
COMMUN. MATH. SCI. c© 2020 International Press

Vol. 18, No. 4, pp. 887–908

GLOBAL STABILITY OF LARGE SOLUTIONS TO
THE 3−D COMPRESSIBLE FLOW OF LIQUID CRYSTALS∗

YUHUI CHEN† , JINGCHI HUANG‡ , HAIYAN XU§ , AND ZHENG-AN YAO¶

Abstract. The current paper is devoted to the investigation of the global-in-time stability of large
solutions to the compressible liquid crystal equations in the whole space. Suppose that the density is
bounded from above uniformly in time in the Höder space Cα with α sufficiently small and in L∞ space
respectively. Then we prove two results: (1) Such kind of the solution will converge to its associated
equilibrium with a rate which is the same as that for the heat equation. (2) Such kind of the solution is
stable, which means any perturbed solution will remain close to the reference solution if initially they
are close to each other. This implies that the set of the smooth and bounded solutions is open.
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1. Introduction
In this paper, we are concerned with the global stability of the large solutions to

3−D compressible liquid crystal equations:
∂tρ+div(ρu) = 0, (t,x)∈R+×R3,

∂t(ρu)+div(ρu⊗u)+∇p= divT −∇d ·4d, (t,x)∈R+×R3,

∂td+u ·∇d=4d+ |∇d|2d, (t,x)∈R+×R3,
lim
|x|→∞

(ρ,u,d) = (1,0,d), t∈R+,

(1.1)

where ρ=ρ(t,x)∈R+ denotes the density, u=u(t,x)∈R3 denotes the velocity, d(t,x)∈
S2, the unit sphere in R3, represents the macroscopic average of the nematic liquid
crystal orientation field, and the pressure p is given by smooth function p=p(ρ). Here
we take p(ρ) =ργ with the adiabatic exponent γ≥1. And T is the stress tensor given
by T =µ(∇u+(∇u)t)+λ(divu)I with I the identity matrix. The viscosity coefficients
of the flow satisfy µ>0 and 2µ+3λ>0. And d is a unit constant vector in S2.

The above system is basically a coupling of compressible Navier-Stokes equations
and parabolic heat flow. When d≡d, the system (1.1) reduces to the well-known Navier-
Stokes equations for compressible isentropic flows which have been studied by many
researchers, see [3,4,10] and the references therein. When considering the compressible
nematic liquid crystal flow under the assumption that the director d has variable degrees
of orientations, the global existence of weak solutions in R3 has been obtained by [14] and
[19]. Inspired by the work of [12] for parabolic incompressible flow, the corresponding
global finite-energy weak solutions to (1.1) was proved in [13]. The local existence of
strong solutions in R3 has been studied by [8] and [9]. Recently, Chen and Zhai [2]
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established the global solutions and incompressible limit supplemented with arbitrary
large initial velocity and almost constant density, for large volume (bulk) viscosity.

In the present work, we are interested in the following two problems for the system
(1.1): (i) What is the long-time behavior of the solution to (1.1)? (ii) Which kind of
the solution to (1.1) is stable?

Obviously these two problems are fundamental for (1.1). However both of them
are not solved well. The main obstruction comes from the existence of global smooth
solution. So far, there has been a large amount of literature on this issue, but most of the
results are restricted to the perturbation framework. In other words, the global solution
and its long-time behavior is considered near the equilibrium. We refer readers to [11].
Because of this restriction, the method on the global dynamics and the stability of (1.1)
relies heavily on the analysis of the linearization of the system. The interested reader
is referred to [1,5,15,16,20] and the references therein for details. These results can be
summarized as follows. Assume that the initial data (ρ0,u0,d0) is a small perturbation
of equilibrium (1,0,d) in

(
L1∩H3

)
×
(
L1∩H3

)
×
(
L1∩H3

)
. Then it can be proved that

‖(ρ−1,u,∇(d−d))(t)‖L2 ≤C(1+ t)−
3
4 . (1.2)

This shows that in the close-to-equilibrium setting the rate of the convergence of the
solution is the same as that for the heat equations if we put the same condition on
the initial data. In this sense, (1.2) can be regarded as the optimal decay estimate for
system (1.1).

