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NILPOTENT DECOMPOSITION OF SOLVABLE LIE ALGEBRAS∗

LIQUN QI†

Abstract. Semisimple Lie algebras have been completely classified by Cartan and Killing. The
Levi theorem states that every finite dimensional Lie algebra is isomorphic to a semidirect sum of
its largest solvable ideal and a semisimple Lie algebra. These focus the classification of solvable Lie
algebras as one of the main challenges of Lie algebra research. One approach towards this task is to
take a class of nilpotent Lie algebras and construct all extensions of these algebras to solvable ones.
In this paper, we propose another approach, i.e., to decompose a solvable nonnilpotent Lie algebra to
two nilpotent Lie algebras which are called the left and right nilpotent algebras of the solvable algebra.
The right nilpotent algebra is the smallest ideal of the lower central series of the solvable algebra, while
the left nilpotent algebra is the factor algebra of the solvable algebra and its right nilpotent algebra.
We show that the solvable algebra is decomposable if its left nilpotent algebra is an Abelian algebra of
dimension higher than one and its right nilpotent algebra is an Abelian algebra of dimension one. We
further show that all the solvable algebras are isomorphic if their left nilpotent algebras are Heisenberg
algebras of fixed dimension and their right algebras are Abelian algebras of dimension one.

Keywords. Lie algebra; solvable Lie algebra; nilpotent Lie algebra; Abelian algebras; Heisenberg
algebras.
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1. Introduction
Lie algebra is a branch of algebra, closely related with the Lie group theory, has

various applications in physics and mechanics [5, 15]. Sophus Lie (1842-1899) started
the research of Lie group and Lie algebra [8]. Later, Friedrich Engel (1861-1941), Wil-
helm Killing (1847-1923), Élie Cartan (1869-1951), Hermann Weyl (1885-1955), Bartel
van der Waerden (1903-1996), Nathan Jacobson (1910-1999) and Eugene Dynkin (1924-
2014) made various contributions to the developments of Lie algebra [3–6, 15]. In par-
ticular, Cartan [2] characterized solvable Lie algebras and semisimple algebras by their
Killing forms and completely classified semisimple Lie algebras. Levi [7] showed that a
finite-dimensional Lie algebra is a semidirect sum of a solvable ideal and a semisimple
Lie subalgebra. As semisimple Lie algebras were completely classified, people turned
their attentions from the classification of general finite-dimensional Lie algebras to the
classification of solvable Lie algebras and its subclass nilpotent Lie algebras [4, 11, 15].
The problem is completely solved up to dimension 7, and the difficulty increases rapidly
as the dimension increases [15].

The 1996 book of Goze and Khakimdjanov [4] was devoted to the study of nilpotent
Lie algebras. Some classes of nilpotent Lie algebras, such as Abelian Lie algebras,
Heisenberg algebras, two-step algebras, filiform Lie algebras, characteristically nilpotent
Lie algebras, nilpotent standard algebras, were studied in [4].

How can solvable nonnilpotent Lie algebras be classified? Starting from 1993, Win-
ternitz and his collaborators [12] pursued such an approach: to take a class of nilpotent
Lie algebras and construct all extensions of these algebras to solvable ones [9, 13, 14].
Also see [16]. These were further put together in the 2014 book of S̆nobl and Winter-
nitz [15, Part 3]. For a finite dimensional Lie algebra, both the largest solvable ideal
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and the largest nilpotent ideal exist. They are called the radical and the nilradical of
the Lie algebra. The Levi decomposition states that every finite dimensional Lie alge-
bra is isomorphic to a semidirect sum of its radical and a semisimple Lie algebra. The
approach of S̆nobl and Winternitz [15] uses the nilradical of a solvable nonnilpotent Lie
algebra as the starting point to study such a solvable Lie algebra. A rational algorithm
for identifying the nilradical of a Lie algebra was presented in [15, Chapter 7].

As discussed in [3, Chapter 3], even in the three dimensional case, if the dimension
of the derived algebra is two, then there are infinitely many non-isomorphic Lie algebras.
This example will be discussed as Example 2 in Section 3 of this paper. They are solvable
nonnilpotent Lie algebras. Therefore, the classification work of solvable nonnilpotent
Lie algebras can only divide such Lie algebras into classes. Some classes may contain
infinitely many non-isomorphic Lie algebras.

