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INTENSITY FLUCTUATIONS IN RANDOM WAVEGUIDES∗

JOSSELIN GARNIER†

Abstract. An asymptotic analysis of wave propagation in randomly perturbed waveguides is
carried out in order to identify the effective Markovian dynamics of the guided mode powers. The
main result consists in a quantification of the fluctuations of the mode powers and wave intensities that
increase exponentially with the propagation distance. The exponential growth rate is studied in detail
so as to determine its dependence with respect to the waveguide geometry, the statistics of the random
perturbations, and the operating wavelength.
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1. Introduction

We consider wave propagation in randomly perturbed waveguides. The random
perturbations may affect the index of refraction within the core of the waveguide or the
geometry of the core boundary. An asymptotic analysis based on a separation of scales
technique can be applied when the amplitude of the random perturbation is small, its
correlation length is of the same order as the operating wavelength, and the propagation
distance is large so that the net effect of the perturbations is of order one. The overall
result is that the scalar wavefield can be expanded on the complete basis of the modes of
the unperturbed waveguide, that contains guided modes, radiating modes and evanes-
cent modes, and the complex mode amplitudes of this decomposition follow an effective
Markovian dynamics. In particular the guided mode powers form a Markovian process
with a generator that describes random exchange of powers between the guided modes
and power leakage (towards the radiating modes) that can be expressed as a determin-
istic mode-dependent dissipation. These results can be found in different forms in the
physics literature [6, 8, 20] and in the mathematics literature [12, 15, 17]. In this paper
we present a unified framework that deals with interior and boundary random fluctua-
tions, we clarify the relationships between the mode-dependent dissipation coefficients
and the statistics of the random perturbations, and we give a precise characterization of
the mode power fluctuations, which is the main original result of the paper and which
can be summarized as follows.

The effective Markovian description of the guided mode powers makes it possible
to analyze their first- and second-order moments (that are second- and fourth-order
moments of the mode amplitudes), which in turn gives a statistical description of the
intensity distribution of the wavefield. We find that the relative fluctuations of the
intensity are, in general, characterized by an exponential growth with the propaga-
tion distance, whose rate can be defined as the difference of the first eigenvalues of
two symmetric matrices (or two self-adjoint operators). When the effective dissipation
is negligible, we recover the well-known equipartition result [10, 12]: The exponential
growth rate is zero and the power becomes equipartitioned amongst the guided modes.
When there is effective dissipation, the exponential growth rate can be positive, which
means that power fluctuations may become very large, as first noticed in the physics
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literature by Creamer [7]. In fact we show that the exponential growth rate is positive
as soon as two effective mode-dependent dissipation coefficients are different. Our anal-
ysis shows that the growth rate increases when the effective mode-dependent dissipation
coefficients become more different, and it decreases when the number of guided modes
increases. Finally, we analyze a special regime, the continuum approximation, in which
the operating frequency is large so that the number of guided modes becomes large.
Under such circumstances, we find that the exponential growth rate vanishes. The ex-
ponential growth of the intensity fluctuations can, therefore, only be observed when
there is a limited number of guided modes, and we recover the standard result that, in
open random medium, the wavefield behaves like a Gaussian-distributed complex field
for large propagation distances and the scintillation index that measures the relative
intensity fluctuations becomes equal to one.

The paper is organized as follows. In Section 2 we formulate the problem and
present the waveguide geometry. In Section 3 we review the spectral analysis of the
ideal waveguide, when the medium inside the core is homogeneous and the boundaries
are straight. In Section 4 we explain that the wavefield in the random waveguide can
be expanded on the set of eigenmodes of the ideal waveguide and we identify the set
of coupled equations satisfied by the mode amplitudes. In Section 5 we present the
effective Markovian dynamics for the mode amplitudes and in Section 6 we remark that
the mode powers also satisfy Markovian dynamics. The long-range behavior of the mean
mode powers is described in Section 7, and the fluctuation analysis in Section 8 reveals
that the normalized variance of the intensity grows exponentially with the propagation
distance.

2. Wave propagation in waveguides
Our model consists of a two-dimensional waveguide with range axis denoted by

z∈R and transverse coordinate denoted by x∈R (see Figure 2.1). This may model a
dielectric slab waveguide for instance. A point-like source at a fixed position (x,z) =
(xs,0) transmits a time-harmonic signal. The wavefield p(x,z) satisfies the Helmholtz
equation: [

(∂2
x+∂2

z )+k2n2(x,z)
]
p(x,z) = δ(z)δ(x−xs), (2.1)

for (x,z)∈R2, where k is the homogeneous wavenumber and n(x,z) is the index of
refraction at position (x,z).

In the case of ideal (unperturbed) waveguides, the index of refraction is range-
independent and equal to

n(0)(x)2 =

{
n2 if x∈ (−d/2,d/2),
1 otherwise,

(2.2)

where n>1 is the relative index of the core and d>0 is its diameter.
We are interested in randomly perturbed waveguides. In this paper we address two

types of random waveguides.
Type I perturbation: In the first type, the index of refraction within the core region

x∈ (−d/2,d/2) is randomly perturbed [3, 5, 6, 15,17]:

n(ε)(x,z)2 =

{
n2 +εν(x,z) if x∈ (−d/2,d/2) and z∈ (0,L(ε)),
1 otherwise.

(2.3)

The fluctuations are modeled by the zero-mean, bounded, stationary-in-z random pro-
cess ν(x,z) with smooth covariance function

RI(x,x
′,z′) =E[ν(x,z)ν(x′,z+z′)]. (2.4)
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It satisfies strong mixing conditions in z as defined for example in [21, section 2]. The
typical amplitude of the fluctuations of index of refraction is assumed to be much smaller
than 1 and it is modeled by the small and positive dimensionless parameter ε.
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Fig. 2.1. Left: An ideal two-dimensional waveguide. Right: A two-dimensional waveguide with
cross-section perturbed by random fluctuations of the top and bottom boundaries. The point source is
in the plane z= 0.

Type II perturbation: In the second type (see Figure 2.1), the boundaries of the
core are randomly perturbed [1, 4, 16,19,20]:

n(ε)(x,z)2 =

{
n2 if x∈

(
D(ε)
− (z),D(ε)

+ (z)
)

and z∈ (0,L(ε)),
1 otherwise,

(2.5)

where

D(ε)
− (z) =−d/2+εdν1(z), (2.6)

D(ε)
+ (z) =d/2+εdν2(z). (2.7)

The fluctuations are modeled by the zero-mean, bounded, independent and identically
distributed stationary random processes ν1 and ν2 with smooth covariance function

RII(z
′) =E[νq(z)νq(z+z′)], q= 1,2. (2.8)

They satisfy strong mixing conditions. The typical amplitude of the fluctuations of the
boundaries is assumed to be much smaller than the core diameter d and it is modeled
in (2.6-2.7) by the small and positive dimensionless parameter ε.

We study the wavefield at z>0, satisfying

p(x,z)∈C0
(
(0,+∞),H2(R)

)
∩C2

(
(0,+∞),L2(R)

)
, (2.9)

and to set radiation conditions, we have assumed that the random fluctuations are
supported in the range interval (0,L(ε)). We will see that net scattering effect of these
fluctuations becomes of order one at range distances of order ε−2, so we consider the
interesting case L(ε) =L/ε2.

