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GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL FOR THE
TWO-PHASE FLOW OF COMPRESSIBLE VISCOUS FLUIDS IN 1D*

SHIJIN DING!' AND YINGHUA LI#

Abstract. This paper is concerned with a coupled Navier-Stokes/Cahn-Hilliard system describing
a diffuse interface model for the two-phase flow of compressible viscous fluids in a bounded domain in
one dimension. We prove the existence and uniqueness of global classical solutions for pg € C3<(I).
Moreover, we also obtain the global existence of weak solutions and unique strong solutions for pg €
HY(I) and po € H%(I), respectively. In these cases, the initial density function pp has a positive lower
bound.
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1. Introduction

In this paper, we investigate a diffusive interface model, which describes the motion
of a mixture of two compressible viscous fluids with different densities. Classically, the
fluids, which are macroscopically immiscible, are assumed to be separated by a sharp
interface. But, in order to describe topological transitions, such as droplet formation,
coalescence of several droplet or droplet breakup, we need to take into account a partial
mixing on a small length scale in the model. As a result, the sharp interface of the
two fluids is replaced by a narrow transition layer, and an order parameter related to
the concentration difference of both fluids is introduced. This model can be described
by coupled Navier-Stokes/Cahn-Hilliard equations. Navier-Stokes equations govern the
dynamic character of the fluids, such as velocity. The interaction of the fluids on the
interface, such as the change of the concentration caused by diffusion, is described by
Cahn-Hilliard equations. It is evident that, the change of the concentration is effected
by the velocity of the fluids. And the velocity of the fluids is also related with the
concentration, because of the surface tension. Therefore, one obtains coupled Navier-
Stokes/Cahn-Hilliard equations both governing the fluid velocity and describing the
concentration difference of the two fluids. In fact, the concentration difference can
also be assumed to satisfy different variants of Allen-Cahn or other types of dynamics
[6,15]. However, numerical simulations show that the Cahn-Hilliard model is much
more effective for predicting droplet breakup phenomenon (see [24]). In this work, we
are interested in the Navier-Stokes/Cahn-Hilliard system.

The model considered here was first deduced by Lowengrub and Truskinovsky [29].
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1056 GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL

It has been modified and studied by Abels and Feireisl [4] in the following form
dp+div(pu) =0,

- _di [Vx[?
poyu+pu-Vu—divS+Vp=—div| Vx@Vx— T]I ,
pOrx+pu-Vx=Apu,

of
PR=P5o— Ax
X

with S=2A(x)D(u) +n(x)divul, D(u)=3 (Vu+Vu”) - idivul and the pressure p=
p2g—£(p, X), where p>0, u, x, u denote the total density, the mean velocity of the fluid
mixture, the (mass) concentration difference of the two components and the chemical
potential, respectively. The functions A(x) >0, n(x)>0 and the free energy density

f(p,x) are to be specified later. The first and the second equations of (x) are com-

2
pressible Navier-Stokes equations, which has an extra term Vy® Vy — %]I describing
capillary effect related to the free energy

Efree(ﬂuX):/Q (pf(p,x)+;lvxl2> dz.

The third and the last equations in (%) are Cahn-Hilliard equations.

When the difference of the densities of two components is negligible, or the densities
of both components as well as the density of the mixture are constant, the system re-
duces to an incompressible one. In this case, Gurtin et al. [16] derived an incompressible
model, which has been paid much attention. Boyer [8] studied this flow under shear
in detail, where the diffusion coefficient is allowed to be degenerate, the viscosity de-
pends on the concentration, and logarithmic-type potentials are included. Under these
assumptions, Boyer proved the existence and uniqueness of global weak and strong solu-
tions in 2D, the existence of global weak and local strong solutions in 3D, as well as local
asymptotic stability of suitable stationary solutions. Abels [1] investigated this model
in the case of constant mobility, nonconstant viscosity and singular potentials. In [1],
Abels proved the existence and uniqueness results, the regularity of solutions and the
convergence to a single equilibrium. Moreover, there are also other results about this
model, concerning the well-posedness, asymptotic behavior of solutions, global attrac-
tor, numerical simulations, etc. We refer the readers to [9,17,18,21,24] and references
therein.

For incompressible fluids with general densities, Abels et al. [5] established a model
by defining the mean velocity of the mixture as volume-averaged velocity. Such a mean
velocity field is divergence free. By sending the interfacial thickness to zero, they ob-
tained various sharp interface models. The authors proved that all sharp interface
models fulfill natural energy inequalities. In another paper [2], Abels considered a dif-
ferent model, which assumes that the velocity field is no longer divergence free, and
the pressure enters the equation as the chemical potential. With the aid of a two-level
approximation, the author proved the existence of weak solutions for the non-stationary
system in 2D and 3D. Recently, Abels et al. [3] showed the existence of weak solutions
for a new model. Boyer [7] supposed that the velocity field is divergence free, and he
showed the local existence of unique strong solutions. The author also proved that
if the densities tend to 1, i.e. in the slightly nonhomogeneous case, there exist global
weak solutions and unique local strong solutions, which are in fact global in 2D. An
asymptotic stability result for the metastable states was also given. In 2015 Liu et
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al. [28] deduced another kind of Navier-Stokes/Cahn-Hilliard system by the energetic
variational approaches, and gave some numerical experiments. Later Jiang et al. [20]
derived a similar Navier-Stokes/Allen-Cahn system, and proved the existence of weak
solutions in 3D, the well-posedness of strong solutions in 2D, and the longtime behavior
of the 2D strong solutions. All these results are obtained under the assumption that
the density is a function of the concentration. For incompressible Navier-Stokes/Allen-
Cahn system with free density function, Li et al. studied the existence of unique local
strong solutions [25], and the main mechanism for possible breakdown of such a local
strong solution [26].

For compressible fluids with general densities, a case more closer to the physical re-
ality, Lowengrub and Truskinovsky [29] derived a thermodynamically consistent model.
The authors defined the mean velocity as mass-averaged velocity, which yields the con-
servation of mass. They showed that, when the densities of the components are not
perfectly matched, the evolution of the concentration field always leads to the fluid mo-
tion, even if the fluids are inviscid. This model can also be found in [6]. As far as we
know, there are only a few theoretical results about compressible models. Kotschote and
Zacher [23] proved the existence and uniqueness of local strong solutions of the model
derived in [29]. By neglecting the effect of the density with respect to the gradient of the
concentration in the free energy, Abels and Feireis] [4] deduced a variant model. The
authors showed the existence of weak solutions in 3D, by adding artificial pressure and
implicit time discretization, where the density is a renormalized solution. For the com-
pressible Navier-Stokes/Allen-Cahn system proposed by Blesgen [10], Kotschote [22] got
the local existence of unique strong solutions, Feireisl et al. [14] proved the existence of
weak solutions in 3D, where the density p is a measurable function. In [13], Ding et
al. studied 1D case and obtained the well-posedness of the solutions. A different com-
pressible Navier-Stokes/Allen-Cahn system, arising from the biological material change
in the process of stem cell differentiation, has been studied in [33]. The existence of
spherically symmetric weak solutions was obtained.

In this paper, we deal with the solvability of the one dimensional compressible
Navier-Stokes/Cahn-Hilliard system. We prove the existence of unique classical solu-
tions, unique strong solutions and weak solutions, when the initial density pg is away
from vacuum states and belongs to C*%(I), H?(I) and H'(I), respectively.

