)∇xuε1] ·νΓεQ

=εη(t,x,τ x
ε
ω) on [0,T ]×ΓεQ

uε1(0,x) =U1 in Qε

(1.5)

if 1<s<M

∂uεs
∂t
−div(Ds(t,x,τ xε ω)∇xuεs)+uεs

∑M
j=1as,ju

ε
j =fε in [0,T ]×Qε

[Ds(t,x,τ xε ω)∇xuεs] ·n= 0 on [0,T ]×∂Q

[Ds(t,x,τ xε ω)∇xuεs] ·νΓεQ
= 0 on [0,T ]×ΓεQ

uεs(0,x) = 0 in Qε

(1.6)
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and eventually

∂uεM
∂t
−div(DM (t,x,τ x

ε
ω)∇xuεM ) =gε in [0,T ]×Qε

[DM (t,x,τ x
ε
ω)∇xuεM ] ·n= 0 on [0,T ]×∂Q

[DM (t,x,τ x
ε
ω)∇xuεM ] ·νΓεQ

= 0 on [0,T ]×ΓεQ

uεM (0,x) = 0 in Qε

(1.7)

where n denotes the outward-normal to the fixed exterior boundary ∂Q of the randomly
perforated domain Qε, while νΓεQ

represents the outward-normal to the boundary of

the random holes ΓεQ (a precise definition of these sets is reported in Section 2.2).
Furthermore, the gain terms fε and gε in (1.6) and (1.7) are given by

fε=
1

2

s−1∑
j=1

aj,s−j u
ε
j u

ε
s−j (1.8)

gε=
1

2

∑
j+k≥M

k<M(if j=M)
j<M(if k=M)

aj,ku
ε
j u

ε
k. (1.9)

The kinetic coefficients ai,j represent a reaction in which an (i+j)-cluster is formed
from an i-cluster and a j-cluster. Therefore, they can be interpreted as “coagulation
rates” and are symmetric ai,j =aj,i>0 (i,j= 1,. ..,M), but aM,M = 0. Let us remark
that the meaning of uεM differs from that of uεs (s<M), since it describes the sum of
the densities of all the ‘large’ assemblies. It is assumed that large assemblies exhibit all
the same coagulation properties and do not coagulate with each other.

The production of β-amyloid peptide by the malfunctioning neurons is described
imposing a non-homogeneous Neumann condition on the boundary of the holes, ran-
domly selected within our domain. To this end, we consider on ΓεQ in Equation (1.5) a
stationary ergodic random function η=η(t,x,τ x

ε
ω). Here η(t,x,τ x

ε
ω) is the realization

(see Remark 2.1) of a random function:

η : [0,T ]×Q×Ω→ [0,1] (1.10)

where the value ‘0’ is assigned to ‘healthy’ neurons while all the other values in ]0,1]
indicate different degrees of malfunctioning. Moreover, we assume that η is an increasing
function of time, since once the neuron has become ‘ill’, it can no longer regain its original
state of health.

Further hypotheses are listed below (a precise definition of the symbols and the
spaces of functions on Ω will be given in Sections 2.1 and 2.2):

(H.1) The diffusion coefficients satisfy dsi,j ∈C1
(
[0,T ]×Q;C1

b (Ω)
)

for i,j= 1,. ..,m,
s= 1,. ..,M . We put

Λ? := sup
i,j,s
‖dsi,j‖C1([0,T ]×Q;C1

b (Ω)).

In particular, the map (t,x,ω)→Ds(t,x,τ xε ω) is continuously differentiable;

(H.2) dsi,j =dsj,i, for i,j= 1,. ..,m, s= 1,. ..,M ;
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(H.3) there exists 0<λ≤Λ such that

λ|ξ|2≤
m∑

i,j=1

dsi,j(t,x,τ xε ω)ξiξj≤Λ|ξ|2

for all s= 1,. ..,M , ξ∈Rm, (t,x)∈ [0,T ]×Q and for P-a.e. ω∈Ω.

Moreover, the function η, appearing in (1.5), is a given bounded function satisfying
the following conditions:

(H.4) η∈C1
(
[0,T ]×Q;C1

b (Ω)
)
;

(H.5) η(0, ·, ·) = 0 and U1 is a positive constant such that

U1≤‖η‖L∞([0,T ]×Q×Ω). (1.11)

1.3. Main statement. Our main statement shows that it is possible to homog-
enize the set of Equations (1.5)-(1.7) as ε→0.

Theorem 1.1. Let uεs(t,x) (1≤s≤M) be a family of nonnegative classical solu-
tions to the system (1.5)-(1.7). Denote by a tilde the extension by zero outside Qε(ω)
and let χG{ represent the characteristic function of the random set G{(ω) (where G{

is the complement of G, representing the set of random holes in Rm). Then, the

sequences (ũεs)ε>0, (∇̃xuεs)ε>0 and (∂̃tuεs)ε>0 (1≤s≤M) stochastically two-scale con-
verge to: [χG{ us(t,x)], [χG{(∇xus(t,x)+vs(t,x,ω))], [χG{ ∂tus(t,x)] (1≤s≤M), re-
spectively. The limiting functions [(t,x) 7→us(t,x),(t,x,ω) 7→vs(t,x,ω)] (1≤s≤M) are
the unique solutions lying in L2(0,T ;H1(Q))×L2([0,T ]×Q;L2

pot(Ω)) of the following
two-scale homogenized systems:

If s= 1:



θ ∂u1
∂t

(t,x)−divx
[
D?

1(t,x)∇xu1(t,x)

]
+θu1(t,x)

∑M
j=1a1,j uj(t,x) =

∫
Ω

χΓ
G{
η(t,x,ω)dµΓ,P(ω) in [0,T ]×Q

[D?
1(t,x)∇xu1(t,x)] ·n= 0 on [0,T ]×∂Q

u1(0,x) =U1 in Q

(1.12)

If 1<s<M :



θ ∂us
∂t

(t,x)−divx
[
D?
s(t,x)∇xus(t,x)

]
+θus(t,x)

∑M
j=1as,j uj(t,x)

= θ
2
∑s−1
j=1aj,s−j uj(t,x)us−j(t,x) in [0,T ]×Q

[D?
s(t,x)∇xus(t,x)] ·n= 0 on [0,T ]×∂Q

us(0,x) = 0 in Q

(1.13)
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If s=M :

θ ∂uM
∂t

(t,x)−divx
[
D?
M (t,x)∇xuM (t,x)

]
= θ

2
∑

j+k≥M
k<M(if j=M)

j<M(if k=M)

aj,kuj(t,x)uk(t,x) in [0,T ]×Q

[D?
M (t,x)∇xuM (t,x)] ·n= 0 on [0,T ]×∂Q

uM (0,x) = 0 in Q

(1.14)

where

θ=

∫
Ω

χG{ dµP(ω) =P(G{)

represents the fraction of volume occupied by G{ and, for every 1≤s≤M , D?
s(t,x) is a

deterministic matrix, called “effective diffusivity”, defined by

(D?
s)ij(t,x) =

∫
Ω

χG{Ds(t,x,ω)(wi(t,x,ω)+ êi) ·(wj(t,x,ω)+ êj)dP(ω)

with êi being the i-th canonical unit vector in Rm, and (wi)1≤i≤m∈L2([0,T ]×
Q;L2

pot(G
{)) the family of solutions of the following microscopic problem{

−divω[Ds(t,x,ω)(wi(t,x,ω)+ êi)] = 0 inG{

Ds(t,x,ω)[wi(t,x,ω)+ êi] ·νΓ
G{

= 0 on ΓG{ .
(1.15)

Finally,

vs(t,x,ω) =

m∑
i=1

wi(t,x,ω)
∂us
∂xi

(t,x) (1≤s≤M).

1.4. Structure of the rest of the paper. The paper is organized as follows.
In Section 2, we give a brief survey of the probabilistic background behind the the-
ory of stochastic homogenization and in Section 3 we present all the main definitions
and theorems related to the stochastic two-scale convergence method. In Section 4, we
first derive all the a priori estimates needed to apply the two-scale homogenization tech-
nique, then we prove our main results on the stochastic homogenization of the nonlinear
Smoluchowski coagulation-diffusion equations in a randomly perforated domain. Some
concluding remarks, mainly aimed at highlighting the significance and the novelty of our
approach, are included in Section 5. Finally, the Appendix is introduced to summarize
some basic concepts on the realization of random sets.

2. Random media
The method of stochastic two-scale convergence introduced by Zhikov and Piat-

nitsky [47] is based on a setting that originally appeared in Papanicolaou and Varad-
han [37]. The connection between the abstract setting on random singular measures
in [47] and the theory of random sets was worked out in [22]. Hence, we will first intro-
duce the setting of [37] and explain the ideas pointed out in [22] before we move on to
the definition of two-scale convergence.
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2.1. Stationary ergodic dynamical systems. This section has the intention
to provide a probabilistic background for the theory of stochastic homogenization, and
more particularly for stochastic two-scale convergence. We follow the formulation given
by Papanicolaou and Varadhan [37], enriched by the ideas presented in [27, 47] and
[22,23].

