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GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL FOR THE
TWO-PHASE FLOW OF COMPRESSIBLE VISCOUS FLUIDS IN 1D∗

SHIJIN DING† AND YINGHUA LI‡

Abstract. This paper is concerned with a coupled Navier-Stokes/Cahn-Hilliard system describing
a diffuse interface model for the two-phase flow of compressible viscous fluids in a bounded domain in
one dimension. We prove the existence and uniqueness of global classical solutions for ρ0∈C3,α(I).
Moreover, we also obtain the global existence of weak solutions and unique strong solutions for ρ0∈
H1(I) and ρ0∈H2(I), respectively. In these cases, the initial density function ρ0 has a positive lower
bound.
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1. Introduction

In this paper, we investigate a diffusive interface model, which describes the motion
of a mixture of two compressible viscous fluids with different densities. Classically, the
fluids, which are macroscopically immiscible, are assumed to be separated by a sharp
interface. But, in order to describe topological transitions, such as droplet formation,
coalescence of several droplet or droplet breakup, we need to take into account a partial
mixing on a small length scale in the model. As a result, the sharp interface of the
two fluids is replaced by a narrow transition layer, and an order parameter related to
the concentration difference of both fluids is introduced. This model can be described
by coupled Navier-Stokes/Cahn-Hilliard equations. Navier-Stokes equations govern the
dynamic character of the fluids, such as velocity. The interaction of the fluids on the
interface, such as the change of the concentration caused by diffusion, is described by
Cahn-Hilliard equations. It is evident that, the change of the concentration is effected
by the velocity of the fluids. And the velocity of the fluids is also related with the
concentration, because of the surface tension. Therefore, one obtains coupled Navier-
Stokes/Cahn-Hilliard equations both governing the fluid velocity and describing the
concentration difference of the two fluids. In fact, the concentration difference can
also be assumed to satisfy different variants of Allen-Cahn or other types of dynamics
[6, 15]. However, numerical simulations show that the Cahn-Hilliard model is much
more effective for predicting droplet breakup phenomenon (see [24]). In this work, we
are interested in the Navier-Stokes/Cahn-Hilliard system.

The model considered here was first deduced by Lowengrub and Truskinovsky [29].
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It has been modified and studied by Abels and Feireisl [4] in the following form

∂tρ+div(ρu) = 0,

ρ∂tu+ρu ·∇u−divS+∇p=−div

(
∇χ⊗∇χ− |∇χ|

2

2
I
)
,

ρ∂tχ+ρu ·∇χ= ∆µ,

ρµ=ρ
∂f

∂χ
−∆χ

(?)

with S= 2λ(χ)D(u)+η(χ)divuI, D(u) = 1
2

(
∇u+∇uT

)
− 1

3divuI and the pressure p=

ρ2 ∂f
∂ρ (ρ,χ), where ρ≥0, u, χ, µ denote the total density, the mean velocity of the fluid

mixture, the (mass) concentration difference of the two components and the chemical
potential, respectively. The functions λ(χ)>0, η(χ)≥0 and the free energy density
f(ρ,χ) are to be specified later. The first and the second equations of (?) are com-

pressible Navier-Stokes equations, which has an extra term ∇χ⊗∇χ− |∇χ|
2

2 I describing
capillary effect related to the free energy

Efree(ρ,χ) =

∫
Ω

(
ρf(ρ,χ)+

1

2
|∇χ|2

)
dx.

The third and the last equations in (?) are Cahn-Hilliard equations.
When the difference of the densities of two components is negligible, or the densities

of both components as well as the density of the mixture are constant, the system re-
duces to an incompressible one. In this case, Gurtin et al. [16] derived an incompressible
model, which has been paid much attention. Boyer [8] studied this flow under shear
in detail, where the diffusion coefficient is allowed to be degenerate, the viscosity de-
pends on the concentration, and logarithmic-type potentials are included. Under these
assumptions, Boyer proved the existence and uniqueness of global weak and strong solu-
tions in 2D, the existence of global weak and local strong solutions in 3D, as well as local
asymptotic stability of suitable stationary solutions. Abels [1] investigated this model
in the case of constant mobility, nonconstant viscosity and singular potentials. In [1],
Abels proved the existence and uniqueness results, the regularity of solutions and the
convergence to a single equilibrium. Moreover, there are also other results about this
model, concerning the well-posedness, asymptotic behavior of solutions, global attrac-
tor, numerical simulations, etc. We refer the readers to [9, 17, 18, 21, 24] and references
therein.

For incompressible fluids with general densities, Abels et al. [5] established a model
by defining the mean velocity of the mixture as volume-averaged velocity. Such a mean
velocity field is divergence free. By sending the interfacial thickness to zero, they ob-
tained various sharp interface models. The authors proved that all sharp interface
models fulfill natural energy inequalities. In another paper [2], Abels considered a dif-
ferent model, which assumes that the velocity field is no longer divergence free, and
the pressure enters the equation as the chemical potential. With the aid of a two-level
approximation, the author proved the existence of weak solutions for the non-stationary
system in 2D and 3D. Recently, Abels et al. [3] showed the existence of weak solutions
for a new model. Boyer [7] supposed that the velocity field is divergence free, and he
showed the local existence of unique strong solutions. The author also proved that
if the densities tend to 1, i.e. in the slightly nonhomogeneous case, there exist global
weak solutions and unique local strong solutions, which are in fact global in 2D. An
asymptotic stability result for the metastable states was also given. In 2015 Liu et
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al. [28] deduced another kind of Navier-Stokes/Cahn-Hilliard system by the energetic
variational approaches, and gave some numerical experiments. Later Jiang et al. [20]
derived a similar Navier-Stokes/Allen-Cahn system, and proved the existence of weak
solutions in 3D, the well-posedness of strong solutions in 2D, and the longtime behavior
of the 2D strong solutions. All these results are obtained under the assumption that
the density is a function of the concentration. For incompressible Navier-Stokes/Allen-
Cahn system with free density function, Li et al. studied the existence of unique local
strong solutions [25], and the main mechanism for possible breakdown of such a local
strong solution [26].

For compressible fluids with general densities, a case more closer to the physical re-
ality, Lowengrub and Truskinovsky [29] derived a thermodynamically consistent model.
The authors defined the mean velocity as mass-averaged velocity, which yields the con-
servation of mass. They showed that, when the densities of the components are not
perfectly matched, the evolution of the concentration field always leads to the fluid mo-
tion, even if the fluids are inviscid. This model can also be found in [6]. As far as we
know, there are only a few theoretical results about compressible models. Kotschote and
Zacher [23] proved the existence and uniqueness of local strong solutions of the model
derived in [29]. By neglecting the effect of the density with respect to the gradient of the
concentration in the free energy, Abels and Feireisl [4] deduced a variant model. The
authors showed the existence of weak solutions in 3D, by adding artificial pressure and
implicit time discretization, where the density is a renormalized solution. For the com-
pressible Navier-Stokes/Allen-Cahn system proposed by Blesgen [10], Kotschote [22] got
the local existence of unique strong solutions, Feireisl et al. [14] proved the existence of
weak solutions in 3D, where the density ρ is a measurable function. In [13], Ding et
al. studied 1D case and obtained the well-posedness of the solutions. A different com-
pressible Navier-Stokes/Allen-Cahn system, arising from the biological material change
in the process of stem cell differentiation, has been studied in [33]. The existence of
spherically symmetric weak solutions was obtained.

In this paper, we deal with the solvability of the one dimensional compressible
Navier-Stokes/Cahn-Hilliard system. We prove the existence of unique classical solu-
tions, unique strong solutions and weak solutions, when the initial density ρ0 is away
from vacuum states and belongs to C3,α(I), H2(I) and H1(I), respectively.

It is well known that, for ideal polytropic fluids, the pressure p=Rργ with constants
R>0 and γ>1, see [12,19] for example. On the other hand, in the theory of the Cahn-
Hilliard equation, double-well structural potential is often considered. A typical example
of such potential is the logarithmic type, which is suggested by Cahn and Hilliard [11].
However, this potential is usually replaced by a polynomial approximation of the type
γ1χ

4−γ2χ
2, where γ1 and γ2 are positive constants, see [35,36] and references therein.

Therefore, it is reasonable to take a specific free energy f as follows

f(ρ,χ) =
Rργ−1

γ−1
+
χ4

4
− χ

2

2
.

Moreover, we assume that the functions λ(χ) =ν and η(χ) =− 1
3ν are constants. Then

the system (?) in one dimension is simplified into the following form
ρt+(ρu)x= 0,

ρut+ρuux+R(ργ)x=νuxx−
1

2

(
χ2
x

)
x
,

ρχt+ρuχx=µxx,

ρµ=ρ(χ3−χ)−χxx,

(1.1)



1058 GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL

where (ρ,u,χ) : (0,1)×R+→R+×R2, ρ≥0 is the total density, u denotes the mean
velocity of the fluid mixture, χ represents the concentration difference of the two fluids,
µ is the chemical potential and ν >0 is the viscous coefficient. Moreover, we supplement
the system (1.1) with the following initial value condition

(ρ,u,χ)
∣∣∣
t=0

= (ρ0,u0,χ0), x∈ [0,1] (1.2)

and the boundary value condition

(u,χx,µx)
∣∣∣
x=0,1

= (0,0,0), t≥0. (1.3)

Remark 1.1. For the free energy specified above, one gets a strongly coupled system,
including a fourth order diffusion Equation (1.1)3,4. Therefore, we are unable to ensure
the concentration difference staying in the physical reasonable interval [−1,1], since we
do not have the comparison principle for such a fourth order diffusion equation.

On the other hand, the density ρ itself and its derivatives up to second order, with
respect to x-variable, enter the coefficients of the Cahn-Hilliard Equation (1.1)3,4. In
fact, this is the main difference from the models for incompressible fluids. Hence, to
prove the existence of classical solutions, we have to estimate ρxxx first. Meanwhile,
one observes that the system (1.1) is strongly coupled and the equations therein are
strongly nonlinear. All of these suggest the main difficulties in the a priori estimates.

Notation 1.1.
(1) I= (0,1), ∂I={0,1}, QT = I×(0,T ) for T >0.

(2) For p≥1, denote Lp=Lp(I) as the Lp space with the norm ‖·‖Lp . For k≥1 and
p≥1, denote W k,p=W k,p(I) for the Sobolev space, whose norm is denoted as ‖·‖Wk,p ,
Hk =W k,2(I).

(3) For any nonnegative integer k and 0<α<1, denote the Hölder spaces

C2k+α,k+α
2 (QT ) ={u; ∂βx∂

r
t ∈Cα,

α
2 (QT ), for any β,r such that β+2r≤2k},

C4k+α,k+α
4 (QT ) ={u; ∂βx∂

r
t ∈Cα,

α
4 (QT ), for any β,r such that β+4r≤4k}.

The main purpose of this paper is to investigate the solvability of the problem
(1.1)–(1.3) with ρ0≥ c0>0. Our first result is about global classical solutions.

Theorem 1.1. Assume that ρ0∈C3,α(I) satisfies 0<c−1
0 ≤ρ0≤ c0 for some constants

α∈ (0,1) and c0, u0∈C3,α(I) with u0(0) =u0(1) = 0, χ0∈C4,α(I). Then there exists a
unique classical solution (ρ,u,χ) : I×R+→R+×R2 of the initial boundary value problem
(1.1)–(1.3) satisfying that, for any T >0, there exists a constant c= c(c0,T )>0 such that

(ρxxx,ρxxt)∈C
α
2 ,
α
4 (QT ), 0<c−1≤ρ≤ c on QT ,

ux∈C2+α
2 ,1+α

4 (QT ), χ∈C4+α,1+α
4 (QT ).