The aim of the paper is to investigate the long-time behavior and the global-in-time
stability of the solution to (1.1) for general initial data. The global existence of this
kind of solution is not the purpose of this paper. We refer readers to [2] and [6].

To obtain the long-time behavior and the global-in-time stability, we need to im-
pose some assumptions on the solution itself which at first looks unsatisfactory. Our
key observation is as follows. The basic energy identity shows that the system has a
dissipation structure which is not complete. In the case of liquid crystal system, there
is no dissipation for the density. However the coupling effect behind the system helps us
to obtain the dissipation for the density. Then the system will look like a heat equation.
By time-frequency splitting method, we can get the global dynamics: the propagation
of the smoothness and the convergence to equilibrium with the same rate as the one in
the result obtained by the linearization method. More explanation is given below.

Inspired by [6,7], we separate the process to get the stability of liquid crystal system
into three steps. The first step is to get the uniform-in-time bounds for the propagation
of the regularity. Because of the induction equation, we need to involve some new
methods which come from the corresponding blow-up results (see [9, 18]). Because of
the definition of the effective viscosity flux G which contains the orientation field now,
some new terms from (1.1)3 come out, see Lemma 2.4. To overcome that, we not only
need to apply methods from [6,7], but also use the structure of the system.

Each time when the uniform-in-time bounds for the regularity of the solution are
improved, the dissipation inequality can also be improved correspondingly. Thanks to
this observation, finally we obtain that

d

dt
‖(ρ−1,u,∇(d−d))‖2 +‖∇(ρ−1,u,∇(d−d))‖2≤0,

which enjoys the same structure as that for the heat equation. Now the time-frequency
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splitting method (see [17]) can be applied to get that

d

dt
‖(ρ−1,u,∇(d−d))‖2 +

1

1+ t
‖(ρ−1,u,∇(d−d))‖2

≤ 1

1+ t

∫
|ξ|≤(1+t)−

1
2

∣∣(ρ̂−1,û,∇̂(d−d))(ξ)
∣∣2dξ. (1.3)

The problem of convergence is reduced to the estimate of the low-frequency part of
the solution, which is easy to do for the linear equation. By making full use of the
cancellation and the coupling effect of the system (1.1), we get the control of the right-
hand side of (1.3). Then the optimal decay estimate (1.2) follows.

Once the global dynamics of the equations is clear, we can prove the global-in-time
stability for the system (1.1) as follows:

(1) By the local well-posedness for the system (1.1), we show that the perturbed solution
will remain close to the reference solution for a long time if initially they are close.

(2) The long-time behavior of the solution suggests that the reference solution is close
to the equilibrium after a long time.

(3) Combining these two facts, we find a time t0 such that t0 is far away from the initial
time and at this moment the solution is close to the equilibrium. Then the desired
result follows from the standard perturbation framework.

Before we state our results, let us introduce the notations which are used throughout
the paper. We use the notation a∼ b whenever a≤C1b and b≤C2a where C1 and C2 are
universal constants. We denote C(λ1,λ2,·· · ,λn) by a constant depending on parameters
λ1,λ2,·· · ,λn.

Now we are in a position to state our main results on the system (1.1). Our first
result is concerned with the global dynamics of the system.