The whole theory is based on the concept of dynamical systems.

Definition 2.1 (Dynamical system). Let (Ω,F ,P) be a probability space. An m-
dimensional dynamical system is defined as a family of measurable bijective mappings
τx : Ω→Ω, x∈Rm, satisfying the following conditions:

(i) The group property: τ0 = 1 (1 is the identity mapping), τx+y = τx ◦τy ∀x,y∈Rm;

(ii) The mappings τx : Ω→Ω preserve the measure P on Ω, i.e., for every x∈Rm,
and every P-measurable set F ∈F , we have P(τxF ) =P(F );

(iii) The map T : Ω×Rm→Ω: (ω,x) 7→ τxω is measurable (for the standard σ-algebra
on the product space, where on Rm we take the Borel σ-algebra).

Note that (i) and (iii) imply that, for every x∈Rm and measurable F ⊂Ω, the set τxF is
measurable: since τ−x (τxF ) =F we find that τxF is the projection of T −1(F )∩{−x}×Ω
onto Ω. We define the notion of ergodicity for the dynamical system.

Definition 2.2 (Ergodicity). A dynamical system is called ergodic if one of the
following equivalent conditions is fulfilled:

(i) Given a measurable and invariant function f in Ω, that is

∀x∈Rm f(ω) =f(τxω)

almost everywhere in Ω, then

f(ω) = const. for P−a.e. ω∈Ω;

(ii) If F ∈F is such that τxF =F ∀x∈Rm, then P(F ) = 0 or P(F ) = 1.

Definition 2.3 (Stationarity). Given a probability space (Ω,F ,P), a real valued
process is a measurable function f :Rm×Ω→R. We will say f is stationary if the
distribution of the random variable f(y,·) : Ω→R is independent of y, i.e., for all a∈R,
P({ω :f(y,ω)>a}) is independent of y. This is qualified by assuming the existence of a
dynamical system τy : Ω→Ω (y∈Rm) and saying that f :Rm×Ω→R is stationary if

f(y+y′,ω) =f(y,τy′ω) for all y,y′∈Rm and ω∈Ω.

Finally, we say that a random variable f :Rm×Ω→R is stationary ergodic if it is
stationary and the underlying dynamical system is ergodic. Naturally, if f is taking
values in a finite dimensional space, we will say it is stationary if all of its components
in a given basis are stationary with respect to the same dynamical system. This property
is also called jointly stationary.

Remark 2.1 ( [37]). A function f is stationary ergodic if and only if there is some
measurable function f̃ : Ω→R such that

f(x,ω) = f̃(τxω).

For a fixed ω∈Ω the function x 7→ f̃(τxω) of argument x∈Rm is said to be a realization
of function f̃ .
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Let Lp(Ω) (1≤p<∞) denote the space formed by (the equivalence classes of) mea-
surable functions that are P-integrable with exponent p and L∞(Ω) be the space of
measurable essentially bounded functions. If f ∈Lp(Ω), then P-almost all realizations
f(τxω) belong to Lploc(Rm) [27].

We define the following m-parameter group of operators in the space L2(Ω):

U(x) :L2(Ω)→L2(Ω), f 7→ [U(x)f ](ω) :=f(τxω).

It is known [27] that the operator U(x) is unitary for each x∈Rm and the group U(x)
is strongly continuous, i.e.

∀f ∈L2(Ω) : lim
x→0
‖U(x)f−f‖L2(Ω) = 0.

For x={0,0,. ..,xi,0,. ..,0} we obtain a one-parameter group whose infinitesimal gener-
ator will be denoted by Di with domain Di(Ω). The unitarity of the group U(x) implies
that the operators Di are skew-symmetric:

∀f,g∈Di(Ω) :

∫
Ω

(Dif)gdP=−
∫

Ω

f (Dig)dP, (2.1)

and by definition of the generators we have

Dif = lim
xi 6=0,xi→0

f(τxiω)−f(ω)

xi
(2.2)

in the sense of convergence in L2(Ω). As Papanicolaou and Varadhan [37] have shown,
almost every realization possesses a weak derivative and it holds

∂

∂xi
f(τxω) = (Dif)(τxω)∈L2

loc(Rm).

Also we have that (iD1,. ..,iDm) are commuting, self-adjoint, closed, and densely defined
linear operators on L2(Ω) [26], and we may define

Dωf := (D1f,...,Dmf)
>
.

We introduce the space W 1,2(Ω) with norm ‖·‖1,2 through

W 1,2(Ω) :=D1(Ω)
⋂
.. .
⋂
Dm(Ω)

‖f‖1,2 :=‖f‖L2(Ω) +

m∑
i=1

‖Dif‖L2(Ω).

Further let L2
loc(Rm;Rm) be the set of measurable functions f : Rm→Rm such that

f |U∈L2(U;Rm) for every bounded domain U and we define

L2
pot,loc(Rm) :=

{
f ∈L2

loc(Rm;Rm) | ∀Ubounded domain, ∃ϕ∈H1(U) : f =∇ϕ
}
,

L2
sol,loc(Rm) :=

{
f ∈L2

loc(Rm;Rm) |
∫

Rm
f ·∇ϕ= 0∀ϕ∈C1

c (Rm)

}
.

Recalling the notion of a realization fω(x) :=f(τxω) for f ∈L2(Ω), we can then define
corresponding spaces on Ω through

L2
pot(Ω) :=

{
f ∈L2(Ω;Rm) : fω ∈L2

pot,loc(Rm) for P−a.e. ω∈Ω
}
,
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L2
sol(Ω) :=

{
f ∈L2(Ω;Rm) : fω ∈L2

sol,loc(Rm) for P−a.e. ω∈Ω
}
, (2.3)

V2
pot(Ω) :=

{
f ∈L2

pot(Ω) :

∫
Ω

f dP= 0

}
.

It has been shown in Chapter 7 of [27] that all of these spaces are closed and that
L2(Ω;Rm) =L2

sol(Ω)⊕V2
pot(Ω). This has been proved using the continuous smoothing

operator

Iδ : L2(Ω)→W 1,2(Ω), Iδf(ω) :=

∫
Rm
ηδ(x)f (τxω)dx, (2.4)

where ηδ is a Dirac-sequence of smooth functions. It can be shown that, for every
f ∈L2(Ω), it holds Iδf→f as δ→0 and the continuity of Iδ implies DiIδf =IδDif
for all f ∈W 1,2(Ω). Thus, if we consider

Ṽ := closureL2(Ω)

{
Dωf : f ∈W 1,2(Ω)

}
we first obtain Ṽ ⊆V2

pot(Ω) and for g∈Ṽ⊥, we have for every δ>0

∀f ∈W 1,2(Ω) : 0 = 〈g,DωIδf〉= 〈Iδg,Dωf〉=−
∑
i

〈DiIδg,f〉 ,

and hence
∑
iDiIδg= 0. In particular, Iδg∈L2

sol(Ω) and since L2
sol(Ω) is closed we

find Ṽ⊥⊆L2
sol(Ω). This implies Ṽ ⊇V2

pot(Ω) and hence

Ṽ= closureL2(Ω)

{
Dωf : f ∈W 1,2(Ω)

}
=V2

pot(Ω). (2.5)

In what follows, we will often impose the following assumption:

Assumption 2.1. Assume that Ω is a separable metric space and (Ω,F ,P) is a
probability space with countably generated σ-algebra and let τx, x∈Rm, be a dynamical
system in the sense of Definition 2.1 that is ergodic in the sense of Definition 2.2.

It was discussed in [22] that the latter assumption is not a restriction to our choice
of parameters.

ByM(Rm) we denote the space of finitely bounded Borel measures on Rm equipped
with the vague topology, which makesM(Rm) a separable metric space [10]. The σ-field
defined by this topology is denoted by B(M) since it is a Borel σ-field onM. A random
measure is a measurable mapping

µ• : Ω→M(Rm), ω 7→µω

which is equivalent to the measurability of all mappings ω 7→µω(A), where A⊂Rm are
arbitrary bounded Borel sets. A random measure is stationary if the distribution of
µω(A) is invariant under translations of A. In particular, random measures satisfy
µτxω(A) =µω(A+x). For stationary random measures we find the following important
property.

Theorem 2.1 ( [10] Existence of Palm measure and Campbell’s Formula). Let L
be the Lebesgue-measure on Rm with dx :=dL(x) and (Ω,F ,P) and τ as in Assumption
2.1. Then there exists a unique measure µP on Ω such that∫

Ω

∫
Rm
f(x,τxω)dµω(x)dP(ω) =

∫
Rm

∫
Ω

f(x,ω)dµP(ω)dx



BRUNO FRANCHI, MARTIN HEIDA, AND SILVIA LORENZANI 1115

for all B(Rm)×B(Ω)-measurable nonnegative functions and all µP×L- integrable func-
tions. Furthermore

µP(A) =

∫
Ω

∫
Rm
g(s)χA(τsω)dµω(s)dP(ω), (2.6)∫

Ω

f(ω)dµP =

∫
Ω

∫
Rm
g(s)f(τsω)dµω(s)dP(ω) (2.7)

for an arbitrary g∈L1(Rm,L) with
∫

Rm g(x)dx= 1 and µP is σ-finite.

