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GLOBAL WEAK SOLUTIONS TO
INVISCID BURGERS-VLASOV EQUATIONS∗

HUIMIN YU† AND WENTAO CAO‡

Abstract. In this paper, we consider the existence of global weak solutions to a one dimensional
fluid-particles interaction model: inviscid Burgers-Vlasov equations with fluid velocity in L∞ and
particles’ probability density in L1. Our weak solution is also an entropy solution to inviscid Burgers’
equation. The approach is to ingeniously add artificial viscosity to construct approximate solutions
satisfying L∞ compensated compactness framework and weak L1 compactness framework. It is worthy
to be pointed out that the bounds of fluid velocity and the kinetic energy of particles’ probability
density are both independent of time.
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1. Introduction
We consider the following inviscid Burgers-Vlasov equations:ut+uux=

∫
R
fvdv−u

∫
R
fdv,

ft+vfx+(f(u−v))v = 0,
(1.1)

with the initial data

u(x,0) =u0(x), f(x,v,0) =f0(x,v)≥0. (1.2)

The system (1.1) is one kind of simple model about inviscid fluid-particles interaction.
The motion of the fluid with bulk velocity u(x,t) is modeled by the inviscid Burgers
equation, while the dispersed particles with probability density function f(x,v,t) is
described by a Vlasov-like equation. The interaction between the fluid and the dispersed
particles is achieved by a friction term between the bulk velocity of fluid and velocity
of the dispersed particles, namely the drag force term

∫
Rf(v−u)dv.

For related fluid-structure models, we shall first mention the following diffusive
system, Burgers-Vlasov equations:{

ρg(ut+uux−νguxx) =Ed,
ft+vfx+(Fdf)v = 0,

(1.3)

in which a dispersed phase interacts with a viscous gas. Here ρg is the density of gas.
The force term Ed describes the exchange of impulse between the gas and particles, and
the drag force Fd is used to describe the friction of viscous gas on the droplets. The
force terms are related by the following formulas:

Ed=C(r)ρp(up−u), Fd=C(r)(u(x,t)−v),
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ρp=
4π

3
ρlr

3

∫
R
f(x,v,t)dv, ρpup=

4π

3
ρlr

3

∫
R
f(x,v,t)vdv. (1.4)

In (1.4), ρl is the density of the liquid and C(r) is a constant depending on the radius
r of droplets in the spray consisting of dispersed particles. After assuming that the gas
is of constant mass density ρg and simplifying the momentum equation of the gas, the
Burgers’ equation, i.e. the first equation in (1.3), is utilized to model the evolution of
the viscous gas. Further assuming the spray is of enough dilution and neglecting gravity
effect, a Vlasov-like equation, i.e. the second equation in (1.3), is then applied to gov-
ern the evolution of the particles. Other detailed information about the derivations and
assumptions on (1.3) can also be found in [10,12,28]. For the mathematical analysis of
(1.3), as far as we know, the first global existence and uniqueness of classical solutions to
the Cauchy problem has been considered in [10], in which the Burgers-Vlasov equations
are equipped with regular and compactly supported initial data. Meanwhile, the sta-
bility of travelling waves are also considered. When the initial data is less regular than
that in [10], the global existence and uniqueness of finite energy solutions are proved
in [12]. The second related simpler 1-D model on fluid-structure interaction{

ut+uux=λ(h′(t)−u(t,h(t)))δh(t),

mh′′(t) =−λ(h′(t)−u(t,h(t))),
(1.5)

is also considered in [19], where u is the velocity of the inviscid fluid and h(t) is the
location of the particles. λ is the positive friction constant and δh(t) is the Dirac
measure at h(t). Global entropy weak solutions involving shock waves to the system
(1.5) are obtained in [19]. There are also some other fluid-kinetic models: com-
pressible/incompressible Euler/Navier-Stokes equations coupled with Vlasov/Vlasov-
Fokker-Planck equations. Weak solutions or classical solution close to the equilibrium
are studied in [20, 22, 25, 26, 29]. Some asymptotic problems such as hydrodynamic
limit/stratified limit of viscous Burgers-Vlasov equation and Euler/Navier-Stokes equa-
tions coupling with Vlasov equation are also considered in [3, 12–16,21,24].

In this paper, we investigate the existence of global weak solutions to the Cauchy
problem (1.1)-(1.2). Since the derivation of the model in [9] is in 1D, and as far as the
authors know, references on 2D or 3D cases are not found for such model, we consider
the 1D invisid Burgers-Vlasov equations. Comparing with the diffusive system (1.3),
without viscosity term, shock wave may exist when the initial data are given arbitrarily
large. Hence we consider the entropy weak solutions to inviscid Burgers’ equation.
Because of the nonlocal source term in the Burgers’ equation, we require the solution of
the Vlasov equation be of finite kinetic energy. Consequently, we define L∞−L1 weak
solution to (1.1).

Definition 1.1. For any fixed T ∈ (0,∞), a pair of functions u :R× [0,T ]→R, f :
R2× [0,T ]→ [0,∞) is called a global L∞−L1 weak solution of Cauchy problem (1.1)-
(1.2) if the following statements hold:

(1) u(x,t)∈L∞(R× [0,T ]) and f(x,v,t)∈L∞([0,T ],(1+v2)L1(R2)).

