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GLOBAL STRONG SOLUTIONS TO COMPRESSIBLE
NAVIER-STOKES SYSTEM WITH DEGENERATE HEAT

CONDUCTIVITY AND DENSITY-DEPENDING VISCOSITY∗

BIN HUANG† , XIAODING SHI‡ , AND YING SUN§

Abstract. We consider the compressible Navier-Stokes system where the viscosity depends on
density and the heat conductivity is proportional to a positive power of the temperature under stress-
free and thermally insulated boundary conditions. Under the same conditions on the initial data as
those of the constant viscosity and heat conductivity case [Kazhikhov-Shelukhin. J. Appl. Math.
Mech. 41, 1977], we obtain the existence and uniqueness of global strong solutions. Our result can be
regarded as a natural generalization of Kazhikhov’s theory for the constant heat conductivity case to
the degenerate and nonlinear case under stress-free and thermally insulated boundary conditions.

Keywords. Compressible Navier-Stokes system; Density-depending viscosity; Degenerate heat
conductivity; Stress-free.
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1. Introduction
The compressible Navier-Stokes system which describes the one-dimensional motion

of a viscous heat-conducting perfect polytropic gas is written in the Lagrange variables
in the following form (see [4, 20]):

vt=ux, (1.1)

ut+Px=
(
µ
ux
v

)
x
, (1.2)

(
e+

1

2
u2
)
t

+(Pu)x=

(
κθx+µuux

v

)
x

, (1.3)

where t>0 is time, x∈Ω = (0,1) denotes the Lagrange mass coordinate, and the un-
known functions v>0,u and P are, respectively, the specific volume of the gas, fluid
velocity, and pressure. In this paper, we concentrate on ideal polytropic gas, that is, P
and e satisfy

P =Rθ/v, e= cvθ+const., (1.4)

where both specific gas constant R and heat capacity at constant volume cv are positive
constants. We also assume that µ and κ satisfy

µ= µ̃
(
1+v−α

)
, κ= κ̃θβ , (1.5)

with constants µ̃,κ̃>0 and α,β≥0. The system (1.1)-(1.5) is supplemented with the
initial conditions

(v,u,θ)(x,0) = (v0,u0,θ0)(x), x∈ (0,1), (1.6)
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under stress-free and thermally insulated boundary conditions(µ
v
ux−P

)
(0,t) =

(µ
v
ux−P

)
(1,t) = 0, θx(0,t) =θx(1,t) = 0, (1.7)

and the initial data (1.6) should be compatible with the boundary conditions (1.7).

The boundary conditions (1.7) describe the expansion of a finite mass of gas into
vacuum. One also considers other kind of boundary conditions

u(0,t) =u(1,t) = 0, θx(0,t) =θx(1,t) = 0, (1.8)

which mean that the gas is confined to a fixed tube with impermeable gas.

For constant coefficients (α=β= 0) with large initial data, Kazhikhov and
Shelukhin [14] first obtained the global existence of solutions under boundary conditions
(1.8). From then on, significant progress has been made on the mathematical aspect of
the initial boundary value problems, see [1–3, 16–18] and the references therein. More-
over, much effort has been made to generalize this approach to other cases. Motivated
by the fact that in the case of isentropic flow a temperature dependence on the viscosity
translates into a density dependence, there is a body of literature (see [3,6–8,13,19] and
the references therein) studying the case that µ is independent of θ, and heat conduc-
tivity is allowed to depend on temperature in a special way with a positive lower bound
and balanced with corresponding constitution relations.

Kawohl [13], Jiang [10,11] and Wang [22] established the global existence of smooth
solutions for (1.1)–(1.3), (1.6) with boundary condition of either (1.7) or (1.8) under
the assumptions that µ(v)≥µ0>0 for any v>0 and κ depending on both density and
temperature. However, it should be mentioned here that the methods used there rely
heavily on the non-degeneracy of both the viscosity µ and the heat conductivity κ and
cannot be applied directly to the degenerate and nonlinear case (α≥0,β >0). Under the
assumption that α= 0 and β∈ (0,3/2), Jenssen-Karper [9] proved the global existence
of a weak solution to (1.1)–(1.7). Later, for α= 0 and β∈ (0,∞), Pan-Zhang [19] obtain
the global strong solutions. In [9, 19], they only consider the case of non-slip and heat
insulated boundary conditions. Recently, for the case of stress-free and heat insulated
boundary condition, Duan-Guo-Zhu [5] obtain the global strong solutions of (1.1)-(1.7)
under the condition that