Theorem 1.1. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1)

with 0≤ρ≤M , and initial data (ρ0,u0,d0) verifying that ρ0≥ c>0 and the admissible
condition {

ut
∣∣
t=0

=−u0 ·∇u0 + 1
ρ0

(divT0−∇d0 ·4d0−∇ργ0),

dt
∣∣
t=0

=4d0 + |∇d0|2d0−u0 ·∇d0,
(1.4)

and supt∈R+ ‖∇d(t,·)‖L∞+supt∈R+ ‖ρ(t,·)‖Cα ≤M for some 0<α<1. Then if (ρ0−
1,u0,∇(d0−d))∈L1(R3)∩H2(R3), then there exists a constant ρ=ρ(c,M,M)>0 such
that for all t≥0, we have

ρ(t,x)≥ρ. (1.5)

We have the uniform-in-time bounds for the regularity of the solutions, assuming that
n=ρ−1, m=d−d,

‖n‖2H2 +‖u‖2H2 +‖∇m‖2H2 +

∫ ∞
0

(‖∇n(τ)‖2H1 +‖∇u(τ)‖2H2 +‖∇2m(τ)‖2H2)dτ

≤C(ρ,M,‖(n0,u0,∇m0)‖L1∩H2 ,‖d0‖L2). (1.6)

Moreover, we have the decay estimate for the solution

‖n‖H1 +‖u‖H1 +‖∇m‖H1 ≤C(ρ,M,‖n0‖L1∩H1 ,‖(u0,∇m0)‖L1∩H2 ,‖m0‖L2)(1+ t)−
3
4 .

(1.7)
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Remark 1.1. Once the constants ρ and M are fixed, our theorem shows that all the
upper bounds obtained in the theorem depend only on the initial data.

Remark 1.2. Since (1.7) implies (1.2), our decay estimate is optimal in some sense.

Remark 1.3. It is easy to verify the additional condition that the density belongs
to a Hölder space, if the initial data (ρ0,u0,d0) is a small perturbation of equilibrium
(1,0, d̄).

Remark 1.4. Here we don’t consider the global existence of the solution with initial
data which is far away from equilibrium. One can refer this in [2] and [6].

Our second result can be stated as follows:

Theorem 1.2. Let (ρ̃, ũ, d̃) be a global solution for (1.1) with the initial data (ρ̃0,ũ0, d̃0)
verifying that

‖1

ρ̃
, ρ̃,∇ρ̃‖H4 +‖ũt,ũ,∇ũ‖H4 +‖d̃,∇d̃‖H4 ≤C. (1.8)

Assume that (ρ0−1,u0,∇(d0−d))∈L1(R3)∩H2(R3). Then there exists an ε depending
only on C such that

‖ρ0− ρ̃0‖H4 +‖u0− ũ0‖H4 +‖d0− d̃0‖H4 ≤ ε, (1.9)

then (1.1) admits a global and unique solution (ρ,u,d) with the initial data (ρ0,u0,d0).
Moreover, for any t>0, we have

‖(ρ− ρ̃)(t)‖H4 +‖(u− ũ)(t)‖H4 +‖(d− d̃)(t)‖H4 ≤Cmin{(1+c|lnε|)− 3
4 ,ε+(1+ t)−

3
4 },

(1.10)
where c is a constant independent of ε.

2. Global dynamics of the liquid crystal equations

2.1. Uniform-in-time bounds. In what follows, we will set n=ρ−1, n=p−1
and m=d−d.

We first recall the basic energy identity for (1.1).

Lemma 2.1. Let (ρ,u,d) be a global and smooth solution of (1.1), then the following
equality holds

d

dt

(∫
F (ρ

∣∣1)dx+
1

2

∫
ρ|u|2dx+

1

2

∫
|∇m|2dx

)
+µ‖∇u‖2L2 +(µ+λ)‖divu‖2L2 +

∥∥∥4m+ |∇m|2(m+d)
∥∥∥2
L2

= 0, (2.1)

where

F (ρ
∣∣1) =

{ 1
γ−1 (ργ−1−γ(ρ−1)) for γ>1,

ρ lnρ−ρ+1, for γ= 1.
(2.2)

Remark 2.1. By Taylor expansion, it is not difficult to check that F (ρ
∣∣1)≥C(M)(ρ−

1)2 if ρ≤M .
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Lemma 2.2. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1), then

the following inequality holds

d

dt

(∫
ρ|u|4dx+

∫
|∇m|4dx

)
+
∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m||4m+ |∇m|2(m+d)|

∥∥∥2
L2

+
∥∥∥|∇m||∇2m+ |∇m|2(m+d)|

∥∥∥2
L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2

≤C
(

1+‖∇m‖L∞
)2(
‖∇u‖2L2 +

∥∥∥4m+ |∇m|2(m+d)
∥∥∥2
L2

)
×
(
‖n‖2L6 +‖∇u‖2L2 +‖∇m‖2H1

)
, (2.3)

where C is a positive constant depending on µ,λ.

