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EFFECTIVE RANKINE-HUGONIOT CONDITIONS FOR
SHOCK WAVES IN PERIODIC MEDIA∗

DAVID I. KETCHESON† AND MANUEL QUEZADA DE LUNA‡

Abstract. Solutions of first-order nonlinear hyperbolic conservation laws typically develop shocks
in finite time even from smooth initial conditions. However, in heterogeneous media with rapid spatial
variation, shock formation may be delayed or avoided. When shocks do form in such media, their speed
of propagation depends on the material structure. We investigate conditions for shock formation and
propagation in heterogeneous media. We focus on the propagation of plane waves in two-dimensional
media with a periodic structure that changes in only one direction. We propose an estimate for the speed
of the shocks that is based on the Rankine-Hugoniot conditions applied to a leading-order homogenized
(constant coefficient) system. We verify this estimate via numerical simulations using different nonlinear
constitutive relations and layered and smoothly varying media with a periodic structure. In addition,
we discuss conditions and regimes under which shocks form in this type of media.
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1. Introduction

Many important physical phenomena are modeled by first-order nonlinear hyper-
bolic conservation laws; important examples include water waves and fluid dynamics. It
is well known that solutions of such equations generically develop singularities (shocks)
in finite time and eventually dissipate all energy. This was shown rigorously for un-
bounded homogeneous domains with compact initial data in [21,22].

There are, however, mechanisms that can impede the formation of shocks. For
instance, the effect of random topography on shallow water waves was studied in [10,11],
where it is shown to lead to an effective viscosity. As a result, waves over random
topography propagate over longer distances before breaking.

For gas dynamics in a periodic domain, there seem to be solutions that remain
regular for long times; see [26,30]. Indeed, in [30] it was conjectured, based on numerical
experiments, that in a periodic domain there exist nontrivial solutions in which no
singularity forms. These solutions were referred to as NBAT (non-breaking for all
time).

One may also consider a setting in which the medium properties vary periodically in
space but the solution itself is not assumed periodic. This is what is meant by the phrase
periodic medium in the present work. This situation arises naturally in applications that
include photonic [12] and phononic crystals [17,24] and even coastal engineering [5,34].
The periodic variation in the medium leads to an effective dispersion [29] for linear waves.
Nonlinear waves in a periodic medium were studied in [20], where the authors derived via
asymptotic expansions an effective constant coefficient system of PDEs, whose leading
order terms capture the macroscopic behavior of the solution. The lowest-order terms
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match those of the original system, but with spatially-averaged coefficients, while the
higher-order terms are dispersive.

In [30] and [10, 11, 20, 29], regularization seems to be the result of reflection; in the
first case due to resonant interactions between characteristic fields and in the rest due
to reflections caused by the medium itself, which lead to dissipative and/or dispersive
effects. In all these references, the authors focused on waves in one space dimension.
In the present work we consider an unbounded two-dimensional domain that varies
periodically in one direction; see Figure 1.1. This scenario has been studied already
in [28] for linear waves and in [15] for nonlinear waves. In the last reference, a different
sort of regularization was observed that does not seem to be caused by reflection, showing
that apparently NBAT solutions can arise even when reflective effects are essentially
absent.

These mechanisms that prevent or delay the formation of shocks in [10, 11, 15, 20]
depend on the initial data and the properties of the medium (i.e., the strength of the
changes in the coefficients, topography, etc.). It is, therefore, possible for shocks to still
appear if the induced regularization is not strong enough. Two natural questions arise:

(i) What properties of the initial data and the medium determine whether solutions
exhibit shocks or are NBAT?

(ii) When shocks form, what is their speed of propagation?

For one-dimensional layered media, this was studied in [16], where it was conjectured
(based on numerical experiments) that NBAT solutions also exist. The maximum am-
plitude of initial data leading to NBAT solutions there was related to the properties
of the medium. It was also demonstrated numerically that initially discontinuous data
could become regular (or almost regular) in such media if the initial discontinuities did
not satisfy a certain effective Lax-entropy condition. For shocks that do satisfy this
condition, the authors proposed (and verified numerically) a simple expression for the
speed of propagation.

Our goal is to extend the results in [16] to the more general two-dimensional situa-
tion depicted in Figure 1.1. To answer question (ii), we assume that the regularization
is not strong enough, which leads to the formation of shocks. We propose and test
numerically a simple expression for the propagation of shocks in this type of medium.
In regard to question (i), we present a range of experimental results but only a partial
answer, valid in a more restricted class of media. In the conclusion we discuss a potential
research path to obtain such a condition for more general media.

We remark that linear wave propagation in a layered medium like that of Figure
1.1 is well studied. Due to the layering, the leading-order effective speed of propagation
depends on the angle; see e.g. [25]. Regarding the dispersion of linear waves in layered
media, see e.g. [7, 28,29,32,33].

The rest of this manuscript is organized as follows. In Section 1.1 we present the
system of equations and the type of media that we consider. In Section 1.2 we discuss
differences between viscous and dispersive shocks. In Sections 1.3, 1.4 and 1.5 we review
the different types of dispersive effects that are induced in periodic media and, for a
particular case, discuss the speed of propagation of shocks proposed in [16]. In Section
2 we use homogenization theory to derive a leading order constant-coefficient system
that captures the main macroscopic features of the solution. In Section 3 we propose an
effective shock speed by applying the Rankine-Hugoniot conditions to the homogenized
system. This estimate agrees with [16] when θ= 90◦. We test this estimate via numerical
experiments, considering two different nonlinearities and two types of periodic media.
In Section 4 we discuss possible conditions for a shock to propagate without being
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Fig. 1.1: Wave propagation in a layered medium in two dimensions. The domain shown is repeated
periodically and extends infinitely in both directions. The orientation of the medium relative to the
initial plane wave is given by the angle θ. If θ= 90◦ we refer to the propagation as transverse to the
material heterogeneity and if θ= 0◦ we refer to the propagation as parallel.

regularized by the induced dispersion. Finally, in Section 5 we present some conclusions
and open questions, with possible approaches to resolve them.