(v0,u0,θ0)∈H1×H2×H2. (1.9)

In fact, one of the main aims of this paper is to prove the existence and uniqueness
of global strong solutions to (1.1)-(1.7) for α≥0 and β>0 with the conditions on the
initial data:

(v0,u0,θ0)∈H1,

which are similar as those of [14]. Then we state our main result as follows.

Theorem 1.1. Suppose that

α≥0, β >0, (1.10)

and that the initial data (v0,u0,θ0) satisfies

(v0,u0,θ0)∈H1(0,1), (1.11)
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and

inf
x∈(0,1)

v0(x)>0, inf
x∈(0,1)

θ0(x)>0. (1.12)

Then, the initial-boundary-value problem (1.1)-(1.7) has a unique strong solution (v,u,θ)
such that for each fixed T >0,

v, u, θ∈L∞(0,T ;H1(0,1)),

vt∈L∞(0,T ;L2(0,1))∩L2(0,T ;H1(0,1)),

ut, θt, uxx, θxx∈L2((0,1)×(0,T )),

(1.13)

and

inf
(x,t)∈(0,1)×(0,T )

v(x,t)≥C−1, inf
(x,t)∈(0,1)×(0,T )

θ(x,t)≥C−1, (1.14)

where C is a positive constant depending only on the data and T.

A few remarks are in order.

Remark 1.1. Our Theorem 1.1 can be regarded as a natural generalization of the
Kazhikhov-Shelukhin’s result ( [14]) for the constant heat conductivity case to the degen-
erate and nonlinear case under stress-free and thermally insulated boundary conditions.

Remark 1.2. Our result improves Duan-Guo-Zhu’s result [5] where they need that
the initial data satisfy (1.9) which is stronger than (1.11).

The outline of this paper is organized as follows. Section 2 is devoted to Theo-
rem 1.1. We first present the local existence for system (1.1)-(1.7) in Lemma 2.1. Then
we obtain a series of the global a priori estimates of solutions in Lemma 2.2-Lemma 2.7.
Finally, Theorem 1.1 can be proved by extending the local solutions globally in time
based on Lemmas 2.1-2.7.

We now comment on the analysis of this paper. After modifying slightly the method
due to Kazhikhov-Shelukhin [14], we obtain a key representation of v (see (2.1)) which
can be used to obtain directly not only the lower bound of v (see (2.12)) but also a
pointwise estimate between v and θ (see (2.16)). A direct consequence of this pointwise
estimate between v and θ (see (2.16)) is the bound on L∞(0,T ;L1(0,1))-norm of v (see
(2.17)) which plays an important role in getting the upper bound of v but cannot be
obtained directly from (1.1) due to the stress-free boundary condition (1.7). Next, we
multiply the momentum Equation (1.2) by (µv ux−P )x and make full use of the stress-
free boundary condition to find that the L2((0,1)×(0,T ))-norm of uxx can be bounded
by the L2((0,1)×(0,T ))-norm of θβθx (see (2.28)) which indeed can be obtained by
multiplying the equation of θ (see (2.13)) by θ1+β and using Grönwall’s inequality (see
(2.32)). Once we get the bounds on the L2((0,1)×(0,T ))-norm of both uxx and ut (see
(2.27)), the desired estimates on θt and θxx can be obtained by standard method (see
(2.33)). The whole procedure will be carried out in the next section.

2. Proof of Theorem 1.1

We first state the following local existence result which can be proved by using the
principle of compressed mappings (c.f. [12, 15,21]).

Lemma 2.1. Let (1.10)-(1.12) hold. Then there exists some T >0 such that the initial-
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boundary-value problem (1.1)-(1.7) has a unique strong solution (v,u,θ) satisfying
v, u, θ∈L∞(0,T ;H1(0,1)),

vt∈L∞(0,T ;L2(0,1))∩L2(0,T ;H1(0,1)),

ut, θt, vxt, uxx, θxx ∈L2((0,1)×(0,T )).