The measure µP from Theorem 2.1 is called Palm measure. By (2.6) µP can be
interpreted as the push-forward measure of g(x)dµω(x)dP(ω) under (x,ω) 7→ τxω. Sta-
tionarity implies that this push-forward is independent of the choice of g. We say that
the random measure µω has finite intensity if

+∞>

∫
Ω

∫
Rm
χΩ×[0,1]m(τxω,x)dµω(x)dP(ω) =µP(Ω). (2.8)

Definition 2.4. Given a stationary random measure µω, we introduce the scaled
measure µεω through

µεω(A) :=εmµω(ε−1A). (2.9)

One important property of random measures is the following generalization of the
Birkhoff ergodic theorem.

Lemma 2.1 ( [23], Lemma2.14). Let Assumption 2.1 hold for (Ω,F ,P,τ). Let Q⊂Rm

be a bounded domain, φ∈C(Q) and f ∈L1(Ω;µP). Then, for almost every ω∈Ω

lim
ε→0

∫
Q

φ(x)f(τ x
ε
ω)dµεω(x) =

∫
Q

∫
Ω

φ(x)f(ω̃)dµP(ω̃)dx. (2.10)

A further useful result towards this direction is the following.

Lemma 2.2 ( [23], Lemma2.15). Let Assumption 2.1 hold for (Ω,F ,P,τ). Let
Q⊂Rm be a bounded domain and let f ∈L∞(Q×Ω;L⊗µP). Then, f has a B(Q)⊗F-
measurable representative which is an ergodic function in the sense that for almost every
ω∈Ω

lim
ε→0

∫
Q

f(x,τ x
ε
ω)dµεω(x) =

∫
Q

∫
Ω

f(x,ω̃)dµP(ω̃)dx,

lim
ε→0

∫
Q

∣∣f(x,τ x
ε
ω)
∣∣p dµεω(x) =

∫
Q

∫
Ω

|f(x,ω̃)|p dµP(ω̃)dx

(2.11)

for every 1≤p<∞.

Based on the previous lemma, we can get the following result:

Lemma 2.3. Let Assumption 2.1 hold for (Ω,F ,P,τ). Let Q⊂Rm be a bounded
domain and let f ∈L∞(Q×Ω;L⊗µP). Then, f has a B(Q)⊗F-measurable represen-
tative which is an ergodic function in the sense that for almost every ω∈Ω and for all
ϕ∈C(Q) it holds

lim
ε→0

∫
Q

f(x,τ x
ε
ω)ϕ(x)dµεω(x) =

∫
Q

∫
Ω

f(x,ω̃)ϕ(x)dµP(ω̃)dx,

lim
ε→0

∫
Q

∣∣f(x,τ x
ε
ω)
∣∣pϕ(x)dµεω(x) =

∫
Q

∫
Ω

|f(x,ω̃)|pϕ(x)dµP(ω̃)dx

(2.12)
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for every 1≤p<∞.

Proof. This follows from the fact that C(Q) is separable and Lemma 2.2 yields
(2.12) for a countable subset of C(Q) and a set of full measure Ω̃⊂Ω. By an approxi-
mation ‖ϕ−ϕδ‖∞<δ and Lemma 2.2 we obtain the claim.

2.2. Random measures and random sets. In this paper, we consider random
sets of the following form. For every ω∈Ω the set G(ω) is an open subset of Rm.
The boundary Γ(ω) =∂G(ω) is a (m−1)-dimensional piece-wise Lipschitz manifold.
Furthermore, we assume that the measures

µω(A) :=

∫
A∩G{(ω)

dx, µΓ(ω)(A) :=Hm−1(A∩Γ(ω))

are stationary. Hence, by Theorem 2.1 there exist corresponding Palm measures µP for
µω and µΓ,P for µΓ(ω) and by Lemma 2.14 of [22] there exists a measurable set Γ⊂Ω
with χΓ(ω)(x) =χΓ(τxω) for L+µΓ(ω)-almost every x for P-almost every ω and P(Γ) = 0,
µΓ,P(Ω\Γ) = 0. Also it was observed there that, if for every ω we have µω =L, then also
µP =P. From the corresponding proofs in [22], as well as the fact that µω has a Radon-
Nikodym derivative with respect to L, we find G⊂Ω such that µP(A) =P(A∩G{),
χG{(ω)(x) =χG{(τxω) and

χG{dµP =dµP =χG{dP. (2.13)

Remark 2.2. If A is a bounded Borel set, then

µεΓ(ω)(A) :=εmµΓ(ω)(ε
−1A) =εHm−1(A∩Γε(ω)). (2.14)

It was shown in [22] that for random measures such as µω or µΓ(ω) the underlying
probability space can be assumed to be separable and metric, since the boundedly finite
Borel measures equipped with the vague topology form a separable metric space [10].
It was also pointed out in [22] that τ : (x,ω) 7→ τxω is continuous.

Remark 2.3. If Ω is separable and metric, this implies that L2(Ω;P) and L2(Ω;µΓ,P)
are separable and that the bounded continuous functions Cb(Ω) are dense in both spaces.
Therefore, there exists a countable set Ψ := (ψi)i∈N such that ψi∈Cb(Ω) for every i and
such that Ψ lies dense in L2(Ω;P) and L2(Ω;µΓ,P). Furthermore, recalling (2.4) and
approximating ψi with the sequence I 1

n
ψ, n∈N, we can assume that ψi∈W 1,2(Ω)∩

Cb(Ω). The space V2
pot(Ω) is a subspace of a separable space and hence has to be

separable, too. In particular ∇ψi can be assumed to be dense in V2
pot(Ω). We then

define

Ψ = (ψi)i∈N

m⋃
j=1

(Djψi)i∈N .

Since Ω is assumed to be separable metric, we can also make the following definition.

Definition 2.5. The space of bounded continuously differentiable functions on Ω is

C1
b (Ω) :={f ∈Cb(Ω) : Df ∈Cb(Ω)}

‖f‖C1
b (Ω) :=‖f‖∞+‖Df‖∞ .
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Let us remark that, since (x,ω) 7→ τxω is continuous, f ∈C1
b (Ω) implies f(τxω)∈

C1
b (Rm)∀ω∈Ω. Concerning the random geometries considered in this work, we make

the assumptions listed below.

Definition 2.6 (See [19]). An open set G⊂Rm is said to be minimally smooth with
constants (δ,N,M) if we may cover Γ =∂G by a countable sequence of open sets (Ui)i∈N
such that

(1) Each x∈Rm is contained in at most N of the open sets Ui.

(2) For any x∈Γ, the ball Bδ(x) is contained in at least one Ui.

(3) For any i, the portion of the boundary Γ inside Ui agrees (in some Cartesian
system of coordinates) with the graph of a Lipschitz function whose Lipschitz
semi-norm is at most M .

In particular a set G⊂Rm is minimally smooth if and only if Rm \G is minimally
smooth.

Let Q be a bounded domain in Rm. For given constants (δ,N,M), we consider G(ω)
a random open set which is a.s. minimally smooth with constants (δ,N,M) (uniformly
minimally smooth). We furthermore assume that G(ω) :=

⋃
i∈NGi(ω) is a countable

union of disjoint open balls Gi(ω) with a maximal diameter d0.
We then consider Gε(ω) :=εG(ω) and

Qε(ω) :=Q\

 ⋃
i∈Iε(ω)

εGi(ω)

, ΓεQ(ω) :=
⋃

i∈Iε(ω)

∂(εGi(ω)), (2.15)

where

Iε(ω) :={i : εGi(ω)⊂Q and εd0<min{d(x,y) : x∈∂(εGi(ω)), y∈∂Q}} .

Remark 2.4. Note that we constructed the micro structures Q\Qε(ω) such that
they do not intersect with the boundary of Q and such that every hole in Qε(ω) has a
minimal distance εd0 to ∂Q. This is because we require in our proofs that ε−1Qε(ω)
is a (δ,N,M)-minimal set (or Qε(ω) is a (δε,N,ε−1M)-minimal set, respectively). In
particular, without the minimal distance between two disjoint parts of the boundary,
the resulting set Qε(ω) would violate condition (3) from Definition 2.6, i.e. ∂Qε(ω)
would not be a ε−1M -Lipschitz graph inside balls of diameter ε

2d0.

Assumption 2.2. There are constants d0,δ,N,M (independent of ω) such that P-a.s.
the set G(ω) consists of a countable union of bounded sets Gk(ω) (k∈N) such that the
sets Rm \Gk(ω) are all connected, while

d(Gk(ω),Gj(ω))≥d0 whenever k 6= j,

and each set Gk(ω) is minimally smooth with constants (δ,N,M) and has a diameter
smaller than d0. The Lipschitz constant is uniformly over all Gk.