We also obtain the existence of unique strong solutions and weak solutions which
are defined as follows.

Definition 1.1. Let ρ0∈H2(I) satisfies 0<c−1
0 ≤ρ0≤ c0 for some constant c0, u0∈

H1
0 (I) and χ0∈H4(I). A triplet (ρ,u,χ) is called a strong solution to the problem

(1.1)–(1.3), if

ρ∈L∞(0,T ;H1), ρt∈L∞(0,T ;L2), 0<c−1≤ρ≤ c,
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u∈L∞(0,T ;H1
0 )∩L2(0,T ;H2), ut∈L2(0,T ;L2),

χ∈L∞(0,T ;H3), χt∈L∞(0,T ;L2)∩L2(0,T ;H2),

µ∈L∞(0,T ;H2)∩L2(0,T ;H3), µt∈L2(0,T ;L2),

where (ρ,u,χ) satisfies (1.1) a.e. in QT , and

(ρ,u,χ)
∣∣
t=0

= (ρ0,u0,χ0) a.e. in I,

(u,χx,µx)
∣∣
x=0,1

= (0,0,0), t≥0

in the sense of trace.

Definition 1.2. Let ρ0∈H1(I) satisfies 0<c−1
0 ≤ρ0≤ c0 for some constant c0, u0∈

L2(I) and χ0∈H1(I). A triplet (ρ,u,χ) is called a weak solution to the problem (1.1)–
(1.3), if

ρ∈L∞(0,T ;H1), ρt∈L2(0,T ;L2), 0<c−1≤ρ≤ c,
u∈L∞(0,T ;L2)∩L2(0,T ;H1

0 ),

χ∈L∞(0,T ;H1)∩L2(0,T ;H3), µ∈L2(0,T ;H1)

such that ∫∫
QT

(
ρtζ(x)−ρuζ

′
(x)
)

dxdt= 0, for any ζ(x)∈C1(I),

and

−
∫∫

QT

(
ρuξ(x)η

′
(t)+ρu2ξ

′
(x)η(t)+ργξ

′
(x)η(t)

)
dxdt

=

∫
I

ρ0u0ξ(x)η(0)dx−
∫∫

QT

(
uxξ

′
(x)η(t)− 1

2
χ2
xξ
′
(x)η(t)

)
dxdt,

for any ξ(x)∈C1
0 (I), η(t)∈C1[0,T ] with η(T ) = 0. Moreover,

−
∫∫

QT

(ρχφt+ρuχφx)dxdt=

∫
I

ρ0χ0φ(0)dx−
∫∫

QT

µxφxdxdt

and ∫∫
QT

ρµφdxdt=

∫∫
QT

(
ρ(χ3−χ)φ+χxφx

)
dxdt

hold for any φ∈C1(QT ) with φ(·,T ) = 0.

Theorem 1.2. Let ρ0∈H2(I) satisfies 0<c−1
0 ≤ρ0≤ c0 for some constant c0, u0∈

H1
0 (I) and χ0∈H4(I). Then the problem (1.1)–(1.3) admits a unique strong solution.

Theorem 1.3. Let ρ0∈H1(I) satisfies 0<c−1
0 ≤ρ0≤ c0 for some constant c0, u0∈

L2(I) and χ0∈H1(I). Then the problem (1.1)–(1.3) admits at least one weak solution.

Remark 1.2. To our knowledge, there are few theoretical results about compressible
Navier-Stokes/Cahn-Hilliard system. Abels and Feireisl [4] obtained the existence of
weak solutions, where the density ρ is a renormalized solution. Kotschote and Zacher
[23] established the local existence of unique strong solutions. Even for compressible
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Navier-Stokes/Allen-Cahn system, only the existence of weak solutions and spherically
symmetric weak solutions have been obtained, see Feireisl et al. [14] and Witterstein [33].
In present paper, we only consider the 1D problem with the specified free energy, but
we hope that our study can be a good beginning for further investigations.

Since the constants R and ν play no role in the analysis, we assume henceforth that
R=ν= 1.

This paper is organized as follows. In Section 2, we discuss the local existence of a
unique strong solution to the problem (1.1)–(1.3) by the Schauder fixed-point theorem.
Then we show that, if the initial data is smooth enough, the local strong solution is
classical. In Section 3, we obtain a priori estimates for the classical solution of the
problem (1.1)–(1.3). In Section 4, we prove our main results by weakly convergent
method and energy argument.

2. Local classical solutions
In this section, we investigate the existence and uniqueness of local classical solutions

to the problem (1.1)–(1.3). Our main result is as follows.

Theorem 2.1. Assume that ρ0∈C3,α(I) satisfies 0<c−1
0 ≤ρ0≤ c0 for some constants

c0 and α∈ (0,1), u0∈C3,α(I) with u0(0) =u0(1) = 0, χ0∈C4,α(I). Then there exist
a small time T∗>0, a constant c= c(c0,T∗) and a unique classical solution (ρ,u,χ) :
I× [0,T∗)→R+×R2 to the initial boundary value problem (1.1)–(1.3) such that

(ρxxx,ρxxt)∈C
α
2 ,
α
4 (QT∗), 0<c−1≤ρ≤ c on QT∗ ,

ux∈C2+α
2 ,1+α

4 (QT∗), χ∈C4+α,1+α
4 (QT∗).

Before proving this theorem, we show the local existence of unique strong solutions
under the assumptions ρ0∈H3(I) with 0<c−1

0 ≤ρ0≤ c0, u0∈H3(I) and χ0∈H4(I),
which is much stronger than the assumptions in Theorem 1.2 for the global existence
of unique strong solutions. After that, we will prove that, if the initial data is smooth
enough satisfying the assumptions in Theorem 2.1, the unique local strong solution is
classical.
Proposition 2.1. Let ρ0∈H3(I), 0<c−1

0 ≤ρ0≤ c0 for some constant c0, and u0∈
H1

0 (I)∩H3(I), χ0∈H4(I). Then there exist a small time T∗>0, a constant c= c(c0,T∗)
and a unique strong solution (ρ,u,χ) to the problem (1.1)–(1.3) such that

ρ∈L∞(0,T∗;H
3), ρt∈L∞(0,T∗;H

2), 0<c−1≤ρ≤ c,
u∈L∞(0,T∗;H

1
0 ∩H3)∩L2(0,T∗;H

4), ut∈L∞(0,T∗;H
1
0 )∩L2(0,T∗;H

2),

χ∈L∞(0,T∗;H
3)∩L2(0,T∗;H

4), χt∈L∞(0,T∗;L
2)∩L2(0,T∗;H

2),

µ∈L∞(0,T∗;H
2)∩L2(0,T∗;H

4), µt∈L2(0,T∗;L
2).

In order to prove this proposition, we consider the following auxiliary system
ρt+(ρv)x= 0,

ρut+ρvux+(ργ)x=uxx−
1

2

(
χ2
x

)
x
,

ρχt+ρvχx=µxx,

ρµ=ρ(ϕ3−ϕ)−χxx

(2.1)

subject to the initial boundary value conditions (1.2) and (1.3), where v and ϕ are known
functions which satisfy the boundary value conditions v

∣∣
∂I

= 0 and ϕx
∣∣
∂I

= 0 for t≥0.
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The following result for the auxiliary system is sufficient to prove the local existence of
strong solutions to the problem (1.1)–(1.3).

Lemma 2.1. Let T be a fixed time with 0<T <1. Assume that v(x,0) =u0(x),
ϕ(x,0) =χ0(x) for x∈ I and

sup
0≤t≤T

(‖v‖2H1
0∩H3 +‖vt‖2H1

0
)+

∫ T

0

(
‖v‖2H1

0∩H4 +‖vt‖2H2

)
≤K1, (2.2)

sup
0≤t≤T

(‖ϕ‖2H3 +‖ϕt‖2L2)+

∫ T

0

(
‖ϕ‖2H4 +‖ϕt‖2H2

)
≤K2 (2.3)

holds for some constants K1,K2>1. Then there exists a unique strong solution (ρ,u,χ)
to the problem (2.1), (1.2) and (1.3) such that

sup
0≤t≤T

(
‖ρ‖2H3 +K

−1
1 ‖ρt‖

2
H2 +‖ρ−1‖2L∞+‖u‖2H1

0∩H3 +‖ut‖2H1
0
+‖χ‖2H3 +‖χt‖2L2 +‖µ‖2H2

)
+

∫ T

0

(
‖u‖2H1

0∩H4 +‖ut‖2H2 +‖χ‖2H4 +‖χt‖2H2

)
+‖µ‖2H4 +‖µt‖2L2 ≤C,

where C :=C(K1T
1/2,K2

1T,K
3
2T,T )>0 is a constant depending only on K1T

1/2, K2
1T ,

K3
2T and T .

The existence and uniqueness of strong solutions to the hyperbolic Equation (2.1)1

is well known. Moreover, the solution ρ satisfies the following estimates

sup
0≤t≤T

(
‖ρ‖H3 +K

−1/2
1 ‖ρt‖H2 +‖ρ−1‖L∞

)
≤ cexp{cK1T

1/2}. (2.4)

For the proof of this result, we refer to [32] and remind that v satisfies (2.2). From
(2.1)2 and (2.1)3,4, we have

ut=
1

ρ
uxx−vux−γργ−2ρx−

1

ρ
χxχxx, (2.5)

χt=− 1

ρ2
χxxxx+2

ρx
ρ3
χxxx+

(
ρxx
ρ3
−2

ρ2
x

ρ4

)
χxx−vχx+

1

ρ
(3ϕ2−1)ϕxx+

6

ρ
ϕϕ2

x. (2.6)

It follows from classical arguments (see [27,30]) that the above linear parabolic equations
subject to (1.2) and (1.3) have a unique strong solution (u,χ). It remains for us to do
some necessary a priori estimates for u, χ and µ. We begin with χ and µ.

Lemma 2.2. It holds that

sup
0≤t≤T

∫
I

χ2(t)+

∫∫
QT

(χ2
xx+µ2)≤C(K1T

1/2,K3
2T ). (2.7)

Proof. Multiplying (2.1)3 by χ, then integrating the result with respect to x over
I, using integration by parts, (2.1)1,4 and (2.4), we have

1

2

d

dt

∫
I

ρχ2 =

∫
I

µχxx=

∫
I

(ϕ3−ϕ)χxx−
∫
I

1

ρ
χ2
xx

≤− 1

2

∫
I

1

ρ
χ2
xx+

1

2

∫
I

ρ(ϕ3−ϕ)2,
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from which we get

d

dt

∫
I

ρχ2 +

∫
I

1

ρ
χ2
xx≤2‖ρ‖L∞(‖ϕ‖6L∞+‖ϕ‖2L∞).

Integrating the above inequality over (0,t), by (2.3) and (2.4), we obtain∫
I

ρχ2(t)+

∫ t

0

∫
I

1

ρ
χ2
xx≤ c0‖χ0‖2L2 +C(K1T

1/2)t‖ϕ‖6L∞ ≤C+C(K1T
1/2)K3

2 t,

from which and the equation (2.1)4, we see that (2.7) holds. The proof is complete.