3. Homogeneous waveguide
In this section, we consider an index of refraction of the form (2.2), which is stepwise

constant. There is no fluctuation of the medium along the z-axis. The analysis of the
perfect waveguide is classical [18, 23], we only give the main results. The Helmholtz
operator has a spectrum of the form

(−∞,k2)∪{β2
N−1,. ..,β

2
0}, (3.1)

where the N modal wavenumbers βj are positive and k2<β2
N−1< ·· ·<β2

0 <n
2k2. The

generalized eigenfunctions φt,γ , t∈{e,o}, associated to the spectral parameter γ in the
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continuous spectrum (−∞,k2) and the eigenfunctions φj , j= 0,. ..,N−1, associated
to the discrete spectrum, are given in the Appendix. The generalized eigenfunctions
φe,γ are even and φo,γ are odd. The eigenfunctions φj are even for even j and odd
for odd j. Any function can be expanded on the complete set of the eigenfunctions
of the Helmholtz operator. In particular, any solution of the Helmholtz equation in
homogeneous medium can be expanded as

p(x,z) =

N−1∑
j=0

pj(z)φj(x)+
∑

t∈{e,o}

∫ k2

−∞
pt,γ(z)φt,γ(x)dγ. (3.2)

The modes for j= 0,. ..,N−1 are guided, the modes for γ∈ (0,k2) are radiating, the
modes for γ∈ (−∞,0) are evanescent. Indeed, the complex mode amplitudes satisfy

∂2
zpj+β2

j pj = 0, j= 0,. ..,N−1, (3.3)

∂2
zpt,γ +γpt,γ = 0, γ∈ (−∞,k2), (3.4)

for any z 6= 0. Therefore, if the source is of the form (2.1), we have for z>0:

p(x,z) =

N−1∑
j=0

aj,s√
βj
eiβjzφj(x)+

∑
t∈{e,o}

∫ k2

0

at,γ,s
γ1/4

ei
√
γzφt,γ(x)dγ

+
∑

t∈{e,o}

∫ 0

−∞

at,γ,s
|γ|1/4

e−
√
|γ|zφt,γ(x)dγ, (3.5)

where the mode amplitudes are constant and determined by the source:

aj,s =

√
βj

2
φj(xs), j= 0,. ..,N−1, (3.6)

at,γ,s =
|γ|1/4

2
φt,γ(xs), γ∈ (−∞,k2), t∈{e,o}. (3.7)

4. Random waveguide
We consider the two types of random perturbations described in Section 2. In both

cases we can write

n2(x,z) = n(0)(x)2 +V (ε)(x,z)1(0,L(ε))(z),

where the perturbation is of the form

V (ε)(x,z) =εν(x,z) (4.1)

for type I perturbations, and

V (ε)(x,z) =(n2−1)
[
−1(−d/2,−d/2+εdν1(z))(x)1(0,+∞)(ν1(z))

+1(−d/2+εdν1(z),−d/2)(x)1(−∞,0)(ν1(z))
]

+(n2−1)
[
1(d/2,d/2+εdν2(z))(x)1(0,+∞)(ν2(z))

−1(d/2+εdν2(z),d/2)(x)1(−∞,0)(ν2(z))
]

(4.2)

for type II perturbations.
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The solution of the perturbed Helmholtz equation (2.1) can be expanded as (3.2)
and the complex mode amplitudes satisfy the coupled equations for z∈ (0,L(ε)):

∂2
zpj+β2

j pj =−k2
N−1∑
l=0

C
(ε)
j,l (z)pl−k2

∑
t′∈{e,o}

∫ k2

−∞
C

(ε)
j,t′,γ′(z)pt′,γ′dγ′, (4.3)

for j= 0,. ..,N−1,

∂2
zpt,γ +γpt,γ =−k2

N−1∑
l=0

C
(ε)
t,γ,l(z)pl−k

2
∑

t′∈{e,o}

∫ k2

−∞
C

(ε)
t,γ,t′,γ′(z)pt′,γ′dγ′, (4.4)

for γ∈ (−∞,k2) and t∈{e,o}, with

C
(ε)
j,l (z) =

(
φj ,φlV

(ε)(·,z)
)
L2
, (4.5)

C
(ε)
j,t′,γ′(z) =

(
φj ,φt′,γ′V (ε)(·,z)

)
L2
, (4.6)

C
(ε)
t,γ,l(z) =

(
φt,γ ,φlV

(ε)(·,z)
)
L2
, (4.7)

C
(ε)
t,γ,t′,γ′(z) =

(
φt,γ ,φt′,γ′V (ε)(·,z)

)
L2
, (4.8)

and (·, ·)L2 stands for the standard scalar product in L2(R) (see (10.2)). These equations
are obtained by substituting the ansatz (3.2) into (2.1) and by projecting onto the
eigenmodes.

From the definitions (4.1) or (4.2) of V (ε)(x,z) and the Taylor expansions of the
eigenfunctions φj(x) and φt,γ(x) around x=±d/2, we obtain power series (in ε) expres-

sions of the coefficients C
(ε)
j,l :

C
(ε)
j,l (z) =εCj,l(z)+ε2cj,l(z)+o(ε2), (4.9)

Cj,l(z) =

{
(φj ,φlν(·,z))L2 type I
(n2−1)d

{
−ν1(z)[φjφl]

(
− d

2

)
+ν2(z)[φjφl]

(
d
2

)}
type II

, (4.10)

cj,l(z) =

{
0 type I
(n2−1)d2

2

{
−ν2

1(z)∂x[φjφl]
(
− d

2

)
+ν2

2(z)∂x[φjφl]
(
d
2

)}
type II

, (4.11)

and similarly for C
(ε)
j,t,γ , C

(ε)
t,γ,l, and C

(ε)
t,γ,t′,γ′ .

We finally introduce the generalized forward-going and backward-going mode am-
plitudes:

{aj(z), bj(z), j= 0,. ..,N−1} and {at,γ(z), bt,γ(z), γ∈ (0,k2)}, (4.12)

for t∈{e,o}, which are defined such that

pj(z) =
1√
βj

(
aj(z)e

iβjz+bj(z)e
−iβjz

)
,

∂zpj(z) =i
√
βj

(
aj(z)e

iβjz−bj(z)e−iβjz
)
, j= 0,. ..,N−1, (4.13)

and

pt,γ(z) =
1

γ1/4

(
at,γ(z)ei

√
γz+bt,γ(z)e−i

√
γz
)
,
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∂zpt,γ(z) =iγ1/4
(
at,γ(z)ei

√
γz−bt,γ(z)e−i

√
γz
)
, γ∈ (0,k2), t∈{e,o}. (4.14)

We can substitute (4.13–4.14) into (4.3–4.4) in order to obtain the first-order system of
coupled random differential equations satisfied by the mode amplitudes (4.12):

∂zaj(z) =
ik2

2

N−1∑
l′=0

C
(ε)
j,l′(z)√
βl′βj

[
al′(z)e

i(βl′−βj)z+bl′(z)e
i(−βl′−βj)z

]

+
ik2

2

∑
t′∈{e,o}

∫ k2

0

C
(ε)
j,t′,γ′(z)
4
√
γ′
√
βj

[
at′,γ′(z)ei(

√
γ′−βj)z+bt′,γ′(z)ei(−

√
γ′−βj)z

]
dγ′

+
ik2

2

∑
t′∈{e,o}

∫ 0

−∞

C
(ε)
j,t′,γ′(z)√

βj
pt′,γ′(z)e−iβjzdγ′, (4.15)

∂zat,γ(z) =
ik2

2

N−1∑
l′=0

C
(ε)
t,γ,l′(z)

4
√
γ
√
βl′

[
al′(z)e

i(βl′−
√
γ)z+bl′(z)e

i(−βl′−
√
γ)z
]

+
ik2

2

∑
t′∈{e,o}

∫ k2

0

C
(ε)
t,γ,t′,γ′(z)

4
√
γ′γ

[
at′,γ′(z)ei(

√
γ′−√γ)z+bt′,γ′(z)ei(−

√
γ′−√γ)z

]
dγ′

+
ik2

2

∑
t′∈{e,o}

∫ 0

−∞

C
(ε)
t,γ,t′,γ′(z)

4
√
γ

pt′,γ′(z)e−i
√
γzdγ′, (4.16)

with similar equations for bj and bt,γ . This system is complemented with the boundary
conditions at z= 0 and z=L(ε):

aj(0) =aj,s, bj(L
(ε)) = 0, at,γ(0) =at,γ,s, bt,γ(L(ε)) = 0,

where aj,s and at,γ,s are defined by (3.6-3.7). The evanescent mode amplitudes pt,γ ,
t∈{e,o}, γ∈ (−∞,0), satisfy (4.4).

5. The effective Markovian dynamics for the mode amplitudes
We rename the complex mode amplitudes in the long-range scaling as

aεj(z) =aj

( z
ε2

)
, bεj(z) = bj

( z
ε2

)
, j= 0,. ..,N−1, (5.1)

aεt,γ(z) =at,γ

( z
ε2

)
, bεt,γ(z) = bt,γ

( z
ε2

)
, γ∈ (0,k2), t∈{e,o}. (5.2)

We can follow the lines of [15] to get the following results.