Remark 2.5. In particular, this guarantees that Rm \G(ω) is connected and has
a Lipschitz boundary ∂G, which represents the union of the boundaries of the holes.
Furthermore, the distance condition ensures that the boundary of G(ω) is locally rep-
resentable as a graph.

Lemma 2.4. Suppose that Assumption 2.2 is satisfied. Then, there exists a family of
linear continuous extension operators

Eε : W 1,p(Qε)→W 1,p(Q)
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and a constant C>0 independent of ε such that

Eεφ=φ inQε(ω)

and ∫
Q

|Eεφ|pdx≤C
∫
Qε

|φ|pdx, (2.16)

∫
Q

|∇(Eεφ)|pdx≤C
∫
Qε

|∇φ|pdx, (2.17)

P-a.s. for any φ∈W 1,p(Qε) and for any p∈ (1,+∞).

Proof. Following the line of the proof reported in [19] (Proposition 3.3, p. 230),
for any k∈N, ω∈Ω, we denote by Ĝk(ω) a d0/4-neighborhood of Gk(ω) (the sets Gk(ω)
are defined in Assumption 2.2). Since, under our assumptions, the set Ĝk(ω)\Gk(ω)
has Lipschitz boundary, then, according to Theorem 5, p. 181 in [41], there exists an
extension operator Ek

Ek :W 1,p(Ĝk(ω)\Gk(ω))→W 1,p(Ĝk(ω)) (2.18)

such that: Ekφ=φ a.e. in Ĝk(ω)\Gk(ω) and, for some constant C independent of k,
we have

‖Ekφ‖Lp(Ĝk(ω))≤C ‖φ‖Lp(Ĝk(ω)\Gk(ω)) (2.19)

‖Ekφ‖W 1,p(Ĝk(ω))≤C ‖φ‖W 1,p(Ĝk(ω)\Gk(ω)). (2.20)

Let us define new extensions

Êk :W 1,p(Ĝk(ω)\Gk(ω))→W 1,p(Gk(ω)) (2.21)

by

Êkφ :=Ek(φ−(φ)k)+(φ)k (2.22)

where

(φ)k :=

∫
Ĝk(ω)\Gk(ω)

φdy (2.23)

Putting them all together, we define an extension

E :W 1,p(G{(ω))→W 1,p(Q) (2.24)

given by

Eφ(y) :=

{
φ(y) whenever y∈G{(ω)

Êkφ(y) whenever y∈ Ĝk(ω).
(2.25)

Now, in Ĝk(ω)\Gk(ω) we have

Êkφ= (φ−(φ)k)+(φ)k =φ. (2.26)
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Moreover, by (2.19) and Hölder’s inequality, we have∫
Gk(ω)

|Êkφ|pdy=

∫
Gk(ω)

|Ek(φ−(φ)k)+(φ)k|pdy

≤C
∫
Gk(ω)

|Ek(φ−(φ)k)|pdy+C

∫
Gk(ω)

|(φ)k|pdy

≤C
∫
Ĝk(ω)\Gk(ω)

|φ−(φ)k|pdy+C

∫
Gk(ω)

|(φ)k|pdy

≤C
∫
Ĝk(ω)\Gk(ω)

|φ|pdy+C ′
∫
Gk(ω)

|(φ)k|pdy

≤C
∫
Ĝk(ω)\Gk(ω)

|φ|pdy (2.27)

where, for simplicity, the letter C denotes a positive constant (independent of k) that
can change from line to line. Due to Assumption 2.2, the following Poincaré inequality
holds: ∫

Ĝk(ω)\Gk(ω)

|φ−(φ)k|pdy≤C
∫
Ĝk(ω)\Gk(ω)

|∇φ|pdy. (2.28)

Therefore, by using (2.20), (2.22) and (2.28), we get∫
Gk(ω)

|∇(Êkφ)|pdy=

∫
Gk(ω)

|∇(Ek(φ−(φ)k))|pdy

≤C
∫
Ĝk(ω)\Gk(ω)

|(φ−(φ)k)|pdy+C

∫
Ĝk(ω)\Gk(ω)

|∇φ|pdy

≤C
∫
Ĝk(ω)\Gk(ω)

|∇φ|pdy. (2.29)

Since this holds for every k with the same C we have proved that∫
∪kĜk(ω)

|Eφ|pdy≤C
∫
∪kĜk(ω)\Gk(ω)

|φ|pdy (2.30)

∫
∪kĜk(ω)

|∇(Eφ)|pdy≤C
∫
∪kĜk(ω)\Gk(ω)

|∇φ|pdy (2.31)

that is, ∫
Q

|Eφ|pdy≤C
∫
G{(ω)

|φ|pdy (2.32)

∫
Q

|∇(Eφ)|pdy≤C
∫
G{(ω)

|∇φ|pdy. (2.33)

By performing the change of variable y=x/ε, with x∈Qε(ω), it is easy to obtain the
corresponding re-scaled estimates (2.16) and (2.17), where Eε is the re-scaled extension
operator.

As a matter of fact, we can describe a portion of the cerebral cortex as a bounded
open set Q⊂R3, whereas the neurons are represented by a family of holes distributed
randomly in Q and having a characteristic size ε. A detailed construction of random
domains that satisfy the assumptions listed in this section is reported in the Appendix.
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3. Two-scale convergence
We will use a slightly modified version of stochastic two-scale convergence compared

to the one presented in [23]. Let Ψ := (ψi)i∈N be the countable dense family of Cb(Ω)-
functions according to Remark 2.3.

Lemma 3.1. Let (fi)i∈N be a countable family in L∞(Q×Ω;L×P) and (gi)i∈N be a
countable family in L∞(Q×Γ;L×µΓ,P). Then there exists a set of full measure ΩΨ⊂Ω
such that for almost every ω∈ΩΨ, every i∈N, every ψ∈Ψ and every ϕ∈Cb(Q) the
following holds:

lim
ε→0

∫
Q

ϕ2(x)ψ2(τ x
ε
ω)f2

i (x,τ x
ε
ω)dx=

∫
Q

∫
Ω

ϕ2(x)ψ2(ω̃)f2
i (x,ω̃)dP(ω̃)dx, (3.1)

lim
ε→0

∫
Q

gi
(
x,τ x

ε
ω
)
ϕ(x)ψ(τ x

ε
ω)dµεΓ(ω)(x) =

∫
Q

∫
Ω

gi(x,ω̃)ϕ(x)ψ(ω̃)dµΓ,P(ω̃)dx. (3.2)

Remark 3.1. The first equality (3.1) is needed for the proof of existence of the two-
scale limits. Therefore we put the square here. The second limit (3.2) is needed directly
in the proof of the main homogenization theorem. Therefore we study the convergence
of gi tested with ϕψ.

Proof. (Proof of Lemma 3.1.) For fixed i the limits (3.1) and (3.2) hold for a.e.
ω∈Ω due to Lemma 2.3. Since the family (fi)i∈N is countable, we conclude.

Definition 3.1. Let Ψ be the set of Remark 2.3 and let ω∈ΩΨ. Let uε∈L2(Q) for
all ε>0. We say that (uε) converges (weakly) in two scales to u∈L2(Q;L2(Ω)) and

write uε
2s
⇀u if supε>0‖uε‖L2(Q)<∞ and if for every ψ∈Ψ, ϕ∈C(Q) there holds with

φω,ε(x) :=ϕ(x)ψ(τ x
ε
ω) that

lim
ε→0

∫
Q

uε(x)φω,ε(x)dx=

∫
Q

∫
Ω

u(x,ω̃)ϕ(x)ψ(ω̃)dP(ω̃)dx.

Furthermore, we say that uε converges strongly in two scales to u, written uε
2s→u, if

for every weakly two-scale converging sequence vε∈L2(Q) with vε
2s
⇀v∈L2(Q;L2(Ω))

as ε→0 there holds

lim
ε→0

∫
Q

uεvεdx=

∫
Q

∫
Ω

uvdP(ω̃)dx. (3.3)

Remark 3.2. Let us remark that the notion of two-scale convergence strongly depends

on the choice of ω. Also, let us note that φω,ε
2s→ϕψ strongly in two scales by definition.

Lemma 3.2 ( [23], Lemma4.4-1). Let uε∈L2(Q) be a sequence of functions such
that ‖uε‖L2(Q)≤C for some C>0 independent of ε. Then there exists a subsequence

(uε
′
)ε′→0 and u∈L2(Q;L2(Ω)) such that uε

′ 2s
⇀u and

‖u‖L2(Q;L2(Ω))≤ liminf
ε′→0

∥∥∥uε′∥∥∥
L2(Q)

. (3.4)

Furthermore, let (fi)i∈N be a family of functions such as in Lemma 3.1. Then for every

i∈N, ϕ∈C(Ω) and ψ∈Ψ it holds

lim
ε→0

∫
Q

uε(x)φω,ε(x)fi(x,τ xε ω)dx=

∫
Q

∫
Ω

u(x,ω̃)ϕ(x)ψ(ω̃)fi(x,ω̃)dP(ω̃)dx. (3.5)
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Proof. Let (ϕj)j∈N be a countable dense subset of C(Q) and write Ψ =(ψk)k∈N.