(2) u(x,t) is an entropy solution to Burgers’ equation, i.e. for any φ∈C1
c (R×

[0,T )),∫
R
φ(x,0)u0(x)dx+

∫ T

0

∫
R

(
uφt+

1

2
u2φx+φ

∫
R
f(v−u)dv

)
dxdt= 0, (1.6)
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and for any convex entropy pair (η,q) the following entropy inequality

η(u)t+q(u)x+η′(u)

∫
R
f(u−v)dv≤0 (1.7)

holds in the sense of distributions, where (η,q) satisfies η′(u)u= q′(u) and η(u)
is convex with respect to u.

(3) f(x,v,t) is a weak solution to Vlasov equation, i.e. for any ψ∈C1
c (R2× [0,T )),∫

R

∫
R
ψ(x,v,0)f0(x,v)dxdv+

∫ T

0

∫
R

∫
R

(fψt+vfψx+ψvf(u−v))dvdxdt= 0.

(1.8)

Now we are ready to state our main result.

Theorem 1.1 (Main Theorem). Let initial data (u0,f0) satisfy

‖u0(x)‖L∞(R) +‖(1+v2)f0(x,v)‖L1(R2)≤M0 (1.9)

for some positive constant M0. Then there exists a global L∞−L1 weak solution to
(1.1)-(1.2) in the sense of Definition 1.1 and there is a constant M depending solely on
M0 such that

‖u(x,t)‖L∞(R×[0,T ]) +‖(1+v2)f(x,v,t)‖L∞([0,T ],L1(R2))≤M. (1.10)

Hereafter, M denotes the constant depending only on M0 and it may vary from line to
line.

Remark 1.1. Our uniform bounds of velocity ‖u‖L∞ and kinetic energy of Vlasov
equation

∫
R
∫
Rf(1+v2)dvdx are both independent of time T.

Our strategy of proving Theorem 1.1 is to construct approximate solutions by adding
artificial viscosity to Burgers equation technically and regard the nonlocal term

∫
Rf(v−

u)dv as a dissipative source term in some sense. Maximum principles of parabolic
equation and transport equation are applied to establish the uniform bound. Besides,
in order to get the uniform estimates (also be independent of time T ) of approximate
viscosity solution uε , we add some novel viscosity term and choose a special control
function. In proving almost everywhere convergence of uε, we employ L∞ compensated
compactness framework. More information about compensated compactness framework
of Lp or L∞ space can be found in [6–8,11,23] and the references therein. On the other
hand, to show the weak L1 convergence of fε, we apply Dunford-Pettis theorem and
analyze kinetic energy of fε and evolution of sets. In the proof, we also came across the
difficulty on the weak convergence of

∫
vfεdv, which is overcome again by applying the

uniform bound of kinetic energy.

To be concise, in the present paper, we use
∫

instead of
∫
R. C(·) denotes constant

depending on the parameters in the bracket. The rest of the paper is organised as
follows. Section 2 is devoted to construct approximate solutions and prove their global
existence. The proof of Theorem 1.1 is given in Section 3.

2. Approximate solutions

In this section, we construct the globally existing approximate solutions to problem
(1.1)-(1.2) by adding artificial viscosity and choosing the initial data technically. That
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is, we consider the approximate problemuεt +uεuεx=εuεxx+ε

(∫
fεdv

)
x

+

∫
fεvdv−uε

∫
fεdv,

fεt +vfεx+(fε(uε−v))v = 0,
(2.1)

and the carefully selected initial data

uε(x,0) =uε0(x) =u0(x)∗jε(x),

fε(x,v,0) =fε0 (x,v) =
[
min{ε−1/6, f0(x,v)1{|x|+|v|≤ε−1/6}}

]
∗jε(x)∗jε(v)≥0, (2.2)

where jε is the standard one-dimensional mollifier with parameter ε. The initial data
here is chosen to make fε be of explicit ε-depending compact support and L∞ bound for
later use. Our idea of adding the above viscosity is based on the following reasons. As
is known, linear transport equation preserves the regularity of initial data and inviscid
Burgers’ equation may formulate shock wave. Thus we add parabolic viscosity term to
Burgers’ equation only. Moreover, to gain the uniform bound of uε, we not only make
full use of Vlasov equation and flux term in Burgers equation but also carefully choose
control function. The viscosity term ε(

∫
Rf

εdv)x is introduced due to derivatives of our
control function.

For any σ∈ (0,1), we use C2+σ(R2× [0,T ]) and C2+σ,1+σ
2 (R× [0,T ]) to denote usual

and parabolic Hölder spaces respectively. We now would like to consider the global
existence and uniqueness of smooth solutions (uε,fε) to the Cauchy problem (2.1)-(2.2)
with uε(x,t)∈C2+σ,1+σ

2 (R× [0,T ]), 0≤fε(x,v,t)∈C2+σ(R2× [0,T ]). For simplicity, in
this section, the superscript ε in uε and fε will be dropped.

2.1. Local existence. We first consider the local existence of smooth solution
of the Cauchy problem (2.1)-(2.2). Let

G(x,t) =

{
δ(x), t= 0,

1√
4πεt

e
−x2
4εt , t>0,

denote the kernel of the homogeneous heat equation ut=εuxx. Then from the Burgers’
equation, i.e. the first equation in (2.1), Duhamel principle tells us

u(x,t) =

∫
G(x−y,t)u0(y)dy+

∫ t

0

∫
G(x−y,t−s)

(∫
fvdv−u

∫
fdv

)
(y,s)dyds

+

∫ t

0

∫
G(x−y,t−s)

(
ε

∫
fdv− 1

2
u2

)
y

(y,s)dyds.