Then, the proof of Theorem 1.1 is based on the use of a priori estimates (see (2.15),
(2.21), (2.27), and (2.33) below) in which the constants depend only on the data of the
problem. The estimates make it possible to continue the local solution to the whole
interval [0,∞). Without loss of generality, we assume that µ̃= κ̃=R= cv = 1.

Next, we derive the following representation of v which is essential in obtaining the
time-depending upper and lower bounds of v.

Lemma 2.2. We have the following expression of v

v(x,t) =B0(x)D1(x,t)D2(x,t)

{
1+

k(α)

B0(x)

∫ t

0

θ(x,τ)

D1(x,τ)D2(x,τ)
dτ

}
, (2.1)

where

B0(x) =

{
exp

(
lnv0(x)− 1

αv0(x)α

)
, if α>0,

v0(x), if α= 0,
(2.2)

D1(x,t) = exp

{
k(α)

∫ x

0

(u(y,t)−u0(y))dy

}
, (2.3)

D2(x,t) =

{
exp

{
1

αv(x,t)α

}
, if α>0,

1, if α= 0,
(2.4)

and

k(α) =

{
1, if α>0,

1/2, if α= 0.
(2.5)

Proof. First, it follows from (1.2) that

ut=
(µ
v
ux−P

)
x
,

Integrating this over (0,x) and using (1.7) gives(∫ x

0

udy

)
t

=
µ

v
ux−P. (2.6)

Then, on the one hand, if α>0, since ux=vt, we have(∫ x

0

udy

)
t

=

(
lnv− 1

αvα

)
t

− θ
v
. (2.7)
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Integrating (2.7) over (0,t) yields

lnv− 1

αvα
− lnv0 +

1

αvα0
−
∫ t

0

θ

v
dτ =

∫ x

0

(u−u0)dy,

which implies

v(x,t) =B0(x)D1(x,t)D2(x,t)exp

{
k(α)

∫ t

0

θ

v
(x,τ)dτ

}
, (2.8)

with D1(x,t), D2(x,t) and B0(x) as in (2.2)-(2.4) respectively. On the other hand, if
α= 0, it follows from (2.6) that(∫ x

0

udy

)
t

= 2(lnv)t−
θ

v
.

Integrating this over (0,t) leads to

2lnv−2lnv0 =

∫ x

0

(u−u0)dy+

∫ t

0

θ

v
dτ,

which shows (2.8) still holds for α= 0. Finally, denoting

g(x,t) =k(α)

∫ t

0

θ

v
(x,τ)dτ,

we have by (2.8)

gt=
k(α)θ(x,t)

v(x,t)
=

k(α)θ(x,t)

B0(x)D1(x,t)D2(x,t)exp{g}
,

which gives

exp{g}= 1+
k(α)

B0(x)

∫ t

0

θ(x,τ)

D1(x,τ)D2(x,τ)
dτ.

Putting this into (2.8) yields (2.1) and finishes the proof of Lemma 2.2.

With Lemma 2.2 at hand, we are in a position to prove the lower bounds of v and
θ.

Lemma 2.3. It holds

min
(x,t)∈[0,1]×[0,T ]

v(x,t)≥C−1, min
(x,t)∈[0,1]×[0,T ]

θ(x,t)≥C−1, (2.9)

where (and in what follows) C denotes generic positive constant depending only on
β,α,T,‖(v0,u0,θ0)‖H1(0,1), inf

x∈(0,1)
v0(x), and inf

x∈(0,1)
θ0(x).

Proof. First, integrating (1.3) over (0,1) and using (1.7) immediately leads to∫ 1

0

(
θ+

1

2
u2
)

(x,t)dx=

∫ 1

0

(
θ+

1

2
u2
)

(x,0)dx, (2.10)

which in particular gives∣∣∣∣∫ x

0

udy

∣∣∣∣≤∫ 1

0

|u|dy≤
(∫ 1

0

u2dy

) 1
2

≤C.
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Combining this with (2.3) implies

C−1≤D1(x,t)≤C, (2.11)

which together with (2.1) yields that for any (x,t)∈ [0,1]× [0,T ],

v(x,t)≥B0(x)D1(x,t)D2(x,t)≥C−1, (2.12)

due to

D2(x,t)≥1, C−1≤B0(x)≤C.