1.1. Governing equations and material configuration. We consider the
scalar, nonlinear, variable-coefficient wave equation

εtt−∇·
(

1

ρ(x)
∇σ(ε,x)

)
= 0. (1.1)

We use the notation of elasticity for consistency with related work [15,16,20,28]. There-
fore ε denotes strain, ρ density, and σ stress. Furthermore, let K(x) denote the bulk-
modulus. We consider nonlinear stress-strain relations of the form

σ(ε,x) = σ̂(K(x)ε), (1.2)

such that σε can be expressed as σε=G(σ)K for some function G(σ). This condition is
needed during the homogenization process in Section 2. Note that this can be achieved
if σ̂∈C1(Kε) (i.e., if σ̂ is once differentiable with respect to Kε) and σ̂ is one-to-one.

Solutions of (1.1) with nonlinear stress-strain relations may involve shock singu-
larities. In order to determine entropy-satisfying weak solutions, we write (1.1) as a
first-order hyperbolic system in conservation form:

qt+ f(q,x)x+g(q,x)y =0, (1.3a)

where

q=

 ε
ρ(x)u
ρ(x)v

, f(q,x) =

 −u
−σ(ε,x)

0

, g(q,x) =

 −v
0

−σ(ε,x)

. (1.3b)

Here u and v are the x- and y-components of velocity, q is the vector of conserved
quantities, and f ,g are the components of the flux in the x- and y-directions respectively.
Note that (for simplicity) we concentrate on two dimensional waves but the results we
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present can be readily extended to three dimensions. We remark that system (1.3) is
a two-dimensional generalization of the p-system from Lagrangian gas dynamics (see
e.g. [19, Section 2.13]).

The medium is periodic and extends infinitely in both coordinate directions, as
shown in Figure 1.1. We consider both layered and smoothly-varying media. The
smoothly-varying medium is given by

K(x) =
KA+KB

2
+
KA−KB

2
sin(2πξ(x)), (1.4a)

ρ(x) =
ρA+ρB

2
+
ρA−ρB

2
sin(2πξ(x)), (1.4b)

where KA, ρA, KB and ρB are strictly positive constants and ξ(x) =xsinθ+ycosθ. The
layered medium, which is composed of two types of materials: A and B, is given by

(K(x),ρ(x)) =

{
(KA,ρA) if sin(2πξ(x))≥0

(KB ,ρB) if sin(2πξ(x))<0.
(1.5)

Important properties of the medium are characterized by the linearized impedance
Z(x) :=

√
Kρ and sound speed c(x) :=

√
K/ρ. Variations in Z govern reflection, while c

dictates the speed of propagation of small amplitude waves. As we explain in Sections
1.3 and 1.4, different sources of dispersion are induced due to changes in the impedance
and sound speed. In some of the numerical experiments that we perform we define KA,
ρA, KB and ρB by selecting the values of ZA :=

√
KAρA, cA :=

√
KA/ρA, ZB :=

√
KBρB

and cB :=
√
KB/ρB .

1.1.1. Normalization of the material parameters. Since the stress-strain
relation σ= σ̂(Kε) is a function of the productKε, we can normalize the parameters with
respect to (KA,ρA). As a result, we can consider without loss of generality (KA,ρA) = 1.
To see this, let

K̃(x) =K(x)/KA, (1.6a)

ρ̃(x) =ρ(x)/ρA. (1.6b)

Multiply (1.1) by KA and use (1.6) to obtain

(KAε)tt−∇·
[

1

ρ̃(x)
∇
(
KA

ρA
σ̂
(
K̃(x)KAε

))]
= 0. (1.7)

Finally, let ε̃=KAε and σ̃= KA

ρA
σ̂
(
K̃(x)KAε

)
= KA

ρA
σ to obtain

ε̃tt−∇·
[

1

ρ̃(x)
∇σ̃
(
K̃(x)ε̃

)]
= 0. (1.8)

This equation has the same form as (1.1), but with ρ̃A= K̃A= 1 and the parame-
ters in the B-material scaled accordingly. Henceforth, we omit the tildes and assume
(KA,ρA) = 1 whenever convenient.

1.2. Viscous versus dispersive shocks. In contrast to first-order hyperbolic
conservation laws, higher-order PDE models often include viscous or dispersive terms
that prevent the formation of discontinuities and lead instead to what are known as
viscous shocks or dispersive shocks. Viscous and dispersive shocks have very different
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structures and are typically treated with different mathematical tools. Viscous shocks
connect two states via a narrow, smooth transition region and generate an increase
in physical entropy over time. The speed of a viscous shock is given by the Rankine-
Hugoniot condition which is a consequence of the conservation laws themselves [18].
A dispersive shock, on the other hand, connects two states by an oscillatory region
that expands in time. Dispersive shocks do not generate entropy. The speed of the
leading edge of a dispersive shock is related to the speed of a solitary wave, while the
speed of the trailing edge is related to that of small-amplitude perturbations. The
regularization observed in [15, 16, 20, 28, 29] and in the present work can be related to
dispersive regularization occurring in higher-order dispersive wave models. In particular,
as explained in [29], the periodic structure of the medium leads to an effective dispersion
of waves. We refer to [13] for a detailed discussion about viscous and dispersive shocks,
to [36] for the main mathematical tools to treat dispersive shocks, and to [6] for a review
of the theory of dispersive shocks. We remark that randomly varying media seem to
lead to viscous, rather than dispersive, effective equations; see for example [10,11,31].