In this paper, we propose to decompose a finite dimensional solvable nonnilpotent
Lie algebra to two nilpotent Lie algebras. The starting point of such an approach is the
smallest ideal of the lower central series of a solvable nonnilpotent Lie algebra. In [10], we
studied three minimax ideal relations of a Lie algebra. The smallest ideal of the lower
central series is at one of the three minimax places of a Lie algebra. We introduced
near perfect ideas for a finite dimensional Lie algebra in [10]. The largest near perfect
ideal of a finite dimensional Lie algebra always exists and is exactly the smallest ideal
of the lower central series of that Lie algebra. We call it the near perfect radical of
that Lie algebra. A Lie algebra is nilpotent if and only if its near perfect radical is
zero. The factor algebra of a Lie algebra by its near perfect radical is always nilpotent.
For a solvable Lie algebra, its near perfect radical is nilpotent. Using these facts, we
decompose a finite dimensional solvable nonnilpotent Lie algebra to two nilpotent Lie
algebras. The first nilpotent Lie algebra is the factor algebra of the solvable Lie algebra
by its near perfect radical. We call it the left nilpotent algebra of that solvable Lie
algebra. The second Lie algebra is the near perfect radical of that solvable Lie algebra.
We call it the right nilpotent algebra of that solvable Lie algebra. Then we may classify
solvable Lie algebras by such a nilpotent decomposition, and study solvable Lie algebras
with different nilpotent decompositions separately. For example, we may study A(n1)-
A(n2) algebras, which are solvable Lie algebras whose left and right nilpotent algebras
are both Abelian and with dimensions n1 and n2 respectively. Actually, the simplest
solvable nonnilpotent Lie algebra is the A(1)-A(1) algebra, which is of dimension 2. See
Example 1 in Section 3. On the other hand, the three dimensional case stated in the
last paragraph is actually the A(1)-A(2) algebra, which will be studied as Example 2 in
Section 3.

We also combine the lower central series of the left and right nilpotent algebras of a
solvable nonnilpotent Lie algebra together, and call it the extended lower central series
of the solvable Lie algebra. This strengthens the lower central series of such a solvable
Lie algebra.

In the next section, some preliminaries are given.

In Section 3, we introduce the nilpotent decomposition and the extended lower
central series for a finite dimensional solvable nonnilpotent Lie algebra, and study such
a decomposition for dimension up to 4.

We study A(n1)-A(n2) algebras in Section 4. We show that an A(n)-A(1) algebra
with n≥2 is the direct sum of an A(1)-A(1) algebra and n−1 Abelian algebras A(1), and
conjecture that an A(n1)-A(n2) algebra with n1>n2 is always decomposable. Then we
give a theorem for the structure of general A(n1)-A(n2) algebras, for further classifying
such solvable Lie algebras.
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In Section 5, we study A(n)-Hp algebras, Hp-A(n) algebras and Hp-Hq algebras.
Here, Hp is the pth order Heisenberg algebra, which is of dimension 2p+1. We show
that all the Hp-A(1) algebras are isomorphic. We then give a theorem for the structure
of general Hp-A(n) algebras.

Thus, we completely classify A(1)-A(1) algebras and Hp-A(1) algebras, and give
outlines for classifying A(n1)-A(n2) algebras and Hp-A(n) algebras.

Some final remarks are made in Section 6.

2. Preliminaries
In this paper, we only study finite dimensional Lie algebras. The related field F is

either the field of complex numbers or the field of real numbers. Suppose that L is an
n-dimensional Lie algebra defined on F .

Denote the Lie bracket operation on L by [·,·]. Then [·, ·] is a bilinear operation,
and for x,y,z∈L, we have

[x,y] =−[y,x] (2.1)

and the Jacobi identity

[x, [y,z]]+[y,[z,x]]+[z,[x,y]] =0. (2.2)

If [x,y]≡0 for any x,y∈L, then L is called an Abelian algebra. We denote an
Abelian algebra of dimension n by A(n). When n>1, Abelian algebra A(n) can always
be decomposed to a direct sum of n Abelian algebras A(1). In [15, Part 4], A(1) is
denoted as n1,1.

A subspace I of L is called a subalgebra of L if for any x,y in I, [x,y]∈ I. If
furthermore for any x∈L and y∈ I, we have [x,y]∈ I, then I is called an ideal of L.
The center of L, defined as Z(L) ={x∈L : [x,L] = 0}, is an ideal of L.

Suppose that I and J are two ideals of L. Then I∩J ,

I+J :={x+y :x∈ I,y∈J}

and

[I,J ] := Span{[x,y] :x∈ I,y∈J}

are also ideals of L. The derived algebra of L is defined as D(L) := [L,L]. If L=D(L),
then L is called a perfect Lie algebra.

Suppose that I is an ideal of L. Then the quotient vector space L/I={x+I :x∈L}
is a Lie algebra with a Lie bracket on L/I defined by

[x+I,y+I] := [x,y]+I, ∀x,y∈L,

and is called the quotient or factor algebra of L by I.
Let

L(0) =L, L(k+1) =D(L(k)).

Then we have the derived series of L: L(0)⊇L(1)⊇L(2)⊇··· . L(k) are ideals of L for all
k. If for some m, L(m) = 0, then L is called a solvable Lie algebra. An ideal I of L is
called a solvable ideal of L if it itself is a solvable Lie algebra. If I and J are two solvable
ideals of L, then I+J is also a solvable ideal of L. Since 0 is a trivial solvable ideal of
L, the largest solvable ideal of L exists, and is called the radical of L and denoted as
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R(L). A nonzero Lie algebra L is called a semisimple Lie algebra if it has no nonzero
solvable ideals. Then, a nonzero Lie algebra is semisimple if and only if its radical is
zero. A semisimple Lie algebra is always a perfect Lie algebra but not vice versa.

Let

L0 =L, Lk+1 = [L,Lk].