(1) In the regime ε�1 the evanescent mode amplitudes, that satisfy (4.4), can be
expressed to leading order in closed forms as functions of the guided and radiating mode
amplitudes (5.1-5.2). Indeed it is possible to invert the operator ∂2

z +γ in (4.4) for γ<0
by using the Green’s function that satisfies the radiation condition and to obtain:

pt,γ(
z

ε2
) =

εk2

2
√
|γ|

∫ L/ε2

0

N−1∑
l′=0

{
Ct,γ,l′(z

′)√
βl′

[
aεl′(z)e

iβl′z
′
+bεl′(z)e

−iβl′z
′
]

+

∫ k2

0

Ct,γ,t′,γ′(z′)
4
√
γ′

[
aεt′,γ′(z)ei

√
γ′z′ +bεt′,γ′(z)e−i

√
γ′z′
]
dγ′

}
e−
√
|γ|| z

ε2
−z′|dz′
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+O(ε2), (5.3)

for z>0,γ <0 and t∈{e,o}. Here we recognize Gγ(z,z′) = 1

2
√
|γ|
e−
√
|γ||z−z′| that is the

Green’s function of the equation ∂2
zGγ(z,z′)+γGγ(z,z′) =−δ(z−z′) for γ<0.

(2) Under the assumption that the power spectral density R̂I(κ,x,x
′) for type-I

perturbations (or R̂II(κ) for type-II perturbations) has compact support or fast decay,
the forward-scattering approximation can be proved, i.e. the coupling between forward-
going and backward-going mode amplitudes is negligible, so that we have

bεj(z)≈0, j= 0,. ..,N−1, bεt,γ(z)≈0, γ∈ (0,k2), t∈{e,o}.

(3) The forward-going guided mode amplitudes (aεj)
N−1
j=0 and radiating mode am-

plitudes (aεt,γ)γ∈(0,k2),t∈{e,o} then satisfy a closed linear system of the form

daε

dz
=

1

ε
F(

z

ε2
)aε+G(

z

ε2
)aε+o(1),

with initial conditions for aε at z= 0. Here F, resp. G, is an operator with zero mean,
resp. non-zero mean, and ergodic properties inherited from those of the processes ν.

We can finally apply a diffusion approximation theorem to establish the following
result (see [15] for the full statement or [17] for a first version in which the contributions
of the evanescent modes is neglected, which means that the operator L3 is missing in
the expression of the generator L).

Proposition 5.1. The random process(
(aεj(z))

N−1
j=0 ,(a

ε
t,γ(z))γ∈(0,k2),t∈{e,o}

)
converges in distribution in C0([0,L],CN ×L2((0,k2))2), the space of continuous func-
tions from [0,L] to CN ×L2((0,k2))2, to the Markov process(

(aj(z))
N−1
j=0 ,(at,γ(z))γ∈(0,k2),t∈{e,o}

)
with infinitesimal generator L. Here CN ×L2((0,k2))2 is equipped with the weak topology
and the infinitesimal generator has the form L=L1 +L2 +L3, where Lj, 1≤ j≤3, are
the differential operators:

L1 =
1

2

N−1∑
j,l=0

Γjl
(
ajaj∂al∂al +alal∂aj∂aj −ajal∂aj∂al−ajal∂aj∂al

)
1j 6=l

+
1

2

N−1∑
j,l=0

Γ1
jl

(
ajal∂aj∂al +ajal∂aj∂al−ajal∂aj∂al−ajal∂aj∂al

)
+

1

2

N−1∑
j=0

(
Γjj−Γ1

jj

)(
aj∂aj +aj∂aj

)
+
i

2

N−1∑
j=0

Γsjj
(
aj∂aj −aj∂aj

)
, (5.4)

L2 =− 1

2

N−1∑
j=0

(Λj+ iΛsj)aj∂aj +(Λj− iΛsj)aj∂aj , (5.5)

L3 =i

N−1∑
j=0

κj
(
aj∂aj −aj∂aj

)
. (5.6)
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In these definitions we use the classical complex derivative: if ζ= ζr+ iζi, then ∂ζ =
(1/2)(∂ζr− i∂ζi) and ∂ζ = (1/2)(∂ζr + i∂ζi), and the coefficients of the operators (5.4-
5.6) are defined for j,l= 0,. ..,N−1, as follows:
- For all j 6= l, Γjl and Γsjl are given by

Γjl=
k4

2βjβl

∫ ∞
0

Rjl(z)cos
(
(βl−βj)z

)
dz, (5.7)

Γsjl=
k4

2βjβl

∫ ∞
0

Rjl(z)sin
(
(βl−βj)z

)
dz, (5.8)

with Rjl(z) defined by

Rjl(z) :=E[Cj,l(0)Cj,l(z)], (5.9)

E[Cj,l(0)Cj′,l′(z)] =


∫ d/2
−d/2

∫ d/2
−d/2φjφl(x)RI(x,x

′,z)φj′φl′(x
′)dxdx′ type I

(n2−1)2d2
[
φjφlφj′φl′

(
− d

2

)
+φjφlφj′φl′

(
d
2

)]
RII(z) type II

(5.10)

- For all j,l:

Γ1
jl=

k4

4βjβl

∫ ∞
0

E
[
Cj,j(0)Cl,l(z)

]
+E
[
Cl,l(0)Cj,j(z)

]
dz.

- For all j, Λj is defined by

Λj =

∫ k2

0

k4

2
√
γβj

∑
t∈{e,o}

∫ ∞
0

Rj,t,γ(z)cos
(
(
√
γ−βj)z

)
dzdγ (5.11)

and

Γjj =−
N−1∑
l=0,l 6=j

Γjl, Γsjj =−
N−1∑
l=0,l 6=j

Γsjl,

Λsj =
∑

t∈{e,o}

∫ k2

0

k4

2
√
γβj

∫ ∞
0

Rj,t,γ(z)sin
[
(
√
γ−βj)z

]
dzdγ,

κj =
∑

t∈{e,o}

∫ 0

−∞

k4

2
√
|γ|βj

∫ ∞
0

Rj,t,γ(z)cos(βjz)e
−
√
|γ|zdzdγ+

k2

2βj
E[cj,j(0)],

where Rj,t,γ(z) =E[Cj,t,γ(0)Cj,t,γ(z)] is defined as in (5.9) upon substitution (t,γ) for l
and

E[cj,j(0)] =

{
0 type I
(n2−1)d2RII(0)∂x[φ2

j ]
(
d
2

)
type II

We give some remarks before focusing our attention on the mode powers.

(1) The convergence result holds in the weak topology. This means that we can only

compute quantities of the form E[F (a0,. ..,aN−1,
∫ k2

0
αe,γae,γdγ,

∫ k2
0
αo,γao,γdγ)] for any

test functions αe,αo∈L2((0,k2)) and F :RN+2→R. These quantities are the limits of

E[F (aε0,. ..,a
ε
N−1,

∫ k2
0
αe,γa

ε
e,γdγ,

∫ k2
0
αo,γa

ε
o,γdγ)] as ε→0.
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(2) The generator L does not involve ∂at,γ or ∂āt,γ . Therefore (aεj(z))
N−1
j=0 converges

in distribution in C0([0,L],CN ) to the Markov process (aj(z))
N−1
j=0 with generator L.

The weak and strong topologies are the same in CN , so we can compute any moment
of the form E[F (a0,. ..,aN−1)], which are the limits of E[F (aε0,. ..,a

ε
N−1)].

(3) L1 is the contribution of the coupling between guided modes, which gives rise
to power exchange between the guided modes (effective diffusion).

(4) L2 is the contribution of the coupling between guided and radiating modes,
which gives rise to power leakage from the guided modes to the radiating ones (ef-
fective attenuation) and addition of frequency-dependent phases on the guided mode
amplitudes (effective dispersion). The effective attenuation and dispersion are produced
by causal phenomena and they are related to each other through Kramers-Konig rela-
tions [13].

(5) L3 is the contribution of the coupling between guided and evanescent modes,
which gives rise to additional phase terms on the guided mode amplitudes (effective
dispersion). This term is the main effect when the waveguide supports only one prop-
agating mode and the core boundaries are hard or soft so that there is no radiating
mode [11].

(6) If the generator L is applied to a test function that depends only on the mode
powers (Pj)

N−1
j=0 , with Pj = |aj |2, then the result is a function that depends only on

(Pj)
N−1
j=0 . Thus, the mode powers (Pj(z))

N−1
j=0 define a Markov process, with infinitesimal

generator defined by (6.1) below.