Numerical methods for first-order hyperbolic conservation laws are designed to ap-
proximate the vanishing-viscosity limit of a viscously-regularized system. Thus they
impose the Rankine-Hugoniot conditions and attempt to approximate viscous shocks in
the limit where the width of the shock region vanishes (i.e., the viscous shock becomes
a discontinuity). In practice, any stable numerical method must impose some viscosity
in the shock region and so the shock is approximated by a region of finite width. Hence
the solutions presented herein are affected by an interplay of viscous (numerical) and
dispersive (from the medium) effects. By refining the computational mesh, numerical
viscosity can be reduced and thus it is possible in principle to determine whether the
solution to the first-order variable-coefficient system (with no viscosity) is in fact NBAT.
We follow the methodology of [16], distinguishing non-dispersive shocks by the presence
of an increase in physical entropy that persists when the mesh is refined.

Figure 1.2 demonstrates the range of possible behaviors. Each plot shows a solution
corresponding to propagation of an initial square (plane) wave in a periodic layered
medium; the only difference between the plots is θ, the orientation of the plane wave
relative to the medium. Depending on the medium properties and angle of propagation,
one may observe shock formation (top left), dispersive shock formation followed by the
creation of solitary waves (top right) or more complicated behavior that lies between
these extremes (bottom row).

1.3. Z-dispersion: effective dispersion induced by reflections. Consider a
plane wave traveling transversely in a layered medium; i.e. let θ= 90◦ in Figure 1.1. In
this case its propagation follows the theory developed in [16], which we briefly review
here. If the impedance is mismatched, reflections occur at each interface. The net effect
of these reflections is macroscopic dispersion, as shown in [29] via Bloch expansions and
in [3, 4, 9, 37] via homogenization theory. When the material parameters change such
that the linearized impedance remains constant, there are almost no reflections and, as a
consequence, the dispersion introduced is negligible. Moreover, if the material response
is linear, the dispersion vanishes completely. Therefore, having variable impedance
is crucial to obtain effective dispersion in waves traveling transverse to the material
heterogeneity. We show this in the left and right panels of Figure 1.3 by considering a
linear wave traveling in a layered medium with constant and mismatched impedance,
respectively. With nonlinear waves, if the variations in impedance are small, shocks
may develop in finite time (like in a homogeneous medium). This is shown in the left
panel of Figure 1.4. If the impedance mismatch is large, the effective dispersion may be
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Fig. 1.2: Examples of wave propagation in a layered medium (1.5). Differences in material properties
and angle of propagation can lead to behavior that is dominated by shock formation or by dispersion.
The material coefficients are cA = 1, cB = 4 and ZA =ZB = 1 and the angle of propagation is: (top-
left) θ= 90◦, (top-right) θ= 0◦, (bottom-left) θ= 45◦ and (bottom-right) θ= 67.5◦. The dashed red line
shows, for reference, the behavior in a homogeneous medium with appropriately averaged properties (see
Section 2). The initial condition is an effective purely right-going shock given by (3.5) with xs = 20,
ul given by (3.4), ur = 0, σl = 1 and σr = 0. We show the solution at t= 25 and use the nonlinear
stress-strain relation (3.6a).

Fig. 1.3: Transverse (θ= 90◦) linear wave propagation in a layered medium (1.5). The material
coefficients are: (left) cA = 1, cB = 4 and ZA =ZB = 1; (right) cA = cB = 1, ZA = 1 and ZB = 4. The
initial condition for both experiments is σ(x,t= 0)= exp(−x2/10) and u(x,t= 0)=v(x,t= 0) = 0.

Fig. 1.4: Transverse (θ= 90◦) nonlinear wave propagation in a layered medium (1.5). The material
coefficients are: (left) cA = cB = 1, ZA = 1 and ZB = 1.5; (right) cA = cB = 1, ZA = 1 and ZB = 4. The
initial condition for both experiments is σ(x,t= 0)= exp(−x2/10) and u(x,t= 0)=v(x,t= 0) = 0.

strong enough to delay or avoid shock formation [16]; i.e., the induced dispersion can
act as a regularization mechanism. Moreover, the nonlinear and the dispersive effects
can balance each other leading to solitary wave formation [20], as seen in the right panel
of Figure 1.4. This is similar to the formation of solitons in the KdV equation, see for
instance [38]. However, it is important to remember that in the present setting the PDE
being solved contains no dispersive terms.

Up to this point we have considered dispersion induced by effective reflections at the
material interfaces when the impedance varies. We refer to this effect as ‘Z-dispersion’
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since it depends on variation in the impedance, which is commonly denoted by Z in
elasticity theory.

1.4. C-dispersion: effective dispersion induced by diffraction. In [28] the
authors considered linear waves traveling in the same type of medium considered in the
present work. Let us now review what was observed therein for parallel propagation;
i.e. θ= 0◦ in Figure 1.1. In this case, if the sound speed differs in the A and B layers,
effective dispersion is again introduced (even if the impedance is constant). We refer
to this effect as ‘C-dispersion’ since it depends on variation in the sound speed, which
is commonly denoted by c in elasticity theory. In the nonlinear case, C-dispersion can
also act as a regularization mechanism to delay or avoid the formation of shocks. If
the dispersion is large, the nonlinear and the dispersive effects can balance each other,
leading to the formation of solitary waves [15]. In Figure 1.5 we demonstrate this effect.