If we choose 0<T <T∗ := min{ 1
K2

1
, 1
K3

2
}, then C(K1T

1/2, K2
1T , K3

2T , T )≤C, where

C is a constant independent of K1 and K2. For convenience, here and below, we denote
by C a constant, whose value may be different from line to line but is independent of
K1 and K2.

Lemma 2.3. We have the inequality

sup
0≤t≤T

∫
I

χ2
x(t)+

∫∫
QT

(χ2
xxx+µ2

x)≤C, 0<T <T∗. (2.8)

Proof. Multiplying (2.1)3 by µ, then integration the result over I, using integration
by parts, (2.1)1,3,4 and (2.4), we have

1

2

d

dt

∫
I

χ2
x+

∫
I

µ2
x=

∫
I

vχxχxx−
∫
I

ρ(ϕ3−ϕ)(χt+vχx)

=
1

2

∫
I

v(χ2
x)x−

∫
I

(ϕ3−ϕ)µxx

=− 1

2

∫
I

vxχ
2
x+

∫
I

(3ϕ2−1)ϕxµx

≤‖vx‖L∞
∫
I

χ2
x+

1

2

∫
I

µ2
x+

1

2

∫
I

(3ϕ2−1)2ϕ2
x,

which implies

d

dt

∫
I

χ2
x+

∫
I

µ2
x≤‖vx‖L∞

∫
I

χ2
x+C‖ϕ‖4L∞‖ϕ‖2H1 ≤K1/2

1

∫
I

χ2
x+CK3

2 . (2.9)

By Grönwall’s inequality, we get∫
I

χ2
x≤ exp

{
K

1/2
1 t

}(
‖χ0‖2H1 +CK3

2 t
)
≤C,

provided that 0<t<T∗. Integrating (2.9) from 0 to T (<T∗), we have∫
I

χ2
x+

∫∫
QT

µ2
x≤C. (2.10)

Differentiating (2.1)4 with respect to x and using (2.3), (2.4), (2.7), (2.10), we obtain
(2.8). This completes the proof.

Lemma 2.4. There holds

sup
0≤t≤T

∫
I

χ2
t (t)+

∫∫
QT

(χ2
xxt+µ2

t +µ2
xxxx)≤C, 0<T <T∗. (2.11)
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Proof. Differentiating (2.1)3 with respect to t, then multiplying the result by χt,
integrating over I and using (2.1)1,4, we have

1

2

d

dt

∫
I

ρχ2
t +

∫
I

ρtχ
2
t +

∫
I

ρtvχxχt+

∫
I

ρvtχxχt

=

∫
I

µxxtχt=−
∫
I

µxtχxt=

∫
I

µtχxxt

=−
∫
I

1

ρ
χ2
xxt−

∫
I

(
1

ρ

)
t

χxxχxxt+

∫
I

(3ϕ2−1)ϕtχxxt,

from which we get

1

2

d

dt

∫
I

ρχ2
t +

∫
I

1

ρ
χ2
xxt

=−
∫
I

ρtχ
2
t −
∫
I

ρtvχxχt−
∫
I

ρvtχxχt−
∫
I

(
1

ρ

)
t

χxxχxxt+

∫
I

(3ϕ2−1)ϕtχxxt

≤1

2

∫
I

1

ρ
χ2
xxt+C(‖ρt‖L∞+‖ρt‖2L∞+‖ρ‖L∞)

∫
I

ρχ2
t +C‖v‖2L∞

∫
I

χ2
x

+C‖χx‖2L∞
∫
I

v2
t +C‖ρt‖2L∞

∫
I

χ2
xx+

∫
I

ρ(3ϕ2−1)2ϕ2
t

≤1

2

∫
I

1

ρ
χ2
xxt+CK1

∫
I

ρχ2
t +C(‖v‖2L∞+‖vt‖2L2 +‖ρt‖4L∞)

+C

∫
I

χ2
xxx+C‖3ϕ2−1‖2L∞‖ϕt‖2L2 ,

where we have used the inequality

‖ρt‖2L∞
∫
I

χ2
xx=−‖ρt‖2L∞

∫
I

χxxxχx≤
∫
I

χ2
xxx+‖ρt‖4L∞

∫
I

χ2
x.

Hence, we have

d

dt

∫
I

ρχ2
t +

∫
I

1

ρ
χ2
xxt≤CK1

∫
I

ρχ2
t +CK2

1 +C

∫
I

χ2
xxx+CK3

2 . (2.12)

Recalling (2.6), we see that

‖√ρχt(0)‖L2 ≤C(‖ρ0‖H2 ,‖u0‖L2 ,‖χ0‖H4). (2.13)

Then Grönwall’s inequality implies∫
I

ρχ2
t ≤ exp{CK1t}

(∫
I

ρχ2
t (0)+CK2

1 t+C

∫∫
Qt

χ2
xxx+CK3

2 t

)
≤C,

provided that 0<t<T∗. Integrating (2.12) over (0,T ), we have∫
I

ρχ2
t +

∫∫
QT

1

ρ
χ2
xxt≤C. (2.14)

Differentiating (2.1)4 with respect to t and (2.1)3 with respect to x twice, we have

µt=(3ϕ2−1)ϕt+
ρt
ρ2
χxx−

1

ρ
χxxt,
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µxxxx=ρxxχt+2ρxχxt+ρχxxt+ρxxvχx+ρvxxχx+ρvχxxx

+2ρxvxχx+2ρxvχxx+2ρvxχxx.

By (2.3), (2.2), (2.4), (2.8) and (2.14), Lemma 2.4 follows.

Lemma 2.5. We have the inequality

sup
0≤t≤T

∫
I

χ2
xx(t)+

∫∫
QT

χ2
xxxx≤C, 0<T <T∗. (2.15)

Proof. Multiplying (2.1)3 by χxxxx and integrating the result over I, we have∫
I

ρχtχxxxx+

∫
I

ρvχxχxxxx=

∫
I

µxxχxxxx. (2.16)

From (2.1)4 and the boundary conditions µx

∣∣∣
∂I

=ϕx

∣∣∣
∂I

= 0, we get
(

1
ρχxx

)
x

∣∣∣
∂I

= 0.

Moreover,

1

ρ
χxxxx=

(
1

ρ
χxx

)
xx

−2

(
1

ρ

)
x

χxxx−
(

1

ρ

)
xx

χxx.

Using the above equality and integrating by parts, we have∫
I

ρχtχxxxx=

∫
I

ρ2χt
1

ρ
χxxxx

=

∫
I

ρ2χt

(
1

ρ
χxx

)
xx

−2

∫
I

ρ2χt

(
1

ρ

)
x

χxxx−
∫
I

ρ2χt

(
1

ρ

)
xx

χxx

=−
∫
I

ρ2χxt

(
1

ρ
χxx

)
x

−2

∫
I

ρρxχt

(
1

ρ
χxx

)
x

+2

∫
I

χtρxχxxx+

∫
I

ρ2χt

(
ρx
ρ2

)
x

χxx

=

∫
I

ρχxxtχxx+2

∫
I

ρxχxtχxx+2

∫
I

χt
ρ2
x

ρ
χxx−2

∫
I

ρxχtχxxx

+2

∫
I

χtρxχxxx+

∫
I

χtρxxχxx−2

∫
I

χt
ρ2
x

ρ
χxx

=
1

2

d

dt

∫
I

ρχ2
xx−

1

2

∫
I

ρtχ
2
xx+2

∫
I

ρxχxtχxx+

∫
I

χtρxxχxx. (2.17)

On the other hand, (2.1)4 implies

µxx=−1

ρ
χxxxx+2

ρx
ρ2
χxxx+

(
ρxx
ρ2
−2

ρ2
x

ρ3

)
χxx+(3ϕ2−1)ϕxx+6ϕϕ2

x

:=−1

ρ
χxxxx+A, (2.18)

where ∫
I

A2≤C
∫
I

χ2
xxx+C‖χxx‖2L∞

∫
I

ρ2
xx+C

∫
I

χ2
xx+C‖ϕ‖4L∞‖ϕxx‖2L2 .

Substitute (2.17) and (2.18) into (2.16) to give

1

2

d

dt

∫
I

ρχ2
xx+

∫
I

1

ρ
χ2
xxxx
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=
1

2

∫
I

ρtχ
2
xx−2

∫
I

ρxχxtχxx−
∫
I

χtρxxχxx−
∫
I

ρvχxχxxxx+

∫
I

Aχxxxx

≤1

2

∫
I

1

ρ
χ2
xxxx+C

(
‖ρt‖L∞+‖ρx‖2L∞

)∫
I

ρχ2
xx+C

∫
I

χ2
xt+C‖χxx‖2L∞

∫
I

ρ2
xx

+C

∫
I

χ2
t +C‖v‖2L∞

∫
I

χ2
x+C

∫
I

χ2
xxx+C

∫
I

χ2
xx+C‖ϕ‖6H2

≤1

2

∫
I

1

ρ
χ2
xxxx+CK1

∫
I

ρχ2
xx+C

∫
I

(χ2
xxt+χ2

xxx)+CK1 +C‖ϕ‖6H2 ,

where we have used the inequalities∫
I

χ2
xt=

∫
I

χxtχxt=−
∫
I

χtχxxt≤
∫
I

χ2
t +

∫
I

χ2
xxt≤C+

∫
I

χ2
xxt,∫

I

χ2
xx=

∫
I

χxxχxx=−
∫
I

χxχxxx≤
∫
I

χ2
x+

∫
I

χ2
xxx≤C+

∫
I

χ2
xxx.

Thus, we have

d

dt

∫
I

ρχ2
xx+

∫
I

1

ρ
χ2
xxxx≤CK1

∫
I

ρχ2
xx+C

∫
I

(χ2
xxt+χ2

xxx)+CK1 +CK3
2 . (2.19)

Grönwall’s inequality implies∫
I

ρχ2
xx≤ exp{CK1t}

(∫
I

ρχ2
xx(0)+C

∫∫
Qt

(χ2
xxt+χ2

xxx)+CK1t+CK3
2 t

)
≤C,

provided that 0<t<T∗. For any 0<T <T∗, integrating (2.19) over (0,T ), (2.15) holds.
The proof of Lemma 2.5 is complete.

Lemma 2.6. It holds that

sup
0≤t≤T

∫
I

(
χ2
xxx+µ2 +µ2

xx

)
(t)≤C, 0<T <T∗. (2.20)

Proof. From (2.1)3,4 and (2.4), (2.11), (2.15), we have∫
I

µ2≤
∫
I

ϕ6 +

∫
I

ϕ2 +

∫
I

1

ρ2
χ2
xx≤C‖ϕ‖6L∞+C,∫

I

µ2
xx≤

∫
I

ρ2χ2
t +

∫
I

ρ2v2χ2
x≤C‖v‖2L∞+C.