(7) The radiation mode amplitudes remain constant on L2((0,k2))2, equipped
with the weak topology, as ε→0. However, this does not describe the power∑
t∈{e,o}

∫ k2
0
|aεt,γ |2dγ transported by the radiation modes, because the convergence does

not hold in the strong topology of L2((0,k2))2 so we do not have
∑
t∈{e,o}

∫ k2
0
|aεt,γ |2dγ→∑

t∈{e,o}
∫ k2

0
|at,γ |2dγ as ε→0.

(8) When N = 1, then the generator is

L=
Γ1

00

2

(
2a0a0∂a0

∂a0
−a0a0∂a0

∂a0
−a0a0∂a0

∂a0
−a0∂a0

−a0∂a0

)
− Λ0

2

(
a0∂a0 +a0∂a0

)
+
i

2
(κ0−Λs0)

(
a0∂a0−a0∂a0

)
. (5.12)

This shows that a0 (the amplitude of the unique guided mode) has the same distribution
as

a0(z) =a0,s exp
( i

2
(κ0−Λs0)z+ i

√
Γ1

00W
1
z −

Λ0

2
z
)
,

where W 1
z is a standard Brownian motion. The mode amplitude experiences a random

phase modulation and a deterministic damping, which both depend on frequency and
two-point statistics of the medium perturbations [11].

(9) When N ≥2, the limit process (aj(z))
N−1
j=0 can be identified as the solution of a

system of stochastic differential equations driven by Brownian motions.

Corollary 5.1. Let (W 1
j )N−1
j=0 be a N -dimensional correlated Brownian motion with

covariance function

E
[
W 1
j,zW

1
j′,z′

]
= Γ1

jj′z∧z′.
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Let (Wjl)0≤j<l≤N−1 and (W̃jl)0≤j<l≤N−1 be independent standard Brownian motions.

Set Wlj =Wjl and W̃lj =−W̃jl for j < l.

Then the limit Markov process (aj(z))
N−1
j=0 has the same distribution as the unique

solution of

daj = iaj ◦dW 1
j,z+

∑
l 6=j

√
Γjl√
2

al ◦
(
idWjl,z−dW̃jl,z

)
+

1

2

(
iΓsjj−Λj− iΛsj + iκj

)
ajdz,

starting from aj(z= 0) =aj,s, j= 0,. ..,N−1, or, in Itô’s form:

daj =iajdW
1
j,z+

∑
l 6=j

√
Γjl√
2

al
(
idWjl,z−dW̃jl,z

)
+

1

2

(
Γjj+ iΓsjj−Γ1

jj−Λj− iΛsj + iκj
)
ajdz.

The proof of the corollary is a straightforward application of Itô’s formula.

6. The effective Markovian dynamics for the mode powers
From the result for the complex mode amplitudes we get the following result.

Corollary 6.1. The process (|aεj(z)|2)N−1
j=0 converges towards a Markov process

P (z) = (Pj(z))
N−1
j=0 whose infinitesimal generator LP writes:

LP =
∑
j 6=l

Γjl

[
PlPj(

∂

∂Pj
− ∂

∂Pl
)
∂

∂Pj
+(Pl−Pj)

∂

∂Pj

]
−
N−1∑
j=0

ΛjPj
∂

∂Pj
, (6.1)

where Γjl is defined by (5.7) and Λj is defined by (5.11).

The coefficients Γjl describe the effective mode coupling between guided modes
due to random scattering. The coefficients Λj are effective mode-dependent dissipation
coefficients and they come from the coupling between guided and radiative modes due
to random scattering.

From the form of the generator LP , we can establish that the nth-order moments
of the mode powers satisfy closed equations. We will apply this to compute the first
moments of P , as well as its second moments later in Section 8.

Using (6.1) we find that the mean mode powers

Qj(z) =E[Pj(z)] (6.2)

satisfy the closed system of equations

∂zQj =−ΛjQj+

N−1∑
l=0

Γjl
(
Ql−Qj

)
, (6.3)

starting fromQj(0) = |aj,s|2. The form of these coupled-mode equations is well-known [8]
although the mode-dependent attenuation terms Λj are usually introduced heuristically.
The solution explicitly writes:

Q(z) = exp(Az)Q(0), (6.4)
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with the matrix A defined by (δjl is the Kronecker symbol):

A := (Γjl−Λjδjl)
N−1
j,l=0. (6.5)

We can also remark that (6.3) with Λj = 0 can be interpreted as the Kolmogorov equation
associated to a random walk on the finite space {0,. ..,N−1}. If we denote by (Jz)z≥0

the Markov process on the state space {0,. ..,N−1} with infinitesimal generator Γ,
then a Feynman-Kac formula gives the following probabilistic representation of the
mean mode powers Qj(z):

Qj(z) =E
[
|aJz,s|2 exp

(
−
∫ z

0

ΛJz′dz
′
)∣∣∣J0 = j

]
.

This representation makes it possible to anticipate the result derived below in the con-
tinuum approximation (when the number of modes becomes large), namely that the
Qj ’s can be approximated by the solution of a diffusion equation, because the normal-
ized random walk (Jz/N)z≥0 can be approximated in distribution by a diffusion process
on [0,1].

7. Long-range behavior of the mean mode powers
From now on we assume that the symmetric matrix Γ defined by Γjl given by

(5.7) for j 6= l, Γjj =−
∑
l′ 6=jΓjl′ , is irreducible. We consider the matrix A=Γ−Φ,

with Φjl= Λjδjl. By Perron-Frobenius theorem, the first eigenvalue of A is simple
and nonpositive (we denote it by −λ) and the components of the corresponding unit
eigenvector V have all the same sign (so we can assume that they are positive). By
(6.4) we get the following result.

Proposition 7.1. The mean mode powers (6.2) satisfy

Qj(z)
z→+∞' cV Vj exp

(
−λz

)(
1+o(1)

)
, (7.1)

where (−λ,V ) is the first eigenvalue/eigenvector of A and

cV =

N−1∑
l=0

Vl|al,s|2. (7.2)

In the following we discuss special cases where explicit expressions can be obtained.

No effective dissipation. If there is no effective dissipation Φ=0, then the first
eigenvalue/eigenvector (−λ(0),V (0)) of the matrix Γ is

λ(0) = 0, V (0) =
(
1/
√
N
)N−1

j=0
, (7.3)

which gives the standard equipartition result [7, 10,12]:

Qj(z)
z→+∞−→ 1

N

N−1∑
l=0

|al,s|2, ∀j= 0,. ..,N−1. (7.4)

The total input power
∑N−1
l=0 |al,s|2 becomes equipartitioned amongst all guided modes.

Weak effective dissipation. We next consider the case when the effective dissi-
pation is weak, that is to say, the matrix Φ is much smaller than the matrix Γ, with a
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typical ratio of the order of θ. We then assume that Λj =θΛ
(1)
j , with θ�1. Then we

can write Φ=θΦ(1) with Φ
(1)
jl = Λ

(1)
j δjl and Γ=Γ(0) and the first eigenvalue/eigenvector

(−λ,V ) of the matrix Γ−Φ can be expanded as

λ=λ(0) +θλ(1) +θ2λ(2) +O(θ3), V =V (0) +θV (1) +O(θ2)

with (λ(0),V (0)) given by (7.3),

λ(1) =V (0)TΦ(1)V (0) =
1

N

N−1∑
j=0

Λ
(1)
j , (7.5)

λ(2) =V (0)TΦ(1)V (1), (7.6)

and V (1) is solution of Γ(0)V (1) = (Φ(1)−λ(1))V (0) and is orthogonal to V (0). If, for
instance, Γjl≡Γ>0 for all j 6= l, then

V (1) =− 1

ΓN3/2

(
Λ

(1)
j −λ

(1)
)N−1

j=0
(7.7)

and

λ(2) =− 1

ΓN2

N−1∑
j=0

(Λ
(1)
j −λ

(1))2. (7.8)

Equations (7.3)-(7.5) show that, when coupling is stronger than dissipation, then the
effective damping of the mean mode powers is approximately the arithmetic average of
the effective mode-dependent damping coefficients. Equations (7.3)-(7.7) show that the
distribution of the mean mode powers is approximately equipartitioned, with reduced
allocations for the modes with the strongest damping coefficients.