It is well known that, for ideal polytropic fluids, the pressure p= Rp” with constants
R>0and v>1, see [12,19] for example. On the other hand, in the theory of the Cahn-
Hilliard equation, double-well structural potential is often considered. A typical example
of such potential is the logarithmic type, which is suggested by Cahn and Hilliard [11].
However, this potential is usually replaced by a polynomial approximation of the type
y1xX* —72x?%, where 71 and 7, are positive constants, see [35,36] and references therein.
Therefore, it is reasonable to take a specific free energy f as follows
Rp'y—l X4 X2

f(p7x)=7_1 TR

Moreover, we assume that the functions A(x) =v and n(x) =—3v are constants. Then

the system (%) in one dimension is simplified into the following form
Pt + (Pu)w = 07
1
pu+ putty + R(p e =vize — 5 (X3) (L)

PXt + PUXz = fhaa,
pi=p(x* = X) = Xaa
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where (p,u,x):(0,1) xRy =R, xR? p>0 is the total density, u denotes the mean
velocity of the fluid mixture, x represents the concentration difference of the two fluids,
1 is the chemical potential and v > 0 is the viscous coefficient. Moreover, we supplement
the system (1.1) with the following initial value condition

(Pa%X)‘t:O:(PO,UOaXO), JJE[O,l] (12)
and the boundary value condition

=(0,0,0),  t=0. (1.3)

x=0,1

(Uy Xy fh)

REMARK 1.1. For the free energy specified above, one gets a strongly coupled system,
including a fourth order diffusion Equation (1.1)3 4. Therefore, we are unable to ensure
the concentration difference staying in the physical reasonable interval [—1,1], since we
do not have the comparison principle for such a fourth order diffusion equation.

On the other hand, the density p itself and its derivatives up to second order, with
respect to z-variable, enter the coefficients of the Cahn-Hilliard Equation (1.1)34. In
fact, this is the main difference from the models for incompressible fluids. Hence, to
prove the existence of classical solutions, we have to estimate p,., first. Meanwhile,
one observes that the system (1.1) is strongly coupled and the equations therein are
strongly nonlinear. All of these suggest the main difficulties in the a priori estimates.

NoTATION 1.1.

(1) I=(0,1), 0I={0,1}, Qr=Ix(0,T) for T >0.

(2) Forp>1, denote LP = LP(I) as the L space with the norm ||-||p». For k>1 and
p>1, denote W*P =WPHP(I) for the Sobolev space, whose norm is denoted as ||- ||y r.»,
HF =WHh2(]).

(8) For any nonnegative integer k and 0 <« <1, denote the Holder spaces

Ok Fek+ 5 (Qr)={u; 9°0; € C*% (Qr), for any B,r such that S+ 2r <2k},
CHFr 1 (Qr) ={u; %07 € C*%(Qy), for any B,r such that §+44r <4k}.

The main purpose of this paper is to investigate the solvability of the problem
(1.1)—(1.3) with pg>co>0. Our first result is about global classical solutions.

THEOREM 1.1.  Assume that po € C>%(I) satisfies 0 < co_1 <po <cg for some constants
a€(0,1) and co, ug € C>(I) with ug(0)=ue(1)=0, xo € C**(I). Then there exists a
unique classical solution (p,u,x): I xRy =R, x R? of the initial boundary value problem
(1.1)—~(1.3) satisfying that, for any T >0, there exists a constant c=c(co,T) >0 such that

(Pmmpmt)écg’%(@ﬂ, O<871SPSC on Qr,
U €C?TEITE(Qr),  xeCTTE(Qp).

We also obtain the existence of unique strong solutions and weak solutions which
are defined as follows.

DEFINITION 1.1.  Let po € H?(I) satisfies 0 < cal <po<cq for some constant cg, ug €
HY(I) and xo€ H*(I). A triplet (p,u,x) is called a strong solution to the problem

(1.1)-(1.3), if
peLX(0,T;H'), p,eL>(0,T;L%), 0<c '<p<c,



S. DING AND Y. LI 1059

we L>®(0,T; Hy)NL*(0,T; H?), us € L*(0,T;L?),
XE€L>(0,T; H?), xt € L°°(0,T;L*)NL2(0,T; H?),
p€L®(0,T;H*)NL*0,T;H),  p€L?*(0,T;L?),

where (p,u,x) satisfies (1.1) a.e. in Qr, and

(p1,X)|,_o = (0,0, x0) ave.in I,
(s Xas )] g, = (0,0,0),  ¢>0

in the sense of trace.

DEFINITION 1.2.  Let po € H(I) satisfies 0 < 651 <po<cqy for some constant cy, ug €
L2(I) and xo € H*(I). A triplet (p,u,x) is called a weak solution to the problem (1.1)-

(]'3)} Zf
peL>®(0,T;HY), p,€L?(0,T;L?), 0<c'<p<e,
we L>®(0,T; L*)NL*(0,T; Hy),
XEL®(0,T;H)YNL*(0,T; H®),  peL?(0,T;H")

such that
//Q (ptg(x) — pu(’ (gc)) dzdt=0, for any ¢(z)€C*(I),
and

// pue(e)n’ (6)+ o€ ()n(t) + 7€ ()n() ) dadt

= [ moetomoyaz - [ T(%f )—xxf’m(t))dxdt,

for any £(x) € CL(I), n(t) € C10,T] with n(T)=0. Moreover,

_//QT(de)t+pux¢”’)dxdt:/IPOX0¢(O)dJU—//QTMa:¢xdxdt
//QTp“d’dmdt_// PO = X)6+ Xa o) dudt

hold for any ¢ € CH(Qr) with ¢(-,T) =

THEOREM 1.2.  Let po € H%(I) satisfies 0< ca <po<cq for some constant cq, ug €
H}(I) and xo € H*(I). Then the problem (1.1)~(1.3) admits a unique strong solution.

and

THEOREM 1.3.  Let pg € H(I) satisfies 0< cal <po<cqy for some constant cg, ug €
L2(I) and xo € H'(I). Then the problem (1.1)—(1.3) admits at least one weak solution.

REMARK 1.2.  To our knowledge, there are few theoretical results about compressible
Navier-Stokes/Cahn-Hilliard system. Abels and Feireisl [4] obtained the existence of
weak solutions, where the density p is a renormalized solution. Kotschote and Zacher
[23] established the local existence of unique strong solutions. Even for compressible
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Navier-Stokes/Allen-Cahn system, only the existence of weak solutions and spherically
symmetric weak solutions have been obtained, see Feireisl et al. [14] and Witterstein [33].
In present paper, we only consider the 1D problem with the specified free energy, but
we hope that our study can be a good beginning for further investigations.

Since the constants R and v play no role in the analysis, we assume henceforth that
R=v=1.

This paper is organized as follows. In Section 2, we discuss the local existence of a
unique strong solution to the problem (1.1)—(1.3) by the Schauder fixed-point theorem.
Then we show that, if the initial data is smooth enough, the local strong solution is
classical. In Section 3, we obtain a priori estimates for the classical solution of the
problem (1.1)—(1.3). In Section 4, we prove our main results by weakly convergent
method and energy argument.

2. Local classical solutions
In this section, we investigate the existence and uniqueness of local classical solutions
to the problem (1.1)—(1.3). Our main result is as follows.

THEOREM 2.1.  Assume that pg € C>%(I) satisfies 0 < cal <po <cq for some constants
co and a€(0,1), ugeC>*(I) with up(0)=uo(1)=0, xo € CH*(I). Then there exist
a small time Ty, >0, a constant c=c(co,Tx) and a unique classical solution (p,u,x):
Ix[0,T.) =R, xR? to the initial boundary value problem (1.1)~(1.3) such that

(Pmm:apmct)ec%’%(QT*)v 0<071§P§C on Qr,,
u, €C?TEITN(Qr,), xeCMHTI(Qr).

Before proving this theorem, we show the local existence of unique strong solutions
under the assumptions pg€ H3(I) with 0<cy ' < po<co, uo € H*(I) and xo € H*(I),
which is much stronger than the assumptions in Theorem 1.2 for the global existence
of unique strong solutions. After that, we will prove that, if the initial data is smooth
enough satisfying the assumptions in Theorem 2.1, the unique local strong solution is
classical.