Integrating by parts gives

u(x,t) =

∫
G(x−y,t)u0(y)dy+

∫ t

0

∫
G(x−y,t−s)

(∫
fvdv−u

∫
fdv

)
(y,s)dyds

+

∫ t

0

∫
Gy(x−y,t−s)

(
ε

∫
fdv− 1

2
u2

)
(y,s)dyds, (2.3)

which implicitly gives the solution to the Burgers’ equation. For the Vlasov equation,
i.e. the second equation in (2.1), we rewrite it as

ft+vfx+(u−v)fv =f,
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which is a transport equation. One can integrate along the backward characteristic
curves

d

ds
X(s;x,v,t) =V (s;x,v,t), X(t;x,v,t) =x, (2.4)

d

ds
V (s;x,v,t) =u(X(s;x,v,t),s)−V (s;x,v,t), V (t;x,v,t) =v, (2.5)

to get

f(x,v,t) =f0(X(0;x,v,t),V (0;x,v,t))et. (2.6)

Note that for smooth u, the system of (2.4) and (2.5) has a unique smooth solution
(X(s;x,v,t),V (s;x,v,t)) :

X(s;x,v,t) =x+

∫ s

t

V (τ ;x,v,t)dτ, (2.7)

V (s;x,v,t) =vet−s+

∫ s

t

eτ−su(X(τ ;x,v,t),τ)dτ. (2.8)

Hence, from (2.3) and (2.6) we construct the approximate solutions of (2.1) in the
following way. Set u(0) =uε0,f

(0) =fε0 , then there exists a K=C(ε,M0) such that for
any t>0

‖u(0)‖
C2+σ,1+σ

2 (R×[0,t])
≤K, ‖f (0)‖C2+σ(R2×[0,t])≤K, |suppf (0)|≤K,

where we used the definition

|suppf |= max{|x|, |v| :f(x,v, ·)>0}.

For k≥1, we define

u(k)(x,t) =

∫
G(x−y,t)u0(y)dy

+

∫ t

0

∫
G(x−y,t−s)

(∫
f (k−1)vdv−u(k−1)

∫
f (k−1)dv

)
(y,s)dyds

+

∫ t

0

∫
Gy(x−y,t−s)

(
ε

∫
f (k−1)dv− 1

2
(u(k−1))2

)
(y,s)dyds,

and

f (k)(x,v,t) =f0(X(k)(0;x,v,t),V (k)(0;x,v,t))et,

where (X(k)(s;x,v,t),V (k)(s;x,v,t)) is defined using (2.4) and (2.5) as

d

ds
X(k)(s;x,v,t) =V (k)(s;x,v,t),

X(k)(t;x,v,t) =x,

d

ds
V (k)(s;x,v,t) =u(k−1)(X(k)(s;x,v,t),s)−V (k)(s;x,v,t),

V (k)(t;x,v,t) =v,
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and (x,v)∈ suppf (k). It is easy to see that (X(k),V (k)) is well-defined. Thus f (k) and u(k)

make sense. Besides, one can also see that (u(k),f (k)) solves the following approximate
equationsu

(k)
t +u(k−1)u(k−1)

x =εu(k)
xx +ε

(∫
f (k−1)dv

)
x

+

∫
f (k−1)vdv−u(k−1)

∫
f (k−1)dv,

f
(k)
t +vf (k)

x +(u(k−1)−v)f (k)
v =f (k),

(2.9)
Obviously, from (2.2), for any (x,v)∈ suppf (1),

|X(1)(0;x,v,t)|+ |V (1)(0;x,v,t)|≤ε−1/6.

Using (2.7), (2.8) and the bound of u(0), we have

|v|≤|V (1)(0;x,v,t)e−t|+
∣∣∣∣∫ t

0

eτ−tu(0)(X(1)(τ ;x,v,t),τ)dτ

∣∣∣∣≤ε−1/6 +K≤2K,

|x|≤|X(1)(0;x,v,t)|+
∣∣∣∣∫ t

0

V (1)(τ ;x,v,t)dτ

∣∣∣∣≤ε−1/6 +3Ktet≤2K,

provided t is sufficiently small, where we have used the fact that

|V (1)(s;x,v,t)|≤|vet−s|+
∣∣∣∣∫ s

t

eτ−su(0)(X(1)(τ ;x,v,t),τ)dτ

∣∣∣∣
≤et(2K+‖u(0)‖L∞)≤3Ket, for 0≤s≤ t.

Thus |suppf (1)|≤2K. Moreover, we have the following conclusion.

Lemma 2.1. There exists a small t0>0 such that the sequence {(u(k),f (k))}k≥0

constructed above is a contraction sequence in

S(t) ={(u,f)|‖u‖
C2+σ,1+σ

2 (R×[0,t])
≤2K, ‖f‖C2+σ(R2×[0,t])≤2K, |suppf |≤2K}

for all t∈ (0,t0).

Proof. It is easy to see that (u(0),f (0))∈S(t). Suppose that for k≥1,
(u(k−1),f (k−1)) has been shown in S(t). We then estimate (u(k),f (k)).