Fig. 1.5: Parallel (θ= 0◦) nonlinear wave propagation in a layered medium (1.5). Sufficiently large
variation in sound speed seems to prevent shock formation. The material coefficients are: (left) cA = 1,
cB = 1.1 and ZA =ZB = 1; (right) cA = 1, cB = 4 and ZA =ZB = 1. We plot in solid red a slice through
the middle of the B-layer and in dashed blue a slice through the middle of the A-layer. The initial
condition for both experiments is σ(x,t= 0)= exp(−x2/10) and u(x,t= 0)=v(x,t= 0)= 0.

For general propagation along an arbitrary angle θ, effective Z-dispersion and ef-
fective C-dispersion may both be introduced, due to variations in the impedance and
the sound speed, respectively. The strength of each effect depends on the material
parameters and the direction of propagation.

1.5. Shock speed. In this work we focus on a setting in which the dispersive
effects are small (or the initial data is large), so that shocks may still appear. We
are interested in the speed of propagation of the resulting shocks. This was studied
in [16] for the case of transverse propagation (i.e., θ= 90◦ in Figure 1.1), in which case
the problem is one-dimensional and there are only Z-dispersive effects. Following the
notation therein, let σ, ε and ρ denote stress, strain, and density, respectively. The
hypothesized shock speed from [16] is then

s=

√
1

ρm

(
[σ]

[ε]

)
h

, (1.9)

where (·)h is the harmonic average operator (over one spatial period of the medium),
ρm is the mean density and [z] =zr−zl denotes the jump in quantity z across the
shock. Formula (1.9) is just the usual Rankine-Hugoniot shock speed but with each
quantity replaced by an appropriate spatial average. The choice to use an ordinary
average for ρ and a harmonic average for σ/ε is based on the fact that small-amplitude,
long-wavelength pulses travel at an effective speed given by

ceff =

√
Kh

ρm
, (1.10)



1030 EFFECTIVE RANKINE-HUGONIOT CONDITIONS IN PERIODIC MEDIA

where K is the bulk-modulus; see [29]. Thus (1.9) is a natural extension of the Rankine-
Hugoniot condition to determine the speed of shocks using effective material parameters.
In Figure 1.6a we demonstrate the correctness of this estimate by considering a right
going shock (as those we study in §3.1) propagating in a Z-dispersive medium with
impedance in material A and B to be given by ZA= 1 and ZB = 4 respectively. The
cyan dashed line represents the position of the shock as predicted by (1.9).

One might expect that, under the more general scenario in Figure 1.1, shocks would
propagate with the same speed (1.9). However, one quickly finds that this is not the case.
For example, in Figure 1.6b we consider propagation along θ= 45◦ in a medium with
the same material properties as before. Again, we indicate the shock position predicted
by (1.9) with a cyan dashed line. It is clear that the results in [16] do not apply for
the more general framework that we study in this work. In Figure 1.6b we show with a
dashed red line the position predicted by the theory developed in the present work. We
propose an effective speed of propagation that is based on a leading order homogenized
system.

(a) Layered medium with θ= 90◦ (b) Layered medium with θ= 45◦

Fig. 1.6: Right-going shock in a layered medium (1.5) with (a) θ= 90◦ and (b) θ= 45◦. The material
coefficients are ZB = 1, ZA = 4 and cA = cB = 1. The initial condition is an effective purely right-going
shock given by (3.5) with xs = 40, ul given by (3.4), ur = 0, σl = 8 and σr = 0. We show the solution at
t= 20 and use the nonlinear stress-strain relation (3.6a). In all plots, the black solid line is the solution
along y= 0.5, the cyan dashed line is the shock position predicted by (1.9) and the green dashed line is
the initial condition. In (b), the red dashed line is the shock position predicted by our estimate (3.3),
which we present in Section 3.

2. Homogenized equations
Our first goal is to generalize the proposed shock speed that was given in [16] for

the case θ= 90◦. In order to do so, and also to place that hypothesis on a firmer math-
ematical footing, we perform an asymptotic analysis. Specifically, in this section we use
homogenization theory to capture the macroscopic effects when waves with large wave-
length travel in a periodic medium with small period Ω (relative to the wavelength).
The leading-order result of this process is a constant-coefficient system with the mate-
rial properties given by some average that depends on the relative angle between the
propagation of the wave and the variation in the medium. We follow [15] and references
therein. Recall system (1.3):

εt−(ux+vy) = 0, (2.1a)

ρut−σx= 0, (2.1b)

ρvt−σy = 0. (2.1c)

From Section 1.1 we have σε=K(x)G(σ). Using the chain rule, σt=σεεt. Therefore,
we can write (2.1) as

K−1σt−G(σ)(ux+vy) = 0, (2.2a)
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ρut−σx= 0, (2.2b)

ρvt−σy = 0. (2.2c)

We start by introducing a parameter δ= Ω/λ, where Ω is the material period and λ is the
wave length. We restrict our attention to waves with λ�Ω =⇒ δ�1. We recognize
and introduce a fast spatial scale ξ̂= δ−1ξ where ξ=xsinθ+ycosθ (is obtained by a
simple rotation of axes and) defines the direction of the heterogeneity. We assume

σ=σ(x,y,ξ̂,t), u=u(x,y,ξ̂,t) and v=v(x,y,ξ̂,t) and that the material properties depend

only on the fast scale; i.e., ρ=ρ(ξ̂) and K=K(ξ̂).
By the chain rule ∂x 7→∂x+δ−1∂ξ̂ sinθ and ∂y 7→∂y+δ−1∂ξ̂ cosθ. Therefore (2.2)

becomes

K−1σt−G(σ)[ux+vy+δ−1(uξ̂ sinθ+vξ̂ cosθ)] = 0, (2.3a)