Noticing

|ϕ(x,t)|≤|ϕ(x,t)−ϕ(x,0)|+ |ϕ(x,0)|≤
∫ t

0

‖ϕτ (τ)‖L∞dτ+ |χ0(x)|

≤C
∫ t

0

‖ϕτ (τ)‖W 1,1dτ+ |χ0(x)|=C

∫ t

0

∫
I

(|ϕt|+ |ϕxt|)+ |χ0(x)|

≤C|Qt|1/2
(∫∫

Qt

ϕ2
t

)1/2

+C|Qt|1/2
(∫∫

Qt

ϕ2
xt

)1/2

+‖χ0‖H1 (2.21)

and

|v(x,t)|≤|v(x,t)−v(x,0)|+ |v(x,0)|=
∣∣∣∣∫ t

0

(vτ (x,τ)−vτ (0,τ))dτ

∣∣∣∣+ |u0(x)|
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=

∣∣∣∣∫ t

0

∫ x

0

vyτ (y,τ)dydτ

∣∣∣∣+ |u0(x)|≤ |Qt|1/2
(∫∫

Qt

v2
xt

)1/2

+‖u0‖H1 , (2.22)

we have ∫
I

µ2≤C(K2t)
3 +C≤C,∫

I

µ2
xx≤CK1t+C≤C,

for any 0<t<T∗. Differentiating (2.1)4 with respect to x, we have

χxxx=−ρµx−ρxµ+ρx(ϕ3−ϕ)+ρ(3ϕ2−1)ϕx.

Similar to (2.22), we can deduce that

|ϕx(x,t)|≤ |Qt|1/2
(∫∫

Qt

ϕ2
xxt

)1/2

+‖χ0‖H2 .

Hence, we obtain∫
I

χ2
xxx≤C

∫
I

µ2 +C

∫
I

µ2
x+C‖ϕ‖6L∞+C‖ϕ‖2L∞+C(‖ϕ‖4L∞+1)‖ϕx‖2L∞ ≤C,

for any 0≤ t≤T∗. Lemma 2.6 follows.

In what follows, we turn to do some a priori estimates for u.
Lemma 2.7. For any 0<T <T∗, we have

sup
0≤t≤T

∫
I

u2
x(t)+

∫∫
QT

u2
t ≤C. (2.23)

Proof. Multiplying (2.1)2 by ut, then integrating the result over I, we get

1

2

d

dt

∫
I

u2
x+

∫
I

ρu2
t =−

∫
I

ρvuxut−γ
∫
I

ργ−1ρxut−
∫
I

χxχxxut

≤1

2

∫
I

ρu2
t +C‖v‖2L∞

∫
I

u2
x+C+C‖χx‖2L∞

∫
I

χ2
xx

≤1

2

∫
I

ρu2
t +CK1

∫
I

u2
x+C,

which implies

d

dt

∫
I

u2
x+

∫
I

ρu2
t ≤CK1

∫
I

u2
x+C.

By Grönwall’s inequality and (2.4), we can deduce that (2.23) holds. This completes
the proof.

Lemma 2.8. There holds

sup
0≤t≤T

∫
I

(u2
t +u2

xx)(t)+

∫∫
QT

u2
xt≤C, 0<T <T∗. (2.24)
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Proof. Differentiating (2.1)2 with respect to t and multiplying the result by ut,
then integrating with respect to x over I, we have

1

2

d

dt

∫
I

ρu2
t +

∫
I

u2
xt

=− 1

2

∫
I

ρtu
2
t −
∫
I

ρtvuxut−
∫
I

ρvtuxut−
∫
I

ρvuxtut+γ

∫
I

ργ−1ρtuxt+

∫
I

χxχxtuxt

≤1

2

∫
I

u2
xt+C(‖ρt‖L∞+‖ρt‖2L∞+1+‖v‖2L∞)

∫
I

ρu2
t

+C(‖v‖2L∞+‖vt‖2L∞)

∫
I

u2
x+C‖ρt‖2L∞+C‖χx‖2L∞

∫
I

χ2
xt,

from which we have

d

dt

∫
I

ρu2
t +

∫
I

u2
xt≤CK1

∫
I

ρu2
t +CK1 +C

∫
I

(v2
xt+χ2

xxt).

Recalling (2.5), we get

‖√ρut(0)‖L2 ≤C(‖ρ0‖H1 ,‖u0‖H2 ,‖χ0‖H2). (2.25)

Grönwall’s inequality implies∫
I

u2
t (t)+

∫∫
Qt

u2
xt≤C, 0<t<T∗.

From (2.1)2, (2.4), (2.15), (2.23), (2.24) and (2.22), we have∫
I

u2
xx≤C

∫
I

u2
t +C‖v‖2L∞

∫
I

u2
x+C+‖χx‖2L∞

∫
I

χ2
xx≤C+C‖v‖2L∞

≤C+C

(
|Qt|

∫∫
Qt

v2
xt+u2

0(x)

)
≤C+CK1t≤C, 0<t<T∗.

The proof is complete.

Lemma 2.9. For any 0<T <T∗, we have

sup
0≤t≤T

∫
I

u2
xt(t)+

∫∫
QT

u2
xxt≤C. (2.26)

Proof. Differentiating (2.1)2 with respect to t, then multiplying the result by uxxt
and integrating with respect to x over I, we have∫

I

(ρut)tuxxt+

∫
I

(ρvux)tuxxt+

∫
I

(ργ)xtuxxt=

∫
I

u2
xxt−

∫
I

(χxχxx)tuxxt, (2.27)

where∫
I

(ρut)tuxxt=

∫
I

ρuttuxxt+

∫
I

ρtutuxxt=−
∫
I

ρuxttuxt−
∫
I

ρxuttuxt+

∫
I

ρtutuxxt

=− 1

2

d

dt

∫
I

ρu2
xt+

1

2

∫
I

ρtu
2
xt−

∫
I

ρxuttuxt+

∫
I

ρtutuxxt. (2.28)
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Differentiating (2.1)2 with respect to t, we see that

utt=−ρt
ρ
ut−

ρt
ρ
vux−vtux−vuxt−

(ργ)xt
ρ

+
1

ρ
uxxt−

1

ρ
χxtχxx−

1

ρ
χxχxxt :=

1

ρ
uxxt+B,

(2.29)

where ∫
I

B2≤CK1

∫
I

ρu2
xt+C

∫
I

χ2
xxt+CK2

1 .

Substitute (2.28) and (2.29) into (2.27) to give

1

2

d

dt

∫
I

ρu2
xt+

∫
I

u2
xxt=

1

2

∫
I

ρtu
2
xt−

∫
I

ρx

(
1

ρ
uxxt+B

)
uxt+

∫
I

ρtutuxxt

+

∫
I

(ρtvux+ρvtux+ρvuxt)uxxt+

∫
I

χxtχxxuxxt

+

∫
I

(γ(γ−1)ργ−2ρxρt+γργ−1ρxt)uxxt+

∫
I

χxχxxtuxxt

≤1

2

∫
I

u2
xxt+CK1

∫
I

ρu2
xt+C

∫
I

χ2
xxt+CK2

1 ,

i.e.

d

dt

∫
I

ρu2
xt+

∫
I

u2
xxt≤CK1

∫
I

ρu2
xt+C

∫
I

χ2
xxt+CK2

1 .

Noticing

‖√ρuxt(0)‖L2 ≤C(‖ρ0‖H2 ,‖u0‖H3 ,‖χ0‖H3),

and applying Grönwall’s inequality, Lemma 2.9 follows.

Lemma 2.10. For any 0<T <T∗, there holds

sup
0≤t≤T

∫
I

u2
xxx(t)+

∫∫
QT

u2
xxxx≤C. (2.30)

Proof. Differentiating (2.1)2 with respect to x, we see that

uxxx=ρuxt+ρxut+ρxvux+ρvxux+ρvuxx

+γ(γ−1)ργ−2ρ2
x+γργ−1ρxx+χ2

xx+χxχxxx. (2.31)

Similar to (2.21), we have

|vx(x,t)|≤C|Qt|1/2
(∫∫

Qt

v2
xt

)1/2

+C|Qt|1/2
(∫∫

Qt

v2
xxt

)1/2

+‖u0‖H2 .

Hence, we get∫
I

u2
xxx≤C

∫
I

u2
xt+C

∫
I

u2
t +C(‖v‖2L∞+‖vx‖2L∞)

∫
I

u2
x+C‖v‖2L∞

∫
I

u2
xx

+C+‖χxx‖2L∞
∫
I

χ2
xx+‖χx‖2L∞

∫
I

χ2
xxx≤C, 0≤ t≤T∗.
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Differentiating (2.31) with respect to x again and applying the estimates obtained before,
we can easily arrive at (2.30). The proof is complete.

Lemma 2.1 is an immediate consequence of Lemmas 2.2–2.10.

Proof. (Proof of Proposition 2.1.) Let X be the set of all functions (v,ϕ)
satisfying conditions (2.2) and (2.3). For each (v,ϕ)∈X, set (u,χ) = Φ(v,ϕ) be the
solution of the problem (2.1), (1.2) and (1.3). By Lemma 2.1, we can choose large
positive constants K1 and K2 satisfying min{K1,K2}>C such that Φ maps X into
X for 0<T <T∗ := min{ 1

K2
1
, 1
K3

2
}. It is clear that the set X is a convex and compact

subset of C([0,T ];H1). The continuity of Φ can be easily proved by an energy method.
Therefore, it follows from the Schauder fixed-point theorem that Φ has a fixed point.
This proves the existence of strong solutions to the problem (1.1)–(1.3). Furthermore, a
simple energy argument shows the uniqueness. The proof of this Proposition is complete.

Before proving Theorem 2.1, we recall the following well-known lemma.

Lemma 2.11 ( [31]). Assume X⊂E⊂Y are Banach spaces and X ↪→↪→E. Then the
following embeddings are compact:

(i)

{
ϕ :ϕ∈Lq(0,T ;X),

∂ϕ

∂t
∈L1(0,T ;Y )

}
↪→↪→Lq(0,T ;E), if 1≤ q≤∞;

(ii)

{
ϕ :ϕ∈L∞(0,T ;X),

∂ϕ

∂t
∈Lr(0,T ;Y )

}
↪→↪→C([0,T ];E), if 1<r≤∞.

Proof. (Proof of Theorem 2.1.) Obviously, the assumptions on initial data in
Theorem 2.1 satisfy the assumptions in Proposition 2.1. So the problem (1.1)–(1.3)
admits a unique local strong solution (ρ,u,χ) and a small time T∗, such that

sup
0≤t<T∗

(
‖ρ‖2H3 +‖ρt‖2H2 +‖ρ−1‖2L∞+‖u‖2H1

0∩H3 +‖ut‖2H1
0

+‖χ‖2H3 +‖χt‖2L2 +‖µ‖2H2

)
+

∫ T∗

0

(
‖u‖2H1

0∩H4 +‖ut‖2H2 +‖χ‖2H4 +‖χt‖2H2 +‖µ‖2H4 +‖µt‖2L2

)
≤C<+∞.

(2.32)

In what follows, starting from (2.32), the assumptions on initial data and the equations
in (1.1), we discuss the regularities of the local strong solution. We claim that

max
{
‖ρxx‖

C
1
2
, 1
2 (QT )

,‖χxx‖
C

1
2
, 1
4 (QT )

,‖ux‖
C1, 1

2 (QT )

}
≤C, 0<T <T∗. (2.33)

We prove the estimate of ρ for example. The other two are similar. For any
(x1,t),(x2,t)∈QT , we have

|ρxx(x1,t)−ρxx(x2,t)|=
∣∣∣∣∫ x1

x2

ρxxx(x,t)dx

∣∣∣∣≤(∫
I

ρ2
xxx

)1/2(∫ x1

x2

12

)1/2

≤C|x1−x2|1/2.