Finally, we rewrite (1.3) as

θt+
θ

v
ux=

(
θβθx
v

)
x

+
µu2x
v
. (2.13)

For r>2, multiplying the above equality by θ−r and integrating the resultant equality
over (0,1) yields that

1

r−1

d

dt

∫ 1

0

(
θ−1
)r−1

dx+

∫ 1

0

µu2x
vθr

dx+r

∫ 1

0

θβθ2x
vθr+1

dx

=

∫ 1

0

ux
vθr−1

dx

≤ 1

2

∫ 1

0

µu2x
vθr

dx+
1

2

∫ 1

0

1

µvθr−2
dx

≤ 1

2

∫ 1

0

µu2x
vθr

dx+C
∥∥θ−1∥∥r−2

Lr−1 , (2.14)

where in the second inequality we have used µv=v+v1−α>v≥C−1. Combining (2.14)
with Grönwall’s inequality yields

sup
0≤t≤T

∥∥θ−1(·,t)
∥∥
Lr−1 ≤C,

with C independent of r. Letting r→∞ proves the second inequality of (2.9). Thus,
the proof of Lemma 2.3 is finished.

Lemma 2.4. There exists a positive constant C such that for each (x,t)∈ [0,1]× [0,T ],

C−1≤v(x,t)≤C. (2.15)

Proof. First, it follows from (2.9) and (2.4) that for any (x,t)∈ [0,1]× [0,T ],

1≤D2(x,t)≤C,

which together with (2.1) and (2.11) yields that for any (x,t)∈ [0,1]× [0,T ],

C−1≤v(x,t)≤C+C

∫ t

0

θ(x,τ)dτ. (2.16)
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Integrating this with respect to x over (0,1) and using (2.10) leads to

sup
0≤t≤T

∫ 1

0

v(x,t)dx≤C. (2.17)

Next, for η∈ (0, 12 ) and ε∈ (0,1), integrating (2.13) multiplied by θ−η over (0,1)×(0,T ),
we get by (2.10) and (2.9)∫ T

0

∫ 1

0

ηθβθ2x
vθη+1

dxdt+

∫ T

0

∫ 1

0

µu2x
vθη

dxdt

=
1

1−η

∫ 1

0

θ1−ηdx− 1

1−η

∫ 1

0

θ1−η0 dx+

∫ T

0

∫ 1

0

ux
θη−1v

dxdt

≤C(η)+
1

2

∫ T

0

∫ 1

0

µu2x
vθη

dxdt+C

∫ T

0

∫ 1

0

1

µvθη−2
dxdt

≤C(η)+
1

2

∫ T

0

∫ 1

0

µu2x
vθη

dxdt+C

∫ T

0

max
x∈[0,1]

θ1−ηdt

≤C(η,ε)+
1

2

∫ T

0

∫ 1

0

µu2x
vθη

dxdt+ε

∫ T

0

max
x∈[0,1]

θdt, (2.18)

where in the first inequality we have used∫ 1

0

θ1−ηdx≤C.

Finally, using (2.17), we obtain that for η= min{1,β}/2,∫ T

0

max
x∈[0,1]

θdt≤C+C

∫ T

0

∫ 1

0

|θx|dxdt

≤C+C

∫ T

0

∫ 1

0

θβθ2x
vθ1+η

dxdt+C

∫ T

0

∫ 1

0

vθ1+η

θβ
dxdt

≤C+C

∫ T

0

∫ 1

0

θβθ2x
vθ1+η

dxdt+C

∫ T

0

max
x∈[0,1]

θ1+η−βdt

≤C+C

∫ T

0

∫ 1

0

θβθ2x
vθ1+η

dxdt+
1

2

∫ T

0

max
x∈[0,1]

θdt,

which together with (2.18) yields that∫ T

0

max
x∈[0,1]

θdt≤C, (2.19)

and that for η∈ (0,1) ∫ T

0

∫ 1

0

θβ−1−ηθ2xdxdt≤C(η). (2.20)

Combining (2.16) with (2.19) finishes the proof of Lemma 2.4.