ρut−(σx+δ−1σξ̂ sinθ) = 0, (2.3b)

ρvt−(σy+δ−1σξ̂ cosθ) = 0. (2.3c)

The next step is to expand σ(x,y,ξ̂,t), u(x,y,ξ̂,t) and v(x,y,ξ̂,t) using the small param-

eter δ. For example, σ(x,y,ξ̂,t) =
∑∞
i=0δ

iσi(x,y,ξ̂,t) and similarly for u and v. We plug
these expansions into (2.3) to get

K−1
∞∑
i=0

δiσi,t−G(σ)

( ∞∑
i=0

δiui,x+

∞∑
i=0

δivi,y+

∞∑
i=0

δi−1(ui,ξ̂ sinθ+vi,ξ̂ cosθ)

)
= 0,

(2.4a)

ρ

∞∑
i=0

δiui,t−

( ∞∑
i=0

δiσi,x+

∞∑
i=0

δi−1σi,ξ̂ sinθ

)
= 0, (2.4b)

ρ

∞∑
i=0

δivi,t−

( ∞∑
i=0

δiσi,y+

∞∑
i=0

δi−1σi,ξ̂ cosθ

)
= 0, (2.4c)

where (·)i,z denotes differentiation of (·)i with respect to z. The function G(σ) is
expanded around σ0 using Taylor series as G(σ) =G(σ0)+δG′(σ0)σ1 + .. ..

From (2.4), we collect the terms of order O(δ−1):

(u0 sinθ+v0 cosθ)ξ̂ = 0, (2.5a)

σ0,ξ̂ sinθ= 0, (2.5b)

σ0,ξ̂ cosθ= 0, (2.5c)

which implies that σ0 =: σ̄0(x,y,t) and that u0 sinθ+v0 cosθ is independent of ξ̂. Here

we use the notation that variables independent of the fast scale ξ̂ are denoted by a bar.
From (2.4), we collect the terms of order O(δ):

K−1σ̄0,t−G(σ̄0)
(
u0,x+v0,y+u1,ξ̂ sinθ+v1,ξ̂ cosθ

)
= 0, (2.6a)

ρu0,t−
(
σ̄0,x+σ1,ξ̂ sinθ

)
= 0, (2.6b)

ρv0,t−
(
σ̄0,y+σ1,ξ̂ cosθ

)
= 0. (2.6c)
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Multiply Equation (2.6b) by ρ−1, apply the averaging operator

〈·〉 := 1

Ω

∫ Ω

0

(·)dξ=
1

λ

∫ λ

0

(·)dξ̂ (2.7)

and multiply the resulting equation by cosθ. Similarly, multiply Equation (2.6c) by ρ−1,
apply the averaging operator and multiply the resulting equation by sinθ. Combine the
two equations to get

(ū0 cosθ− v̄0 sinθ)t−ρ
−1
h (σ̄0,xcosθ− σ̄0,y sinθ) = 0, (2.8)

where ρh :=
〈
ρ−1

〉−1
denotes the harmonic average. Here we defined ū0 := 〈u0〉 and

v̄0 := 〈v0〉. Multiply Equation (2.6b) by sinθ and Equation (2.6c) by cosθ and sum the
two equations to obtain

ρ(u0 sinθ+v0 cosθ)t−(σ̄0,x sinθ+ σ̄0,y cosθ)−σ1,ξ̂ = 0. (2.9)

Apply the averaging operator to (2.9) noting that by (2.5a) u0 sinθ+v0 cosθ is indepen-

dent of ξ̂. Doing this yields

(ū0 sinθ+ v̄0 cosθ)t−ρ
−1
m (σ̄0,x sinθ+ σ̄0,y cosθ) = 0, (2.10)

where ρm := 〈ρ〉 denotes the arithmetic average. Here we assumed σ1,ξ̂ is periodic with

respect to the fast variable ξ̂, which is a standard assumption in homogenization theory
(see for instance [3,9] and references therein). Multiply (2.8) by cosθ and (2.10) by sinθ
and sum the two equations to obtain

ū0,t−
(
ρ−1
h cos2θ+ρ−1

m sin2θ
)
σ̄0,x−

(
ρ−1
m −ρ−1

h

)
sinθcosθσ̄0,y = 0. (2.11)

Apply the averaging operator to (2.6a) (again assuming ξ̂-periodicity of u1,ξ̂ and v1,ξ̂)
to obtain

K
−1
σ̄0,t−G(σ̄0)(ū0,x+ v̄0,y) = 0. (2.12)

Finally, for a plane wave propagating in the x-direction, we have σ̄0,y, v̄0,y = 0.
Therefore,

K
−1
σ̄0,t−G(σ̄0)ū0,x= 0, (2.13a)

ρ(θ)ū0,t− σ̄0,x= 0, (2.13b)

where ρ(θ) =
(
ρ−1
h cos2θ+ρ−1

m sin2θ
)−1

is the effective density in the oblique medium

and K=
〈
K−1

〉−1
is the effective bulk-modulus. Equations (2.13) constitute the lead-

ing order constant-coefficient homogenized system. We can now identify the effective
material properties. The effective bulk-modulus is given by the harmonic average and
the effective density is given by ρ(θ). This agrees with the theory in [28] where the two
cases θ= 0◦ and θ= 90◦ are considered.