(2.34)

Differentiating (1.1)1 with respect to x twice, we get

ρxxt+ρxxxu+3ρxxux+3ρxuxx+ρuxxx= 0.
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For any (x,t1),(x,t2)∈QT , we consider the case of x∈ [0,1/2]. Suppose that ∆t=
t2− t1>0 satisfying ∆t≤1/2. Integrating the above equation over (x,x+∆t)×(t1,t2),
we have ∫ x+∆t

x

(ρyy(y,t2)−ρyy(y,t1))dy

=−
∫ t2

t1

∫ x+∆t

x

(ρyyyu+3ρyyuy+3ρyuyy+ρuyyy)(y,t)dydt

≤
∫ t2

t1

[
‖u‖L∞‖ρxxx‖L2(∆t)1/2 +‖ρ‖L∞‖uxxx‖L2(∆t)1/2

]
dt

+3(‖ρxx‖L∞‖ux‖L∞+‖ρy‖L∞‖uxx‖L∞)(∆t)2

≤C(∆t)3/2.

Noticing ρxx∈L∞(0,T ;H1) and ρxxt∈L∞(0,T ;L2), by Lemma 2.11 we have ρxx∈
C([0,T ];L2). For the left-hand side of the above inequality, by the integral mean value
theorem, there exists a point x∗∈ [x,x+∆t]∈ [0,1] such that

|ρxx(x∗,t2)−ρxx(x∗,t1)|≤C|t2− t1|1/2.

Combine the above inequality with (2.34) to give

|ρxx(x,t1)−ρxx(x,t2)|
≤ |ρxx(x,t1)−ρxx(x∗,t1)|+ |ρxx(x∗,t1)−ρxx(x∗,t2)|+ |ρ(x,t2)xx−ρxx(x∗,t2)|
≤C|x−x∗|1/2 +C|t1− t2|1/2≤ C|t1− t2|1/2. (2.35)

For the case of x∈ [1/2,1], integrating the equation over (x−∆t,x)×(t1,t2), then we
can also get the above inequality. From (2.34) and (2.35), for any (x1,t1),(x2,t2)∈QT ,
there holds

|ρxx(x1,t1)−ρxx(x2,t2)|≤|ρxx(x1,t1)−ρxx(x2,t1)|+ |ρxx(x2,t1)−ρxx(x2,t2)|
≤C(|x1−x2|1/2 + |t1− t2|1/2).

From (1.1)2, we have

ut=
1

ρ
uxx+f1(x,t), (2.36)

where f1(x,t) =−uux−γργ−2ρx− 1
ρχxχxx. Noticing that ‖ 1

ρ‖C1,1(QT ), ‖f1‖
C

1
2
, 1
4 (QT )

≤
C and u0∈C3,α(I), applying the Schauder theory, we have

‖u‖
C2+ 1

2
,1+ 1

4 (QT )
≤C.

From (1.1)3,4, we get

χt=− 1

ρ2
χxxxx+2

ρx
ρ3
χxxx+

(
ρxx
ρ3
−2

ρ2
x

ρ4
+

3χ2−1

ρ

)
χxx+f2(x,t),

where f2(x,t) =−uχx+ 6
ρχχ

2
x. Observing that the coefficients and f2 are bounded in

C
1
2 ,

1
4 (QT ) and χ0∈C4,α(I), by the Schauder theory (see [34]), we have

‖χ‖
C4+ 1

2
,1+ 1

8 (QT )
≤C.
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In particular,

‖χxxx‖Cα, α4 (QT )
≤C.

Differentiating (2.36) with respect to x, using the above results and the Schauder theory
again, we obtain

‖ux‖C2+α
2
,1+α

4 (QT )
≤C.

In order to study the regularity of ρxxx, we introduce the Lagrangian mass coordi-
nates defined by

y(x,t) =

∫ x

0

ρ(ξ,t)dξ, τ(x,t) = t.

It is easy to see that (x,t)→ (y,τ) is a C1-bijective map from I× [0,T )→ I× [0,T ),

provided that ρ(x,t)∈C1 (I× [0,T )) is positive and
∫ 1

0
ρ(ξ,t)dξ=

∫ 1

0
ρ0(ξ)dξ= 1 for all

t∈ [0,T ). By direct calculations, we see that

∂

∂t
=−ρu ∂

∂y
+
∂

∂τ
,

∂

∂x
=ρ

∂

∂y
. (2.37)

If we write F (x,t) =− 1
2 (χ2

x)x, we know that ‖Fxx‖
C

1
2
, 1
8 (QT )

≤C. Hence, (1.1)1,2 can be

rewritten in the Lagrangian coordinates as{
ρτ +ρ2uy = 0,

uτ +(ργ)y = (ρuy)y+F,
(2.38)

which satisfies the initial boundary value conditions

(ρ,u)
∣∣∣
τ=0

= (ρ0,u0) for y∈ I and u
∣∣∣
∂I

= 0 for τ ≥0.

By (2.38), direction calculations imply

(u+(lnρ)y)τ =F −γργ (u+(lnρ)y)+γργu,

from which we have

ρy =ρ(u0 +(lnρ0)y)exp

{
−γ
∫ τ

0

ργ
}

+ρ

∫ τ

0

(F +γργu)exp

{
−γ
∫ τ

s

ργ
}

ds−ρu.

Recalling ρ0∈C3,α(I), u0∈C3,α(I) and ‖ρyy‖
C

1
2
, 1
2 (QT )

, ‖uyy‖Cα, α2 (QT )
,

‖Fyy‖
C

1
2
, 1
8 (QT )

≤C, we have

‖ρyyy‖
C

1
2
, 1
8 (QT )

≤C,

from which and (1.1)1, we conclude that

‖ρyy‖C1,1(QT )≤C.

By the Schauder theory and the equations in (1.1), repeating the above arguments
once again, we obtain

max
{
‖ρxxx‖C α

2
, α
4 (QT )

, ‖ρxxt‖C α
2
, α
4 (QT )

, ‖ux‖C2+α
2
,1+α

4 (QT )
, ‖χ‖

C4+α,1+α
4 (QT )

}
≤C,

for any 0<T <T∗.
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3. A priori estimates
In this section, we are going to do some a priori estimates about the classical solution

which has been obtained in Theorem 2.1. The first estimate is a basic energy equality.

Lemma 3.1. For any 0≤ t<T , it holds that∫
I

(ρu2

2
+

ργ

γ−1
+
ρ(χ2−1)2

4
+
χ2
x

2

)
(t)+

∫ t

0

∫
I

(
u2
x+µ2

x

)
=E0, (3.1)

where ∫
I

ρ(t) =

∫
I

ρ0≡1 and E0 :=

∫
I

(ρ0u
2
0

2
+

ργ0
γ−1

+
ρ0(χ2

0−1)2

4
+
χ2

0x

2

)
denotes the total energy of the initial data.

Proof. Multiplying (1.1)2 by u and integrating the result over I, we get

d

dt

∫
I

ρu2

2
+

∫
I

(ργ)xu+

∫
I

u2
x=−1

2

∫
I

(χ2
x)xu. (3.2)

Now we claim that ∫
I

(ργ)xu=
d

dt

∫
I

ργ

γ−1
. (3.3)

In fact, by (1.1)1 we have∫
I

(ργ)xu=

∫
I

ργ−1(ρt+ρxu) =
1

γ

d

dt

∫
I

ργ +
1

γ

∫
I

(ργ)xu,

from which we obtain (3.3). Multiplying (1.1)3 by µ, then integrating the result over I
with respect to x, we get

d

dt

∫
I

(
ρ

(
χ4

4
− χ

2

2

)
+
χ2
x

2

)
+

∫
I

µ2
x=

1

2

∫
I

(χ2
x)xu. (3.4)

Putting (3.2), (3.3) and (3.4) together, we see that (3.1) holds. The proof is complete.

To obtain the upper and lower bounds of the density ρ, we need the following
estimate.

Lemma 3.2. For any 0≤ t<T , there holds∫ t

0

∫
I

1

ρ
χ2
xx≤C(E0,T ). (3.5)

Proof. Multiplying (1.1)3 by χ, using (1.1)1 and (1.1)3,4, we have

1

2

d

dt

∫
I

ρχ2 =−
∫
I

µxχx=−3

∫
I

χ2χ2
x+

∫
I

χ2
x−
∫
I

1

ρ
χ2
xx,

which implies that

1

2

d

dt

∫
I

ρχ2 +3

∫
I

χ2χ2
x+

∫
I

1

ρ
χ2
xx=

∫
I

χ2
x≤C(E0),
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where we have used (3.1). Integrating the above inequality over (0,t), Lemma 3.2
follows.

Then we can prove the upper and lower bounds of ρ.

Lemma 3.3. We have the inequalities∫
I

ρ2
x(t)≤C1, t∈ [0,T ), (3.6)

C−1
1 ≤ρ(x,t)≤C1, (x,t)∈ I× [0,T ), (3.7)

where C1>0 is a constant depending only on c0,E0,‖ρ0‖H1 , γ and T .

Proof. Using (1.1)1, we get

d

dt

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 =

∫
I

ρt

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +2

∫
I

ρ

(
1

ρ

)
x

(
1

ρ

)
xt

=−
∫
I

(ρu)x

∣∣∣∣(1

ρ
)x

∣∣∣∣2 +2

∫
I

ρ

(
1

ρ

)
x

(
− ρt
ρ2

)
x

=−
∫
I

(ρu)x

∣∣∣∣(1

ρ

)
x

∣∣∣∣2−2

∫
I

ρu

(
1

ρ

)
x

(
1

ρ

)
xx

+2

∫
I

(
1

ρ

)
x

uxx

=−
∫
I

(ρu)x

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +

∫
I

(ρu)x

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +2

∫
I

(
1

ρ

)
x

uxx

=2

∫
I

(
1

ρ

)
x

uxx,

i.e. ∫
I

(
1

ρ

)
x

uxx=
1

2

d

dt

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 .
Multiplying (1.1)2 by

(
1

ρ

)
x

, integrating the result over I, using the above equality and

(1.1)1 again, we have

1

2

d

dt

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +γ

∫
I

ργ−3ρ2
x−

d

dt

∫
I

ρu

(
1

ρ

)
x

=−
∫
I

ρu

(
1

ρ

)
xt

+

∫
I

(
ρu2
)
x

(
1

ρ

)
x

+

∫
I

χxχxx

(
1

ρ

)
x

=

∫
I

(ρu)x

(
− ρt
ρ2

)
+

∫
I

(ρu2)x

(
−ρx
ρ2

)
+

∫
I

χxχxx

(
1

ρ

)
x

≤
∫
I

|(ρu)x|2−(ρu2)xρx
ρ2

+‖χx‖L∞
∫
I

|χxx|
∣∣∣∣(1

ρ

)
x

∣∣∣∣
≤
∫
I

u2
x+‖χx‖W 1,1

(∫
I

1

ρ
χ2
xx

)1/2
(∫

I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2
)1/2

≤
∫
I

u2
x+‖χx‖2W 1,1 +

∫
I

1

ρ
χ2
xx

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2
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≤
∫
I

u2
x+2

∫
I

χ2
x+2

∫
I

ρ

∫
I

1

ρ
χ2
xx+

∫
I

1

ρ
χ2
xx

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2
≤
∫
I

u2
x+C(E0)+2

∫
I

1

ρ
χ2
xx+

∫
I

1

ρ
χ2
xx

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 ,
where we have used the embedding equality for one dimension ‖χx‖L∞(I)≤‖χx‖W 1,1(I),
Cauchy’s inequality and Hölder’s inequality. Integrating the above inequality over (0,t),
we get

1

2

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +γ

∫ t

0

∫
I

ργ−3ρ2
x

≤
∫
I

ρu

(
1

ρ

)
x

−
∫
I

ρ0u0

(
1

ρ0

)
x

+
1

2

∫
I

ρ0

∣∣∣∣( 1

ρ0

)
x

∣∣∣∣2
+

∫ t

0

∫
I

u2
x+C(E0)t+2

∫ t

0

∫
I

1

ρ
χ2
xx+

∫ t

0

(∫
I

1

ρ
χ2
xx

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2
)

≤1

4

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +C(c0,E0,‖ρ0‖H1 ,t)+

∫ t

0

(∫
I

1

ρ
χ2
xx

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2
)
,

which implies that

1

4

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +γ

∫ t

0

∫
I

ργ−3ρ2
x≤C(c0,E0,‖ρ0‖H1 ,t)+

∫ t

0

(∫
I

1

ρ
χ2
xx

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2
)
.