Weak coupling. We next consider the case when the coupling is weak, that is to
say, the matrix Γ is much smaller than the matrix Φ, with a typical ratio of the order

of θ. We then assume that Γjl=θΓ
(1)
jl , with θ�1. We also assume that the dissipation

coefficients have a unique minimum

Λj? = min
j=0,...,N−1

(Λj), Λj>Λj? ∀j 6= j?. (7.9)

Then we can write Φ=Φ(0) and Γ=θΓ(1) and the first eigenvalue/eigenvector (−λ,V )
of the matrix Γ−Φ can be expanded as

λ=λ(0) +θλ(1) +θ2λ(2) +O(θ3), V =V (0) +θV (1) +O(θ2),

with

λ(0) = Λj? , (7.10)

V
(0)
j = δjj? , (7.11)

λ(1) =−V (0)TΓ(1)V (0) =−Γ
(1)
j?j?

=
∑
j 6=j?

Γ
(1)
jj?
, (7.12)

V
(1)
j =

Γ
(1)
jj?

Λj−Λj?
∀j 6= j?, V

(1)
j?

= 0, (7.13)
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λ(2) =−V (0)TΓ(1)V (1) =−
∑
j 6=j?

(Γ
(1)
jj?

)2

Λj−Λj?
. (7.14)

Equation (7.10) shows that, when coupling is weaker than dissipation, then the effective
damping of the mean mode powers is approximately the minimum of the effective mode-
dependent damping coefficients. The distribution of the mean mode powers is, moreover,
concentrated on the mode corresponding to the minimal damping coefficient.

Continuum approximation. Here we want to address situations where the cou-
pling between guided modes is via nearest neighbors and the number of modes is large.

The number of modes becomes large when (n2−1)k2d2�1 (see (10.8)). In other
words, the number of modes is large when the frequency is large because it is propor-
tional to the ratio of the waveguide diameter over the wavelength.

For type II perturbations, coupling via nearest neighbors happens when the fluc-
tuations of the boundaries are smooth so that the Fourier transform of RII decays fast
and the correlation radius is larger than the core diameter (which is much larger than

the wavelength). Under such circumstances, we have βj−βj+l' π
√
n2−1
nd

j
N l for any

l≥1 (see the Appendix), |R̂II(βj−βj+1)|� |R̂II(βj−βj+l)| for any l≥2, and we can
approximate the matrix Γ for all l 6= j by:

Γjl=

{
γmin(l,j) if |j− l|= 1,
0 if |j− l|≥2,

(7.15)

with

γj =
k2(n2−1)2d2

2βjβj+1
[φjφj+1](

d

2
)2R̂II(βj−βj+1). (7.16)

For type I perturbations, coupling via nearest neighbors happens under similar
conditions. Indeed, let us assume that RI(x,x

′,z) can be factorized as

RI(x,x
′,z) =RI,c(x,x′)RI,l(z),

then for all l 6= j:

Γjl=
k2

4βjβl
R̂I,l(βj−βl)

∫∫
[−d/2,d/2]2

RI,c(x,x′)φjφl(x)φjφl(x
′)dxdx′,

where R̂I,l is the Fourier transform of RI,l. Again, if the fluctuations of the index of

refraction are smooth so that R̂I,l decays fast and the longitudinal correlation radius is
larger than the core diameter, then we can approximate Γjl by (7.15) with

γj =
k2

4βjβj+1
R̂I,l(βj−βj+1)

∫∫
[−d/2,d/2]2

RI,c(x,x′)φjφj+1(x)φjφj+1(x′)dxdx′. (7.17)

Similarly, we find that Λj can be approximated by

Λj =

{
ΛN−1 if j=N−1,
0 otherwise.

Other circumstances can lead to the same conclusions. For instance the band-limiting
idealization hypothesis in [15] gives the same result, and it is based on the behavior of
the transverse covariance function RI,c.
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j•
0

γ0 •
j

γjγj−1
•

N−1

γN−2

Fig. 7.1. The transition rates of the jump Markov process (Jz)z≥0 on the state space {0≤ j≤
N−1}. The absorption is concentrated on the point j =N−1.

The coupled mode power equations then read

∂zQ
(N)
N−1 =−Λ

(N)
N−1Q

(N)
N−1 +γ

(N)
N−2(Q

(N)
N−2−Q

(N)
N−1), (7.18)

∂zQ
(N)
j =γ

(N)
j−1(Q

(N)
j−1−Q

(N)
j )+γ

(N)
j (Q

(N)
j+1−Q

(N)
j ) for 1≤ j≤N−2, (7.19)

∂zQ
(N)
0 =γ

(N)
0 (Q

(N)
1 −Q(N)

0 ). (7.20)

The superscript (N) is added to remember that all coefficients depend on N . We have
nearest-neighbor coupling: The jth mode can exchange power with the lth mode only
if they are neighbors, that is, if they satisfy |j− l|≤1.

We note that the terms involving γ
(N)
j in (7.18-7.20) define the infinitesimal gen-

erator of a random walk on the finite set {0≤ j≤N−1} (see Figure 7.1). As shown

in [15], following the ideas developed in [22, Chapter 11], if γ
(N)
j converges in the sense

that γ
(N)
bxNc→γ∞(x) for any x∈ (0,1), where γ∞ is smooth and positive, then, for any

function ϕ in L2(0,1), the function

Q(N)
ϕ (z,u) =

N−1∑
j=0

Q
(N)
j (z)ϕ(bj/Nc),

where Q
(N)
j is the solution of (7.18-7.20) starting from Q

(N)
j (z= 0) = δj,buNc, satisfies

lim
N→∞

Q(N)
ϕ (z,u) =Qϕ(z,u),

where Qϕ is the solution of the partial differential equation:

∂zQϕ=H1Qϕ, H1 =∂u
(
γ∞(u)∂u ·

)
, (7.21)

with the mixed Neumann-Dirichlet boundary conditions

∂uQϕ(z,0) = 0, Qϕ(z,1) = 0, Qϕ(0,u) =ϕ(u). (7.22)

For type I perturbations we have from (7.17):

γ∞(u) =
1

4(n2−1)d2( n2

n2−1−u2)
R̂I,l

(π√n2−1

nd
u
)

×
∫∫

[−d/2,d/2]2
RI,c(x,x′)sin(πx/d)sin(πx′/d)dxdx′.

For type II perturbations, we have from (7.16):

γ∞(u) =
2(n2−1)u4

( n2

n2−1−u2)
R̂II

(π√n2−1

nd
u
)
.



J. GARNIER 961

As a consequence of this result we get the following result.

Proposition 7.2. In the continuum approximation, the first eigenvalue −λ(N) of the
matrix A(N) converges to −λ as N→∞, with

λ= inf
ϕ∈D1

∫ 1

0

γ∞(u)ϕ′(u)2du (7.23)

and

D1 =
{
ϕ∈C∞([0,1]),

∫ 1

0

ϕ(u)2du= 1, ϕ′(0) = 0, ϕ(1) = 0
}
. (7.24)

Moreover, −λ is a simple eigenvalue of the operator H1, the corresponding eigenvector
ϕ is smooth and unique (up to a multiplication by −1) and it can be chosen so as
to satisfy ϕ(u)>0 for u∈ [0,1) (the proof is similar as the one proposed in [15] for the
Pekeris waveguide and it is based on a modified version of Krein-Rutman theorem). The
eigenvector ϕ gives the asymptotic mode distribution for large propagation distance:

Q
(N)
j (z)

z→+∞' cV ϕ(j/N)exp(−λz), (7.25)

with cV =
∑N−1
l=0 |al,s|2ϕ(l/N)/N . We, therefore, observe an exponential decay of the

mean power transported by the guided modes and a form of equipartition of the mean
mode powers, but not with the uniform distribution, but with the distribution propor-
tional to the eigenvector ϕ.

If γ∞ is constant, then λ=π2γ∞/4 and the eigenvector is ϕ(u) =
√

2cos(πu/2).
This happens in particular for type I perturbations when 0<n−1�1, so that, for all
u∈ (0,1),

γ∞(u)' 1

4d2
R̂I,l(0)

∫∫
[−d/2,d/2]2

RI,c(x,x′)sin(πx/d)sin(πx′/d)dxdx′.