3. Effective Rankine-Hugoniot conditions
The homogenized equations, which are given by (2.13), can be rewritten as a system

of conservation laws:

εt−ux= 0, (3.1a)
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ρ(θ)ut−σx= 0. (3.1b)

The system (3.1) is closed by choosing a nonlinear stress-strain relation σ(ε) =σ(ε;K).
This leading order system is a dispersionless approximation of the original problem;
i.e., it captures the effective behavior of the solution neglecting the dispersive effects.
Therefore, it yields a better approximation when the dispersion is small. In this work
we are interested in the case when (viscous) shocks form which is expected to happen
when the effective dispersion is small. In this regime, it is reasonable to expect the
shock to propagate with speed close to that given by applying the Rankine-Hugoniot
conditions to (3.1). By doing this we obtain

s[ε] =−[u], (3.2a)

ρ(θ)s[u] =−[σ], (3.2b)

where s is the speed of the shock and [(·)] is the jump of (·); i.e., [(·)] := (·)l−(·)r.
Therefore, we propose an estimate for the speed of propagation of viscous shocks to be
given by

seff =±

√
[σ]

ρ(θ)[ε]
, (3.3)

where the minus and plus sign correspond to the left- and right-going shocks, respec-
tively. Note that ρ(θ) increases as θ gets closer to 90◦. Therefore, the speed of the shock
is reduced as θ gets closer to 90◦. A similar result for long-wavelength linear waves is
well known; see e.g. [1, 25].

3.1. Effective purely right-going shocks. The Rankine-Hugoniot conditions
not only provide the speed of propagation of shocks but also the proper way to connect
left and right states of a shock. Without loss of generality we consider just right-going
shocks, which correspond to the positive speed seff in (3.3). From (3.2), we get

[u] =−

√
[σ][ε]

ρ(θ)
. (3.4)

This expression provides the connection between the left and right state for a right-going
shock. We perform experiments on different layered media with coefficients given by
(1.5). In these experiments the nonlinear constitutive relation σ(ε) is given by (3.6a)
with K=K, and the initial condition is

σ(x,t= 0) =

{
σl, if x≤xs
σr, if x>xs

, u(x,t= 0) =

{
ul, if x≤xs
ur, if x>xs

, v(x,t= 0) = 0, (3.5)

where xs defines the position of the shock, ul is given by (3.4), σl= 1, σr = 0 and ur = 0.
For all the experiments, we solve the original variable coefficient system (1.1) and the
leading order homogenized system (3.1). We consider two stress relations:

σ(ε,x) = exp(K(x)ε)−1, (3.6a)

σ(ε,x) =αK(x)ε+β(K(x)ε)2 +γ(K(x)ε)3, (3.6b)

with α,β,γ∈R. Both are smooth, one-to-one functions; the first has been used before
in [20] while the second is important in nonlinear optics [2]. We take α= 0.1,β= 0 and
γ= 5.
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We first consider parallel propagation (θ= 0◦ in Figure 1.1). In this case C-
dispersion is introduced by diffraction due to variation in the sound speed. Results are
shown in Figure 3.1 for media with sound speed contrast of cB/cA= 4, 2, 1.25, and 1.
When cB/cA= 1 we use KA=ρA= 1 and KB =ρB = 4; i.e., the medium is still non-
homogeneous. For all other cases we use

KA=
1+cB/cA
2cB/cA

, ρA=
1

KA
, (3.7a)

KB =
1+cB/cA

2
, ρB =

1

KB
. (3.7b)

In the last three cases the approximation is very good. In the first case, a train of
solitons forms and no singular shock is discernible. Clearly, the approximation is better
when the sound speed contrast is small. For the last two plots, we show a zoomed
image of the region near the shock. Note that the effect of dispersion is still evident
when cB/cA= 1.25, which is not the case when cB/cA= 1.

Fig. 3.1: Effective right-going shocks in a layered medium with θ= 0◦. The material coefficients
are given by (1.5) with sound speed contrast of (from left to right) cB/cA = 4, 2, 1.25 and 1. When
cB/cA = 1 we use KA =ρA = 1 and KB =ρB = 4. For all other cases we use (3.7). The red dashed line
is the solution of the homogenized system (2.13). The initial condition is an effective purely right-going
shock given by (3.5) with xs = 30, ul given by (3.4), ur = 0, σl = 1 and σr = 0. We show the solution at
t= 40 and use the nonlinear stress-strain relation (3.6a). For the last two plots, we show an enlarged
view of the region near the shock.

For θ∈ (0◦,90◦), both C- and Z-dispersion are introduced by diffraction and reflec-
tions due to variation in the sound speed and impedance, respectively. In Figure 3.2 we
consider θ= 22.5◦, 45◦ and 67.5◦ and media with different sound speed and impedance
contrast. We use cB/cA=ZB/ZA= 4, 2 and 1.25 (with cA= 1 and ZA= 1). Again, the
approximation improves as the sound speed and impedance contrasts are reduced.

Finally, when θ= 90◦ Z-dispersion is introduced by reflections due to variation in
the impedance. We consider media with impedance contrast of ZB/ZA= 4, 2, 1.25 and
1. The results are shown in Figure 3.3. When ZB/ZA= 1 the material parameters are
given by KA=ρA= 1, KB = 4 and ρB = 1/4; i.e., the material is still non-homogeneous.
For all other cases we use KA=ρA= 1 and KB =ρB =ZB/ZA. As before, the leading
order approximation improves as the impedance contrast is reduced.