PROPOSITION 2.1. Let pp€ H3(I), 0< cgl <po<cy for some constant cy, and ugy €
HYI)NH3(I), xo € H*(I). Then there exist a small time T, >0, a constant c=c(cg,T})
and a unique strong solution (p,u,x) to the problem (1.1)—(1.3) such that

p€L%(0,T,; H?), pr € L>(0,T,; H?), 0<c'<p<e,

w€ L®(0,T; HENH*)NL2(0,Ty; H*), s € L>®(0,T,; HY)NL*(0,T,; H?),
X €L(0,T,; H*)NL*(0,T,; HY), x: € L*°(0,T,; L*) N L*(0,T,; H?),
peL>(0,T.; H*)NL*(0,T,; HY), e € L(0,T,; L?).

In order to prove this proposition, we consider the following auxiliary system

pi+(pv) =0,
1
Y = —_ = 2
put+pvux+(p )gc Uz 2 (Xw)z7 (2.1)
PXt+ POXe =
p1=p(0° = P) = Xax

subject to the initial boundary value conditions (1.2) and (1.3), where v and ¢ are known

functions which satisfy the boundary value conditions v‘ 57 =0 and <p$| oy =0 for t>0.
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The following result for the auxiliary system is sufficient to prove the local existence of
strong solutions to the problem (1.1)—(1.3).

LEMMA 2.1. Let T be a fixed time with 0<T <1. Assume that v(x,0)=wug(z),
o(z,0)=x0(z) for xel and

T
sup ([oll3s o +Ilvel ) + / (0l llenll ) < K, (22)
0<t<T 0
T
2 2 2 2
sup (ol + lpell32) + / (13 +llpele) < Ko (2.3)
0<t<T 0

holds for some constants K1, Ko >1. Then there exists a unique strong solution (p,u,X)
to the problem (2.1), (1.2) and (1.3) such that

2 —1 2 —12 2 2 2 2 2
sup (Il K lloellr+ o™ 1w + g rs ey + s + x5+ elr2)
o T 2 2 2 2 2 2 al

[ (Nl Tl + I+ s ) + s + el <,
0

where C:=C (K, T"/?, K¥T,K3T,T) >0 is a constant depending only on K,T/?, K3T,
K3T and T.

The existence and uniqueness of strong solutions to the hyperbolic Equation (2.1);
is well known. Moreover, the solution p satisfies the following estimates

—1/2 _
OgugT(||p||Ha+Kl Plloele+ 1o~ |1 ) < cexplek T2}, (2.4)
<t<

For the proof of this result, we refer to [32] and remind that v satisfies (2.2). From
(2.1)2 and (2.1)3.4, we have

1 _ 1
Ut:7’uxx—’llux—’yp’y 2px_7Xxanfa (25)
P P
_ 1 Pz Pzz px 1 2 6 .2
Xt =~ 5 Xazax +2— 3 Xzaw + 2= | Xzz —VXz t+ 7(390 - 1)(‘09533 ey (26)
P p p p P P

It follows from classical arguments (see [27,30]) that the above linear parabolic equations
subject to (1.2) and (1.3) have a unique strong solution (u,x). It remains for us to do
some necessary a priori estimates for u, x and p. We begin with x and pu.

LEMMA 2.2. It holds that

sup / () + / /Q ) SCURTY KT, (2.7)

0<t<TJr1

Proof. Multiplying (2.1)3 by x, then integrating the result with respect to = over
I, using integration by parts, (2.1); 4 and (2.4), we have

1
th/PX //‘X:ﬁm*/ 90 — )Xz — /*Xxx
<_7 _ 2
z/pxm+2/p(sa ©)°,
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from which we get

d 1
S o+ [ 2 <2l (el + el
I 1P

Integrating the above inequality over (0,t), by (2.3) and (2.4), we obtain

t
1
/PXQ(tH/ /;XﬁxSCoHXoH%z+C(K1T1/2)t||sﬁ||ioo <C+C(K\TV?)K3t,
I 0 JI

from which and the equation (2.1)4, we see that (2.7) holds. The proof is complete. O

If we choose 0 <T < T :=min{ >, 743 }, then C(K\T'?, K3T, K3T, T)< C, where
1 2
C is a constant independent of K7 and K. For convenience, here and below, we denote

by C a constant, whose value may be different from line to line but is independent of
Kl and KQ.

LEMMA 2.3.  We have the inequality

sup /xi<t>+// (o +i2)<C,  0<T<T. (2.8)
I T

0<t<T
Proof. Multiplying (2.1)3 by u, then integration the result over I, using integration
by parts, (2.1); 34 and (2.4), we have

1d [
**/Xfﬁ/uiz/vxxxm—/p(wd—so)(xﬁvxm
2dt J; I I I
1
:7/U(Xfc)r7/(@3*¢)ﬂmm
2 I I
1
:77/U1X325+/(3902*1)90z,um
2 I I
2 1 2 1 2 2 2
I I I
which implies
d
[t [l [x2eClolieloly <72 [x2+eRs (29

By Gronwall’s inequality, we get
/xi <exp{ K1t} (Ixollf: + CK3t) <,
I

provided that 0 <t <T,. Integrating (2.9) from 0 to T(<T.), we have

/Ixi+//Tui§C. (2.10)

Differentiating (2.1)4 with respect to x and using (2.3), (2.4), (2.7), (2.10), we obtain
(2.8). This completes the proof. a0

LEMMA 2.4. There holds

sup /x$<t>+ // (Cor b1 4420n) <C, 0<T<T..  (211)
0<t<TJ1 Qr
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Proof. Differentiating (2.1)3 with respect to ¢, then multiplying the result by xq,
integrating over I and using (2.1); 4, we have

1d
S dt pX?+/tht2+/thXth+/pthth
2dt J; I I I

:/NmmtXt:*/Ntimt:/,utszt
I I I
1 2 1 2
= 7Xza:t_ - Xa:a:X:rwt'i_ (390 _1)()075wat;
1P 1\P/¢ I
from which we get
th/pXt / Xm;vt
1 2
PtXt PtUXth P'UtXacXt vy} XzzXzat T | (3¢° — 1)@t Xawt
I
1
< / —xLat Ol + ol + ) / i Clolf~ [
+Ol~ [0 +Clale [t [ o317
I I I
1 /1
<2/pxmthrCKl/prJrC(llvHQLoo+\|vt||i2+|\pt||im)
4O [+ O3 =1 el
I

where we have used the inequality

o3 / o= —lprll3 / NownXe < / Cawt el / 2.

Hence, we have

d
dt pXt / anct <CK1/pXt +CK1 +C/Xacmc+CK2' (212)
Recalling (2.6), we see that

IVex:(0)llL> <C(llpollm2, uoll L2 Ixoll z+)- (2.13)

Then Gronwall’s inequality implies

/px?ﬁexp{CKlt} (/px§(0)+CK12t+C// xierCKS’t) <C,
I I Q¢

provided that 0 <t <T,. Integrating (2.12) over (0,T), we have

1
/px?+// ~Xaat <C. (2.14)
I Qr P

Differentiating (2.1)4 with respect to ¢ and (2.1)3 with respect to x twice, we have

p 1
Mt:(SSﬁz_l)@t"_ ;er_7szta
P p
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Hazze =PzaXt + 202Xzt + PXzat + PzaVXe + PVze Xz + PUXzza
20202 X2+ 202VXzz + 20V Xaa-

By (2.3), (2.2), (2.4), (2.8) and (2.14), Lemma 2.4 follows. O
LEMMA 2.5.  We have the inequality

sup /Xma: // X;vwz.z— \ 0<T<T.,. (2.15)
0<t<T

Proof. Multiplying (2.1)s by Xzzze and integrating the result over I, we have
/ PXtXzzza T / PUXzXzoze = / Pz Xevwa- (2.16)
I I I

From (2.1)4 and the boundary conditions i,

=0, we get (%Xm) ‘ =0.