Then we have the lower central series of L: L0⊇L1⊇L2⊇··· . Lk are ideals of L for
all k. If for some r, Lr = 0, then L is called a nilpotent Lie algebra, and r is called its
nilindex. A nilpotent Lie algebra is always a solvable Lie algebra but not vice versa.
A Lie algebra L is solvable if and only if D(L) is nilpotent. An ideal I of L is called
a nilpotent ideal of L if it itself is nilpotent. If I and J are two nilpotent ideals of L,
then I+J is also a nilpotent ideal of L. Since 0 is a trivial nilpotent ideal of L, the
largest nilpotent ideal of L exists, and is called the nilradical of L and denoted as N(L).
Since a nilpotent Lie algebra is solvable, we always have N(L)⊆R(L). By Theorem 13
of [6], we have [L,R(L)]⊆N(L). Hence, we always have [L,R(L)]⊆N(L)⊆R(L). For a
solvable Lie algebra, the dimension of its nilradical is not less than a half of that solvable
Lie algebra [15, Page 99]. This forms the base of studying all solvable extensions of a
class of nilpotent Lie algebras [9, 12–15].

A nilpotent Lie algebra L with its nilindex equal to 2 is called a two-step algebra.
A special two-step algebra is the Heisenberg algebra Hp with dimension 2p+1 [4, Page
43], defined by a basis {x1,·· · ,x2p+1}, with the Lie bracket operations:

[x1,x2] = [x3,x4] = ·· ·= [x2p−1,x2p] =x2p+1.

Heisenberg algebras Hp have wide applications in physics [4,15]. The Heisenberg algebra
H1 is denoted as n3,1 in [15, Part 4]. The Heisenberg algebra H2 is denoted as n5,3
in [15, Part 4].

An n-dimensional nilpotent Lie algebra L is called a filiform Lie algebra [4, Page
40] if the dimensions of the ideals in its lower central series obey dim(Lk) =n−k−1
for 1≤k≤n−1. We denote such a filiform algebra as F(n). The smallest dimension of
Filiform algebras is 4. In [15, Part 4], F(4) is denoted as n4,1. On the other hand, there
are two filiform algebras of dimension 5. They are denoted as n5,5 and n5,6 in [15, Part
4]. We may denote them as F(5)1 and F(5)2 respectively. There are five filiform algebras
of dimension 6. They are denoted as n6,18, n6,19, n6,20, n6,21 and n6,22 in [15, Part 4].
We may denote them as F(6)1, F(6)2, F(6)3, F(6)4 and F(6)5 respectively.

In [10], near perfect ideals were introduced.
An ideal I of L is called a near perfect ideal of L if I= [L,I]. Since zero is a trivial

near perfect ideal, L always has a near perfect ideal. The sum I+J of two near perfect
ideals I and J of L is still a near perfect ideal of L. Thus, the largest near perfect ideal
of L exists, and is called the near perfect radical of L, and denoted as NP (L). The
near perfect radical NP (L), is exactly the smallest ideal of the lower central series of
L. The factor algebra L/NP (L) is always nilpotent. We always have P (L)⊆NP (L).
A nonzero Lie algebra is nilpotent if and only if its near perfect radical is zero.

3. The extended lower central series
Suppose that a finite dimensional Lie algebra L is not nilpotent. Then its lower

central series has the form:

L=L0)L1) ·· ·)Lr 6= 0, (3.1)

where Lr =NP (L) 6= 0.
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Proposition 3.1. Suppose a finite dimensional Lie algebra L is not nilpotent, and its
lower central series has the form (3.1). Then the factor algebra L/NP (L) is nilpotent
and the lower central series of L/NP (L) has the form:

L/NP (L))L1/NP (L)) ·· ·)Lr/NP (L) = 0. (3.2)

If furthermore L is solvable, then NP (L) is also nilpotent.

Proof. By [10, Proposition 3.5], the factor algebra L/NP (L) is nilpotent. Then
(3.2) follows the correspondence between ideals of a Lie algebra [3, Page 14]. If further-
more L is solvable, then its derived algebra D(L) is nilpotent. Hence, its near perfect
radical NP (L) is also nilpotent, as NP (L) is an ideal of D(L).

Suppose that L is solvable nonnilpotent. Assume the lower central series of NP (L)
has the form

NP (L) =L,0)L,1) ·· ·)L,r1 = 0. (3.3)

Then we have the extended lower central series of L

L=L0)L1) ·· ·)Lr =NP (L) =L,0)L,1) ·· ·)L,r1 = 0. (3.4)

We call L/NP (L) the left nilpotent algebra of L, and NP (L) the right nilpotent algebra
of L, and denote them as LN(L) and RN(L) respectively. If LN(L)≡L/NP (L) is an
Abelian algebra A(n1), and RN(L)≡NP (L) is an Abelian algebra A(n2), then we say
that the solvable Lie algebra L is an A(n1)-A(n2) algebra. Similarly, we have A(n1)-Hp

algebras, Hp-A(n1) algebras, Hp1-Hp2 algebras, A(n1)-F(n2) algebras, etc.

In the examples, we always have [xi,xj ] =−[xj ,xi] and [xi,xj ] = 0 if both [xi,xj ]
and [xj ,xi] are not defined. For simplicity, from now on we discuss Lie algebras on the
field of complex numbers only.