8. Fluctuation analysis
By (6.1) we find that the second-order moments of the mode powers

Rjl(z) =E
[
Pj(z)Pl(z)

]
, j,l= 0,. ..,N−1, (8.1)

satisfy the closed equations

∂zRjj =−2ΛjRjj+
∑
n 6=j

Γjn(4Rjn−2Rjj), (8.2)

∂zRjl=−(2Γjl+Λj+Λl)Rjl+
∑
n 6=l

Γln(Rjn−Rjl)

+
∑
n 6=j

Γjn(Rnl−Rjl), j 6= l. (8.3)

This system has the same form as the one found in the literature dedicated to coupled
mode theory [7, 8]. The initial conditions are Rjl(0) = |aj,s|2|al,s|2. Let us introduce
S= (Sjl)0≤j≤l≤N−1 defined by

Sjl=

{
Rjl+Rlj = 2Rjl if j < l,
Rjj if j= l.

(8.4)
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The Sjl’s satisfy the system

∂zSjl=−(ΨS)jl+(ΘS)jl, (8.5)

(ΨS)jl=(Λj+Λl)Sjl, (8.6)

(ΘS)jl=2Γjl1j 6=l(Sjj+Sll−2Sjl)

+
∑

n 6∈{j,l}

[
Γln(Sjn−Sjl)+Γjn(Snl−Sjl)

]
, (8.7)

with the convention that whenever Sjl occurs with j > l, it is replaced by Slj . The
operator Θ is the infinitesimal generator of a random Markov process (Jz,Lz)z≥0 that is
a random walk on the discrete triangle {(j,l)∈N2, 0≤ j≤ l≤N−1}. Using a Feynmac-
Kac formula we get the following probabilistic representation of Sjl:

Sjl(z) =E
[
|aJz,s|2|aLz,s|2 exp

(
−
∫ z

0

ΛJz′ +ΛLz′dz
′
)∣∣∣J0 = j,L0 = l

]
.

We can anticipate that, in the continuum limit, the Markov process (Jz/N,Lz/N)z≥0

behaves as a diffusion process on the triangle {(u,v)∈R2, 0≤u≤v≤1}, and, therefore,
Sjl satisfies a diffusion equation on this triangle.

Long-range behavior of the second-order moments of the mode powers.
Equation (8.5) has the form ∂zS= (Θ−Ψ)S. The linear operator Ψ is diagonal and

the linear operator Θ is self-adjoint: for any T and T̃ , we have∑
j≤l

(ΘT )jlT̃jl=−
∑
j≤l

Θjl,jlTjlT̃jl+
∑

j<l,n6∈{j,l}

(
ΓlnTjnT̃jl+ΓjnTnlT̃jl

)
+
∑
j 6=n

(
ΓjnTjnT̃jj+ΓjnTnj T̃jj

)
+2
∑
j<l

(
ΓjlTjj T̃jl+ΓjlTjj T̃jl

)
=
∑
j≤l

Tjl(ΘT̃ )jl,

because 2
∑
j<l=

∑
j 6=l. As a consequence, Θ−Ψ can be diagonalized and as a conse-

quence of Perron-Frobenius theorem we get the following result.

Proposition 8.1. The second-order moments of the mode powers satisfy

S(z)
z→+∞' cWW exp

(
−µz

)(
1+o(1)

)
, (8.8)

where (−µ,W ) is the first eigenvalue/eigenvector of Θ−Ψ and cW is the projection of
the initial conditions on the first eigenvector W

cW =

N−1∑
j,l=0

Wjl|aj,s|2|al,s|2, (8.9)

with the convention that whenever Wjl occurs with j > l, it is replaced by Wlj.

We next address special cases.

No effective dissipation. If there is no effective dissipation, then the
first eigenvalue/eigenvector (−µ(0),W (0)) of the matrix Θ is W (0) =

(
cN
)

0≤j≤l≤N−1
,
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µ(0) = 0, with cN =
√

2/
√
N(N+1). We have S(z)

z→+∞→ cWW (0). As
∑
j≤lSjl(z) =∑

j,lRjl(z) = (
∑N−1
j=0 |aj,s|2)2, we deduce

Sjl(z)
z→+∞→

(N−1∑
l′=0

|al′,s|2
)2 2

N(N+1)
,

and

Rjl(z)
z→+∞→

(N−1∑
l′=0

|al′,s|2
)2 1+δjl
N(N+1)

.

By taking into account (7.4), this means that, when N�1, the mode powers Pj become
uncorrelated. Furthermore, this regime was analyzed in detail in [10, Chapter 20],
where it is shown that the marginal distributions of the mode powers Pj have the same
moments as exponential distributions. In other words, the mode powers behave as the
square moduli of independent and identically distributed complex Gaussian variables.

Weak effective dissipation. We next consider the case when the effective dissi-

pation is weak, say Λj =θΛ
(1)
j with θ�1. Then we can write Ψ=θΨ(1) and Θ=Θ(0)

and the first eigenvalue/eigenvector (−µ,W ) of the matrix Θ−Ψ can be expanded as

W =W (0) +θW (1) +O(θ2), µ=θµ(1) +θ2µ(2) +O(θ3),

with

µ(1) =W (0)TΨ(1)W (0) =
2

N

N−1∑
j=0

Λ
(1)
j = 2λ(1),

µ(2) =W (1)TΘ(0)W (1), (8.10)

and W (1) is solution of Θ(0)W (1) = (Ψ(1)−µ(1))W (0) and is orthogonal to W (0). If,
for instance, Γjl≡Γ>0 for all j 6= l, then

W
(1)
jl =− cN

ΓN

(
Λ

(1)
j +Λ

(1)
l −2λ(1)

)
, j≤ l,

and

µ(2) =W (1)TΨ(1)W (0)

=− 2(N+2)

N2(N+1)Γ

N−1∑
j=0

(Λ
(1)
j −λ

(1))2.

Note that

µ−2λ=θ2
(
µ(2)−2λ(2)

)
+O(θ3)

=− 2θ2

N2(N+1)Γ

N−1∑
j=0

(Λ
(1)
j −λ

(1))2 +O(θ3) (8.11)

is negative-valued as soon as there exist j,j′ such that Λ
(1)
j 6= Λ

(1)
j′ .
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Weak coupling. We next consider the case when the coupling is weak, say

Γjl=θΓ
(1)
jl , with θ�1. We again assume that the dissipation coefficients have a

unique minimum (7.9). Then we can write Ψ=Ψ(0) and Θ=θΘ(1) and the first eigen-
value/eigenvector (−µ,W ) of the matrix Θ−Ψ can then be expanded as

W =W (0) +θW (1) +O(θ2), µ=µ(0) +θµ(1) +θ2µ(2) +O(θ3),

with

µ(0) = 2Λj? , (8.12)

W
(0)
jl = δjj?δlj? , (8.13)

µ(1) =−W (0)TΘ(1)W (0) = 2
∑
j 6=j?

Γ
(1)
jj?
, (8.14)

W (1) is solution of (µ(0)−Φ(0))W (1) = (−Θ(1)−µ(1))W (0) and is orthogonal to W (0),

W
(1)
jl =


2Γj?l

Λl−Λj?
if j= j?, l>j?,

2Γjj?
Λj−Λj?

if j <j?, l= j?,

0 otherwise,

(8.15)

µ(2) =−W (0)TΘ(1)W (1) =−4
∑
j 6=j?

(Γ
(1)
jj?

)2

Λj−Λj?
.

Note that

µ−2λ=−2θ2
∑
j 6=j?

(Γ
(1)
jj?

)2

Λj−Λj?
+O(θ3) (8.16)

is negative-valued (we have assumed the irreducibility of Γ(1), hence at least one of the

Γ
(1)
jj?

is non-zero).

Continuum approximation. Here we address the situations where the coupling
between guided modes is via nearest neighbors and the number of modes is large. When
Γjl is of the form (7.15), the system (8.5) for Sjl reads

∂zSjl=δjl
[
2γj(Sjj+1−Sjj)1j≤N−2 +2γj−1(Sj−1j−Sjj)1j≥1

]
+δlj+1

[
2γj(Sjj+Sj+1j+1−2Sjj+1)+γj−1(Sj−1j+1−Sjj+1)1j≥1

+γj+1(Sjj+2−Sjj+1)1j≤N−3

]
+1j≤l−2

[
γl−1(Sjl−1−Sjl)1l≥1 +γl(Sjl+1−Sjl)1l≤N−2

+γj−1(Sj−1l−Sjl)1j≥1 +γj(Sj+1l−Sjl)
]

−ΛN−1(δjN−1 +δlN−1)Sjl. (8.17)

Note that the terms involving γj define the infinitesimal generator of a random walk
(Jz,Lz)z≥0 on the finite set DN ={0≤ j≤ l≤N−1} (see Figure 8.1).