=
ar " «lor

oI

1 1 1 1
~Xzzze = | ~Xzz -2 - Xzazx — | — Xz

Using the above equality and integrating by parts, we have

1
/pXtXw;cacar:/p2Xt7X;cacxx
I I p
1 1 1
:/PQXt (X:L’:v) _2/p2Xt () Xxmm_/p2xt () Xzzx
I P T I P g I P/ zx
2 1 1 2 Pz
= [ P Xot | =Xaz | —2 | PPaXt | —Xaw | +2 | XtPrXazat [ P7Xt| =5 | Xax
I p z I P @ I I P~/
2
I I I P I
02
I I I P

1d 1
:*f/pxim—*/thim+2/sztixz+/tiszma:« (2.17)
2 d¢ I 2 I I I

On the other hand, (2.1)4 implies

Moreover,

1 x zx z
Hrz = — pX:c:cacac + 21; Xazz + (pp 2p > Xzz T+ (390 - )(pﬂm —|—6(pgﬁi
1
= 77erxz+A7 (218)
P

where

/ r<c / Coat Cllxaalli / PR+ C / ot Cligl ol a2
I I I I

Substitute (2.17) and (2.18) into (2.16) to give
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1
:i/thix_Q/pwatXa:x_/tixxXac:c_/vaxXxxmx+/AXxxxx
I I I I I

1 1
<5 [t Cllolim +oalte) [ 02+C [t Clhlie [ 2
1P I I I
e / 4 Cllol3 / NEe / Cau £ C / X+ Cllol%a

I I I I
1 1
I I I

where we have used the inequalities

/xfcﬁ/xxtxxt:—/mmS/xf+/x§xt§0+/xixt,
I I I I I I
2 _ _ <[22 <ot |2
I I I I I I

Thus, we have
d 1
dt J; P I I
Gronwall’s inequality implies
/pxix <exp{CKt} (/pxix(O) +C// (CGat +Xows) +CK1t+CK§’t) <C,
I I Qt

provided that 0 <t <T,. For any 0<T < T, integrating (2.19) over (0,T), (2.15) holds.
The proof of Lemma 2.5 is complete. ]

LEMMA 2.6. It holds that

sup [ (it +42) () C. 0<T <., (2.20)
o<t<TJr

Proof. From (2.1)34 and (2.4), (2.11), (2.15), we have

1
/uzé/w6+/¢2+/7xixSCII@\IGLochC,
I I I P
[i< [+ [ ez cili- e
I I I

Noticing
t
lp(z,t)| <[e(z,t) — @(2,0)[ + |p(x,0)] S/O @7 (T) | o= dT +[x0(2)]

<c / lor () lwradr + xo()| = C / / (el +psl) + xo0 (2|

1/2 1/2
scmW?(//Q tpf) +0|Qt|1/2(//Q w) Chole @21)

/ (vr(2,7) —v,-(0,7))dT
0

and

vz, t)| <|v(z,t) —v(z,0)|+|v(z,0)| = + [uo(2)]
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1/2
+|uo<x>s|@t|1/2(// ) ol (2:22)
Q¢

/;ﬂ <C(Kqt)*+C<C,
I

vy (y,7)dydT
0

we have

/ufmgcmwcg(),
I

for any 0 <t <T,. Differentiating (2.1)4 with respect to x, we have

Similar to (2.22), we can deduce that

1/2
et <I00 ([ )+l

Hence, we obtain

/, e / 124 C / 12+ Il + Cllpll2 o + Ol +1)n |2 <C,

for any 0<t<T,. Lemma 2.6 follows. 0

In what follows, we turn to do some a priori estimates for w.
LEMMA 2.7.  For any 0<T <T,, we have

sup /ui(t)—l—// u? <C. (2.23)
o<t<TJr r

Proof. Multiplying (2.1) by u¢, then integrating the result over I, we get

th u Jr/put /pvumut—’y/lpvflpzut*/IXszUt

1
<3 [t +Cluli~ [ +C+Clults [k

gf/puvaCKl/ui—kC,
2J1 I

d u +/put<CK1/u +C.
dt I

By Gronwall’s inequality and (2.4), we can deduce that (2.23) holds. This completes
the proof. ]

LEMMA 2.8.  There holds

sup /(u§+u§m)(t)+// ur, <0,  0<T<T.. (2.24)
I T

0<t<T

—_

which implies
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Proof. Differentiating (2.1)s with respect to ¢ and multiplying the result by wy,
then integrating with respect to x over I, we have

th Put / Uyt
:—5//%“?_/Ptvuzut—/Ptha;Ut—/PUUztut‘i‘V/Pv_lptum-f—/XxthUa;t
I I I I I I

1
sf/luitw(nmnm+Hpt||%oo+1+||v|\%m>/lpu%

2
Clllolf+ orlEe) [ +Cllole +CllxsliEe [ 32
from which we have
d
dt put / xt<CK1/put+CK1+C/ xt+an:t)
Recalling (2.5), we get
[vPpue(0)||2 <C([[polla, lluoll 2, X0l 2)- (2.25)

Gronwall’s inequality implies

/ut // u2t§C7 0<t<Ts.
t

From (2.1)9, (2.4), (2.15), (2.23), (2.24) and (2.22), we have

/Ium<0/ut +0||vHLm/u +c+||xx|\m/xm<c+c||v||m

<C’+C’(|Qt|// v, +ud(z )<C+CK1t<C 0<t<T,.

The proof is complete. ]

LEMMA 2.9.  For any 0<T < Ty, we have

sup /uit(t)+// u?,, <C. (2.26)
0<t<TJI Qr

Proof. Differentiating (2.1)y with respect to ¢, then multiplying the result by ..
and integrating with respect to x over I, we have

/(put)tumt+/(pvux)tumt+/(p”)mtumt:/uzmt*/(xzxm)tumt, (2.27)
I I I I I

where

/(put)tua:a:t:/puttuwwt+/ptutuzxt:_/puwttuwt_/pwuttumt+/ptutuxwt
I I I I I I

1d 1
:_i&zpuit—'_i/lptuit_/IpxuttUZt+/Iptutth' (2.28)



1068 GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL

Differentiating (2.1)2 with respect to ¢, we see that

2 1 1 1 1
(p )zt + —Upat — = Xat Xz — — XaXaowt = 7uat:ct+Ba
PP p p p

(2.29)

p

Pt t
Ut = —— Ut — —VUyp — VUyp — VUgt —

where

/BQ§CK1/puit+C/xin+CK12.
I I I
Substitute (2.28) and (2.29) into (2.27) to give
1d [ , 1 ) / 1 /
P =5 - x| —Uzzx B T TT
th/lpuxt+/luzwt 2/}Ptum IP pu t+ 5 | Ugt + IPtUtu t
+ / (e VUL + PVE UL + PVUE ) Ut + / XetXzeUzzt
I I
+/(7(’7_1)p7_2pzpt+7p7_lpzt)umzt+/XxXxmtuxmt
I I

1
<! / W2+ K, / pu2, +C / o+ O,
I I I

-2

i.e.

d

*/Puiﬁ‘/uixtSCKI/P“?:H"C/X?CM"'CK%-

dt J; I I I
Noticing

Iv/puai (0)|| 2 < C(l[poll 2, luollms, 1 xoll 3 ),

and applying Gronwall’s inequality, Lemma 2.9 follows. O
LEMMA 2.10. For any 0<T <T,, there holds

sup /uim(t)—t—// U2, e <C. (2.30)
0<t<TJI Qr

Proof. Differentiating (2.1)2 with respect to x, we see that

Uggy =PUgt T PrUt + Pr VUL + PUL Uy + PVUgy

+y(Y =17 20 4907 par + Xow + Xa Xawa- (2.31)

Similar to (2.21), we have

1/2 1/2
|vz<x,t>scc2t1/2(//Q ) +c|c2t|1/2(//Q ) T ol 2.