Example 1. This is s2,1 in [15, Chapter 16], the simplest solvable nonnilpotent
Lie algebra. The two dimensional solvable Lie algebra L has a basis {x1,x2}. We have
[x2,x1] =x1. Then we find the extended lower central series of L has the form

L≡L0)L1≡NP (L)≡L,0⊇L,1≡0,

where

L1≡NP (L)≡L,0 = Span{x1}.

According to our notation, this is an A(1)-A(1) algebra. In dimension 2, this is the only
solvable nonnilpotent Lie algebra.

Example 2. These are s3,1 and s3,2 in [15, Chapter 16]. The three dimensional
solvable Lie algebra L has a basis {x1,x2,x3}. We have [x3,x1] =x1. For s3,1, we have
[x3,x2] =ax2, where the values of the parameter a satisfy 0< |a|≤1 and if |a|= 1, then
arg(a)≤π. For s3,2, we have [x3,x2] =x1 +x2. Then we find the extended lower central
series of L has the form

L≡L0)L1≡NP (L)≡L,0⊇L,1≡0,

where

L1≡NP (L) =N(L)≡L,0 = Span{x1,x2}.
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According to our notation, this is an A(1)-A(2) algebra. As in [15, Chapter 16], since
the Casimir invariants of s3,1 and s3,2 are different, s3,1 and s3,2 are not isomorphic. In
fact, as discussed in [3, Chapter 3], s3,1 itself contains infinitely many non-isomorphic
algebras, with the parameter a as a parameter. Note that the nilpotent radical N(L)
is the same for s3,1 and s3,2. It is A(2). There are no other three-dimensional solvable
nonnilpotent Lie algebras in the complex field.

Example 3. This is s4,1 in [15, Chapter 17]. The four dimensional solvable Lie
algebra L has a basis {x1,x2,x3,x4}. We have [x4,x2] =x1 and [x4,x3] =x3. Then we
find the extended lower central series of L has the form

L≡L0)L1)L2≡NP (L)≡L,0⊇L,1≡0,

where

L1 = Span{x1,x3},

L2≡NP (L)≡L,0 = Span{x3}.

According to our notation, this is an H1-A(1) algebra.

Example 4. These are s4,2, s4,3 and s4,4 in [15, Chapter 17]. The four dimensional
solvable Lie algebra L has a basis {x1,x2,x3,x4}. We have [x4,x1] =x1. For s4,2,
we have [x4,x2] =x1 +x2 and [x4,x3] =x2 +x3. For s4,3, we have [x4,x2] =ax2 and
[x4,x3] = bx3, where the values of the parameters a and b satisfy 0< |b|≤ |a|≤1 and if
(a,b) 6= (−1,−1). If one or both equalities hold, there are some further restrictions [15,
Chapter 17]. For s4,4, we have [x4,x2] =x1 +x2 and [x4,x3] =ax3, where a 6= 0. Then
we find the extended lower central series of L has the form

L≡L0)L1≡NP (L)≡L,0⊇L,1≡0,

where

L1≡NP (L) =N(L)≡L,0 = Span{x1,x2,x3}.

According to our notation, these are A(1)-A(3) algebras. As in [15, Chapter 16], since
the Casimir invariants of s4,2, s4,3 and s4,4 are different, they are not isomorphic, and
are divided to three classes. Note that the nilpotent radical N(L) is the same for s4,1,
s4,2, s4,3 and s4,4. It is A(3). However, s4,1 is an H1-A(1) algebra in Example 3, while
s4,2, s4,3 and s4,4 are A(1)-A(3) algebras.

Example 5. These are s4,6, s4,8 and s4,10 in [15, Chapter 17]. The four dimensional
solvable Lie algebra L has a basis {x1,x2,x3,x4}. We have [x2,x3] =x1. For s4,6, we
have [x4,x2] =x2 and [x4,x3] =−x3. For s4,8, we have [x4,x1] = (1+a)x1, [x4,x2] =x2

and [x4,x3] =ax3, where the values of the parameter a satisfy 0< |a|≤1 if |a|= 1, then
arg(a)≤π. For s4,10, we have [x4,x1] = 2x1, [x4,x2] =x2 and [x4,x3] =x2 +x3. Then
we find the extended lower central series of L has the form

L≡L0)L1≡NP (L)≡L,0)L,1)L,2≡0,

where

L1 = Span{x1,x2,x3}≡NP (L)≡L,0,
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L,1 = Span{x1}.

According to our notation, these are A(1)-H1 algebras. As in [15, Chapter 16], since
the Casimir invariants of s4,6, s4,8 and s4,10 are different, they are not isomorphic, and
are divided to three classes. The nilpotent radical N(L) is H1 for s4,6, s4,8 and s4,10.

Example 6. This is s4,11 in [15, Chapter 17]. The four dimensional solvable Lie
algebra L has a basis {x1,x2,x3,x4}. We have [x2,x3] =x1, [x4,x1] =x1 and [x4,x2] =
x2. Then we find the extended lower central series of L has the form

L≡L0)L1≡NP (L)≡L,0)L,1≡0,

where

L1≡NP (L) =N(L)≡L,0 = Span{x1,x2}.