We proceed as in [15] to determine the asymptotic behavior of Sjl when N→+∞.

We denote Sjl by S
(N)
jl to keep track of the dependence with respect to N . We introduce

the triangle D={(u,v)∈R2, 0<u<v<1}. We get that, for any function ψ in L2(D),
the function

S
(N)
ψ (z,u,v) =

∑
0≤j≤l≤N−1

S
(N)
jl (z)ψ(bj/Nc,bl/Nc),
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l

j(0,0)

(0,N−1)

(N−1,0)

•
(j,j+1)2γj

2γj

γj+1

γj−1

•(j,j)
2γj−1

2γj

•(0,l)

γl

γl−1

γ0

•
(j,l)

γl

γl−1

γj
γj−1

•(N−1,N−1)
γN−2•

(j,N−1)

γj−1 γj

γN−2

•
γ0

γN−2

•

γ0

Fig. 8.1. The transition rates of the jump Markov process (Jz ,Lz)z≥0 on the state space DN =

{0≤ j≤ l≤N−1}. The absorption is concentrated on the line (j,N−1)N−1
j=0 .

where S
(N)
jl is the solution of (8.17) starting from S

(N)
jl (z= 0) = δj,buNcδl,bvNc, satisfies

lim
N→∞

S
(N)
ψ (z,u,v) =Sψ(z,u,v),

where Sψ is the solution of the partial differential equation:

∂zSψ =H2Sψ, H2 =∂u
(
γ∞(u)∂u·)+∂v

(
γ∞(v)∂v·), (8.18)

with the boundary condition (Dirichlet on the face {u= 1} of the triangle D, Neumann
on the faces {v= 0} and {u=v}, see Figure 8.2):

∂uSψ(z,0,v) = 0, Sψ(z,u,1) = 0, (∂u−∂v)Sψ(z,u,v) |u=v= 0, (8.19)

and the initial condition Sψ(0,u,v) =ψ(u,v).
Consequently, we get the following result.

Proposition 8.2. In the continuum approximation, the first eigenvalue −µ(N) of
Θ(N)−Ψ(N) converges as N→∞ to −µ with

µ= inf
ψ∈D2

∫∫
D

γ∞(u)[∂uψ(u,v)]2 +γ∞(v)[∂vψ(u,v)]2dudv (8.20)

and

D2 =
{
ψ∈C∞(D̄),

∫∫
D

ψ(u,v)2dudv= 1,

∂uψ(0,v) = 0, ψ(u,1) = 0, (∂u−∂v)ψ(u,v) |u=v= 0
}
. (8.21)

Equivalently,

µ= inf
ψ̌∈Ď2

∫∫
(0,1)2

γ∞(u)[∂uψ̌(u,v)]2 +γ∞(v)[∂vψ̌(u,v)]2dudv, (8.22)
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v

u(0,0)

(0,1)

(1,0)

•(1,1)

NeumannNeumann

Dirichlet

Fig. 8.2. The domain of the continuum approximation with its boundary conditions.

with

Ď2 =
{
ψ̌∈C∞([0,1]2),

∫∫
(0,1)2

ψ̌(u,v)2dudv= 1,

∂uψ̌(0,v) = 0, ∂vψ̌(u,0) = 0, ψ̌(u,1) = 0, ψ̌(1,v) = 0
}
. (8.23)

Proof. (Proof of (8.22).) We denote by µ̌ the right-hand side of (8.22). We can
show as in [15] that −µ̌ is a simple eigenvalue of the operator H2 on (0,1)2 with Dirichlet
boundary conditions on {v= 1} and {u= 1} and Neumann boundary conditions on
{u= 0} and {v= 0} and that the corresponding eigenvector ψ̌ is smooth and unique up to
a multiplication by −1. Moreover, the function ψ̌2 : (u,v)∈ (0,1)2 7→ ψ̌(v,u) also satisfies
H2ψ̌2 =−µ̌ψ̌2 with the same Dirichlet/Neumann boundary conditions. By uniqueness,
we get that ψ̌ is symmetric: ψ̌(u,v) = ψ̌(v,u), so it satisfies (∂u−∂v)ψ̌(u,v) |u=v= 0.
Therefore ψ2 : (u,v)∈D 7→

√
2ψ̌(u,v) is an eigenvector of H2 on D with the boundary

conditions ∂uψ2(0,v) = 0, ψ2(u,1) = 0, (∂u−∂v)ψ2(u,v) |u=v= 0 with the eigenvalue −µ̌.
If we use ψ2 as a test function in (8.20), we find that µ≤ µ̌.

We can show as in [15] that −µ is a simple eigenvalue of the operator H2

on D with the Dirichlet/Neumann boundary conditions ∂uψ(0,v) = 0, ψ(u,1) = 0,
(∂u−∂v)ψ(u,v) |u=v= 0, and that the corresponding eigenvector ψ is smooth. If we
use ψ̌(u,v) =ψ(u,v)1u≤v+ψ(v,u)1u>v as a test function in (8.22), then we find that
µ̌≤µ.

Propositions 7.2 and 8.2 make it possible to prove the following identity that es-
tablishes a simple relation between the growth rates of the means and variances of the
mode powers in the continuum approximation.

Proposition 8.3. In the continuum approximation, we have

µ= 2λ, (8.24)

where λ and µ are defined in Propositions 7.2 and 8.2, respectively.

Proof. If ϕ is the eigenvector ofH1 with the boundary conditions ϕ′(0) = 0, ϕ(1) = 0
with eigenvalue −λ, then ψ̌ : (u,v)∈ (0,1)2 7→ϕ(u)ϕ(v) is an eigenvector of H2 on (0,1)2

with the boundary conditions ∂uψ̌(0,v) = 0, ∂vψ̌(u,0) = 0, ψ̌(u,1) = 0, ψ̌(1,v) = 0 with the
eigenvalue −2λ. If we use ψ̌ as a test function in (8.22), then we find that µ≤2λ.
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The operator H1 is self-adjoint in L2(0,1) with Neumann boundary condition at 0
and Dirichlet boundary condition at 1. Therefore, there exists an eigenbasis (ϕn)n≥0

with the eigenvalues (−λn)n≥0, with 0<λ0<λ1≤···≤λn≤···. The function ϕ0 is the
unique eigenvector ofH1 associated to the eigenvalue −λ0 =−λ. The family of functions
(ψ̌m,n)m,n≥0 with ψ̌m,n(u,v) =ϕm(u)ϕn(v) forms a basis of the space L2((0,1)2) with
Neumann boundary conditions at {u= 0} and {v= 0} and Dirichlet boundary conditions
at {u= 1} and {v= 1}. The function ψ̌m,n is an eigenfunction of the operator H2,
with the eigenvalue −µm,n=−λm−λn. Therefore, for any function ψ̌∈Ď2, we have
ψ̌=

∑
m,n cm,nψ̌m,n with

∑
m,n c

2
m,n= 1 and H2ψ̌=−

∑
m,n cm,nµm,nψ̌m,n, so that∫∫

(0,1)2
γ∞(u)[∂uψ̌(u,v)]2 +γ∞(v)[∂vψ̌(u,v)]2dudv=−

∫∫
(0,1)2

ψ̌H2ψ̌(u,v)dudv

=
∑
m,n

µm,nc
2
m,n≥2λ,

which shows that µ≥2λ.

By uniqueness this implies that the eigenvector ψ̌ of H2 on (0,1)2 associated to −µ
is ψ̌ : (u,v)∈ (0,1)2 7→ϕ(u)ϕ(v). This in turn implies that the eigenvector ψ of H2 on D
associated to −µ=−2λ is ψ : (u,v)∈D 7→

√
2ϕ(u)ϕ(v). As a result we get

Sjl(z)
z→+∞' 2cWϕ(j/N)ϕ(l/N)exp

(
−2λz

)
,

with cW =
∑N−1
j,l=0ϕ(j/N)ϕ(l/N)|aj,s|2|al,s|2/N2 = c2V , cV =

∑N−1
j=0 ϕ(j/N)|aj,s|2|/N , and

therefore

Rjl(z)
z→+∞' c2V (1+δjl)ϕ(j/N)ϕ(l/N)exp

(
−2λz

)
. (8.25)

This result is the key to show that we will not observe any exponential growth of the
relative intensity fluctuations in the continuum approximation.