Taking derivatives with respect to x, one has for `= 0,1,2,

∂`xu
(k)(x,t) =

∫
∂`xG(x−y,t)u0(y)dy

+

∫ t

0

∫
∂`xG(x−y,t−s)

(∫
f (k−1)vdv−u(k−1)

∫
f (k−1)dv

)
(y,s)dyds

+

∫ t

0

∫
∂`xGy(x−y,t−s)

(
ε

∫
f (k−1)dv− 1

2
(u(k−1))2

)
(y,s)dyds.

Using the symmetry of G(x−y), one further has

∂`xu
(k)(x,t) =

∫
∂`xG(x−y,t)u0(y)dy

+

∫ t

0

∫
(−1)`∂`yG(x−y,t−s)

(∫
f (k−1)vdv−u(k−1)

∫
f (k−1)dv

)
(y,s)dyds
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+

∫ t

0

∫
(−1)`∂`yGy(x−y,t−s)

(
ε

∫
f (k−1)dv− 1

2
(u(k−1))2

)
(y,s)dyds.

Integration by parts gives

∂`xu
(k)(x,t) =

∫
G(x−y,t)∂`yu0(y)dy

+

∫ t

0

∫
G(x−y,t−s)

(
∂`y

∫
f (k−1)vdv

)
(y,s)dyds

−
∫ t

0

∫
G(x−y,t−s)∂`y

(
u(k−1)

∫
f (k−1)dv

)
(y,s)dyds

+

∫ t

0

∫
Gy(x−y,t−s)∂`y

(
ε

∫
f (k−1)dv

)
(y,s)dyds,

−
∫ t

0

∫
Gy(x−y,t−s)∂`y

(
1

2
(u(k−1))2

)
(y,s)dyds.

For any (x,v)∈ suppf (k), t<t1�1, one has

|X(k)(0;x,v,t)|+ |V (k)(0;x,v,t)|≤ε−1/6,

and

|v|≤ |V (k)(0;x,v,t)e−t|+
∣∣∣∣∫ t

0

eτ−tu(k−1)(X(k)(τ ;x,v,t),τ)dτ

∣∣∣∣≤K+2Kt≤2K,

|V (k)(s;x,v,t)|≤ |vet−s|+ |
∫ s

t

eτ−su(k−1)(X(k)(τ ;x,v,t),τ)dτ |≤4etK≤6K,

|x|≤ |X(k)(0;x,v,t)|+
∣∣∣∣∫ t

0

V (k)(τ ;x,v,t)dτ

∣∣∣∣≤K+4Ktet≤2K

|X(k)(s;x,v,t)|≤ |x|+ t|V (k)(s;x,v,t)|≤2K+4tetK≤6K

Thus

|suppf (k)|≤2K. (2.10)

Noticing the estimates of heat kernel∫
G(x,t)dx= 1,

∫
|Gx(x,t)|dx≤ C√

εt
,

using the bound of suppf (k−1), one has

‖u(k)(·,t)‖C2(R)≤K+C(ε,K)(t+
√
t),

then further gets

‖u(k)‖
C2+σ,1+σ

2 (R×[0,t])
≤K+C(ε,K)(t+

√
t)≤2K, (2.11)

provided t<t2�1.
For the estimates of f (k) and for any 0≤|α|≤2, taking derivatives one has

(∂αf (k))t+v(∂αf (k))x+(u(k−1)−v)(∂αf (k))v =B(α)∂αf (k) +B(α′), (2.12)
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where ∂α denotes the mixed derivatives of x,v and t with order |α|, B(α) is a linear

function of v and ∂βx,tu
(k−1), with |β|≤ |α| and B(α′) is a linear combination of ∂α

′
f (k)

with |α′|< |α|, whose coefficients are linear functions of v and ∂βx,tu
(k−1), with |β|≤ |α|.

Integrating (2.12) along the characteristic curves (X(k),V (k)), one has

∂αfk =(∂αf0)(X(k),V (k))e
∫ t
0
B(α)(X(k),V (k))dτ

+

∫ t

0

e
∫ t
τ
B(α)(X(k),V (k))dsB(α′)(X(k),V (k))dτ,

which then implies

‖f (k)‖C2(R2×[0,t])≤KetC(ε,K) +C(ε,K)teC(ε,K)t≤2K.

We further gain the following Hölder estimate

‖f (k)‖C2+σ(R2×[0,t])≤2K, (2.13)

provided t<t3�1. Hence from (2.10), (2.11) and (2.13), one has

(u(k),f (k))∈S(t).

Moreover, consider the equation for u(k)−u(k−1) and f (k)−f (k−1), similar to the above
calculation, we get

‖u(k+1)−u(k)‖
C2+σ,1+σ

2 (R×[0,t])
≤C(ε,K)t‖u(k)−u(k−1)‖

C2+σ,1+σ
2 (R×[0,t])

≤1

2
‖u(k)−u(k−1)‖

C2+σ,1+σ
2 (R×[0,t])

‖f (k+1)−f (k)‖C2+σ(R2×[0,t])≤C(ε,K)(et−1)‖f (k)−f (k−1)‖C2+σ(R2×[0,t])

≤1

2
‖f (k)−f (k−1)‖C2+σ(R2×[0,t]),

provided t<t4�1. Let t0 = min{ti,i= 1, ·· · ,4}. Then we gain (u(k),f (k)) is a contrac-
tion sequence in S(t) with t∈ (0,t0) and end the proof.