According to our notation, these are A(2)-A(2) algebras. The nilpotent radical N(L) is
H1, the same as in the cases of s4,6, s4,8 and s4,10 in Example 5. This shows that our
classification is somewhat finer in this case.

There are no other four-dimensional non-decomposable, solvable nonnilpotent Lie
algebras in the field of complex numbers.

4. A(n1)-A(n2) algebras
As we discussed in Example 1, the A(1)-A(1) Algebra, i.e., s2,1 in [15, Chapter

16], is the simplest solvable nonnilpotent Lie algebra. In Examples 2, 4 and 6, we
have studied the A(1)-A(2) algebra, the A(1)-A(3) algebra and the A(2)-A(2) algebra,
respectively. In this section, we study more general A(n1)-A(n2) algebras.

Note that if LN(L) = A(n1), then RN(L) =D(L).

4.1. A(1)-A(n) algebras. In this case, L is an (n+1)-dimensional solv-
able nonnilpotent Lie algebra. Its left nilpotent algebra LN(L) is a one-dimensional
Abelian algebra, and its right nilpotent algebra RN(L) is an n-dimensional Abelian
algebra. Furthermore, N(L) =D(L) =RN(L) = A(n) in this case. Hence, this falls to
the case of solvable Lie algebras with one nonnilpotent element and an n-dimensional
Abelian nilradical, and has been studied in [15, Section 10.4]. For dimension 5,
s5,5,s5,6,s5,7,s5,9,s5,10 in [15, Chapter 18] are A(1)-A(4) algebras. For dimension 6,
s6,10,s6,11,s6,12,s6,13,s6,14,s6,17,s6,18 in [15, Chapter 19] are A(1)-A(5) algebras.

4.2. A(n)-A(1) algebras. An A(n)-A(1) Algebra has dimension n+1. We now
have the following theorem.

Theorem 4.1. Suppose that we have an A(n)-A(1) algebra L, and n≥2. Then L is
the direct sum of an A(1)-A(1) algebra and n−1 Abelian algebras A(1).

Proof. We have RN(L) =D(L) = A(1). Let y be a nonzero element of RN(L) =
D(L) = A(1). Since D(L) = Span{y}, there must exist x∈L such that [x,y] =αy and
α 6= 0. By scaling, we may assume that [x,y] =y. Let I= Span {x,y}. Then I is
an A(1)-A(1) algebra. Since n≥2, the dimension of L is n+1≥3. Hence, there exist
u1, ·· · ,un−1∈L such that {x,y,u1, ·· · ,un−1} are linearly independent. Since D(L) =
Span{y}, we have

[uj ,y] =αjy, and [uj ,x] =βjy,

for j= 1,·· · ,n−1. Let zj =uj−αjx+βjy, for j= 1, ·· · ,n−1. Then

[zj ,y] = [zj ,x] = 0, (4.1)
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for j= 1,·· · ,n−1. Furthermore, {x,y,z1,·· · ,zn−1} are linearly independent. Let i,j=
1, ·· · ,n−1. By the Jacobi identity (2.2), we have

[x,[zi,zj ]]+[zi,[zj ,x]]+[zj ,[x,zi]] = 0.

By (4.1), we have

[x,[zi,zj ]] = 0. (4.2)

Since D(L) = Span{y}, we have

[zi,zj ] =γijy. (4.3)

By (4.2) and (4.3), we have

0 = [x, [zi,zj ]] =γij [x,y] =γijy.

Hence,

[zi,zj ] = 0 (4.4)

for i,j= 1,·· · ,n−1. By (4.1) and (4.4), L is the direct sum of I and Span{zi} for
i= 1,·· · ,n−1. The proof is completed.

4.3. A(n1)-A(n2) algebras for n2≥2. In Examples 1, 2, 4 and 6, we discussed
A(n1)-A(n2) algebras in [15, Chapters 16-17] for n=n1 +n2≤4. In Subsection 4.1, we
listed A(1)-A(n) algebras in [15, Chapters 18-19] for n+1 = 5 and 6.

There are other A(n1)-A(n2) algebras in [15, Chapters 18-19] for n=n1 +n2 = 5
and 6. For dimension 5, s5,41 and s5,42 in [15, Chapter 18] are A(2)-A(3) algebras. For
dimension 6, in [15, Chapter 19], s6,82, s6,83, s6,84, s6,85, s6,86, s6,87, s6,88, s6,89, s6,116,
s6,140, s6,141, s6,143, s6,144, s6,146, s6,194, s6,195 and s6,196 are A(2)-A(4) algebras, s6,143,
s6,183 and s6,189 are A(3)-A(3) algebras.

In fact, in [15, Chapters 16-19], we have not found any A(n1)-A(n2) algebra with
n1>n2. Thus, we conjecture that Theorem 4.1 may be further extended to this case,
i.e., we conjecture that any A(n1)-A(n2) algebra with n1>n2 is decomposable.

When n2≥2, we may take a way similar to [15, Section 10.1] to classify A(n1)-
A(n2) algebras. We have the following theorem to describe the structure of such an
A(n1)-A(n2) algebra.