Then the span of ϕjψkfi is dense in L2(Q×Ω) (assuming w.l.o.g. that 1∈ (fi)i∈N).
Thus (3.5) follows from [23], Lemma 4.4-1, using (3.1), for all ϕjψkfi. The statement
follows eventually from a density argument to conclude for general ϕ∈C(Q).

Remark 3.3. As already observed in [23], Lemma 3.2 implies that for every f ∈
L∞(Ω), the class of test-functions Ψ can be enriched by a countable subset fΨ⊂L2(Ω)
changing ΩΨ only by a set of measure 0.

We note that the definition of two-scale convergence in [23] is formulated in a
different way. However, due to Lemma 4.6 of [23], we can recover our Definition 3.1. In
particular, the original version of Lemma 3.2 yields two-scale convergence in the sense
of [23] [Definition 4.2], and by Lemma 4.6 of [23] one infers Lemma 3.2. Finally, if Ω is
compact, we recover the statements of [47] by separability of Cb(Ω) =C(Ω).

Lemma 3.3. There exists Ω̃⊂ΩΨ of full measure such that for all ω∈ Ω̃ the fol-
lowing holds: If uε∈H1(Q;Rm) for all ε, with ‖∇uε‖L2(Q)<C for C independent
from ε>0, then there exists a subsequence denoted by uε, functions u∈H1(Q;Rm) and
v∈L2(Q;L2

pot(Ω)) such that uε⇀u weakly in H1(Q) and

∇uε 2s
⇀∇u+v as ε→0.

The original version of the above Lemma in [23] was formulated in H1
0 (Q). However,

the proof applies for all sequences in H1(Q).
We are also interested in the convergence behavior of functions uε : [0,T ]→L2(Q).

In particular, we provide the following definition:

Definition 3.2. Let Ψ be the set of Remark 2.3, Λ = (ϕi)i∈N be a countable dense
subset of C(Q), ω∈ΩΨ and uε∈L2(0,T ;L2(Q)) for all ε>0. We say that (uε) con-

verges (weakly) in two scales to u∈L2(0,T ;L2(Q;L2(Ω,P))), and write uε
2s
⇀u, if for

all continuous and piece-wise affine functions φ : [0,T ]→ spanΨ×Λ there holds, with
φω,ε(t,x) :=φ(t,x,τ x

ε
ω),

lim
ε→0

∫ T

0

∫
Q

uεφω,εdxdt=

∫ T

0

∫
Q

∫
Ω

u(t,x,ω̃)φ(t,x,ω̃)dP(ω̃)dxdt.

Note that the test functions now have values in the vector space spanΨ since they are
affine. Similar to the stationary case, we obtain the following lemma.

Lemma 3.4 ( [23], Lemma4.16). Let T >0. Then, every sequence (uε)ε>0

with uε∈L2(0,T ;L2(Q)) satisfying ‖uε‖L2(0,T ;L2(Q))≤C for some C>0 indepen-
dent from ε has a weakly two-scale convergent subsequence with limit function u∈
L2(0,T ;L2(Q;L2(Ω,P))). Furthermore, if ‖∂tuε‖L2(0,T ;L2(Q))≤C uniformly for 1<p≤
∞, then also ∂tu∈L2(0,T ;L2(Q;L2(Ω,P))) and ∂tu

ε 2s
⇀∂tu in the sense of Definition

3.2 as well as uε(t)
2s
⇀u(t) for all t∈ [0,T ].

As a special case of the last result, we have

Lemma 3.5 ( [23], Lemma4.17). Let Ψ and ΩΨ be given by Remark 2.3 and ω∈ΩΨ.
Let uε∈CLip(0,T ;L2(Q)) for all ε>0 such that ‖uε‖CLip(0,T ;L2(Q))≤C for some C

independent from ε>0. Then, there exists u∈CLip(0,T ;L2(Q;L2(Ω,P))) and a subse-

quence uε
′

of uε such that uε
′
(t)

2s
⇀u(t) for all t∈ [0,T ].
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3.1. Domains with holes. Since G(ω) is a random set, there exists, by the
considerations in Section 2.2, a set G⊂Ω such that χG(ω)(x) =χG(τxω). Based on G,

respectively its complement G{, we obtain the following generalized concept of two-scale
convergence.

Lemma 3.6. Let uε∈L2(Q) be a sequence of functions such that supε>0‖uε‖L2(Q)<

∞. If (uε
′
)ε′→0 is a subsequence such that uε

′ 2s
⇀u for some u∈L2(Q;L2(Ω)), then

uεχQε
2s
⇀uχG{ .

Proof. Let (uε
′
)ε′→0 be a subsequence such that uε

′ 2s
⇀u. Then the definition

of two-scale convergence in L2(Q) together with Remark 3.3 implies that, for every
ϕ∈C(Q) and ψ∈Ψ, it holds

lim
ε→0

∫
Q

uε(x)χG{(τ x
ε
ω)ϕ(x)ψ(τ x

ε
ω)dx=

∫
Q

∫
Ω

u(x,ω̃)χG{(ω̃)ϕ(x)ψ(ω̃)dP(ω̃)dx.

Furthermore, for δ>0, let us consider the ball Bδ(x) of radius δ and center x. For ε>0
small enough and with φω,ε(x) :=ϕ(x)ψ(τ x

ε
ω) it holds that∣∣∣∣∫

Q

uε(x)
(
χG{(τ x

ε
ω)−χQε(x)

)
φω,ε(x)dx

∣∣∣∣
≤

(∫
Bδ(∂Q)

|uε|2 dx

) 1
2
(∫

Bδ(∂Q)

ϕ2(x)ψ2(τ x
ε
ω)dx

) 1
2

≤

(∫
Bδ(∂Q)

ϕ2(x)ψ2(τ x
ε
ω)dx

) 1
2

sup
ε>0
‖uε‖L2(Q)

→

(∫
Bδ(∂Q)

∫
Ω

ϕ2(x)ψ2(ω)dP(ω)dx

) 1
2

sup
ε>0
‖uε‖L2(Q) .

In the last step, we have used the ergodic limit defined in Lemma 2.1. Since δ>0 is
arbitrary, the statement follows.

Lemma 3.7. Let uε∈H1(Qε(ω)) be a sequence of functions such that
supε>0‖uε‖H1(Qε(ω))<∞. Then there exist functions u∈H1(Q) and v∈L2(Q;L2

pot(Ω))

such that Eεuε⇀u weakly in H1(Q) as well as uε
2s
⇀χG{ u and ∇uε 2s

⇀χG{∇u+χG{ v.

Proof. Lemma 2.4 implies that supε>0‖Eεuε‖H1(Q)<∞. Hence, due to Lemma

3.3 there exists u∈H1(Q) and v∈L2(Q;L2
pot(Ω)) such that Eεuε⇀u weakly in H1(Q)

and ∇(Eεuε)
2s
⇀∇u+v. Lemma 3.6 now implies uε

2s
⇀χG{ u and ∇uε 2s

⇀χG{∇u+χG{ v.

Lemma 3.8. Let uε∈L2(0,T ;H1(Qε(ω))) be a sequence of functions such that

sup
ε>0
‖uε‖L2(0,T ;H1(Qε(ω))) +‖∂tuε‖L2(0,T ;L2(Qε(ω)))<∞.

Then there exist functions u∈L2(0,T ;H1(Q)) with ∂tu∈L2(0,T ;L2(Q)) and v∈
L2(0,T ;L2(Q;L2

pot(Ω))) such that Eεuε⇀u weakly in L2(0,T ;H1(Q)) and Eεuε→u
strongly in L2(0,T ;L2(Q)) as well as

uε
2s
⇀χG{ u, ∂tu

ε 2s
⇀χG{ ∂tu, and ∇uε 2s

⇀χG{∇u+χG{ v.
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Proof. We only have to prove Eεuε→u strongly in L2(0,T ;L2(Q)) since the
remaining part of the statement has either been demonstrated above or can be obtained
by generalizing previous considerations.