Lemma 2.5. There exists a positive constant C such that

sup
0≤t≤T

∫ 1

0

v2xdx≤C. (2.21)
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Proof. First, we rewrite (1.2) as(µvx
v
−u
)
t
=

(
θ

v

)
x

.

Multiplying the above equality by µvx
v −u and integrating it over (0,1)×(0,T ) gives

1

2

∫ 1

0

(µvx
v
−u
)2
dx− 1

2

∫ 1

0

(µvx
v
−u
)2

(x,0)dx+

∫ T

0

∫ 1

0

µθv2x
v3

dxdt

=

∫ T

0

∫ 1

0

θvxu

v2
dxdt+

∫ T

0

∫ 1

0

θx
v

(µvx
v
−u
)
dxdt, I1 +I2. (2.22)

Then, on the one hand, Cauchy’s inequality, (2.10), (2.15), and (2.19) lead to

|I1|≤
1

2

∫ T

0

∫ 1

0

θu2

vµ
dxdt+

1

2

∫ T

0

∫ 1

0

µθv2x
v3

dxdt

≤C
∫ T

0

max
x∈[0,1]

θdt+
1

2

∫ T

0

∫ 1

0

µθv2x
v3

dxdt

≤C+
1

2

∫ T

0

∫ 1

0

µθv2x
v3

dxdt. (2.23)

On the other hand, we deduce from (2.15), (2.20), and (2.9) that for η= min{1,β}/2,

|I2|≤C
∫ T

0

∫ 1

0

θβ−1−ηθ2xdxdt+C

∫ T

0

∫ 1

0

θ1+η−β
(µvx
v
−u
)2
dxdt

≤C+C

∫ T

0

max
x∈[0,1]

θ2
∫ 1

0

(µvx
v
−u
)2
dxdt. (2.24)

Next, it follows from (2.10) and (2.15) that for η= min{1,β}/2,∫ T

0

max
x∈[0,1]

(θ1+β+θ2)dt≤C
∫ T

0

max
x∈[0,1]

θ2+β−ηdt

≤C+C

∫ T

0

(
max
x∈[0,1]

∣∣∣∣θ 2+β−η
2 (x,t)−(

∫ 1

0

θdx)
2+β−η

2

∣∣∣∣)2

dt

≤C+C

∫ T

0

(∫ 1

0

θ
β−η

2 |θx|dx
)2

dt

≤C+C

∫ T

0

(∫ 1

0

θβθ2x
vθη+1

dx

)(∫ 1

0

vθdx

)
dt

≤C+C

∫ T

0

∫ 1

0

θβθ2x
vθη+1

dxdt

≤C, (2.25)

where in the last inequality we have used (2.20). Finally, adding (2.23) and (2.24) to
(2.22), we obtain after using Grönwall’s inequality and (2.25) that

sup
0≤t≤T

∫ 1

0

(µvx
v
−u
)2
dx+

∫ T

0

∫ 1

0

µθv2x
v3

dxdt≤C,
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which together with (2.10) and (2.15) gives

sup
0≤t≤T

∫ 1

0

v2xdx≤C+C sup
0≤t≤T

∫ 1

0

(µvx
v
−u
)2
dx

≤C. (2.26)

The proof of Lemma 2.5 is finished.

Lemma 2.6. There exists a positive constant C such that

sup
0≤t≤T

∫ 1

0

u2xdx+

∫ T

0

∫ 1

0

(u2t +u2xx)dxdt≤C. (2.27)

Proof. First, integrating (1.2) multiplied by (µv ux−P )x over (0,1), we obtain by
integration by parts and (2.13) that∫ 1