Theorem 4.2. Suppose that we have an A(n1)-A(n2) algebra L, and n2≥2. Assume
that {y1, ·· · ,yn2} is a basis of D(L), and there are vectors x1, ·· · ,xn1 ∈L such that
{y1, ·· · ,yn2 ,x1, ·· · ,xn1} is a basis of L. Then we have the following conclusions:

[yi,yj ] = 0, (4.5)

[xα,yi] =Dαyi, (4.6)

[xα,xβ ] =

n2∑
k=1

bkαβyk, (4.7)

for 1≤ i<j≤n2, 1≤α<β≤n1. Here Dα are n2×n2 matrices, map D(L) to D(L),
and satisfy

[Dα,Dβ ]≡DαDβ−DβDα= 0, (4.8)
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for α,β= 1, ·· · ,n1. Furthermore,

Span{[xα,yi] :α= 1, ·· · ,n1,i= 1,·· · ,n2}=D(L) (4.9)

For n1≥3, the matrices Dα and the constants bkαβ satisfy

n2∑
k=1

[
bkαβ(Dγ)jk+bkβγ(Dα)jk+bkγα(Dβ)jk

]
= 0, (4.10)

for 1≤α<β<γ≤n1,1≤ j≤n2. A classification of the A(n1)-A(n2) algebra L thus
amounts to a classification of the matrices Dα and the constants bkαβ under the trans-
formations:

(1) Re-select the representative vectors of the factor algebra LN(L):

x̃α=xα+

n2∑
j=1

Rjαyj . (4.11)

(2) Change the basis vectors {y1,·· · ,yn2
} of D(L) by

ỹi=

n2∑
j=1

Sji yj , (4.12)

where (Sji ) is an n2×n2 nonsingular matrix.

(3) Change the complementary basis vectors {x1,·· · ,xn1
} by

x̃α=

n1∑
β=1

Gβαxβ , (4.13)

where (Gβα) is an n1×n1 nonsingular matrix.

Proof. By the Abelian properties of LN(L) and RN(L), we have (4.5-4.7). By
the Jacobi identity for xα,xβ ,yi, we have (4.8). By the near perfect property of D(L),
we have (4.9). By the Jacobi identity for xα,xβ ,xγ , we have (4.10). By considering all
possible choices of {y1, ·· · ,yn2

,x1, ·· · ,xn1
}, we have (4.11-4.13).

We see that Theorem 4.2 is similar to Theorem 10.1 of [15]. There are differences.
First, we do not require linear nilindependence of the matrices Dα here as D(L) is not
the nilradical in general. Second, we need (4.9) as D(L) =NP (L) in our case.

Then {D1, ·· · ,Dn1
} is a basis of an Abelian subalgebra of the general linear algebra

of n1×n1 matrices. We may take an approach similar to [15] to classify all such Abelian
subalgebras and transform the matrices D1, ·· · ,Dn1 to some canonical forms. Then we
may determine the structure constants bkαβ , and weed out decomposable obtained A(n1)-
A(n2) algebras. We do not go to the details.

Hence, we see that A(n1)-A(n2) algebras are somewhat close to solvable extensions
of Abelian nilradicals. However, they contain different solvable Lie algebras, as the
nilradical of an A(n1)-A(n2) algebra may not be Abelian, and a solvable extension of
an Abelian nilradical may not be an A(n1)-A(n2) algebra. This, in a certain sense, may
deepen our understanding to solvable nonnilpotent algebras.
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5. A(n)-Hp algebras, Hp-A(n) algebras and Hp-Hq algebras
In Examples 3 and 5, we studied the H1-A(1) algebra and the A(1)-H1 algebra

respectively. In this section, we study more general A(n)-Hp algebras and Hp-A(n)
algebras.

5.1. A(1)-Hp algebras. In this case, the nilradical of an A(1)-Hp algebra is
the Heisenberg algebra Hp. Then this is studied in [15, Chapter 11]. In Example 5,
we studied the A(1)-H1 algebra. In [15, Chapter 19], s6,162, s6,163, s6,168, s6,169, s6,170,
s6,171, s6,178, s6,179, s6,181 and s6,182 are A(1)-H2 algebras.

5.2. Hp-A(1) algebras. In Subsection 4.2, we showed that an A(n)-A(1)
algebra is always decomposable. The next theorem shows that an Hp-A(1) algebra is
very different.

Theorem 5.1. Suppose that L is an Hp-A(1) algebra where p is a positive integer.
Then L has a basis {x1,·· · ,x2p+1,y} such that NP (L) = Span {y},

[x1,x2] = ·· ·= [x2p−1,x2p] =x2p+1, (5.1)

[x1,y] =y, (5.2)

[xi,y] = 0, for i= 2,·· · ,2p+1, (5.3)

and

[xi,xj ] = 0, for i,j= 1, ·· · ,2p+1,(i,j) 6= (2l−1,2l), for l= 1, ·· · ,p. (5.4)

Hence, all the Hp-A(1) algebras are isomorphic.