We first observe that, for all times t1,t2∈ [0,T ], it holds by Lemma 2.4 that∥∥∥∥∫ t2

t1

Eεuε(t)dt
∥∥∥∥
H1(Q)

≤
∥∥∥∥Eε∫ t2

t1

uε(t)dt

∥∥∥∥
H1(Q)

≤C
∥∥∥∥∫ t2

t1

uε(t)dt

∥∥∥∥
H1(Qε)

≤CT 1
2 ‖uε‖L2(0,T ;H1(Qε))

and hence
{∫ t2

t1
Eεuε(t)dt

}
ε>0

is precompact in L2(Q). Next, one can write by using

again Lemma 2.4:∫ T−h

0

‖Eε(uε(t)−uε(t+h))‖2L2(Q)dt≤C
∫ T−h

0

‖uε(t)−uε(t+h)‖2L2(Qε) dt

≤C
∫ T−h

0

∥∥∥∥∥
∫ t+h

t

∂tu
ε(s)ds

∥∥∥∥∥
2

L2(Qε)

dt

≤C
∫ T−h

0

h‖∂tuε‖2L2(t,t+h;L2(Qε)) dt

≤Ch‖∂tuε‖2L2(0,T ;L2(Qε))

where the constant C changes in the last step. Since it holds Eεuε⇀u in L2(0,T ;L2(Q)),
we conclude from Simon’s compactness theorem (see Theorem 1 of [39]).

4. Homogenization
Since the homogenization will be carried out in the framework of two-scale conver-

gence, we first need to obtain the a priori estimates for the sequences uεj , ∇uεj , ∂tuεj in
[0,T ]×Qε, that are independent of ε.

4.1. Estimates. We can repeat now almost verbatim the arguments of [15],
Theorems 2.1, 2.2, 2.3 and 2.4 to obtain the following “deterministic” (i.e. for fixed
ω∈Ω) existence and regularity result.

Theorem 4.1. Suppose Assumption 2.2 (where additionally G(ω) has a smooth
boundary) and (H.1) - (H.5) (given in Section 1.2) hold. Then for P-a.e. ω∈Ω and for
any ε>0 the system (1.5) - (1.7) admits a unique maximal classical solution

uεω = (uεω,1,. ..,u
ε
ω,M )

such that

(i) there exists α∈ (0,1), α depending only on N,λ,Λ?, ε and ω, such that uε∈
C1+α/2,2+α([0,T ]×Qε,RM ) for P-a.e. ω∈Ω and

‖uεω‖C1+α/2,2+α([0,T ]×Qε,RM )≤C0 =C0(U1,‖η‖L∞([0,T ]×Q×Ω),K,ε,ω,α); (4.1)

(ii) uεω,j(t,x)>0 for (t,x)∈ [0,T ]×Qε, P-a.e. ω∈Ω and j= 1,. ..,M .
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In the sequel we shall rely on the fact that statements that hold P-a.e. can be seen
as deterministic assertions, since they hold whenever Qε is a set enjoying the regularity
properties described in Remark 2.4, Assumption 2.2 and Remark 2.5.

Arguing as in [15], the first and crucial step will consist of proving that the uεω,j are
equibounded in L∞([0,T ]×Qε) for P-a.e. ω∈Ω and j= 1,. ..,M .

In particular, a uniform bound for uεω in L∞([0,T ]×Qε) is provided by the following
statement:

Theorem 4.2. Let uεω = (uεω,1,. ..,u
ε
ω,M ) be as in Theorem 4.1. Then

‖uεω,1‖L∞([0,T ]×Qε)≤|U1|+c‖η‖L∞([0,T ]×Q×Ω), (4.2)

for P-a.e. ω∈Ω, where c is independent of ε>0.
In addition, there exists K>0 such that

‖uεω,j‖L∞([0,T ]×Qε)≤K (1<j≤M) (4.3)

for P-a.e. ω∈Ω, uniformly with respect to ε>0.

Proof. Thanks to extension Lemma 2.4, the function uεω can be continued on all
[0,T ]×Q. Therefore we can repeat step by step the arguments of [15], Theorems 2.2
and 2.3, that in turn rely on [30] (see also [36] and [45]).

Therefore

Theorem 4.3 ( [15], Theorems 3.1. and 3.2). The sequence (∇xuεω,j)ε>0 (1≤ j≤M)

is bounded in L2([0,T ]×Qε) for P-a.e. ω∈Ω, uniformly in ε.
In addition, the sequence (∂tu

ε
ω,j)ε>0 (1≤ j≤M) is bounded in L2([0,T ]×Qε) for

P-a.e. ω∈Ω, uniformly in ε.

4.2. Proof of the main results. We now present the proof of our main
Theorem 1.1 (stated in Section 1.3), in which we use the solutions to system (1.5)-(1.7)
for a given ε>0 obtained in Theorem 4.1 and the (uniform w.r.t ε) a priori estimates of
Section 4.1, in order to perform the homogenization process corresponding to the limit
ε→0.

Proof. (Proof of Theorem 1.1.) In view of Theorems 4.2 and 4.3, the se-

quences (̃uεs)ε>0, ˜(∇xuεs)ε>0 and

(̃
∂uεs
∂t

)
ε>0

(1≤s≤M) are bounded in L2([0,T ]×Q).

Using Lemma 3.8, they two-scale converge, up to a subsequence, respectively, to:
[χG{ us(t,x)], [χG{(∇xus(t,x)+vs(t,x,ω))], [χG{∂tus(t,x)], where us∈L2(0,T ;H1(Q))
and vs∈L2([0,T ]×Q;L2

pot(Ω)). As test functions for homogenization, let us take

φε(t,x,ω) :=φ0(t,x)+εφ(t,x)ψ(τ x
ε
ω) (4.4)

where φ0,φ∈C1([0,T ]×Q) and ψ∈Ψ, with Ψ being the set of Remark 2.3.
In the case when s= 1, let us multiply the first equation of (1.5) by the test function

φε. Integrating, the divergence theorem yields∫ T

0

∫
Qε(ω)

∂uε1
∂t

φε(t,x,ω)dxdt+

∫ T

0

∫
Qε(ω)

〈
D1(t,x,τ x

ε
ω)∇xuε1,∇φε

〉
dxdt

+

∫ T

0

∫
Qε(ω)

uε1

M∑
j=1

a1,j u
ε
j φ

ε(t,x,ω)dxdt=ε

∫ T

0

∫
ΓεQ(ω)

η(t,x,τ x
ε
ω)φε(t,x,ω)dHm−1dt.

(4.5)
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Passing to the two-scale limit, as ε→0, we get, taking into account (2.14):∫ T

0

∫
Q

∫
Ω

χG{

∂u1

∂t
(t,x)φ0(t,x)dP(ω)dxdt

+

∫ T

0

∫
Q

∫
Ω

χG{D1(t,x,ω)[∇xu1(t,x)+v1(t,x,ω)]

·[∇xφ0(t,x)+φ(t,x)∇ωψ(ω)]dP(ω)dxdt

+

∫ T

0

∫
Q

∫
Ω

χG{u1(t,x)

M∑
j=1

a1,j uj(t,x)φ0(t,x)dP(ω)dxdt

=

∫ T

0

∫
Q

∫
Ω

χΓ
G{
η(t,x,ω)φ0(t,x)dµΓ,P(ω)dxdt. (4.6)

The term on the right-hand side follows from Equation (3.2). The last term on the
left-hand side of (4.6) has been obtained by observing that Eεuεj→uj strongly in

L2(0,T ;L2(Q)) (see Lemma 3.8) and that the two-scale convergence of uε1
2s
⇀χG{u1

implies weak convergence of uε1φ
ε(·, ·,ω)⇀u1φ0

∫
Ω
χG{dP(ω) in L2(0,T ;L2(Q)).

An integration by parts shows that (4.6) can be put in the strong form associated
with the following homogenized system:

−divω[D1(t,x,ω)(∇xu1(t,x)+v1(t,x,ω))] = 0 in [0,T ]×Q×G{ (4.7)

[D1(t,x,ω)(∇xu1(t,x)+v1(t,x,ω))] ·νΓ
G{

= 0 on [0,T ]×Q×ΓG{ (4.8)

θ
∂u1

∂t
(t,x)−divx

[∫
Ω

χG{D1(t,x,ω)(∇xu1(t,x)+v1(t,x,ω))dP(ω)

]
+θu1(t,x)

M∑
j=1

a1,j uj(t,x)−
∫

Ω

χΓ
G{
η(t,x,ω)dµΓ,P(ω) = 0 in [0,T ]×Q (4.9)

[∫
Ω

χG{D1(t,x,ω)(∇xu1(t,x)+v1(t,x,ω))dP(ω)

]
·n= 0 on [0,T ]×∂Q (4.10)

where

θ=

∫
Ω

χG{ dP(ω) =P(G{) (4.11)

represents the fraction of volume occupied by G{. To conclude, by continuity, we have
that

u1(0,x) =U1 inQ.

The function v1(t,x,ω), satisfying (4.7) and (4.8), can be expressed as follows

v1(t,x,ω) :=

m∑
i=1

wi(t,x,ω)
∂u1

∂xi
(t,x) (4.12)

where (wi)1≤i≤m∈L2([0,T ]×Q;L2
pot(G

{)) is the family of solutions of the microscopic
problem {

−divω[D1(t,x,ω)(wi(t,x,ω)+ êi)] = 0 inG{

D1(t,x,ω)[wi(t,x,ω)+ êi] ·νΓ
G{

= 0 on ΓG{

(4.13)
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and êi is the i-th unit vector of the canonical basis of Rm. The system (4.13) represents
the stochastic version of the “cell problem” defined in periodic homogenization [38]. By
using the relation (4.12) in Equations (4.9) and (4.10), we get

θ
∂u1

∂t
(t,x)−divx

[
D?