Applying fixed-point theorem to (u(k),f (k)), combining with Lemma 2.1, one gains
that there exists a pair of functions (u,f) such that

u(k)→u in C2+σ,1+σ
2 (R× [0,t0]),

f (k)→f in C2+σ(R2× [0,t0]),

and (u,f) is the unique smooth solution of Cauchy problem (2.1)-(2.2) by taking limit
in (2.9).

2.2. Uniform estimates. We will apply maximum principles of parabolic
equation and transport equation to bound ‖u‖L∞(R×[0,T ]) and ‖f‖L∞([0,T ],(1+v2)L1(R2)).

Lemma 2.2. For the approximate solutions constructed above, there exists a constant
M depending only on M0 such that (1.10) holds for (uε,fε).

Proof. Obviously, from (2.2) and (2.6) one has f(x,v,t)≥0. For any (x,v)∈ suppf,
by (2.2) and (2.8), one has

|v|≤|V (0;x,v,t)e−t|+
∣∣∣∣∫ t

0

eτ−tu(X(τ ;x,v,t),τ)dτ

∣∣∣∣



H. YU AND W. CAO 1095

≤ε−1/6 + Ĉ(ε,M0,T ), (2.14)

after a priori assuming

‖u‖L∞ ≤ Ĉ(ε,M0,T ) for some large enough Ĉ(ε,M0,T ).

Besides,

|x|≤|X(0;x,v,t)|+
∣∣∣∣∫ t

0

V (τ ;x,v,t)dτ

∣∣∣∣
≤ε−1/6 +(2Ĉ(ε,M0,T )+ε−1/6)TeT . (2.15)

Hence by (2.14)-(2.15), f enjoys compact support (depending on ε,T ) and

lim
|x|→∞ or |v|→∞

f(x,v,t) = 0.

Thus integrating the Vlasov equation over R2× [0,t] with respect to (x,v,t) gives∫ ∫
f(x,v,t)dxdv=

∫ ∫
f0(x,v)dxdv≤M0, (2.16)

where we have used (1.9). Moreover, integration over R with respect to v also gives(∫
fdv

)
t

+

(∫
vfdv

)
x

= 0. (2.17)

Define control function

ψ(x,t) =

∫ ∞
x

∫
f(y,v,t)dvdy,

then using (2.17) one has

ψt=

∫ ∞
x

(∫
f(y,v,t)dv

)
t

dy=−
∫ ∞
x

(∫
vf(y,v,t)dv

)
y

dy=

∫
fvdv,

ψx=−
∫
fdv, ψxx=−

(∫
fdv

)
x

.

Thus one is also able to derive the equation for u−ψ

(u−ψ)t+u(u−ψ)x=εuxx+ε

(∫
fdv

)
x

+

∫
fvdv−u

∫
fdv−ψt−uψx

=ε(u−ψ)xx.

Applying maximum principle for the above parabolic equation with respect to u−ψ,
we obtain

‖u−ψ‖L∞ ≤‖u0−ψ(x,0)‖L∞ ≤M0 +

∫ ∫
f0dvdx≤2M0.

Thus, we have

‖u(x,t)‖L∞ ≤‖ψ‖L∞+‖u−ψ‖L∞ ≤3M0 (2.18)
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by using (2.16), which also closes our a priori assumption

‖u‖L∞ ≤3M0<Ĉ(ε,M0,T ).

Besides, similar to the calculations of (2.14) and (2.15), one has

|v|≤ε−1/6 +3M0, |x|≤ε−1/6 +(ε−1/6 +2M0)TeT . (2.19)

Furthermore, multiplying the Vlasov equation by v2 and integrating over R2 with
respect to (v,x) we have

d

dt

∫ ∫
fv2dvdx=

∫ ∫
(2fvu−2fv2)dvdx≤

∫ ∫
f(u2−v2)dvdx

≤‖u‖2L∞
∫ ∫

fdvdx−
∫ ∫

fv2dvdx

≤9M3
0 −
∫ ∫

fv2dvdx,

where we have used (2.16). Grönwall’s inequality yields∫ ∫
fv2dvdx≤e−t

∫ ∫
f0v

2dvdx+9M3
0 (1−e−t)≤M0 +9M3

0 . (2.20)

Thus (2.16), (2.18) and (2.20) conclude the present lemma.

2.3. Conclusion. Standard theory of quasilinear parabolic equations (see [18])
can be applied to the equation for u−ψ

(u−ψ)t+u(u−ψ)x=ε(u−ψ)xx

to get

‖(u−ψ)x‖C0(R)≤C(ε,T ),

where we have used the uniform bound on ‖u‖C0(R)≤C and C(ε,T ) is an increasing
function of T. So we have

‖ux‖C0(R)≤C(ε,T ).

Then using the Vlasov equation, we can also get

‖fx‖C0(R2) +‖fv‖C0(R2)≤C(ε,T ).

By standard bootstrap argument we have the following estimate

‖u(x,t)‖
C2+σ,1+σ

2 (R×[0,T ])
+‖f(x,v,t)‖C2+σ(R2×[0,T ])≤C(ε,T ),

With the local existence in Subsection 2.1, the global existence of solution u(x,t)∈
C2+σ,1+σ

2 (R× [0,T ]) and 0≤f(x,v,t)∈C2+σ(R2× [0,T ]) to the Cauchy problem (2.1)-
(2.2) is obtained. Thus we get the following conclusion.