Hence, we get

/1 W2, <C / 2,4 C / W2+ O[] + [0l / W2+ Olfol3 / 2,

+C+melliw/Xinrlllel%oo/XimSC, 0<t<T..
I I
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Differentiating (2.31) with respect to x again and applying the estimates obtained before,
we can easily arrive at (2.30). The proof is complete. d

Lemma 2.1 is an immediate consequence of Lemmas 2.2-2.10.

Proof. (Proof of Proposition 2.1.) Let X be the set of all functions (v,¢)
satisfying conditions (2.2) and (2.3). For each (v,p)€ X, set (u,x)=®(v,p) be the
solution of the problem (2.1), (1.2) and (1.3). By Lemma 2.1, we can choose large
positive constants K; and Ko satisfying min{K;,Ks}>C such that ® maps X into
X for 0<T <T,:=min{7, 75 }. It is clear that the set X is a convex and compact

1 2
subset of C([0,T]; H'). The continuity of ® can be easily proved by an energy method.
Therefore, it follows from the Schauder fixed-point theorem that ® has a fixed point.
This proves the existence of strong solutions to the problem (1.1)—(1.3). Furthermore, a

simple energy argument shows the uniqueness. The proof of this Proposition is complete.
d

Before proving Theorem 2.1, we recall the following well-known lemma.

LEMMA 2.11 ( [31]). Assume X CECY are Banach spaces and X —<— E. Then the
following embeddings are compact:

0
(i) {(p:(pELq(O,T;X),(;fELl(O,T;Y)}%%Lq(O,T;E), if 1<g<o0;

(ii) {w:wGLw(O,T;X),%:

GLT(O,T;Y)} < O([0,TE), if 1<r<oc.

Proof. (Proof of Theorem 2.1.) Obviously, the assumptions on initial data in
Theorem 2.1 satisfy the assumptions in Proposition 2.1. So the problem (1.1)-(1.3)
admits a unique local strong solution (p,u,x) and a small time T, such that

sup (1ol -+ ol o o™ e+l e el s e+ )

*

T
[ (gl I+ Dl s+l ) <€ <-4oc.
(2.32)

In what follows, starting from (2.32), the assumptions on initial data and the equations
in (1.1), we discuss the regularities of the local strong solution. We claim that

max{ ool g3 g ol bt g o el gra g J SO 0<T<Ti (233)

We prove the estimate of p for example. The other two are similar. For any

(w1,t),(w2,t) € Qp, we have
1/2 1 1/2
< (/pi’zz> </ 12) Sc‘xl —$2|1/2.
I v
(2.34)

|pzx(x17t) _p:v:c(x27t)| =

z1
/ Praz (T, t)dx

2

Differentiating (1.1); with respect to x twice, we get
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For any (z,t),(z,t2) € Qp, we consider the case of 2 €[0,1/2]. Suppose that At=
to —t1 >0 satisfying At <1/2. Integrating the above equation over (z,z+ At) X (t1,t2),
we have

x+At
/ (Pyy (Y, t2) = pyy (y,t1))dy
ta  prt+At
== / / (Pyyy U+ 3pyytty +3pytyy + ptiyy, ) (y,t)dydt
tl xr

to
S/t {HUHL“||pmeL2(At)l/2+||p||L°°||uxmw||L2(At>1/2} dt
+3([lpwall L=tz o + [l oy | oo [[uas || L) (AL)
<C(At)%/2,

Noticing pu € L®(0,T;H') and pyqe € L(0,T;L?), by Lemma 2.11 we have p,, €
C([0,T); L?). For the left-hand side of the above inequality, by the integral mean value
theorem, there exists a point =* € [x,z+ At] € [0,1] such that

Ipww(x*at2) _pazw(x*ﬂfl)‘ < C‘tQ -1 |1/2'
Combine the above inequality with (2.34) to give

|Pm($7t1) _pzz(mth)‘
< paa(m,t1) = paa (27 81) [+ [P (27,81) — pua (27, 82) |+ p(2,82) 20 — paa (27, 22))|
<Clz—z* Y2+ Clty — o2 < Oty —to|V/2. (2.35)

For the case of z €[1/2,1], integrating the equation over (z—At,x) X (t1,t2), then we
can also get the above inequality. From (2.34) and (2.35), for any (z1,t1),(x2,t2) € Qr,
there holds

|Pm~($17t1) _pxw(x27t2)| S|p.LJ,(x1at1) _pww(antlﬂ + |pLL(~T2’t1) _pwx(ant2)|
SC(|$1 —1‘2|1/2+ |t1 —t2|1/2).

From (1.1)2, we have
1
U = ;uwz'i_fl(x’t)’ (236)

where fi(x,t) = —uu; —vp""?py — S XoXaw- Noticing that || 2]l oracg,): /21l
C and ug € C>%(I), applying the Schauder theory, we have

A (@Qp) =

Nf=

”UHC2+%,1+%(§T) <C.

From (1.1)34, we get

1 2 3 2_1
Xt:_Qwaxz+2p:§szz+(pw;_2pz+ X >X$$+f2($7t>7
o p P p

where fo(x,t)= —uxm—i—%xxi. Observing that the coefficients and fs are bounded in
C25(Qr) and xo € C**(I), by the Schauder theory (see [34]), we have

||X||C4+%’1+% (@) < C.
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In particular,

||X£E$CE HCO‘V% (QT) S C'

Differentiating (2.36) with respect to x, using the above results and the Schauder theory
again, we obtain
||ux||cz+%,1+% @r) < C.

In order to study the regularity of p,,., we introduce the Lagrangian mass coordi-
nates defined by

y(%t):/oggp(f,t)df, T(z,t)=t.

It is easy to see that (z,t)— (y,7) is a C'-bijective map from I x[0,T)— I x[0,T),
provided that p(z,t) € C* (I x[0,T)) is positive and fol p(f,t)dﬁ:fol po(€)dé=1 for all
t€[0,7T). By direct calculations, we see that

9 9 o 9
g s L, L, 2.
- Moy o oz Poy (2.37)

If we write F(z,t) =—1(x2)., we know that HFMHC% ) <C. Hence, (1.1)1,2 can be

) —
8 (Qr
rewritten in the Lagrangian coordinates as

{pr erzuy:()a

ur+(p7)y = (puy)y + F, (2.38)

which satisfies the initial boundary value conditions
(p,u))Tzoz(po,uo) for yel and u 8120 for 7>0.
By (2.38), direction calculations imply
(u+t(np)y) . =F —7p" (u+(Inp)y) +vp"u,
from which we have

pyp(uOJr(lnpo)y)exp{v/ p”}w/ (F+’VPW)exp{7/ p”}dspw
0 0 s

Recalling  poeC>*(I), uoeC>*(I) and
”FWHC%%@T) <C, we have

pryHC’%’%(QT)’ ||Uyy||ca%@T),

||pyyy||cé,§ @) <C,
from which and (1.1);, we conclude that

loyyllcrn @,y <C-

By the Schauder theory and the equations in (1.1), repeating the above arguments
once again, we obtain

max{”pmmuc%,%(aﬂv Hpmt”C%v%(@T)a ”u”’”Cz*%*H%(@T)’ ”X”C“O"H%(@T)}SC’

for any 0<T < T. 0



1072 GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL

3. A priori estimates
In this section, we are going to do some a priori estimates about the classical solution
which has been obtained in Theorem 2.1. The first estimate is a basic energy equality.