1(t,x)∇xu1(t,x)

]
+θu1(t,x)

M∑
j=1

a1,j uj(t,x)

−
∫

Ω

χΓ
G{
η(t,x,ω)dµΓ,P(ω) = 0 in [0,T ]×Q (4.14)

[D?
1∇xu1(t,x)] ·n= 0 on [0,T ]×∂Q (4.15)

where the entries of the matrix D?
1 (called “effective diffusivity”) are given by

(D?
1)ij(t,x) =

∫
Ω

χG{D1(t,x,ω)[wi(t,x,ω)+ êi] · [wj(t,x,ω)+ êj ]dP(ω). (4.16)

The proof for the case 1<s≤M is achieved by applying exactly the same arguments.

5. Final remarks
For several decades, aggregation properties of β-amyloid peptide (Aβ) have been

extensively explored both in vitro and in vivo, but in recent years there has been also an
increasing interest in mathematical modeling and computer simulations (the so-called
in silico approach). Although mathematical models cannot have a curative intent, they
are, undoubtedly, valuable tools to elucidate the mechanisms of a phenomenon and to
predict its future course, hopefully helping to develop new drugs. In neurodegenerative
misfolded protein-mediated diseases, the definition of models that explicitly account
for the different microscopic processes involved in the proteins aggregation mechanisms
must be considered to be of paramount importance. In fact, it has been suggested in [21]
that the failure of current therapies against Alzheimer’s disease should be attributed to a
limited understanding of the microscopic mechanisms (that is, on the molecular scale) by
which the tested compounds interact with different species of protein aggregates. On the
other hand, in vivo imaging techniques measure the progression of neurological diseases
on a large scale. Therefore, passing from microscopic to macroscopic models, that
account for the large-scale connectivity of the brain, is a natural route in the analysis
of physiological and pathological phenomena, since it corresponds to the transition
from cell-based modeling approaches to descriptions in terms of macroscopic averaged
quantities, about which clinical data exists.

In this setting, a mathematical model which resolves small scales should be defined
on a probabilistic ground due to the huge number of cells involved (the human brain
contains about 100 billion neurons) and the stochastic nature of the processes charac-
terizing the disease. The theory of stochastic homogenization provides suitable tools
to average out the complicated random small scale features of a model, leading to a
description in terms of macroscopic effective parameters. Although the first results in
stochastic homogenization have already been obtained in the 70’s and 80’s for linear
elliptic equations and convex functionals [11,12,29,37], the theory is still less developed
than in the periodic case and it is the subject of recent studies related to, for example,
error estimates and regularity properties [3,16–18]. In the stochastic setting, the notion
of two-scale convergence has been introduced and developed in [8, 22, 47] and it has
been used in recent years to address a variety of applicative problems [23, 24, 26]. This
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technique has its roots in the original method proposed by Papanicolaou and Varad-
han [37], which is related to the asymptotic expansion and Tartar’s method for periodic
homogenization [42]. The periodic homogenization can be recovered in the stochastic
frame considering Ω = [0,1)m with τxω=x+ω mod [0,1)m. The method of asymptotic
expansion for the solution of a model equation is a powerful but formal method (these
perturbative techniques are described in great detail in the book by Pavliotis and Stu-
art [38]). It is often applied only to guess the form of the homogenized equation, while
the energy method of Tartar is commonly used for the rigorous proof of convergence [42].
But this way of proceeding is not entirely satisfactory since it involves two different steps:
the formal derivation of the homogenized equation and the proof of convergence. The
method of two-scale convergence, introduced in 1989 by Nguetseng [35] and further de-
veloped by Allaire in 1992 [2], combines these two steps into a single one and enables
us to justify mathematically the formal asymptotic development. Indeed, it turns out
that the two-scale homogenized problem is equivalent to the homogenized system along
with the cell problem obtained by the asymptotic expansion technique [2]. Due to the
strong similarity of the asymptotic expansion and Tartar’s method as they appear in
the original periodic frame and in the work of Papanicolaou and Varadhan [37], the the-
ory of two-scale convergence can be extended from the periodic [2,35] to the stochastic
setting [47].

In two previous papers [14, 15], the asymptotic behavior of the solution of a set
of Smoluchowski’s discrete diffusion-coagulation equations with non-homogeneous Neu-
mann boundary conditions, defined in a periodically perforated domain, has been an-
alyzed by means of the method of two-scale convergence. In particular, in [14] it has
been assumed that the clusters of β-amyloid peptide (Aβ) can diffuse in space with a
constant diffusion coefficient (which depends on their size), while in [15] it has been
analyzed a more general anisotropic diffusion process described by a matrix with non-
constant coefficients. To make the model more realistic, in the present paper we have
chosen to resort to a stochastic parametrization of the problem, that is, we have studied
the limiting behavior of the system of nonlinear Smoluchowski’s coagulation equations
with non-homogeneous Neumann boundary conditions, where the randomness appears
in the coefficients of the equations as well as in the geometry of the domain. In par-
ticular, our main result (Theorem 1.1) shows that, when the characteristic size of the
randomly distributed neurons (represented by the holes of the perforated domain) van-
ishes, the solution of the stochastic micromodel two-scale converges to the solution of
a deterministic macromodel, asymptotically consistent with the original one. Indeed,
the information on the random production of β-amyloid peptide by the malfunction-
ing neurons, described at the microscopic level through a non-homogeneous Neumann
condition on the boundary of the holes, is transferred, at the macroscale, into a de-
terministic source term, appearing in the limiting (homogenized) evolution equation
for the concentration of monomers. Furthermore, on the macroscale, the geometric
structure of the perforated domain induces a correction in that, the random diffusion
coefficients for the amyloid aggregates, defined at the microscale, are replaced by an
effective deterministic diffusivity.

Since the homogenization results presented in [14,15] are based on Nguetseng-Allaire
two-scale convergence method, it seemed natural in the present paper to analyze the
probabilistic generalization of the previous models by means of the stochastic exten-
sion of this technique [47]. But this was not the only possible choice. The lack of
periodicity in the model equations can be taken into account by resorting to a class
of stochastic partial differential equations driven by a white noise [7, 38, 44]. On one
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side, the approach presented in [38] relies on appropriate perturbation expansions and
convergence theorems derived in analogy with what is done in periodic homogenization.
The formal structure of the cell problems reads similar to that obtained by using the
stochastic two-scale convergence method, but the range of application is disjoint from
the stationary ergodic setting considered in our approach. In particular, the probability
space (Ω) does not have, in general, the algebraic structure needed to set up a stochastic
differential equation on Ω. Hence, the methods complement each other in their range
of application. On the other side, a further approach consists in considering stochastic
partial differential equations (SPDE) where the randomness of the coefficients and/or
of the boundary conditions is taken into account by a white noise random perturbation
in a periodic homogenization setting [7, 44]. In this framework, compactness results do
not hold due to the appearance of the stochastic term (white noise) in the microscopic
system [7, 44]. Therefore, one possibility is to homogenize the stochastic model in the
sense of probability. This means that, the solution of the microscopic system converges
to that of the macroscopic or homogenized system in probability distribution [7, 44].
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Appendix. We review some basic results on the realization of random domains
based on continuum percolation theory [33].

6.1. Stationary ergodic point processes. Since in percolation theory, ran-
dom modeling is based on the occurrences of stationary point processes, in this section,
we state their definition and some basic properties [10].

Definition 6.1. Denote the σ-algebra of Borel sets in Rm by Bm.

(i) A Borel measure µ on Rm is boundedly finite if µ(A)<∞ for every bounded
Borel set A.

(ii) Let N be the space of all boundedly finite integer-valued measures on Bm, called
counting measures for short.

Proposition 6.1. A boundedly finite measure X on Bm is a counting measure (i.e.,
X ∈N) if and only if

X=
∑
i

kiδxi , (6.1)

where ki are positive integers and {xi} is a countable set with at most finitely many xi
in any bounded Borel set. In Equation (6.1) we use Dirac measures defined for every
xi∈Rm by

δxi(A) =

{
1 if xi∈A,

0 otherwise.
(6.2)
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We equip N with the σ-algebra N generated by sets of the form

{X ∈N : X(A) =k}

where A∈Bm and k is an integer. We finally introduce N∗ the set of all counting
measures such that for all i∈N it holds that ki= 1 in (6.1).

Definition 6.2. A point process X on state space Rm is a measurable mapping from
a probability space (Ω,F ,P) into (N,N ). It is called simple if X(ω)∈N∗ a.s.. The
distribution of X is the measure µ on N induced by X, i.e.