Theorem 2.1. For any T >0, any fixed ε, there exists a unique global solution uε(x,t)∈
C2+σ,1+σ

2 (R× [0,T ]), 0≤fε(x,v,t)∈C2+σ(R2× [0,T ]) to Cauchy problem (2.1)-(2.2).
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3. Proof of main theorem
In this section, we will establish the convergence of (uε,fε), whose limit is just a

L∞−L1 weak solution to Cauchy problem (1.1)-(1.2).

3.1. Limit of functions. We first show some convergence results related to fε.
Recall the well-known weak L1 compactness framework, i.e. Dunford-Pettis Theorem
(see [17] Theorem 8 or [2], page 167).

Proposition 3.1 (Dunford-Pettis). A sequence {fε} is weakly compact in L1(R2) if
and only if {fε} satisfies the following conditions:

(1) The sequence fε is equibounded in L1(R2), i.e.

sup
ε
‖fε‖L1(R2)<∞.

(2) The sequence fε is equiintegrable, i.e.
(2a) For any δ>0, there exists measurable set A⊂R2 with |A|<∞ such that∫

R2\A
fεdxdv<δ.

(2b) For any δ>0, there exists κ>0 such that for any measurable set E⊂R2,
with |E|≤κ, there holds ∫

E

fεdxdv<δ.

We shall verify (1) and (2) for fε(x,v,t) with any fixed t>0.

Verification of (1): Obviously, from Lemma 2.2, one finds that

‖fε‖L∞([0,T ],(1+v2)L1(R2))≤M, (3.1)

which means fε(·, ·,t) is uniformly equibounded with respect to ε and t in L1(R2).

Verification of (2a): For any δ>0, we can choose A={(x,v)||x|≤Λ, |v|≤Λ} with
Λ≥ M

δ where M comes from (3.1), so we have for any t>0,∫
R2\A

fε(x,v,t)dxdv≤ 1

Λ2 +1

∫
R2\A

fε(x,v,t)(1+v2)dxdv≤ δ,

which implies that (2a) is satisfied by fε(x,v,t).

Verification of (2b): By the fact that fε0 ⇀f0 in L1(R2), Dunford-Pettis theorem
tells us that for any δ, there exists κ0 such that for any E0⊂R2 with |E0|≤κ0 it holds
that ∫

E0

fε0 (x,v)dxdv≤ δ.

On the other hand, considering the variable transformation

J : (x,v) 7→ (Xε,V ε),

from (2.4) and (2.5), one is able to show that the Jacobian

J(τ) = det∇x,v(Xε,V ε)
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of map J is positive and satisfies the following ODE{
dJ(τ)

dτ
=−J(τ),

J(t) = 1.

Then we have J(τ) =et−τ . For any T ∈ (0,∞), one can take κ=e−Tκ0. Then for any
measurable set E⊂R2 with |E|≤κ, one has |J (0)(E)|≤ete−Tκ0≤κ0 for any t∈ [0,T ].
Hence one further has ∫

J (0)(E)

fε0 (x,v)dxdv≤ δ.

Finally, with (2.6), one gains∫
E

fε(x,v,t)dxdv=

∫
J (0)(E)

fε0 (Xε(0;x,v,t),V ε(0;x,v,t))etJ(0)−1dXεdV ε

=

∫
J (0)(E)

fε0 (Xε(0;x,v,t),V ε(0;x,v,t))dXεdV ε≤ δ,

which then gives (2b).
Therefore, applying Proposition 3.1, we get some subsequence (for simplicity we

still denote) fε and a nonnegative function f ∈L∞([0,T ],L1(R2)) such that

fε(x,v,t)⇀f(x,v,t) weakly in L1(R2), for any t>0 (3.2)

and ∫ ∫
fdxdv≤M. (3.3)

Next we shall show the convergence of
∫
vfεdv. In fact, using the convexity of

kinetic energy and weak convergence of fε, one is able to get from (2.20) that∫ ∫
fv2dvdx≤ liminf

ε→0

∫ ∫
fεv2dvdx≤M. (3.4)

For the weak convergence of
∫
fεvdv, we utilize the approach in [1]. Denote 1[−1,1](s)

as ω(s), for any ϕ∈C∞c (R× [0,T ]), for arbitrary L>0, one can derive∫ T

0

∫ (∫
vfεdv−

∫
vfdv

)
ϕdxdt=

∫ T

0

∫ (∫
ω(
v

L
)vfεdv−

∫
ω(
v

L
)vfdv

)
ϕdxdt

+

∫ T

0

∫ ∫
vfε(1−ω(

v

L
))dvϕdxdt

−
∫ T

0

∫ ∫
vf(1−ω(

v

L
))dvϕdxdt.

By (3.2), i.e. the weak convergence of fε in L1 , one can get that the first term on the
right-hand side converges to 0 as ε→0. For the last two terms, using (2.20) and (3.4)
we also have∣∣∣∣∣

∫ T

0

∫ ∫
vfε(1−ω(

v

L
))dvϕdxdt

∣∣∣∣∣≤ ‖ϕ‖L∞L

∫ T

0

∫ ∫
fεv2dvdxdt≤MT‖ϕ‖L∞

L
,
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∫ T

0

∫ ∫
vf(1−ω(

v

L
))dvϕdxdt

∣∣∣∣∣≤ ‖ϕ‖L∞L

∫ T

0

∫ ∫
fv2dvdxdt≤MT‖ϕ‖L∞

L
,

both of which go to 0 when L→∞. Therefore, we have∫
fεvdv→

∫
vfdv in the sense of distributions. (3.5)

Similarly, we also have∫
fεdv→

∫
fdv in the sense of distributions. (3.6)

Now, we consider the convergence of uε. We also recall the L∞ compensated com-
pactness framework and Murat’s Lemma:

Proposition 3.2 ( [5]). Assume that a sequence uε(x,t) satisfies

‖uε‖L∞ ≤C,

and

η(uε)t+q(uε)x is compact in H−1
loc (R× [0,T ])

for any entropy pair (η,q) with η′(u)u= q′(u) (or two special entropy pairs in Theorem
2.7 of [5]). Then there exists a subsequence {uεk}∞k=1⊂{uε}ε>0 and function u(x,t)
such that

uεk→u, (uεk)2→u2,a.e. as k→∞.