Exponential growth of the intensity fluctuations. It is a general feature that,
for any matrix Γ and effective dissipation coefficients Λj , we have µ−2λ≤0 (this is a
consequence of Cauchy-Schwarz inequality: the square of the mean mode power cannot
grow faster than the mean square mode power). The first two moments of the pointwise
intensity |p(x,z)|2 for large z are

E[|p(x,z)|2]
z→∞'

N−1∑
j=0

φj(x)2

βj
cV Vje

−λz, (8.26)

E[|p(x,z)|4]
z→∞'

N−1∑
j,l=0

φj(x)2φl(x)2

βjβl
cWWjle

−µz. (8.27)

Without dissipation we have the following result for the relative fluctuations of the
pointwise intensity:

E[|p(x,z)|4]

E[|p(x,z)|2]2
z→∞−→ 2N

N+1
,

which is equal to 2 when N�1.
With dissipation

E[|p(x,z)|4]

E[|p(x,z)|2]2
z→∞∼ exp

(
−(µ−2λ)z

)
, (8.28)
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that grows exponentially with the propagation distance. With weak dissipation,

E[|p(x,z)|4]

E[|p(x,z)|2]2
z→∞' 2N

N+1
exp

(
−(µ−2λ)z

)(
1+o(1)

)
, (8.29)

because the first eigenvectors V and W are close to the ones of the non-dissipative
case. Note, however, that the exponential growth happens only for very long distances,
because |µ−2λ| is very small as shown above. Equation (8.11) gives the expression of
the exponential growth rate when dissipation is weak and Γjl≡Γ for j 6= l: the growth
rate increases when the effective modal dissipation coefficients become different from
each other and decreases when the number of modes increases. The analysis in the
continuum approximation confirms that the exponential growth rate of the relative
intensity fluctuations vanishes when the number of modes goes to infinity. More exactly,
in the continuum approximation, when the number of modes becomes large, we have
µ= 2λ and (8.25) holds. Therefore there is no exponential growth of the fluctuations
and we have

E[|p(x,z)|4]

E[|p(x,z)|2]2
z→∞' 2, (8.30)

which corresponds to a relative variance (or scintillation index) equal to one. We re-
cover the standard result that the wavefield, in the point of view of the fourth-order
moments, behaves as a Gaussian process with relative variance (scintillation index)
equal to one [14].

9. Conclusion
In this paper we have reviewed the asymptotic theory of wave propagation in ran-

dom waveguides. We have recovered standard results about the first two moments of the
mode amplitudes: the mean amplitudes decay exponentially and the mean powers sat-
isfay a coupled mode equation. The fourth-order moment analysis also reveals that the
fluctuation of the mode powers grow exponentially with the propagation distance. We
have carefully studied the exponential growth rates of the relative variances. We have
shown that, when the number of guided modes increases, the exponential growth rates
vanish and the scintillation index (the relative variance of the intensity fluctuations)
becomes equal to one, as observed in open medium in the random paraxial regime [14].
These results show that incoherent imaging in a random waveguide (such as a Pekeris
waveguide in underwater acoustics) is challenging. Indeed incoherent imaging is based
on the use of the cross correlations of the recorded signals [9]. The estimation of the
second-order moments of the wavefield is, however, extremely difficult because of the
large variances of the empirical second-order moments and one may need to average over
a lot a samples (while the medium may be not stationary as in underwater acoustics).
This is in contrast with the situation in open three-dimensional random media where
smoothed Wigner transforms are statistically stable [2, 14]. More generally, the results
on the fourth-order moments show that the predictions of the coupled mode equations
(which describe the evolutions of the statistical second-order moments of the wavefield,
such as Equation (6.3)) are not easy to exploit experimentally when the number of
guided modes is not very large.

Appendix. Wave mode decomposition. Let us introduce the Helmholtz oper-
ator

H=∂2
x+k2n(0)(x)2. (10.1)
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The Helmholtz operator H is self-adjoint with respect to the standard scalar product
defined on L2(R) by:

(φ1,φ2)L2 :=

∫
R
φ1(x)φ2(x)dx.

The Helmholtz operator has a spectrum of the form (3.1) where the N modal wavenum-
bers βj are positive and k2<β2

N−1< ·· ·<β2
0 <n

2k2.

Discrete spectrum. The jth eigenvector associated to the eigenvalue β2
j is even

for even j:

φj(x) =

{
Aj cos(σjx/d) if 0≤|x|≤d/2
Aj cos(σj/2)exp(−ζj(|x|/d−1/2)) if |x|≥d/2 (10.2)

and odd for odd j

φj(x) =

{
Aj sin(σjx/d) if 0≤|x|≤d/2
Aj sin(σj/2)sgn(x)exp(−ζj(|x|/d−1/2)) if |x|≥d/2 (10.3)

where

σj =
√
n2k2−β2

j d, ζj =
√
β2
j −k2d, (10.4)

and

A2
j =


1/d

( 1
2 +

sin(σj)

2σj
)+

cos2(σj/2)

ζj

for even j

1/d

( 1
2−

sin(σj)

2σj
)+

sin2(σj/2)

ζj

for odd j
(10.5)

For even j the σj ’s are the solutions in (0,
√
n2−1kd) of

tan(σ/2) =

√
(n2−1)k2d2−σ2

σ
. (10.6)

For odd j the σj ’s are the solutions in (0,
√
n2−1kd) of

tan(σ/2) =− σ√
(n2−1)k2d2−σ2

, (10.7)

and we denote by N the number of solutions. We have σj ∈ (jπ,(j+1)π) and

N = b
√
n2−1kd/πc. (10.8)

Continuous spectrum. For γ∈ (−∞,k2), there are two improper eigenvectors
(one is even and the other one is odd) and they have the form:

φe,γ(x) =


Ae,γ cos(ηγx/d) if 0≤|x|≤d/2
Ae,γ

[
cos(ηγ/2)cos(ξγ(|x|/d−1/2))

−ηγ/ξγ sin(ηγ/2)sin(ξγ(|x|/d−1/2))
]

if |x|≥d/2
(10.9)

φo,γ(x) =


Ao,γ sin(ηγx/d) if 0≤|x|≤d/2
Ao,γsgn(x)

[
sin(ηγ/2)cos(ξγ(|x|/d−1/2))

+ηγ/ξγ cos(ηγ/2)sin(ξγ(|x|/d−1/2))
]

if |x|≥d/2
(10.10)
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where

ηγ =
√
n2k2−γd, ξγ =

√
k2−γd, (10.11)

and

A2
e,γ =

ξγd

2π(ξ2
γ cos2(ηγ/2)+η2

γ sin2(ηγ/2))
, (10.12)

A2
o,γ =

ξγd

2π(ξ2
γ sin2(ηγ/2)+η2

γ cos2(ηγ/2))
. (10.13)

We remark that φt,γ does not belong to L2(R), but (φt,γ ,φ)L2 can be defined for any
test function φ∈L2(R) as

(φt,γ ,φ)L2 = lim
M→+∞

∫ M

−M
φt,γ(x)φ(x)dx, (10.14)

where the limit holds (as a function in γ) in L2((−∞,k2)).

Completeness. We have for any φ∈L2(R):

(φ,φ)L2 =

N−1∑
j=0

∣∣(φj ,φ)L2

∣∣2 +
∑

t∈{e,o}

∫ k2

−∞

∣∣(φt,γ ,φ)L2

∣∣2dγ. (10.15)

The map which assigns to every element of φ∈L2(R) the coefficients of its spectral
decomposition

φ 7→
(

(φj ,φ)L2 ,j= 0,. ..,N−1,(φt,γ ,φ)L2 ,t∈{e,o},γ∈ (−∞,k2)
)

is an isometry from L2(R) onto CN ×L2((−∞,k2))2. This means that any function
φ∈L2(R) can be expanded on the set of the eigenfunctions of H.
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