Proof. Since RN(L) =NP (L) = A(1), we may assume that there exists a nonzero
element y such that RN(L) =NP (L) = I= Span{y}. Since LN(L) =L/I= Hp, there
exists a basis {u1 +I,·· · ,u2p+1 +I} of L/I such that u1,·· · ,u2p+1∈L,

[u2l−1,u2l]−u2p+1∈ I, for l= 1,·· · ,p, (5.5)

[ui,y] =αiy, for i= 1,·· · ,2p+1, (5.6)

and

[ui,uj ]∈ I, for i,j= 1, ·· · ,2p+1,(i,j) 6= (2l−1,2l), for l= 1,·· · ,p. (5.7)

By [u1,u2]−u2p+1∈ I, we have

0 = [[u1,u2]−u2p+1,y] = [[u1,y],u2]+[u1, [u2,y]]− [u2p+1,y] =−α2p+1y.

This implies that α2p+1 = 0. As I=NP (L), by the properties of a near perfect ideal,
[L,I] = I. Therefore, at least for one i,αi 6= 0, where i= 1, ·· · ,2p. Then we may reorder
i= 1, ·· · ,2p, and make some scalings if necessary, such that α1 = 1 and the other parts
of (5.5-5.7) still hold.

Let v1 =u1, v2 =u2−α2u1−
∑p
l=2(α2lu2l−1−α2l−1u2l), vi=ui−αiu1 for i=

3,·· · ,2p, and v2p+1 =u2p+1. Then we have

[v2l−1,v2l] =v2p+1 +β2l−1,2ly, for l= 1, ·· · ,p, (5.8)
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[v1,y] =y, (5.9)

[vi,y] = 0, for i= 2, ·· · ,2p+1, (5.10)

and

[vi,vj ] =βi,jy, for i,j= 1, ·· · ,2p+1,(i,j) 6= (2l−1,2l), for l= 1, ·· · ,p. (5.11)

Let x1 =v1, x2 =v2−β1,2y−β1,2p+1y and xi=vi−β1,iy for i= 3,·· · ,2p+1. Then
we have

[x1,x2] =x2p+1, [x2l−1,x2l] =x2p+1 +σ2l−1,2ly, for l= 2, ·· · ,p, (5.12)

where σ2l−1,2l=β2l−1,2l+β1,2p+1 for l= 2, ·· · ,p,

[x1,y] =y, (5.13)

[xi,y] = 0, for i= 2,·· · ,2p+1, (5.14)

[x1,xj ] = 0, for j= 3,·· · ,2p+1, (5.15)

[xi,xj ] =σi,jy, for i,j= 2, ·· · ,2p+1,(i,j) 6= (2l−1,2l), for l= 2, ·· · ,p, (5.16)

where σi,j =βi,j for i,j= 2,·· · ,2p+1,(i,j) 6= (2l−1,2l) for l= 2,·· · ,p.
These are very close to the conclusions (5.1-5.4) except that we have to prove or

make

σi,j = 0, for i,j= 2, ·· · ,2p+1.

We now work on this.
Let i,j= 3, ·· · ,2p+1. By the Jacobi identity and (5.15),

[x1, [xi,xj ]] = [xi,[x1,xj ]]− [xj ,[x1,xi]] = 0.

On the other hand, by (5.13) and (5.16), we have

[x1,[xi,xj ]] =σi,jy.

These show that

σi,j = 0, for i,j= 3, ·· · ,2p+1. (5.17)

Now, let i,j= 2, ·· · ,2p+1. By the Jacobi identity and (5.12-5.17),

[x1, [xi,xj ]] = [xi,[x1,xj ]]− [xj ,[x1,xi]] = 0.

On the other hand, by (5.12-5.17), we have

[x1,[xi,xj ]] =σi,jy.

These show that

σi,j = 0, for i,j= 2, ·· · ,2p+1.

The proof is completed.



1052 NILPOTENT DECOMPOSITION

In Example 3, if we replace x1,x3 and x4 in the example by x3,y and x1, then we
have the form of this theorem for p= 1.

Example 7. This is s6,26 in [15, Chapter 19]. The six dimensional solvable Lie
algebra L has a basis {e1,e2,e3,e4,e5,e6}. If we let x1 =e6, x2 =e5, x3 =e2, x4 =e3,
x5 =e1 and y=e4, then we have the form of this theorem for p= 2. Note that for
an H2-A(1) algebra, the dimensions of the ideals in its lower central series should be
CS= [6,2,1]. In [15, Chapter 19], there is only one solvable Lie algebra which has
CS= [6,2,1]. This confirms our theorem. However, our theorem is also true for p≥3.
This also enlarges our knowledge about solvable nonnilpotent algebras.

5.3. Hp-A(n) algebras for n≥2. We now discuss Hp-A(n) algebras for n≥2.
In [15, Chapter 18], s5,20 and s5,39 are H1-A(2) algebras. Thus, we need to classify
Hp-A(n) algebras for n≥2. The following is a theorem about the structure of Hp-A(n)
algebras for n≥2.