Lemma 3.1 ( [4, 27]). Let Ω∈Rn be an open bounded subset, then

(compact set of W−1,a
loc (Ω))∩(bounded set of W−1,b

loc (Ω))⊂ (compact set of H−1
loc (Ω)),

where a and b are constants satisfying 1<a≤2<b.

From uniform estimate (2.18), there exists a u(x,t)∈L∞(R× [0,T ]) such that

‖u‖L∞(R×[0,T ])≤M and uε(x,t)⇀u(x,t), weak * in L∞(R× [0,T ]). (3.7)

To prove the strong convergence of uε, we need to get entropy dissipation estimate. For
any compact set Ω⊂R× [0,T ], for any ϕ∈C∞c (R× [0,T ]) with ϕ|Ω = 1, multiplying the
first equation in (2.1) by uεϕ2, integrating over R× [0,T ], one has∫ T

0

∫ [
1

2
(uε)2

tϕ
2 +

1

3
(uε)3

xϕ
2

]
dxdt=

∫ T

0

∫ [
εuεxxu

εϕ2 +ε

(∫
fεdv

)
x

uεϕ2

]
dxdt

+

∫ T

0

∫ [
uεϕ2

∫
fεvdv−ϕ2(uε)2

∫
fεdv

]
dxdt.

Integrating by parts gives∫ T

0

∫
εϕ2(uεx)2dxdt=

∫ T

0

∫ [
(uε)2ϕϕt+

2

3
(uε)3ϕϕx−2εϕϕxu

ε

∫
fεdv

]
dxdt
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+

∫ T

0

∫ [
uεϕ2

∫
fεvdv−ϕ2(uε)2

∫
fεdv

]
dxdt

−
∫ T

0

∫ [
2εϕϕxu

εuεx+εϕ2uεx

∫
fεdv

]
dxdt.

From Lemma 2.2, one can easily see that the first two terms are bounded. Applying
Hölder’s inequality and (3.1), the last term is bounded by

1

2

∫ T

0

∫
Ω

ε(uεx)2dxdt+Mε

∫ T

0

∫
ϕ2

(∫
fεdv

)2

dxdt+C(M0,T ).

From (2.2) and (2.6), one has

‖f‖L∞ ≤et‖fε0‖L∞ ≤ε−1/6eT .

By (2.19), we further have

ε

∫ T

0

∫
ϕ2

(∫
fεdv

)2

dxdt≤C(M0,T )ε1/3. (3.8)

So we gain ∫ ∫
Ω

ε(uεx)2dxdt≤C(M0,T ). (3.9)

Now we are ready to show the entropy dissipation of (2.1). For any weak entropy-
entropy flux (η,q) with η∈C2, one has

η(uε)t+q(uε)x=εη(uε)xx−εη′′(uε)(uεx)2 +η′(uε)

∫
fε(v−uε)dv

+εη′(uε)

(∫
fεdv

)
x

=:

4∑
k=1

Ik,

which is obtained by multiplying (2.1) by η′(uε). Obviously, from the uniform bounded-
ness of uε (2.18), using the estimates (3.1) and (3.9), we obtain that I2 +I3 is bounded in
L1
loc(R× [0,T ]). Thus by embedding theorem and Schauder’s theorem I2 +I3 is compact

in W−1,α
loc (R× [0,T ]) with some 1<α<2. For I1, we also have∣∣∣∣∣

∫ T

0

∫
εη(uε)xxϕdxdt

∣∣∣∣∣=
∣∣∣∣∣
∫ T

0

∫
εη′(uε)uεxϕxdxdt

∣∣∣∣∣
≤M
√
ε

(∫ T

0

∫
Ω

ε(uεx)2dxdt

)1/2

,

for any compact set Ω⊂R× [0,T ], and any ϕ∈C∞c (Ω). So we have that I1 is compact
in H−1

loc (R× [0,T ]). For I4, using (3.8) and (3.9), one also has∣∣∣∣∣
∫ T

0

∫
εη′(uε)

(∫
fεdv

)
x

ϕdxdt

∣∣∣∣∣
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≤

∣∣∣∣∣
∫ T

0

∫
εη′(uε)

∫
fεdvϕxdxdt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
εϕη′′(uε)uεx

∫
fεdvdxdt

∣∣∣∣∣
≤Mε+M

(∫ T

0

∫
ε(uεx)2dxdt

)1/2(
ε

∫ T

0

∫
ϕ2

(∫
fεdv

)2

dxdt

)1/2

≤Mε1/6,

which also implies that I4 is compact in H−1
loc (R× [0,T ]). Putting things together, one

has

η(uε)t+q(uε)x is compact in W−1,α
loc (R× [0,T ]) for some 1<α<2. (3.10)