Applying Grönwall’s inequality, we have∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +γ

∫ t

0

∫
I

ργ−3ρ2
x≤C(c0,E0,‖ρ0‖H1 ,t). (3.8)

Since
∫
I
ρ(t) =

∫
I
ρ0 = 1, using the mean value theorem, there exists a(t)∈ I such that

ρ(a(t),t) =
∫
I
ρ(t) = 1. Hence, we have

1

ρ(x,t)
=

1

ρ(x,t)
− 1

ρ(a(t),t)
+

1

ρ(a(t),t)
=

∫ x

a(t)

(
1

ρ(ξ,t)

)
ξ

dξ+1

=

∫ x

a(t)

−ρξ
ρ2

+1≤
∥∥∥∥1

ρ

∥∥∥∥ 1
2

L∞

(∫
I

ρ2
x

ρ3

) 1
2

+1≤ 1

2

∥∥∥∥1

ρ

∥∥∥∥
L∞

+
1

2

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2 +1.

Taking the supremum over x∈ I yields∥∥∥∥1

ρ

∥∥∥∥
L∞
≤2+

∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2≤C(c0,E0,‖ρ0‖H1 ,t). (3.9)

On the other hand, since γ>1, we write γ= 1+2δ for some δ>0. Then, we get

‖ρδ‖L∞ ≤c
∫
I

ρδ+c

∫
I

(ρδ)x≤ c
(∫

I

ργ
)δ/γ

+c

∫
I

ρδ−1|ρx|

≤C(E0,γ)+c

(∫
I

ργ
)1/2

(∫
I

ρ

∣∣∣∣(1

ρ

)
x

∣∣∣∣2
)1/2
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≤C(c0,E0,‖ρ0‖H1 ,γ,t). (3.10)

From (3.9) and (3.10), we see that (3.7) holds. Combining (3.8) with (3.10), we obtain
(3.6). The proof of Lemma 3.3 is complete.

Observing that χ satisfies Neumann boundary value condition, we should estimate
the upper bound of the concentration χ.

Lemma 3.4. For any T >0, there holds

‖χ‖L∞(I×(0,T ))≤C(E0). (3.11)

Proof. From (1.1)3 and the boundary value condition (1.2), we have

d

dt

∫
I

ρχ=−ρuχ
∣∣∣
∂I

+µx

∣∣∣
∂I

= 0,

which implies that ∫
I

ρχ=

∫
I

ρ0χ0≤
∫
I

ρ0 +

∫
I

ρ0χ
2
0≤C(E0).

Thus, noticing that
∫
I
ρ(x,t)dx= 1 and ρ≥0 for any (x,t)∈ I×(0,T ), we get

|χ(x,t)|=
∣∣∣∣χ(x,t)

∫
I

ρ(y,t)dy

∣∣∣∣
≤
∣∣∣∣∫
I

ρ(y,t)(χ(x,t)−χ(y,t))dy

∣∣∣∣+ ∣∣∣∣∫
I

ρ(y,t)χ(y,t)dy

∣∣∣∣
≤
∣∣∣∣∫
I

ρ(y,t)

(∫ x

y

χξ(ξ,t)dξ

)
dy

∣∣∣∣+C(E0)

≤
∫
I

|χx|
∫
I

ρ(y,t)dy+C(E0)

≤
(∫

I

χ2
x

) 1
2

+C(E0)≤C(E0).

This completes the proof.

From (1.1)4, using the boundary value condition χx
∣∣
∂I

= 0 and (3.1), we have∫
I

ρµ=

∫
I

ρ(χ3−χ)−χx
∣∣∣
∂I
≤C(E0)

∫
I

ρ≤C(E0).

Similar to the proof of Lemma 3.4, we can deduce that

Lemma 3.5. For any 0≤ t<T , we have∫ t

0

∫
I

µ2≤C(E0,T ). (3.12)

The lemma below is useful in the proof of the forthcoming lemma.
Lemma 3.6. For any 0≤ t<T , it holds that∫ t

0

∫
I

χ2
xxx≤C1. (3.13)
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Proof. Differentiating (1.1)4 with respect to x, we have

χxxx=ρx
(
χ3−χ

)
+ρ(3χ2−1)χx−ρxµ−ρµx.

From (3.1), (3.6), (3.7), (3.11) and (3.12), we see that (3.13) holds.

In terms of above lemmas, we obtain the following important lemma. This turns
out to be the most difficult step.

Lemma 3.7. For any 0≤ t<T , there exists a positive constant C2 depending only on
c0, E0, ‖ρ0‖H2 , ‖u0‖H1 , ‖χ0‖H4 , γ and T , such that∫

I

(
1

ρ
χ2
xx+ρχ2

t +u2
x

)
(t)+

∫ t

0

∫
I

(
1

ρ
χ2
xxt+ρu2

t +u2
xx

)
≤C2. (3.14)

Proof. Firstly, differentiating (1.1)3 with respect to t, then multiplying the result
by χt, integrating over I, using (1.1)1 and (1.1)4, we have

1

2

d

dt

∫
I

ρχ2
t +

∫
I

1

ρ
χ2
xxt

=−2

∫
I

ρuχtχxt+

∫
I

ρuxuχxχt+

∫
I

ρxu
2χxχt−

∫
I

ρutχxχt

−
∫
I

ux
ρ
χxxχxxt−

∫
I

ρxu

ρ2
χxxχxxt+

∫
I

(3χ2−1)χtχxxt

≤1

4

∫
I

1

ρ
χ2
xxt+c‖χxx‖2L∞

(∥∥∥∥1ρ
∥∥∥∥
L∞

∫
I

u2
x+

∥∥∥∥1ρ
∥∥∥∥3
L∞
‖u‖2L∞

∫
I

ρ2x

)

+c

(
‖ρ‖L∞‖u‖2L∞+‖ρ‖L∞‖χx‖2L∞+

∥∥∥∥1ρ
∥∥∥∥
L∞
‖χx‖2L∞+‖χx‖2L∞+‖3χ2−1‖L∞

)∫
I

ρχ2
t

+c‖u‖2L∞
∫
I

u2
x+c‖u‖4L∞

∫
I

ρ2x+
1

4

∫
I

ρu2
t +

∫
I

χ2
xt

≤1

2

∫
I

1

ρ
χ2
xxt+C1

(
1+‖u‖2L∞+‖χx‖2L∞

)∫
I

ρχ2
t

+C1

∫
I

(χ2
xx+χ

2
xxx)

∫
I

u2
x+C1

(∫
I

u2
x

)2

+
1

4

∫
I

ρu2
t

≤1

2

∫
I

1

ρ
χ2
xxt+C1

(
1+

∫
I

(u2
x+χ

2
xx)

)∫
I

ρχ2
t +C1

∫
I

(
χ2
xx+χ

2
xxx+u

2
x

)∫
I

u2
x+

1

4

∫
I

ρu2
t ,

where we have used the following Sobolev embedding inequalities

‖χxx‖L∞(I)≤ c‖χxx‖W 1,2(I), ‖χx‖L∞(I)≤ c‖χxx‖L2(I) , ‖u‖L∞(I)≤ c‖ux‖L2(I) .

Thus we have

d

dt

∫
I

ρχ2
t +

∫
I

1

ρ
χ2
xxt

≤1

2

∫
I

ρu2
t +C1

(
1+

∫
I

(u2
x+χ2

xx)

)∫
I

ρχ2
t +C1

∫
I

(
χ2
xx+χ2

xxx+u2
x

)∫
I

u2
x. (3.15)

Next, multiplying (1.1)2 by ut and integrating the result over I, we get

1

2

d

dt

∫
I

u2
x+

∫
I

ρu2
t
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=−
∫
I

ρuuxut−γ
∫
I

ργ−1ρxut−
∫
I

χxχxxut

≤1

4

∫
I

ρu2
t +c‖ρ‖L∞‖u‖2L∞

∫
I

u2
x+cγ2‖ρ‖2γ−3

L∞

∫
I

ρ2
x+c‖χx‖2L∞

∫
I

1

ρ
χ2
xx

≤1

4

∫
I

ρu2
t +C1

(∫
I

u2
x

)2

+c

∫
I

χ2
xx

∫
I

1

ρ
χ2
xx+C1,

which implies that

d

dt

∫
I

u2
x+

3

2

∫
I

ρu2
t ≤C1

(∫
I

u2
x

)2

+c

∫
I

χ2
xx

∫
I

1

ρ
χ2
xx+C1. (3.16)

In the following, we deal with
∫
I

1
ρχ

2
xx. Using (1.1)3, (1.1)4 and integrating by parts, we

get ∫
I

1

ρ
χ2
xx=

∫
I

(χ3−χ)χxx−
∫
I

µχxx=

∫
I

(χ3−χ)χxx−
∫
I

µxxχ

=

∫
I

(χ3−χ)χxx−
∫
I

ρχtχ−
∫
I

ρuχxχ

≤1

2

∫
I

1

ρ
χ2
xx+c

∫
I

ρχ2
t +C1,

from which we have ∫
I

1

ρ
χ2
xx≤ c

∫
I

ρχ2
t +C1. (3.17)

Put (3.15), (3.16) and (3.17) together, to get

d

dt

∫
I

(
ρχ2

t +u2
x

)
+

∫
I

(
1

ρ
χ2
xxt+ρu2

t

)
≤C1

(
1+

∫
I

(u2
x+χ2

xx)

)∫
I

ρχ2
t +C1

∫
I

(
χ2
xx+χ2

xxx+u2
x

)∫
I

u2
x+C1

∫
I

χ2
xx+C1

≤C1

(
1+

∫
I

(χ2
xxx+u2

x)

)∫
I

(
ρχ2

t +u2
x

)
+C1

(
1+

∫
I

χ2
xxx

)
. (3.18)

Recalling (2.13) and applying Grönwall’s inequality to (3.18), we have∫
I

(
ρχ2

t +u2
x

)
+

∫ t

0

∫
I

(
1

ρ
χ2
xxt+ρu2

t

)
≤C(C1,‖ρ0‖H2 ,‖u0‖H1 ,‖χ0‖H4).

By (3.17) and (1.1)2, we obtain (3.14). The proof of Lemma 3.7 is complete.