LEMMA 3.1.  For any 0<t<T, it holds that

2 A, 2 132 2 t
e - pY p(X -1 xa // 2, 2\ _
/1(72 B 2)(t)+ O I(uerux)—Eo, (3.1)

where

2 Y 2 2 2

_ poug Py Po(xg—1)°  XGe

= [ po=1 and Ey:= ( 7>
/Ip() /Ipo and o /I 3 Ty—1T 4 2

denotes the total energy of the initial data.
Proof. Multiplying (1.1)3 by v and integrating the result over I, we get

_ 1 2
dt/ / zu—i—/u 5/}()@%& (3.2)
d P
VY =
Jona=g [ (3.3
In fact, by (1.1); we have

1d 1
P’ w“:/ﬂv‘l pr+patt Z’*/P”F*/ P e,
/I<> [ o= [+ [6)

from which we obtain (3.3). Multiplying (1.1)3 by u, then integrating the result over I
with respect to x, we get

d XX\ G 2 1 [ 5
_ @ _= . 4
T I(p<4 5 )T % +/Ium 2/I(xgg)ggu (3.4)

Putting (3.2), (3.3) and (3.4) together, we see that (3.1) holds. The proof is complete.
O

Now we claim that

To obtain the upper and lower bounds of the density p, we need the following
estimate.

LEMMA 3.2.  For any 0<t<T, there holds

/O t /I %xil. <C(Ey,T). (3.5)

Proof. Multiplying (1.1)3 by x, using (1.1); and (1.1)3 4, we have

1d 1
5 = Xz =—3 - 727
2dt/pX /NX /XXz /IXE /Iprz

which implies that

1
3 2 72:/2<CE7
2dt/ﬂx+/xxx+/1pxm x2S (Eo)
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where we have used (3.1). Integrating the above inequality over (0,t), Lemma 3.2

follows. O
Then we can prove the upper and lower bounds of p.

LEMMA 3.3. We have the inequalities

[pwzae  rep, (3.6)
I
Cit<p(at)<Cy, (x,t)€Ix[0,T), (3.7)

where C1 >0 is a constant depending only on co, Eo,||po||g1, v and T.

Proof. Using (1.1)1, we get

()L =1e1G),

2 2

d

a /"

&\//\
D
~
8

8

+
[N}
~\
7N
| —
~
8

I

8

8

i.e.

[G)=2a fo[G).]
) ou,=- z
1\P/, 2dt Jr [\p/,

) integrating the result over I, using the above equality and
(1.1); again, we have

[l G o= [ (G),
Jm(G). [ G) + e (5),
[ (B for ) e (D),
< [Uede Lot e [ veal|(3)
forenans ([ ([AG)])
< izt (2 o] (5) |

1
Multiplying (1.1)5 by <
P

d
dt

1
2
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2 2 1, 15 1 ?
I I 1 JIP P I P/ x
2
1 1 1
S/U§+C(Eo)+2/Xiﬁ/xfm/p‘()
I P P I P)

where we have used the embedding equality for one dimension || x| £ (1) < ||xz|lw1 (1)
Cauchy’s inequality and Holder’s inequality. Integrating the above inequality over (0,t),

JelG) I S
o).~ frm() o2,
o foeemen] [ ([ o))

L [A|3) e mmtmnos [ ([ [|(3) ]

which implies that

1 3,2 t 1, 1
1/ - +7/ / T pi < Clco, Eo, | pol| m1,t) + / /*Xm/ﬂ -
I 0 P I P/ x

Applying Gronwall’s inequality, we have

JolG).S

Since fI p(t) :fI po=1, using the mean value theorem, there exists a(t) € I such that
t)= [, p(t)=1. Hence, we have

2

)

oy / / 13 52 < C(co, Eosllpollin ). (3.8)

1 1 1 1 z 1
o) @t plad D) pla. ‘/a@ (p@,t))gdg“

2

1 1
L 1|2 2\ 2 11 1 1
3G B G
a(t) P Pllpee \J1p 2{pllp~ 2Jr 1\P/,
Taking the supremum over x € I yields

1 1\ ?

= <24+ [ p|{ = < C(co, Eo, || pol| z1,t)- (3.9)

Pl e I P/

On the other hand, since v>1, we write y=1+24 for some § >0. Then, we get

5/~
s ftfpnse(f) e[
I I I I
1/2 1 o\ 1/2
<ctan)ve( [ ) (/4() )
I I P)
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SO(CO,EO,HPOHHI,"Y,t)- (310)

From (3.9) and (3.10), we see that (3.7) holds. Combining (3.8) with (3.10), we obtain
(3.6). The proof of Lemma 3.3 is complete. 0

Observing that x satisfies Neumann boundary value condition, we should estimate
the upper bound of the concentration Y.

LEMMA 3.4.  For any T >0, there holds
HX”LOO(IX(O,T))SC(EO)' (3.11)
Proof. From (1.1)3 and the boundary value condition (1.2), we have

d

% Ipx=—pux’m

/px=/poxo§/po+/pox§SC(E0)~
I I I I

Thus, noticing that flp(x,t)dle and p>0 for any (x,t) €I x(0,T), we get

+ e =0,

oI

which implies that

)= ) [ o)
< /p(y,t) (X(M)X(y,t))dy‘+'/Ip(y7t)x(y,t)dy‘

I

<| [t / el dy\ L O(By)
< [l [ toty-+-Cio

1

< ( / xz) " O(By) <C(Fo).

This completes the proof. 0
From (1.1)4, using the boundary value condition Xﬂi‘al =0 and (3.1), we have
/pu=/p(x3—x)—xz SC(Eo)/pSC(Eo)-

I I oI I

Similar to the proof of Lemma 3.4, we can deduce that

LEMMA 3.5. For any 0<t<T, we have

/Ot/l;ﬁ<C(EO,T). (3.12)

The lemma below is useful in the proof of the forthcoming lemma.
LEMMA 3.6. For any 0<t<T, it holds that

t
//Xfmgcl. (3.13)
0 I
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Proof. Differentiating (1.1)4 with respect to x, we have

Xawz =Pz (X° = X) +PBX> = 1)Xa — patt— pita-
From (3.1), (3.6), (3.7), (3.11) and (3.12), we see that (3.13) holds. O

In terms of above lemmas, we obtain the following important lemma. This turns
out to be the most difficult step.

LEMMA 3.7. For any 0<t<T, there exists a positive constant Co depending only on
Co, E(), ||p0||H2, ||’LLO||H1, ||X0||H47 Y and T, such that

1 t 1
/ (Xix+pr+ufi> (t)+ / / (xiwﬁpu?wiw)é(/’z- (3.14)
1 \P o Jr\p

Proof. Firstly, differentiating (1.1)s with respect to ¢, then multiplying the result
by xt, integrating over I, using (1.1); and (1.1)4, we have

:*Z/PUXtht+/PUzUXth+/PIU2Xth*/PUthXt
I I I I
Uu. u
1P 1P I
3
1 /1 1 1
<i[careiti= (|3 fuze]3] i [o2
P PllpeeJr Pl Lo I

1
+c(|\p||muu||im ol e 2 +H; 2 + e +H3x2—1HL°°> [
Loe I

1
belulte [adcluli (2] [ i+ [
I I I I

1

1
<2 / et O (14 [ull e + e 2 ) / ox2
2/rp I

2
1
s [t [idren([a) 4 [t
I I I I
1 /1 1
<5 [oxdra (14 [addn) [odee [ (e darid) [ue] [
I I I I

where we have used the following Sobolev embedding inequalities

IXaallLe oy <elXeallwreamy,  Ixellpeoy SeliXaallizys ullpe oy <elluellzz-

Thus we have
d 2 I
dt/IpXt +/IpX9cact
1
<5 [mi+cy <1+/(ui+xiz)>/pr+01/(Xinrxierui)/ui (3.15)
I I I I I

Next, multiplying (1.1)s by u; and integrating the result over I, we get

T e
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:—/puuxUt—V/p”’lpxu,s—/xxxmu,s
I I I
1 27—3 1,
4 putJrC”p”L‘x’”u”LOO u + ey lpll 7t pachCHXr”LOO ;anc
<1 u?+C u2 +c +C
=2 Ip t 1 T Xacx anc 1,

which implies that

d 3 2 1
S [es [ < (/uQ) v [x [ Sd+an (3.16)
dt J; 2 J; I I 1P

In the following, we deal with [; %Xim- Using (1.1)3, (1.1)4 and integrating by parts, we

get
1
/*xigf/(xg—x)xm—/uxm=/(x3—x)xm—/umx
P I I I I
=/(x3—x)xm—/pxtx—/pux$x
I I I