Theorem 5.2. Suppose that we have an Hp-A(n) algebra L, and n≥2. Assume that
I=NP (L) =RP (L) has a basis {y1,·· · ,yn}, and L/I has a basis {x1 +I, ·· · ,x2p+1 +I}.
Then we have the following conclusions:

[yi,yj ] = 0 (5.18)

for i,j= 1,·· · ,n,

([xα,y1],[xα,y2], ·· · ,[xα,yn]) = (y1,y2, ·· · ,yn)Dα (5.19)

for α= 1, ·· · ,2p+1,i= 1, ·· · ,n, where Dα are n×n matrices, map I to I, and satisfy

[Dα,Dβ ]≡DαDβ−DβDα=

{
D2p+1, if (α,β) = (2l−1,2l), 1≤ l≤p,
0, otherwise,

(5.20)

for 1≤α<β≤2p+1,

[x2l−1,x2l] =x2p+1 +

n∑
k=1

bk2l−1,2lyk (5.21)

for l= 1,·· · ,p,

[xα,xβ ] =

n∑
k=1

bkαβyk, (5.22)

for 1≤α<β≤2p+1,(α,β) 6= (2l−1,2l) for l= 1, ·· · ,p. Furthermore,

Span{[xα,yi] :α= 1, ·· · ,2p+1,i= 1, ·· · ,n}= I (5.23)

The matrices Dα and the constants bkαβ satisfy

n∑
k=1

[
bk2l−1,2l(Dγ)jk+bk2l,γ(D2l−1)jk−b

k
2l−1,γ(D2l)

j
k

]
+bjγ,2p+1 = 0, j= 1,·· · ,n, (5.24)

for 2l<γ≤2p+1 and l= 1, ·· · ,p, where bj2p+1,2p+1 = 0, j= 1, ·· · ,n;

n∑
k=1

[
bkα,2l−1(D2l)

j
k−b

k
2l−1,2l(Dα)jk+bkα,2l(D2l−1)jk

]
−bjα,2p+1 = 0, j= 1, ·· · ,n, (5.25)
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for 1≤α<2l−1 and l= 1, ·· · ,p;

n∑
k=1

[
bkαβ(Dγ)jk+bkβγ(Dα)jk−b

k
αγ(Dβ)jk

]
= 0, j= 1, ·· · ,n, (5.26)

for 1≤α<β<γ≤2p+1,(α,β) 6= (2l−1,2l),(β,γ) 6= (2l−1,2l). A classification of the
Hp-A(n) algebra L thus amounts to a classification of the matrices Dα and the constants
bkαβ under the transformations:

(1) Re-select the representative vectors of the factor algebra L/I:

x̃α=xα+

n∑
j=1

Rjαyj . (5.27)

(2) Change the basis vectors {y1, ·· · ,yn} of I by

ỹi=

n∑
j=1

Sji yj , (5.28)

where (Sji ) is a n×n nonsingular matrix.

(3) Change the complementary basis vectors {x1, ·· · ,xn1
} by

x̃α=

n∑
β=1

Gβαxβ , (5.29)

where (Gβα) is a (2p+1)×(2p+1) nonsingular matrix.

Proof. By the Abelian properties of I and the Heisenburg properties of L/I,
we have (5.18), (5.19), (5.21) and (5.22). By the Jacobi identity for xα,xβ ,yi, we
have (5.20). By the near perfect property of I, we have (5.23). By the Jacobi
identity for xα,xβ ,xγ , we have (5.24-5.26). By considering all possible choices of
{y1,·· · ,yn,x1, ·· · ,x2p+1}, we have (5.27-5.29).

Similar to Theorem 4.2, {D1,·· · ,D2p+1} is a basis of an Abelian subalgebra of the
general linear algebra of n×nmatrices. This property is true for any solvable Lie algebra
whose right nilpotent algebra is Abelian. We may take an approach similar to [15] to
classify all such Abelian subalgebras and transform the matrices D1, ·· · ,D2p+1 to some
canonical forms. Then we may determine the structure constants bkαβ , and weed out
decomposable obtained Hp-A(n) algebras. We do not go into the details.

5.4. A(n)-Hp algebras and Hp-Hq algebras. In [15, Chapter 18], s5,15 is an
A(2)-H1 algebra, s6,24, s6,30 and s6,38 are H1-H1 algebras. Further discussion on such
algebras are needed.

6. Final remarks
In this paper, we proposed a nilpotent decomposition classification approach for

solvable nonnilpotent Lie algebras, as a complementary approach to the existing ap-
proach of solvable extension of a given nilpotent radical, as discussed in [15]. We may
see that in some cases, such as demonstrated by Theorems 4.1, 4.2, 5.1 and 5.2, this
approach may reveal some structures of solvable nonnilpotent Lie algebras, different
from the approach of solvable extension of a given nilpotent radical. Hence, it is worth
further exploring this approach.
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It is known that not all nilpotent Lie algebras can be nilradicals of some solvable Lie
algebras [15, Page 100]. In order to have nontrivial solvable extensions, a given nilpotent
Lie algebra must possess at least one nonnilpotent derivation. A nilpotent algebra which
has only nilpotent derivations and consequently is not a nilradical of any solvable Lie
algebra is called a characteristically nilpotent algebra. A survey on characteristically
nilpotent algebras can be found in [1]. It is wondered if a characteristically nilpotent
algebra can be a left or right nilpotent algebra of a solvable nonnilpotent Lie algebra
or not. On the other hand, is there any condition on a given nilpotent Lie algebra to
be the left or right nilpotent algebra of a solvable nonnilpotent Lie algebra? These two
issues may also worth further exploring.
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