µ(G) =P(X−1(G)), for all G∈N . (6.3)

The notation of Definition 6.2 is intended to imply that with every sample point
ω∈Ω, we associate a particular realization that is a boundedly finite integer-valued
Borel measure on Rm. We denote it by X(·,ω) or just X(·) (when we have no need to
draw attention to the underlying spaces). A realization of a point process X has the
value X(A,ω) (or just X(A)) on the Borel set A∈Bm. For each fixed A, XA≡X(A,·)
is a function mapping Ω into R+, and thus it is a candidate for a nonnegative random
variable, as it is shown in the following proposition.

Proposition 6.2. Let X be a mapping from a probability space into N and A a
semiring of bounded Borel sets generating Bm. Then X is a point process if and only if
XA is a random variable for each A∈A.

Taking forA the semiring of all bounded sets in Bm we obtain the following corollary.

Corollary 6.1. X : Ω 7→N is a point process if and only if X(A) is a random variable
for each bounded A∈Bm.

We now consider invariance properties with respect to translations (or shifts). Let
Tt be the translation in Rm over the vector t: Tt(s) = t+s, for all s∈Rm. Then Tt
induces a transformation

St :N→N

through the relation

(Stn)(A) =n(T−1
t (A))

for all A∈Bm. It is easy to verify that (St)t∈Rm form a group.

Definition 6.3. The point process X is said to be stationary if

∀G∈N µ
(
S−1
t (G)

)
=µ(G). (6.4)

In other words, a process is stationary if for every A⊂Rm, the distribution of n(A) is
invariant under shifts t+A. This can be interpreted that n∈N has the same probability
as all its shifts Stn.

Since P induces a probability measure µ on (N,N ) via (6.3), it is convenient to
replace the space (Ω,F ,P) by (N,N ,µ) and to relabel formally (Ω,F ,P) := (N,N ,µ) so
that any element ω∈Ω represents a counting measure in Rm. Identifying τx :=Sx, by
(6.4) we now have a measure-preserving (m.p.) dynamical system (Ω,F ,µ,τx).

Definition 6.4. A stationary point process µ is said to be ergodic if {τx :x∈Rm}
acts ergodically on (Ω,F ,µ) in the sense of Definition 2.2.
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6.2. Percolation theory and random modeling. The continuum percola-
tion theory provides a general setting for the realization of random domains. In this
framework, two common models are the Boolean model and the random-connection
model.

6.2.1. The Boolean model. The Boolean model is driven by some stationary
point process X. Each point of X is the centre of a closed ball (in the usual Euclidean
metric) with a random radius in such a way that radii corresponding to different points
are independent of each other and identically distributed. The radii are also independent
of X. Additionally, we want the resulting random model to be stationary. In order to
assign independent random values to the radii, we partition Rm into binary cubes

K(n,z) :=
m∏
i=1

[zi2
−n,(zi+1)2−n]

for all n∈N and z∈Zm. We call this a binary cube of order n. Each point x∈X is
contained in a unique binary cube of order n, K(n,z(n,x)) and for each point x∈X
there is a unique smallest number n0 =n0(x) such that K(n0,z(n0,x)) contains no other
points of X (recall that X is locally finite). We assign to each point x∈X a random
value in [0,∞) in the following way: For a probability measure P0 on [0,∞) we define

Ω2 :=
∏
n∈N

∏
z∈Zm

[0,∞)

with the corresponding product σ-algebra and product measure P2 :=PN×Zm

0 . Denoting
by ω2∈Ω2 the elements of Ω2 we assign to each cube K(n,z) the value ω2(n,z) and to
every x∈X the radius r=ω2(n0,z(n0,x)).

We now set Ω = Ω1×Ω2 and equip Ω with product measure P=P1×P2 and the
usual product σ-algebra. A Boolean model is a measurable mapping from Ω into N×Ω2.

The product structure of Ω implies that the radii are independent of the point
process, and the product structure of Ω2 implies that different points have balls with
independent, identically distributed radii.

Let the unit vectors in Rm be denoted by e1,. ..,em. The translation Tei :Rm→Rm

defined by: x→x+ei induces a transformation Uei on Ω2 through the equation

(Ueiω2)(n,z) =ω2(n,z−2nei). (6.5)

As before, Sei is defined on Ω1 via the equation

(Seiω1)(A) =ω1(T−1
ei A). (6.6)

Hence, Tei induces a transformation T̃ei on Ω = Ω1×Ω2 defined by

T̃ei(ω) = (Seiω1,Ueiω2). (6.7)

The transformation T̃ei corresponds to a translation by the vector ei of a configuration
of balls in space. The Boolean model is now stationary in the sense that P is shift

invariant w.r.t.
(
T̃x

)
x∈Zm

. If we replace Ω2 by Ω2× [0,1)m as in Sections 2.6 and

3.2 of [23] we can construct a family of mappings (τx)x∈Rm on Ω such that we have
stationarity of P w.r.t. τx.
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6.2.2. The random-connection model. As in Boolean models, a stationary
point process X is the first characteristic of the random-connection model (RCM) and
it assigns points randomly in the space. The second characteristic of the model is a
so-called connection function, which is a non-increasing function from the positive reals
into [0,1]. Given a connection function g, the rule is as follows: For any two points x1

and x2 of the point process X, we insert an edge between x1 and x2 with probability
g(|x1−x2|), independently of all other pairs of points of X, where | · | denotes the usual
Euclidean distance. The formal mathematical construction of a random-connection
model is quite similar to the one of a Boolean model. First we assume that the point
process X is defined on a probability space (Ω1,F1,P1). Next we consider a second
probability space Ω2 defined as

Ω2 =
∏

{K(n,z),K(m,z′)}

[0,1]

where the product is over all unordered pairs of binary cubes. An element ω2∈Ω2 is
written as ω2({(n,z),(m,z′)}). We equip Ω2 with product measure P2. As before, we set
Ω = Ω1×Ω2 and we equip Ω with product measure P= P1×P2. A random-connection
model is a measurable mapping from Ω into N×Ω2 defined by

(ω1,ω2)→ (X(ω1),ω2).

The realisation corresponding to (ω1,ω2) is obtained as follows: For any two points x and
y of X(ω1), consider the binary cubes K(n0(x),z(n0(x),x)) and K(n0(y),z(n0(y),y)).
We connect x and y if and only if

ω2({(n0(x),z(n0(x),x)),(n0(y),z(n0(y),y))})<g(|x−y|).

The dynamical system can be constructed similar to the Boolean model.

6.2.3. The Poisson process. Usually, both the Boolean and the random-
connection models are based on occurrences of the Poisson point process.

Definition 6.5. The point process X is said to be a Poisson process with density
λ>0 if (i) and (ii) below are satisfied:

(i) For mutually disjoint Borel sets A1,. ..,Ak, the random variables
X(A1),. ..,X(Ak) are mutually independent.

(ii) For any bounded Borel set A∈Bm we have for every k≥0

P(X(A) =k) =e−λL(A) λ
kL(A)k

k!
(6.8)

where L(·) denotes Lebesgue measure in Rm.

Equation (6.8) represents the probability that the number of points inside a bounded
Borel set A equals k. Condition (ii) guarantees that a Poisson process is stationary.
Furthermore, one can prove [33]:

Proposition 6.3. A Poisson point process is ergodic.

The following result shows that ergodicity of a point process carries over to a
Boolean model or to a random-connection model driven by that process [33].

Proposition 6.4. Suppose X is ergodic. Then, any Boolean model or random-
connection model driven by X is also ergodic.
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6.3. Realization of random perforated structures. In Section 2.2, we have
stated the main assumptions that our perforated domain should satisfy. We have also
stressed how a random spherical structure can provide a rather realistic description of
neurons in the cerebral tissue. Unfortunately, a Boolean model driven by the Poisson
point process allows, in general, the perforations (i.e. the balls) to be generated arbi-
trarily close to each other so as to form large connected clusters and small angles. In
this case Assumption 2.2 no longer holds and our method fails.

One way to construct domains in which the balls are non-intersecting and have a
minimal positive distance between them is to combine the Boolean and the random-
connection model as follows. This procedure is known as Matern process (see [10],
Example 10.4(d)). Let us consider a random-connection model driven by a Poisson
process and applied on a bounded region of Rm. Two points are connected with prob-
ability 1 if they have distance less than some constant d0. All connected points are
then deleted from the process. In case of the Poisson process this means that a point
is deleted with probability 1−exp(−λd0), where λ is the intensity of the point pro-
cess. Every remaining point will be assigned as the center of a ball of random radius
ρ(ω)< d0

2 . For simplicity, in our analysis we will consider balls with the same constant

radius r0<
d0
2 . According to this construction, we obtain a domain randomly perforated

with balls of the same radius and with minimal distance between them, which satisfies
all the assumptions stated in Section 2.2. In particular, let G(ω) be the union of such
random spheres, then our randomly perforated domain can be defined as

Q(ω) =Rm \G(ω). (6.9)
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