From the above estimates, we can directly calculate that

Lemma 3.8. For any 0≤ t<T , there holds∫
I

(ρ2
t +χ2

xxx+µ2 +µ2
xx)(t)+

∫ t

0

∫
I

(µ2
t +µ2

xxx)≤C2. (3.19)

Next, we continue to do some estimates for u.
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Lemma 3.9. For any 0≤ t<T , we have∫
I

(ρu2
t +u2

xx)(t)+

∫ t

0

∫
I

u2
xt≤C3, (3.20)

where C3 is a positive constant depending only on c0, E0, ‖ρ0‖H2 , ‖u0‖H2 , ‖χ0‖H4 , γ
and T .

Proof. Differentiating (1.1)2 with respect to t, multiplying the result by ut and
integrating over I, we have

1

2

d

dt

∫
I

ρu2
t +

∫
I

u2
xt

=−2

∫
I

ρuutuxt−
∫
I

ρuu2
xut−

∫
I

ρu2uxxut−
∫
I

ρu2uxuxt−
∫
I

ρuxu
2
t

−γ
∫
I

ργuxuxt−γ
∫
I

ργ−1ρxuuxt+

∫
I

χxχxtuxt

≤1

2

∫
I

u2
xt+c(‖ρ‖L∞‖u‖2L∞+‖ux‖L∞)

∫
I

ρu2
t +c‖ux‖2L∞

∫
I

u2
x+c‖u‖2L∞

∫
I

u2
xx

+c‖ρ‖2L∞‖u‖4L∞
∫
I

u2
x+cγ2‖ρ‖2γL∞

∫
I

u2
x+cγ2‖ρ‖2γ−2

L∞ ‖u‖
2
L∞

∫
I

ρ2
x+c‖χx‖2L∞

∫
I

χ2
xt

≤1

2

∫
I

u2
xt+C1(‖ux‖2L2 +‖ux‖W 1,2)

∫
I

ρu2
t +C2‖ux‖2W 1,2 +‖ux‖2L2

∫
I

u2
xx

+C2‖ux‖4L2 +C2 +C1‖ux‖2L2 +c‖χxx‖2L2

(∫
I

χ2
t +

∫
I

χ2
xxt

)
≤1

2

∫
I

u2
xt+C2

(
1+

∫
I

u2
xx

)∫
I

ρu2
t +C2

(
1+

∫
I

(u2
xx+χ2

xxt)

)
,

from which we have

d

dt

∫
I

ρu2
t +

∫
I

u2
xt≤C2

(
1+

∫
I

u2
xx

)∫
I

ρu2
t +C2

(
1+

∫
I

(u2
xx+χ2

xxt)

)
. (3.21)

Applying Grönwall’s inequality to (3.21), using (3.14) and recalling (2.25), we get∫
I

ρu2
t +

∫ t

0

∫
I

u2
xt≤C(C2,‖u0‖H2).

Combining the above inequality with (1.1)2, Lemma 3.9 follows.

Lemma 3.10. For any 0≤ t<T , we have∫
I

(ρ2
xx+ρ2

xt+χ2
xxxx)(t)+

∫ t

0

∫
I

µ2
xxxx≤C3. (3.22)

Proof. Just as the proof of Theorem 2.1, we introduce the Lagrangian coordinates
defined by (2.37). Write F (x,t) =− 1

2 (χ2
x)x, from (3.19) we know that ‖F‖L∞(0,T ;H1)≤

C2. Hence, (1.1)1,2 can be rewritten in the Lagrangian coordinates as{
ρτ +ρ2uy = 0,

uτ +(ργ)y = (ρuy)y+F,
(3.23)
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which satisfies the initial boundary value conditions

(ρ,u)
∣∣∣
τ=0

= (ρ0,u0) for y∈ I and u
∣∣∣
∂I

= 0 for τ >0.

Similar to the proof of Theorem 2.1, after direct calculations, we have

ρyy =

(
ρy (u0 +(lnρ0)y)+ρ

(
u0y+(lnρ0)yy

)
−ρ(u0 +(lnρ0)y)γ2

∫ τ

0

ργ−1ρy

)
·exp

{
−γ
∫ τ

0

ργ
}

+ρy

∫ τ

0

(F +γργu)exp

{
−γ
∫ τ

s

ργ
}

ds

+ρ

∫ τ

0

(
(Fy+γ2ργ−1ρyu+γργuy)−(F +γργu)γ2

∫ τ

s

ργ−1ρy

)
·exp

{
−γ
∫ τ

s

ργ
}

ds−ρyu−ρuy. (3.24)

Moreover, the estimates (3.6), (3.7), (3.14) and (3.20) in the Lagrangian coordinate
become ∫

I

ρ2
y≤C1, 0<C−1

1 ≤ρ≤C1,

∫
I

(u2
y+u2

yy)≤C3,

from which and (3.24), we can deduce that∫
I

ρ2
yy≤C3

∫
I

(ρ2
0yy+u2

0y+ρ2
y+u2

y)+C3

∫ τ

0

∫
I

(ρ2
y+F 2

y +u2
y)≤C3, (3.25)

where we have used the inequalities

‖ρy‖2L∞ =‖ρ2
y‖L∞ ≤

∫
I

(|ρ2
y|+ |(ρ2

y)y|) =

∫
I

ρ2
y+2

∫
I

|ρyρyy|≤ε
∫
I

ρ2
yy+c(ε)

∫
I

ρ2
y

with ε small enough. From the definition of Lagrangian coordinates (2.37), we see that

ρxx=ρ(ρx)y =ρ(ρρy)y =ρ2ρyy+ρρ2
y,

which implies ∫
I

ρ2
xx≤C3.

Moreover, from (1.1)1 we get

ρxt=−ρxxu−2ρxux−ρuxx,

from which we have ∫
I

ρ2
xt≤C3.

Differentiating (1.1)3,4 with respect to x twice, using (3.7), (3.19) and (3.22), we have∫
I

χxxxx+

∫ t

0

∫
I

µ2
xxxx≤C3.



1080 GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL

Therefore, (3.22) holds. The proof of Lemma 3.10 is complete.

Furthermore, we also have

Lemma 3.11. For any 0≤ t<T , there holds∫
I

(ρ2
xxx+ρ2

xxt)(t)≤C4, (3.26)

where C4 is a positive constant depending only on c0, E0, ‖ρ0‖H3 , ‖u0‖H2 , ‖χ0‖H4 , γ
and T .

Proof. Similar to the proof of Lemma 3.10, from (3.22) we know that
‖F‖L∞(0,T ;H2)≤C3, where F (x,t) =− 1

2 (χ2
x)x. In the Lagrangian coordinate, we can

calculate ρyyy and obtain∫
I

ρ2
yyy≤C3

∫
I

(ρ2
0yyy+u2

0yy+ρ2
yy+u2

yy)+C3

∫ τ

0

∫
I

(ρ2
yy+F 2

yy+u2
yy)≤C(C3,‖ρ0‖H3).

From (2.37), we see that

ρxxx=ρ(ρ2ρyy+ρρ2
y)y =ρ3ρyyy+4ρ2ρyρyy+ρρ3

y.

Therefore, Lemma 3.11 follows.

Similar to the proof of Lemma 2.9 and 2.10 in Section 3, we can also derive that

Lemma 3.12. For any 0≤ t<T , there exists a positive constant C5 depending only on
c0, E0, ‖ρ0‖H2 , ‖u0‖H3 , ‖χ0‖H4 , γ and T , such that∫

I

(u2
xt+u2

xxx)(t)+

∫ t

0

∫
I

(u2
xxt+u2

xxxx)≤C5. (3.27)

4. Proof of the main results
This section is devoted to the proof of our main results, Theorems 1.1–1.3, which

have been stated in Section 1.
Firstly, in view of the local existence of the classical solutions and the a priori

estimates obtained in Section 3, one may finish the proof of the existence and uniqueness
of global classical solutions by standard arguments. Theorem 1.1 follows.

Next, by virtue of Lemmas 3.1–3.6, we show that there exist global weak solutions
to the problem (1.1)–(1.3) under the assumptions ρ0∈H1(I) with 0<c−1

0 ≤ρ0≤ c0 and
u0∈L2(I), χ0∈H1(I).

Proof. (Proof of Theorem 1.3.) By the standard mollification , we may assume
that for any α∈ (0,1), there exists a sequence of initial data (ρε0,u

ε
0,χ

ε
0)∈C3,α(I)×

C3,α(I)×C4,α(I) such that

0<c−1
0 ≤ρε0≤ c0<+∞ on I,

lim
t→0

(‖ρε0−ρ0‖H1 +‖uε0−u0‖L2 +‖χε0−χ0‖H1) = 0.

Let (ρε,uε,χε) be the unique global classical solution of (1.1) with the initial conditions
(ρε0,u

ε
0,χ

ε
0) and the boundary value conditions (uε,χεx,µ

ε
x)
∣∣
∂I

= 0 for t>0. It follows
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from Lemmas 3.1–3.6 and the equations (1.1) that, for any 0<T <+∞, the following
properties hold

1

C(T )
≤ρε≤C(T ), in I× [0,T ],

‖ρε‖L∞(0,T ;H1) +‖ρεt‖L2(0,T ;L2)≤C(T ),

‖uε‖L∞(0,T ;L2) +‖uε‖L2(0,T ;H1
0 )≤C(T ),

‖χε‖L∞(0,T ;H1) +‖χε‖L2(0,T ;H3)≤C(T ),

‖µε‖L2(0,T ;H1)≤C(T ).

After taking possible subsequences (denoted by itself for convenience), taking ε→0, by
(1.1) and Lemma 2.11, we have

(ρε,ρεx)⇀ (ρ,ρx) weak∗ in L∞(0,T ;L2), (4.1)

ρεt⇀ρt weakly in L2(0,T ;L2), (4.2)

ρε→ρ strongly in C (QT ) , (4.3)

uε⇀u weak∗ in L∞
(
0,T ;L2

)
, (4.4)

(uε, uεx)⇀ (u, ux) weakly in L2
(
0,T ;L2

)
, (4.5)

(χε, χεx, χ
ε
xx, χ

ε
xxx)⇀ (χ, χx, χxx, χxxx) weakly in L2(0,T ;L2), (4.6)

(χε, χεx)⇀ (χ, χx) weak∗ in L∞
(
0,T ;L2

)
, (4.7)

(µε, µεx)⇀ (µ, µx) weakly in L2(0,T ;L2). (4.8)

It’s easy to see that (ρε,uε,χε) satisfy∫∫
QT

(
ρεtζ(x)−ρεuεζ

′
(x)
)

= 0,

−
∫∫

QT

(
ρεuεξ(x)η

′
(t)+ρε(uε)2ξ

′
(x)η(t)+(ρε)γξ

′
(x)η(t)

)
=

∫
I

ρε0u
ε
0ξ(x)η(0)−

∫∫
QT

(
uεxξ

′
(x)η(t)− 1

2
(χεx)2ξ

′
(x)η(t)

)
,

−
∫∫

QT

(ρεχεφt+ρεuεχεφx) =

∫
I

ρε0χ
ε
0φ(0)−

∫∫
QT

µεxφx,∫∫
QT

ρεµεφ=

∫∫
QT

(
ρε((χε)3−χε)φ+χεxφx

)
for any ζ(x)∈C1(I), ξ(x)∈C1

0 (I), η(t)∈C1[0,T ] with η(T ) = 0 and φ∈C1(QT ) with
φ(·,T ) = 0. Noticing∫∫

QT

(
ρε(uε)2−ρu2

)
ξ
′
η

≤
∫∫

QT

(
|ρε−ρ||uε|2|ξ

′
||η|+ |ρ||uε−u||uε+u||ξ

′
||η|
)

≤C‖ρε−ρ‖L∞(QT )‖uε‖2L2(QT ) +C‖ρ‖L∞(QT )‖uε−u‖L2(QT )

(
‖uε‖L2(QT ) +‖u‖L2(QT )

)
−→0, as ε→0
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and ∫∫
QT

(ρεuεχε−ρuχ)φx

≤
∫∫

QT

(|ρε−ρ||uε||χε||φx|+ |ρ||uε−u||χε||φx|+ |ρ||u||χε−χ||φx|)

≤C‖ρε−ρ‖L∞(QT )‖uε‖L2QT ‖χ
ε‖L2(QT ) +C‖ρ‖L∞(QT )‖uε−u‖L2(QT )‖χε‖L2(QT )

+C‖ρ‖L∞(QT )‖u‖L2(QT )‖χε−χ‖L2(QT )−→0, as ε→0,

it is easy to check that (ρ,u,χ) is a weak solution of the problem (1.1)–(1.3) in the sense
of Definition 1.2. The proof of Theorem 1.3 is complete.