0

(µ
v
ux−P

)2
x
dx

=−
∫ 1

0

(µ
v
ux−P

)
utxdx

=−1

2

∫ 1

0

µ

v

(
u2x
)
t
dx+

(∫ 1

0

Puxdx

)
t

−
∫ 1

0

Ptuxdx

=−1

2

(∫ 1

0

µ

v
u2xdx

)
t

+
1

2

∫ 1

0

(µ
v

)′
v
u3xdx+

(∫ 1

0

Puxdx

)
t

+2

∫ 1

0

θ

v2
u2xdx+

∫ 1

0

θβθx
v

(ux
v

)
x
dx−

∫ 1

0

µu3x
v2

dx,

which in particular gives(∫ 1

0

( µ
2v
u2x−Pux

)
dx

)
t

+

∫ 1

0

(
µ2

v2
u2xx+

θ2x
v2

)
dx

≤C
∫ 1

0

|uxx|
(
|vx||ux|+ |vx|θ+θβ |θx|

)
dx+C

∫ 1

0

|θx||vx|θdx

+C

∫ 1

0

|θx|θβ |ux||vx|dx+C

∫ 1

0

v2x
(
u2x+θ2

)
dx+C

∫ 1

0

(
|ux|3 +u2xθ

)
dx

≤ 1

4

∫ 1

0

µ2

v2
u2xxdx+C

∫ 1

0

θ2βθ2xdx+C

(∫ 1

0

u2xdx

)2

+C max
x∈[0,1]

(
u2x+θ2

)(
1+

∫ 1

0

v2xdx+

∫ 1

0

θdx

)
≤ 1

2

∫ 1

0

µ2

v2
u2xxdx+C1

∫ 1

0

θ2βθ2x
v

dx+C max
x∈[0,1]

θ2 +C

(∫ 1

0

u2xdx

)2

+C, (2.28)

where in the last inequality we have used (2.26) and

max
x∈[0,1]

u2x≤C(ε)

∫ 1

0

u2xdx+ε

∫ 1

0

u2xxdx, (2.29)
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for ε>0 small enough. Then, integrating (2.13) over (0,1)×(0,T ) yields that∫ T

0

∫ 1

0

µu2x
v
dxdt=

∫ 1

0

θdx−
∫ 1

0

θ0dx+

∫ T

0

∫ 1

0

θ

v
uxdxdt

≤C+
1

2

∫ T

0

∫ 1

0

µu2x
v
dxdt+C

∫ T

0

∫ 1

0

θ2

µv
dxdt

≤C+
1

2

∫ T

0

∫ 1

0

µu2x
v
dxdt+C

∫ T

0

max
x∈[0,1]

θ(x,t)dt

which together with (2.19) and (2.15) gives∫ T

0

∫ 1

0

u2xdxdt≤C. (2.30)

Next, integrating (2.13) multiplied by θ1+β over (0,1) leads to

1

2+β
(

∫ 1

0

θ2+βdx)t+(1+β)

∫ 1

0

θ2βθ2x
v

dx

=−
∫ 1

0

θ2+βux
v

dx+

∫ 1

0

µθ1+βu2x
v

dx

≤C
∫ 1

0

θ3+βdx+C

∫ 1

0

θ1+βu2xdx

≤C max
x∈[0,1]

θ

∫ 1

0

θ2+βdx+C max
x∈[0,1]

θ1+β
∫ 1

0

u2xdx. (2.31)

Choosing C2≥C1 +1 suitably large such that

C2θ
2+β+µv−1u2x≥4(2+β)θv−1|ux|,

adding (2.31) multiplied by C2 to (2.28), and choosing ε sufficiently small, we obtain
from Grönwall’s inequality, (2.30), and (2.25) that

sup
0≤t≤T

∫ 1

0

(
θ2+β+u2x

)
dx+

∫ T

0

∫ 1

0

u2xxdxdt+

∫ T

0

∫ 1

0

θ2βθ2xdxdt≤C. (2.32)

Finally, rewriting (1.2) as

ut=
µuxx
v

+
(µ
v

)′
v
vxux−

θx
v

+
θvx
v2

,

we deduce from (2.15), (2.32), (2.26), (2.30), (2.29), and (2.25) that∫ T

0

∫ 1

0

u2tdxdt≤C
∫ T

0

∫ 1

0

(
u2xx+u2xv

2
x+θ2x+θ2v2x

)
dxdt

≤C+C

∫ T

0

max
x∈[0,1]

θ2dt

≤C,

which together with (2.32) finishes the proof of Lemma 2.6.
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Lemma 2.7. There exists a positive constant C such that

sup
0≤t≤T

∫ 1

0

θ2xdx+

∫ T

0

∫ 1

0

(
θ2t +θ2xx

)
dxdt≤C. (2.33)

Proof. First, multiplying (2.13) by θβθt and integrating the resultant equality over
(0,1) yields ∫ 1