1 /1
<§/ XerC/prJrCl,

from which we have

1
/fxim Sc/prJrOl- (3.17)
P I

Put (3.15), (3.16) and (3.17) together, to get

d
I (pxﬁu +/1( m+put)

scl<1 u+xm>) px; +Ch (Xm+xmw+u)/UiJrCl/Xf;ﬁCl
I I

<Ci <1+/(xm+u ))/(pxﬁu )+Ch <1+/Ixfm>- (3.18)

Recalling (2.13) and applying Gronwall’s inequality to (3.18), we have

t
1
Jwdeys [ [ (St m?) <cidmlm lulm.lolu).
1 0 JI

By (3.17) and (1.1)3, we obtain (3.14). The proof of Lemma 3.7 is complete. |
From the above estimates, we can directly calculate that

LEMMA 3.8. For any 0<t<T, there holds

t
/I(p?+xim+u2+uix)(t)+/ /I(u?+uim)§02. (3.19)
0

Next, we continue to do some estimates for wu.
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LEMMA 3.9. For any 0<t<T, we have

i +yo+ [ t Juzen (3.20)

where C3 is a positive constant depending only on co, Fo, ||pollaz, ||wollaz, lxollas, ¥
and T

Proof.  Differentiating (1.1)2 with respect to ¢, multiplying the result by u; and
integrating over I, we have

2dt/put +/ Uyt
:72\/‘pUUfurf7/puui'LLt7/puzuTTUff\/puzuTqu7\/pUTU%
I I I I I
*7/p7uruzt77/p771pmuumt+/Xmthumt
I I I

<5 / w2+ el oo ol + et 200 / o+ clug |2 / W2+ cljul2 / 2
relplelulle [ o2+l [ e lolp ol [ itelilie [,
<5 / 2+ Cr ([l |22 +lluallwr.2) / P2+ Collus |22 + |l 2o / W2,
+Caluallfs +Co+ Cillual s +ell el 22 ( / e / X)

1
Sf/uit—koz <1+/uiz>/pu§+02 (1+/(uix+xim)>7
2 I I I I

from which we have

d

Applying Gronwall’s inequality to (3.21), using (3.14) and recalling (2.25), we get

/put / /u < C(Cq,l|uol| gr2)-

Combining the above inequality with (1.1)s, Lemma 3.9 follows. |
LEMMA 3.10. For any 0<t<T, we have

t
/I (Pre+ Pot+ Xowwa) (1) + / /1 [y < C3. (3.22)
0

Proof. Just as the proof of Theorem 2.1, we introduce the Lagrangian coordinates
defined by (2.37). Write F(2,t) =—1(x2)., from (3.19) we know that ||F|| e r;m1) <
C5. Hence, (1.1)1,2 can be rewritten in the Lagrangian coordinates as

(3.23)

Pr +P2Uy = 0;
Ur + (P'y)y = (Puy)y +F,
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which satisfies the initial boundary value conditions

(p,u)’ Oz(po,uo) for yel and u‘aI:O for 7>0.

Similar to the proof of Theorem 2.1, after direct calculations, we have
Pyy = (py (1o +(Inpo)y ) +p (woy + (Inpo)yy) — p(uo+ (lnpo)y)VQ/oT pv‘lpy)
~eXp{v/OTp”} +py/OT(F+vpVU)eXp{W/T/ﬂ}ds
+p/OT ((Fy +72 07 pyutypTuy) — (F+w”u)72/: p”%)
~exp{—7/Tp”}ds—pyu—puy. (3.24)
s

Moreover, the estimates (3.6), (3.7), (3.14) and (3.20) in the Lagrangian coordinate
become

/piscl, 0<Cri<p<C, /(u§+u§y)§03,
I 1

from which and (3.24), we can deduce that

/1 2, <C /I (4R, +u3 + 2 +u2) + /0 /I (P2 + F2+u2) < Cs, (3.25)

where we have used the inequalities

oy 1 = 192 = s/l<|p§|+|<p§>y|>:/lp§+2/l|pypyy|gs/lpf,ﬁc(e)/lpz

with € small enough. From the definition of Lagrangian coordinates (2.37), we see that

Paz = p(pa)y = P(PPy)y =P Pyy + PP,

/Piw <Cs.
I

Prt = —Przll— 20gUs — Py,

/Pazct <Cs.
I

Differentiating (1.1)3 4 with respect to z twice, using (3.7), (3.19) and (3.22), we have

t
I 0o JI

which implies

Moreover, from (1.1); we get

from which we have
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Therefore, (3.22) holds. The proof of Lemma 3.10 is complete. |
Furthermore, we also have

LEMMA 3.11.  For any 0<t<T, there holds

/1 (PPt P20)(B) < Ci, (3.26)

where Cy s a positive constant depending only on co, Fo, ||pollas, |wollaz, lxollas, ¥
and T.

Proof. Similar to the proof of Lemma 3.10, from (3.22) we know that
| F|| o< (0,7;12) < C3, where F(z,t)=—%(x2),. In the Lagrangian coordinate, we can
calculate p,,, and obtain

/IpiyyS03/I(p(2)yyy+ugyy+p§y+uz2/y)+03/0 /I(pzz/y+Fy2y+u221y)SC(C37||p0HH3)'
From (2.37), we see that

Pz = P(0° yy + PPy )y = P° Pyyy +40%ypyy + PPy

Therefore, Lemma 3.11 follows. O
Similar to the proof of Lemma 2.9 and 2.10 in Section 3, we can also derive that

LEMMA 3.12.  For any 0<t<T, there exists a positive constant C5 depending only on
co, Eo, lpollaz, lluollas, lxollgs, v and T, such that

t
/1 (w2, +u2,) (1) + / / (W2 +1i2,,,) < Cs. (3.27)

4. Proof of the main results

This section is devoted to the proof of our main results, Theorems 1.1-1.3, which
have been stated in Section 1.

Firstly, in view of the local existence of the classical solutions and the a priori
estimates obtained in Section 3, one may finish the proof of the existence and uniqueness
of global classical solutions by standard arguments. Theorem 1.1 follows.

Next, by virtue of Lemmas 3.1-3.6, we show that there exist global weak solutions
to the problem (1.1)—(1.3) under the assumptions po € H'(I) with 0<cy ' < pp <co and
U €L2(I), X0 GHI(I)

Proof. (Proof of Theorem 1.3.) By the standard mollification , we may assume
that for any a€(0,1), there exists a sequence of initial data (p§,us,x§) € C>(I) x
C3<(I) x C*2(I) such that

0<c§1§p8§co<—|—oo on I,

lim (1126 — ol g1+ llug —woll 2 +11x5 —Xoll 1) =0

Let (p°,u®,x®) be the unique global classical solution of (1.1) with the initial conditions
(p5,ug,x5) and the boundary value conditions (u®,xZ,us) ‘3120 for t>0. It follows
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from Lemmas 3.1-3.6 and the equations (1.1) that, for any 0 <7 < +o0, the following
properties hold

ﬁ < <O(T), inIx[0.1],
6% Lo 0,710y 1165 | 20, 7;02) < C(T),
[l o< (0,7;22) + [l L2 0,751y < C(T),
XNl Lo 0, 7m0y HIX N 220,73 < C(T),
1| 20,111y < C(T).
After taking possible subsequences (denoted by itself for convenience), taking € — 0, by
(1.1) and Lemma 2.11, we have
(p%,05) = (p,pe) weak™ in L>(0,T;L%),
pf—p;  weakly in L?(0,T;L?),
p°—p strongly in C(Qr),
u®—u weak® in L™ (0,T;L?),
(u®,us) = (u,u,)  weakly in L?(0,7;L%),
(X*5 X5s Xawr Xowa) = (Xs Xars Xarws Xawr)  Weakly in L(0,T;L?),
(X%, x5) — (X, xe) weak™ in L™ (07T;L2),
(1€, ) = (p, pz)  weakly in L?(0,T;L3).