Evidently, the microscopic effects of the induced dispersion (i.e, the oscillatory
behavior) cannot be described by the homogenized system (2.13). This is expected
since it is only a leading order approximation. Indeed, one of the assumptions during
the homogenization process is that the wavelength of the pulse is large compared to
the periodicity in the medium, which is not the case for the right-going shock in these
experiments. Nevertheless, the homogenized system seems to accurately predict not
only the speed of the shock but also the macroscopic behavior of the solution.

Remark 3.1 (Numerical methods). We solve the variable-coefficient system (1.1) and
the homogenized system (2.13) using PyClaw [14]. Within PyClaw, we use the classic
algorithm implemented in Clawpack [35], which is a second-order method in space and
time based on a Lax-Wendroff discretization combined with total variation diminish-
ing (TVD) limiters. This algorithm is a finite volume method for solving hyperbolic
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(a) θ= 22.5◦

(b) θ= 45◦

(c) θ= 67.5◦

Fig. 3.2: Effective right-going shock in a layered medium with (a) θ= 22.5◦, (b) θ= 45◦ and (c)
θ= 67.5◦. The material coefficients are given by (1.5) with impedance and sound speed contrast of
(from left to right) ZB/ZA = cB/cA = 4, 2 and 1.25 (with cA = 1 and ZA = 1). The red dashed line is
the solution of the homogenized system (2.13). The initial condition is an effective purely right-going
shock given by (3.5) with xs = 30, ul given by (3.4), ur = 0, σl = 1 and σr = 0. We show the solution
at t= 30 and use the nonlinear stress-strain relation (3.6a).

Fig. 3.3: Effective right-going shock in a layered medium with θ= 90◦. The material coefficients
are given by (1.5) with impedance contrast of (from left to right) ZB/ZA = 4, 2, 1.25 and 1. When
ZB/ZA = 1 we use KA =ρA = 1, KB = 4 and ρB = 1/4. For all other cases we use KA =ρA = 1 and
KB =ρB =ZB/ZA. The red dashed line is the solution of the homogenized system (2.13). The initial
condition is an effective purely right-going shock given by (3.5) with xs = 30, ul given by (3.4), ur = 0,
σl = 1 and σr = 0. We show the solution at t= 40 and use the nonlinear stress-strain relation (3.6a).

conservation laws based on the (approximate) solution of Riemann problems. The Rie-
mann solvers can be found in [27]. The resolution in all the experiments in this work is
characterized by a mesh size of ∆x= ∆y= 1/128.

3.2. Effective shock-speed. In this section we perform (a total of 1620)
numerical simulations to corroborate the estimate (3.3), which predicts the speed of
propagation of shocks in periodic media. The experiments are split into four cases. For
cases (a) and (b) we use a layered medium (1.5) with exponential (3.6a) and cubic (3.6b)
nonlinearities, respectively; for cases and (c) and (d) we use a sinusoidal medium (1.4)
with exponential (3.6a) and cubic (3.6b) nonlinearities, respectively. For each of these
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(a) Layered medium (1.5) with exp. nonlin-
earity (3.6a)

(b) Layered medium (1.5) with cubic non-
linearity (3.6b)

(c) Sinusoidal medium (1.4) with exp. non-
linearity (3.6a)

(d) Sinusoidal medium (1.4) with cubic non-
linearity (3.6b)

Fig. 3.4: Estimated versus measured speed for 1620 experiments. We consider θ∈
{0◦,22.5◦,45◦,67.5◦,90◦}. The initial condition is an effective purely right-going shock given by (3.5)
with xs = 40, ul given by (3.4), ur = 0, KA =ρA = 1 and all possible combinations of (3.8). Darker
colors in the markers correspond to less dispersive media as predicted by [28, Equation (34)].

four cases, we consider θ∈{0◦,22.5◦,45◦,67.5◦,90◦}. For each value of θ, we perform 81
experiments all starting with a right-going shock given by (3.5) with ul given by (3.4),
ur = 0, KA=ρA= 1 and all possible combinations of:

ρB ={2, 3.5, 5}, KB ={2, 3.5, 5}, (3.8a)

σl={2, 4, 8}, σr ={0, 0.5, 1}. (3.8b)

For each experiment, we measure the speed of the shock and compare it with the
speed predicted by (3.3). Each experiment is represented by a dot in Figure 3.4, while
the predicted speed is indicated by the red dashed line. The color of the dot represents
the amount of dispersion introduced by the medium; darker colors correspond to less
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dispersive media as predicted by [28, Equation (34)].

4. Towards an effective Lax-entropy condition for periodic media
Consider the one-dimensional version of (1.1) written as a conservation law and

consider only the nonlinear convex stress-strain relation (3.6a). A right-going shock for
such system satisfies the Lax-entropy condition [18] if its speed, denoted as s+, satisfies

λ+
l >s

+>λ+
r , (4.1)

which imposes that the right-going characteristics (denoted by λ+) from the left and
right state of the shock impinge on each other. For a homogeneous medium, this con-
dition is solely dependent upon the solution to the left and right of the shock.