0

θβθ2t dx+

∫ 1

0

θβ+1uxθt
v

dx

=−
∫ 1

0

(
θβθx
v

)(
θβθx

)
t
dx+

∫ 1

0

µu2x
v
θβθtdx

=−1

2

d

dt

∫ 1

0

(θβθx)2

v
dx+

1

2

∫ 1

0

(
θβθx

)2(1

v

)
t

dx+

∫ 1

0

µu2xθ
βθt

v
dx

=−1

2

d

dt

∫ 1

0

(θβθx)2

v
dx− 1

2

∫ 1

0

(θβθx)2ux
v2

dx+

∫ 1

0

µu2xθ
βθt

v
dx,

which, combined with the Hölder inequality, (2.21), and (2.32), leads to

1

2

d

dt

∫ 1

0

(
θβθx

)2
v

dx+

∫ 1

0

θβθ2t dx

=−1

2

∫ 1

0

(
θβθx

)2
ux

v2
dx+

∫ 1

0

µu2xθ
βθt

v
dx−

∫ 1

0

θβ+1uxθt
v

dx

≤C
∫ 1

0

θ2βθ2x|ux|dx+
1

2

∫ 1

0

θβθ2t dx+C

∫ 1

0

u4xθ
βdx+C

∫ 1

0

θβ+2u2xdx

≤C max
x∈[0,1]

|ux|
∫ 1

0

θ2βθ2xdx+
1

2

∫ 1

0

θβθ2t dx+C max
x∈[0,1]

(
u2xθ

β+θβ+2
)

≤ 1

2

∫ 1

0

θβθ2t dx+C(

∫ 1

0

θ2βθ2xdx)2 +C max
x∈[0,1]

(
u4x+θ2β+2

)
+C. (2.34)

It follows from (2.21), (2.29), (2.27), and the Hölder inequality that∫ T

0

max
x∈[0,1]

u4xdt≤C
∫ T

0

∫ 1

0

u4xdxdt+C

∫ T

0

∫ 1

0

|u3xuxx|dxdt

≤C
∫ T

0

max
x∈[0,1]

u2x

∫ 1

0

u2xdxdt

+C

∫ T

0

max
x∈[0,1]

u2x

(∫ 1

0

u2xdx

) 1
2
(∫ 1

0

u2xxdx

) 1
2

dt

≤C
∫ T

0

∫ 1

0

(
u2x+u2xx

)
dxdt+

1

2

∫ T

0

max
x∈[0,1]

u4xdt

≤C+
1

2

∫ T

0

max
x∈[0,1]

u4xdt (2.35)

which, combined with (2.34), (2.32), and the Grönwall inequality, yields

sup
0≤t≤T

∫ 1

0

(
θβθx

)2
dx+

∫ T

0

∫ 1

0

θβθ2t dxdt≤C, (2.36)
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where we have used

max
x∈[0,1]

θ2β+2≤C+C

(
max
x∈[0,1]

|θβ+1(x,t)−(

∫ 1

0

θdx)β+1|
)2

≤C+C

(∫ 1

0

|θβθx|dx
)2

≤C+C

∫ 1

0

(θβθx)2dx. (2.37)

Combining (2.36) with (2.37) implies for all (x,t)∈ (0,1)×(0,T )

θ(x,t)≤C. (2.38)

Meanwhile, both (2.36) and (2.9) lead to

sup
0≤t≤T

∫ 1

0

θ2xdx+

∫ T

0

∫ 1

0

θ2t dxdt≤C. (2.39)

Finally, it follows from (2.13) that

θβθxx
v

=−βθ
β−1θ2x
v

+
θβθxvx
v2

− µu
2
x

v
+
θux
v

+θt,

which together with (2.39), (2.9), (2.38), (2.35), and (2.21) gives∫ T

0

∫ 1

0

θ2xxdxdt≤C
∫ T

0

∫ 1

0

(
θ4x+v2xθ

2
x+u4x+θ2u2x+θ2t

)
dxdt

≤C+C

∫ T

0

max
x∈[0,1]

θ2xdt

≤C+C

∫ T

0

∫ 1

0

θ2xdxdt+
1

2

∫ T

0

∫ 1

0

θ2xxdxdt.

Combining this with (2.39) gives (2.33) and finishes the proof of Lemma 2.7.
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