A~ N /N /N /N /N~
L i

0 J O Ut = W N =
e DD D DO =

It’s easy to see that (p°,u®,x°) satisfy

J[ (it -rroc @) =o

] (e O+ 5 @€ @nte) + (7€ @)

~ [ it / | (u € (#m(t) 5 (€ (@ >n<t>),
—//QT(fx%ﬁpEuax%z) /poxo¢ // 5 0a,
// = // B )bt X 6)

for any ((z) € CY(I), &(x) € C(I), n(t) € CH[0,T] with n(T)=0 and ¢ € C(Qr) with
¢(-,7)=0. Noticing

// 2= pu)¢n
<J[ |pf—p||u6|2|s’||n\+\p\|ue_u||ue+u||g||n|>

<Clp° = pllze(@r v 22 (gr) +Cllol e @y 14 =l 2(@ry (14l 22(@r) + Ul 22(@r))
—0, as e—0



1082 GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL

and
/ / (p°u®X* = pux) ¢

s//Q (167 — ol 1] + Il — ullxE 1] + Il — iz
T

<Cllp* = pllL=@m I L2+ IX"[IL2(Qr) + Cllol o (@) 1u® —ullL2(@r) X I L2(@ 1)
+Clpll =@ llullzz (@ lIX* —xllL2(@r) —0,  ase—0,

it is easy to check that (p,u,x) is a weak solution of the problem (1.1)—(1.3) in the sense
of Definition 1.2. The proof of Theorem 1.3 is complete. 0

In terms of Lemmas 3.1-3.8, we can prove the existence and uniqueness of strong
solutions to the problem (1.1)-(1.3) under the assumptions po € H?(I) with 0<cy* <
po<co and ug € H}(I), xo € H*(I).

Proof. (Proof of Theorem 1.2.) Observe that pg€ H?(I), up € Hi(I) and xo €
H*(I). We assume

timm (1105 — poll 22 + 145 — woll 1 + x5 — xoll24) =0,

Lemmas 3.7 and 3.8 imply

D[ (08120 P+ [P+ )
0<t<TJI

] Ul 0 it ) SO
T

By the proof of Theorem 1.3 and the weak lower semi-continuity of the norm, we can
easily derive that p; € L>(0,7;L?), u€ L>(0,T;H})NL*(0,T;H?), u; € L*(0,T;L?), x €
L®(0,T; H?), yi € L%(0,T;L2)NL2(0,T; H?), pe L=(0,T; H2)NL2(0,T; H?) and ;€
L?(0,T;L?). Moreover, by trace theorem H'(U) < L?(dU) for bounded U with U € C*,
there hold that (x,ts)|or =(0,0) in the sense of trace. Thus, we obtain the existence
of the strong solutions to the problem (1.1)—(1.3) in the sense of Definition 1.1.

It remains for us to prove the uniqueness of the strong solutions. Let (p;,u;,X;) be
two solutions to the problem (1.1)—(1.3) obtained above. Denote p=p; — pa, & =u1 — ua,
X=xX1—X2 and ft=p; — pa. Then

pt+ (pur), + (p2u), =0,

P1Ut — Ugy = — PlUt — P1UI Uy — P1UU2E — PUL U
- (p’ly - p’QY)I - Xlx)zxac - %x)@xza (49)

P1X¢t + P1U1 Xz = flaz — PX2t — PU2X 2z — P1UX 2z

P =—Xzz +P1(XT+X1X2+ X3 — D)X+ (X3 — X2) — phio

for (z,t) x (0,T), subject to the initial boundary value conditions

(3@ 0| _ =0 il (@ % )|, =0 for0<t<T.
t I
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Multiplying (4.9); by p, integrating the result over I, we get

2dt/ /pmpx / (P22t~ patiz) p
-3 / P, — / (Prafict patia) B
I

IIUmIILee/ﬁZJrIIﬂIILoc P22 [l 2 121l L2 + | 2]l oo N[t ll L2 [12]] 2

0, we have u(y,t)

—_

l\D

Since u(0,t) = = | g (2,t)da for (y,t) € Qr. Hence,

[l pee <llUellp-, t€[0,T]. (4.10)
From (4.10) and the regularities of p;, we have

d . ~
G |7 <Clhle [ 4 Clanla 170 <Ol e+ 1) [ 7 32 @

Multiplying (4.9)2 by u and integrating the result over I, we get

d ~2 ~2
2dt /" +/Ium
2 Jypt = [t [ = | . [ i
S | P1itU — [ p1UrULU— [ pUUt — [ PUUU2: — [ P1U U2y
2Jr I I I I
+/(p’1y_p’2y)ﬁx+/Xlw)zxﬂac‘k/Xlxw%mﬂ_/x%mixﬂ-

I I I I

Recalling p1; + (p1u1), =0, we have

1 _ 1 o1 [
f/puuQ—/pwluzu:7/p1tu2+7/u2(p1u1)z=0.
2 I I 2 I 2 I

Using the above equality, we get
1d ~2 ~2
- u“+ [ u
2 dt Iﬂl /I T
<lall oo 121l L2 lluaell Lo + 121 g2 0l oo l1u2ll oo (U]l 2 + [[ugal| oo /p1ﬂ2

Xiazs + Xozx

+ellpllpe el g2 +elltel 2 Xeall 22 IX12 )l Lo +ellVorall L2 Xl 2
VP1

LOC
From the regularities of (p;,u;,x;) and (4.10), we have

th plu +/  <COllual 2 (191l L2 lluzell L2 + 111 2 +[1Xall L2)

+Clualys [ T +C 0l + all ) VAT s el
I
1, 2 ~112 2 ~ 112
<5 Nallfe+ ClAG: (14 uzel 32 ) +C IR

2 2 ~
40 (sl + Il + el ) [ i
I
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Thus we obtain
- p1172—|-/ﬁ§
I I
C 1+ fuze22) / e / +Ollullare + xalls + el / i
I

C 1+ Juze22) / e / T+ / L Cuallie + a2 + xallZ) / .
I
(4.12)

Multiplying (4.9)5 by ¥, integrating the result over I, by (4.9)4, we have

li/ -2
2dr ], PX
Z/ﬁ)?m—/5X2t%—/PlﬂX2x%—/ﬁU2X2x§
I I I I
1 5 N -
=— fxiﬁ/*(Xi’—xQ)mer/(x?+X1Xz+x§—1)Xxm
1P 1P I

—/ﬁ/m%m—/5)(27:)?—/0117)(29@)?—/5“2)(2&7
1,1 I 1 I
1 1 _ - -
=5 [ rellbd e+l 1) [ mP relxale [ o
1P1 T 1

+cl||—

(IIX%—XzH%oc+||u2|\%oo+||X2t||%eo+|IU2||2LooII><zmH%oo)/Iﬁ2~
Lo

Using the embedding theorem and the regularities for (p;,u;,X;), we have
d - 1
f/p1x2+/fx§m
<C [ m@+Clhaln [+ 00+l + el + el e ) [ 7
I
<C [ pR+C [ i+ ot ali) [ 7 (4.13)
I I I

Putting (4.11), (4.12) and (4.13) together, we obtain

d I
= (p +p1U” +piX )<0E(t)/(p2+mu2+mx2), (4.14)
I

where  E(t) =1+ [Jua|l72 + [Juzel| 2 + lJuallf +x1 7 + 2l Fs + [Ix2e [ satisfying
fOT E(t)dt <C. Then Gronwall’s inequality implies

/ (p°+p1a® +p1X°) <O0.
I

Because of the positivity of p;, we have (p,u,x)=0. The proof of Theorem 1.2 is
complete. ]
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