In principle, it is reasonable to expect that the effective dispersion introduced in
periodic media might regularize weak shocks that can otherwise propagate in homoge-
neous media. Therefore, it is desirable to identify a condition for a shock to be able
to propagate as a stable shock in periodic media. This problem is studied in [16] for
Z-dispersive media (i.e., media as in Figure 1.1 with θ= 90◦). The authors hypothesize
that the speed seff of a stable (right-going) shock must satisfy

seff>ch(σr) :=

(∫ 1

0

(
σ′r(x)

ρ(x)

)−1/2

dx

)−1

. (4.2)

In other words, a stable right-going shock in a Z-dispersive medium must travel faster
than the harmonic average of the sound speed. To corroborate this hypothesis, the
authors perform multiple experiments monitoring the evolution of the (global) entropy

η(t) =

∫
Ω

[
1

2
ρ(x)u2 +

∫ ε

0

σ(z,x)dz

]
dx, (4.3)

which remains constant for smooth solutions but decreases in the presence of shocks.
This hypothesis, however, does not seem to accurately predict behavior in the more
general situation depicted in Figure 1.1. We illustrate this in Figure 4.1, where we
plot the evolution of the normalized entropy η(t)/η(0) for different experiments. We
consider θ∈{0◦, 90◦} and KA=ρA=ρB = 1, KB = 16. Note that ZB/ZA= cB/cA=
4; i.e, both the impedance and the sound speed change in space. For each angle θ,
the initial condition is an effective purely right-going shock given by (3.5) with xs=
15, ul given by (3.4), ur = 0, σr = 0 and σl chosen so that (using (3.3)) seff/ch(σr) =
{0.95, 0.975, 1.025, 1.05}. When θ= 90◦ (the situation studied in [16]), shocks with
speed seff>ch(σr) propagate as stable viscous shocks (i.e., do not get regularized).
Otherwise, the shock is regularized by the induced dispersion and the entropy remains
constant. Note that some entropy is lost in all simulations due to numerical dissipation.
The condition (4.2) clearly does not hold for θ= 0◦.

We found empirically that for C-dispersive media with Z= 1, the speed of a stable
(right-going) shock satisfies

seff>cm(σr) :=

∫ 1

0

σ′r(x)

ρ(x)
dx. (4.4)

We illustrate this in Figure 4.2, where we perform multiple experiments all with the ma-
terial parameters given by KA=ρA= 1, KB = 4 and ρB = 1/4 =⇒ ZA=ZB = 1, cB/cA=
4. In all the experiments the initial condition is an effective purely right-going shock
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(a) C-dispersive media (θ= 0◦) (b) Z-dispersive media (θ= 90◦)

Fig. 4.1: Normalized entropy evolution for two different media with θ={0◦, 90◦}. The mate-
rial coefficients are given by the layered medium (1.5) with KA =ρA =ρB = 1 and KB = 16 =⇒
ZB/ZA = cB/cA = 4. The initial condition is an effective purely right-going shock given by (3.5)
with xs = 15, ul given by (3.4), ur = 0, σr = 0 and σl chosen so that (using (3.3)) seff/ch(σr) =
{0.95, 0.975, 1.025, 1.05}.

Fig. 4.2: Entropy lost at t= 20 in C-dispersive media with Z= 1. The material coefficients are given
by the layered medium (1.5) with KA =ρA = 1, KB = 4 and ρB = 1/4 =⇒ Z= 1, cB/cA = 4. The initial
condition is an effective purely right-going shock given by (3.5) with xs = 15, ul given by (3.4), ur = 0,
σr = 0 and σl chosen so that (using (3.3)) seff/cm(σr)∈ [0.8, 1.6].

given by (3.5) with xs= 15, ul given by (3.4), ur = 0, σr = 0 and σl chosen so that (using
(3.3)) seff/cm(σr)∈ [0.8, 1.6]. We measure the entropy lost at t= 20, which is significant
when seff>cm(σr). This indicates that viscous shocks remain stable through the entire
simulation; otherwise, the shocks are regularized and the entropy is roughly constant
(up to numerical errors). We consider different mesh widths to demonstrate the effect
of numerical dissipation in the entropy lost.

By performing experiments (not shown here) in more general media (i.e., with
Z 6= 1) we conclude that condition (4.4) does not hold in general. We are interested in
a generalized Lax-entropy condition for periodic media (like the one depicted in Figure
1.1); however, for now that problem remains open. In Section 5 we discuss potential
alternatives to solve this problem.

5. Conclusions

Since a shock (or any wave) that propagates in a periodic medium may be influenced
by effective dispersion, it is important to make the distinction between viscous shocks
and dispersive shocks. Viscous shocks are characterized by the presence of (nearly)
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discontinuous fronts and by loss in entropy (which in this work is defined by (4.3)). The
main result of this work is an estimate for the speed of a vanishing-viscosity shock prop-
agating in a periodic medium, based on a leading order – dispersionless – homogenized
system. Through multiple numerical experiments, we tested the validity of this estimate
and found that the agreement is good. Nevertheless, it is important to remark that the
estimate is expected to hold only when the dispersive effects are relatively small. These
results represent a generalization of the results presented in [16].

We are also interested in finding a condition for a shock to propagate in periodic
media without being regularized by the induced dispersive effects. Such a condition
has been developed in [16] for the one-dimensional setting. Although in experiments
we have observed a similar trend (namely, that larger shocks in less-dispersive media
tend to persist), we have not found an extension of the specific criterion from [16] to the
2D medium considered here. We found empirically that when θ= 0◦ and Z= 1 stable
(right-going) shocks propagate with speed such that seff>cm(σr) where cm(σr) denotes
the mean value of the sound speed (to the right of the shock) in the periodic medium.
Nevertheless, this condition does not hold for more general media. A general condition
might be found by deriving a dispersive correction to the leading order homogenized
system (2.13) (like the ones obtained in [9, 15, 20]) and then applying a relaxation
method (like in [8, 23]) that would allow writing the dispersive homogenized system as
a hyperbolic model. In such a model, the characteristic speeds would be modified by
the dispersive effects via the relaxation term. Given such a hyperbolic model one could
apply the standard theory of hyperbolic equations to obtain the Lax-entropy condition.
One could also study this problem by deriving the dispersive homogenized system and
then applying the modulation theory of [36].
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