In terms of Lemmas 3.1–3.8, we can prove the existence and uniqueness of strong
solutions to the problem (1.1)–(1.3) under the assumptions ρ0∈H2(I) with 0<c−1

0 ≤
ρ0≤ c0 and u0∈H1

0 (I), χ0∈H4(I).

Proof. (Proof of Theorem 1.2.) Observe that ρ0∈H2(I), u0∈H1
0 (I) and χ0∈

H4(I). We assume

lim
ε→0

(‖ρε0−ρ0‖H2 +‖uε0−u0‖H1 +‖χε0−χ0‖H4) = 0.

Lemmas 3.7 and 3.8 imply

sup
0≤t≤T

∫
I

(
|ρεt |2 + |uεx|2 + |χεxxx|2 + |χεt |2 + |µxx|2

)
+

∫∫
QT

(
|uεxx|2 + |uεt |2 + |χεxxt|2 + |µxxx|2 + |µt|2

)
≤C(T ).

By the proof of Theorem 1.3 and the weak lower semi-continuity of the norm, we can
easily derive that ρt∈L∞(0,T ;L2), u∈L∞(0,T ;H1

0 )∩L2(0,T ;H2), ut∈L2(0,T ;L2), χ∈
L∞(0,T ;H3), χt∈L∞(0,T ;L2)∩L2(0,T ;H2), µ∈L∞(0,T ;H2)∩L2(0,T ;H3) and µt∈
L2(0,T ;L2). Moreover, by trace theoremH1(U) ↪→L2(∂U) for bounded U with ∂U ∈C1,
there hold that (χx,µx)|∂I = (0,0) in the sense of trace. Thus, we obtain the existence
of the strong solutions to the problem (1.1)–(1.3) in the sense of Definition 1.1.

It remains for us to prove the uniqueness of the strong solutions. Let (ρi,ui,χi) be
two solutions to the problem (1.1)–(1.3) obtained above. Denote ρ̃=ρ1−ρ2, ũ=u1−u2,
χ̃=χ1−χ2 and µ̃=µ1−µ2. Then

ρ̃t+(ρ̃u1)x+(ρ2ũ)x= 0,

ρ1ũt− ũxx=−ρ̃u2t−ρ1u1ũx−ρ1ũu2x− ρ̃u2u2x

−(ργ1−ρ
γ
2)x−χ1xχ̃xx− χ̃xχ2xx,

ρ1χ̃t+ρ1u1χ̃x= µ̃xx− ρ̃χ2t− ρ̃u2χ2x−ρ1ũχ2x,

ρ1µ̃=−χ̃xx+ρ1(χ2
1 +χ1χ2 +χ2

2−1)χ̃+ ρ̃(χ3
2−χ2)− ρ̃µ2

(4.9)

for (x,t)×(0,T ), subject to the initial boundary value conditions

(ρ̃, ũ, χ̃)
∣∣∣
t=0

= 0 in I, (ũ, χ̃x, µ̃x)
∣∣∣
∂I

= 0 for 0<t<T.
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Multiplying (4.9)1 by ρ̃, integrating the result over I, we get

1

2

d

dt

∫
I

ρ̃2 =

∫
I

ρ̃u1ρ̃x−
∫
I

(ρ2xũ+ρ2ũx) ρ̃

=−1

2

∫
I

ρ̃2u1x−
∫
I

(ρ2xũ+ρ2ũx) ρ̃

≤ 1

2
‖u1x‖L∞

∫
I

ρ̃2 +‖ũ‖L∞ ‖ρ2x‖L2 ‖ρ̃‖L2 +‖ρ2‖L∞ ‖ũx‖L2 ‖ρ̃‖L2 .

Since ũ(0,t) = 0, we have ũ(y,t) =
∫ y

0
ũx(x,t)dx for (y,t)∈QT . Hence,

‖ũ‖L∞ ≤‖ũx‖L2 , t∈ [0,T ]. (4.10)

From (4.10) and the regularities of ρi, we have

d

dt

∫
I

ρ̃2≤C‖u1‖H2

∫
I

ρ̃2 +C ‖ũx‖L2 ‖ρ̃‖L2 ≤C(‖u1‖H2 +1)

∫
I

ρ̃2 +

∫
I

ũ2
x. (4.11)

Multiplying (4.9)2 by ũ and integrating the result over I, we get

1

2

d

dt

∫
I

ρ1ũ
2 +

∫
I

ũ2
x

=
1

2

∫
I

ρ1tũ
2−
∫
I

ρ1u1ũxũ−
∫
I

ρ̃ ũu2t−
∫
I

ρ̃ ũu2u2x−
∫
I

ρ1ũ
2u2x

+

∫
I

(ργ1−ρ
γ
2)ũx+

∫
I

χ1xχ̃xũx+

∫
I

χ1xxχ̃xũ−
∫
I

χ2xxχ̃xũ.

Recalling ρ1t+(ρ1u1)x= 0, we have

1

2

∫
I

ρ1tũ
2−
∫
I

ρ1u1ũxũ=
1

2

∫
I

ρ1tũ
2 +

1

2

∫
I

ũ2 (ρ1u1)x= 0.

Using the above equality, we get

1

2

d

dt

∫
I

ρ1ũ
2 +

∫
I

ũ2
x

≤‖ũ‖L∞ ‖ρ̃‖L2 ‖u2t‖L2 +‖ρ̃‖L2 ‖ũ‖L∞ ‖u2‖L∞ ‖u2x‖L2 +‖u2x‖L∞
∫
I

ρ1ũ
2

+c‖ρ̃‖L2 ‖ũx‖L2 +c‖ũx‖L2 ‖χ̃x‖L2 ‖χ1x‖L∞+c‖√ρ1 ũ‖L2 ‖χ̃x‖L2

∥∥∥∥χ1xx+χ2xx√
ρ1

∥∥∥∥
L∞

.

From the regularities of (ρi,ui,χi) and (4.10), we have

1

2

d

dt

∫
I

ρ1ũ
2 +

∫
I

ũ2
x≤C ‖ũx‖L2 (‖ρ̃‖L2 ‖u2t‖L2 +‖ρ̃‖L2 +‖χ̃x‖L2)

+C ‖u2‖H2

∫
I

ρ1ũ
2 +C (‖χ1‖H3 +‖χ2‖H3)‖√ρ1 ũ‖L2 ‖χ̃x‖L2

≤1

2
‖ũx‖2L2 +C ‖ρ̃‖2L2

(
1+‖u2t‖2L2

)
+C ‖χ̃x‖2L2

+C
(
‖u2‖H2 +‖χ1‖2H3 +‖χ2‖2H3

)∫
I

ρ1ũ
2.
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Thus we obtain

d

dt

∫
I

ρ1ũ
2 +

∫
I

ũ2
x

≤C(1+‖u2t‖2L2)

∫
I

ρ̃2 +C

∫
I

χ̃2
x+C(‖u2‖H2 +‖χ1‖2H3 +‖χ2‖2H3)

∫
I

ρ1ũ
2

≤C(1+‖u2t‖2L2)

∫
I

ρ̃2 +C

∫
I

ρ1χ̃
2 +

∫
I

1

ρ1
χ̃2
xx+C(‖u2‖H2 +‖χ1‖2H3 +‖χ2‖2H3)

∫
I

ρ1ũ
2.

(4.12)

Multiplying (4.9)3 by χ̃, integrating the result over I, by (4.9)4, we have

1

2

d

dt

∫
I

ρ1χ̃
2

=

∫
I

µ̃χ̃xx−
∫
I

ρ̃χ2tχ̃−
∫
I

ρ1ũχ2xχ̃−
∫
I

ρ̃u2χ2xχ̃

=−
∫
I

1

ρ1
χ̃2
xx+

∫
I

ρ̃

ρ1
(χ3

2−χ2)χ̃xx+

∫
I

(χ2
1 +χ1χ2 +χ2

2−1)χ̃χ̃xx

−
∫
I

ρ̃

ρ1
µ2χ̃xx−

∫
I

ρ̃χ2tχ̃−
∫
I

ρ1ũχ2xχ̃−
∫
I

ρ̃u2χ2xχ̃

≤− 1

2

∫
I

1

ρ1
χ̃2
xx+c(‖χ2

1 +χ1χ2 +χ2
2‖2L∞+1)

∫
I

ρ1χ̃
2 +c‖χ2x‖2L∞

∫
I

ρ1ũ
2

+c

∥∥∥∥1

ρ

∥∥∥∥
L∞

(
‖χ3

2−χ2‖2L∞+‖µ2‖2L∞+‖χ2t‖2L∞+‖u2‖2L∞‖χ2x‖2L∞
)∫

I

ρ̃2.

Using the embedding theorem and the regularities for (ρi,ui,χi), we have

d

dt

∫
I

ρ1χ̃
2 +

∫
I

1

ρ1
χ̃2
xx

≤C
∫
I

ρ1χ̃
2 +C‖χ2‖2H2

∫
I

ρ1ũ
2 +C(1+‖µ2‖2H1 +‖χ2t‖2H1 +‖u2‖2H1‖χ2‖2H2)

∫
I

ρ̃2

≤C
∫
I

ρ1χ̃
2 +C

∫
I

ρ1ũ
2 +C(1+‖χ2t‖2H1)

∫
I

ρ̃2. (4.13)

Putting (4.11), (4.12) and (4.13) together, we obtain

d

dt

∫
I

(
ρ̃2 +ρ1ũ

2 +ρ1χ̃
2
)
≤CE(t)

∫
I

(ρ̃2 +ρ1ũ
2 +ρ1χ̃

2), (4.14)

where E(t) = 1+‖u1‖2H2 +‖u2t‖2L2 +‖u2‖2H2 +‖χ1‖2H3 +‖χ2‖2H3 +‖χ2t‖2H1 satisfying∫ T
0
E(t)dt≤C. Then Grönwall’s inequality implies∫

I

(
ρ̃2 +ρ1ũ

2 +ρ1χ̃
2
)
≤0.

Because of the positivity of ρ1, we have (ρ̃, ũ, χ̃) = 0. The proof of Theorem 1.2 is
complete.
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