From the L∞ bound of uε, one also has

η(uε)t+q(uε)x is bounded in W−1,∞
loc (R× [0,T ]). (3.11)

Applying Murat’s lemma (see Lemma 3.1) to (3.10) and (3.11), we finally have

η(uε)t+q(uε)x is compact in H−1
loc (R× [0,T ]). (3.12)

Therefore, using L∞ compensated compactness framework (see Proposition 3.2 or The-
orem 2.7 in [5]), (3.7) and (3.12), we have

uε(x,t)→u(x,t), a.e. in R× [0,T ],

uε(x,t)→u(x,t), in Lploc(R× [0,T ]), ∀p∈ [1,∞). (3.13)

3.2. Limit of equations. To show that (u,f) is a weak solution to (1.1),
we need to verify (1.6) and (1.8). For simplicity, here we only show (1.6), since (1.8)
can be treated similarly. Multiplying the first equation in (2.1) by φ∈C∞c (R× [0,T )),
integrating over R× [0,T ] and using integration by parts, we obtain∫

φ(x,0)uε0(x)dx+

∫ T

0

∫ (
uεφt+

1

2
(uε)2φx+φ

∫
fε(v−uε)dv

)
dxdt

+ε

∫ T

0

∫ (
uεxφx+

∫
fεdvφx

)
dxdt= 0.

For the last two terms in the left-hand side, using (3.9), one can derive∣∣∣∣∣ε
∫ T

0

∫
uεxφxdxdt

∣∣∣∣∣≤√ε
(∫ T

0

∫
ε(uεx)2dxdt

) 1
2
(∫ T

0

∫
φ2
xdxdt

) 1
2

≤C(M0,‖φ‖H1(R),T )
√
ε,

and ∣∣∣∣∣ε
∫ T

0

∫
φx

∫
fdvdxdt

∣∣∣∣∣≤C(M0,T,‖φ‖C1(R))ε,

both of which go to 0 when ε→0. It only remains to show the convergence of uε
∫
fεdv.

In fact, observing that

uε
∫
fεdv−u

∫
fdv= (uε−u)

∫
fεdv+

(∫
fεdv−

∫
fdv

)
u,
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using (3.6) and (3.13) we have

uε
∫
fεdv→u

∫
fdv in the sense of distributions.

Thus we have (1.6).

3.3. Entropy inequality. We shall also show entropy inequality for Burgers
equation, i.e. (1.7). Multiply the first equation in (2.1) by η′(uε)ϕ, where η is convex
and ϕ∈C∞c (R×(0,T )) is nonnegative, and integrate the result over R×(0,T ) to get∫ T

0

∫
R

(
η(uε)ϕt+q(uε)ϕx+ϕη′(uε)

∫
R
fε(v−uε)dv

)
dxdt

=−
∫ T

0

∫ (
εuεxx+ε

(∫
fεdv

)
x

)
η′(uε)ϕdxdt

=ε

∫ T

0

∫
uεxη

′(uε)ϕxdxdt+ε

∫ T

0

∫
η′′(uε)(uεx)2ϕdxdt

+

∫ T

0

∫
εϕxη

′(uε)

∫
fεdvdxdt+

∫ T

0

∫
εη′′(uε)uεxϕ

∫
fεdvdxdt

≥−C(ϕ)(ε+ε1/2 +ε1/6),

where we have used (3.8) and (3.9). We also have

η′(uε)

∫
vfεdv−η′(u)

∫
vfdv= (η′(uε)−η′(u))

∫
vfεdv+

(∫
vfεdv−

∫
vfdv

)
η′(u),

and

uεη′(uε)

∫
fεdv−uη′(u)

∫
fdv= (uεη′(uε)−uη′(u))

∫
fεdv+

(∫
fεdv−

∫
fdv

)
uη′(u).

Using (3.5), (3.6) and (3.13) we get the entropy inequality (1.7) by letting ε→0.
Finally, combining with (3.3), (3.4), (3.7), we complete the proof of Theorem 1.1.
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Non Lineairé, 17(5):651–672, 2000. 1

[16] P.E. Jabin, Large time concentrations for solutions to kinetic equations with energy dissipation,
Comm. Part. Diff. Eqs., 25(3-4):541–557, 2000. 1

[17] S. Labrunie, S. Marchal, and J.R. Roche, Local existence and uniqueness of the mild solution to
the 1D Vlasov-Poisson system with an initial condition of bounded variation, Math. Meth.
Appl. Sci., 33(17):2132–2142, 2010. 3.1

[18] O.A. Ladyzhenskaja, V.A. Solonnikov, and N.N. Ural’tseva, Linear and Quasi-linear Equations
of Parabolic Type, Tanslations of Mathematical Monographs, AMS, 23, 1968. 2.3

[19] F. Lagoutière, N. Seguin, and T. Takahashi, A simple 1D model of inviscid fluid-solid interaction,
J. Diff. Eqs., 245:3503–3544, 2008. 1

[20] F. Li, Y. Mu, and D. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-
Planck equations: Global existence near the equilibrium and large time behavior, SIAM J.
Math. Anal., 49(2):984–1026, 2017. 1

[21] A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-
Stokes system of equations, Comm. Math. Phys., 281(3):573–596, 2008. 1

[22] A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system
of equations, Math. Models Meth. Appl. Sci., 17(7):1039–1063, 2007. 1
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