Proof. Multiplying the second equation of (1.1) by 4|u|2u, we apply operator ∇
to the third equation of (1.1) and multiplying the resulting equation by 4|∇m|2∇m,
summing up and integrating on R3, we obtain that

d

dt

(∫
ρ|u|4dx+

∫
|∇m|4dx

)
−4

∫
|u|2 (µ4u+(µ+λ)∇divu) ·udx

−4

∫
|∇m|2∇(4m+ |∇m|2(m+d)) ·(∇m)dx

=−4

∫
|u|2∇p ·udx−4

∫
|u|2(∇m ·4m) ·udx

−4

∫
|∇m|2∇(u ·∇m) ·∇mdx def

=

3∑
i=1

Ii. (2.4)

Using the inequality
∣∣∇|u|∣∣≤|∇u|, and µ> 1

2λ, we have

−4

∫
|u|2 (µ4u+(µ+λ)∇divu) ·udx

=4

∫
|u|2

(
µ|∇u|2 +(µ+λ)(|divu|−

∣∣∇|u|∣∣)2)+(µ−λ)|u|2
∣∣∇|u|∣∣2dx

≥C
∫
|u|2|∇u|2dx.

Using the relation |m+d|= |d|= 1, we have

−4

∫
|∇m|2∇(4m+ |∇m|2(m+d)) ·(∇m)dx

=4

∫
|∇m|2|∇2m|2dx+8

∫
|∇m|2

∣∣∇|∇m|∣∣2dx
−2

∫
|∇m|2∇|∇m|2 ·∇|m+d|2dx−4

∫
|∇m|6dx

≥2

∫
|∇m|2|4m+ |∇m|2(m+d)|2dx+2

∫
|∇m|2|∇2m+ |∇m|2(m+d)|2dx

+8

∫
|∇m|2

∣∣∇|∇m|∣∣2dx.
It is easy to check that

I1≤C
∫
|n||u|2|∇u|dx≤C‖n‖L6‖u‖2L6‖∇u‖L2 ≤C‖∇u‖2L2

(
‖n‖2L6 +‖∇u‖2L2

)
.
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Similarly,

I2≤C‖∇m‖L∞‖∇2m‖L2‖u‖3L6 ≤C‖∇m‖L∞‖∇u‖2L2

(
‖∇u‖2L2 +‖∇2m‖2L2

)
,

and

I3 =4

∫
|∇m|2(u ·∇m) ·(4m+ |∇m|2(m+d))dx+4

∫
∇(|∇m|2)(u ·∇m) ·∇mdx

≤C‖∇m‖L∞‖u‖L6

∥∥∥4m+ |∇m|2(m+d)
∥∥∥
L2
‖∇m‖2L6

+C
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥

L2
‖∇m‖L∞‖u‖L6‖∇m‖L3

≤η
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2
+Cη

(
1+‖∇m‖L∞

)2
×
(
‖∇u‖2L2 +

∥∥∥4m+ |∇m|2(m+d)
∥∥∥2
L2

)
‖∇m‖2H1 .

Combining these above estimates, we can prove Lemma 2.2.

Lemma 2.3. Let (ρ,u,d) be a global and smooth solution of (1.1), then the following
inequality holds for any positive number η,∥∥∥|u||∇2m|

∥∥∥2
L2

≤η‖∇mt‖2L2 +C
(

1+‖∇m‖
2
3

L∞‖∇m‖
4
3

L2

)(∥∥∥|u||∇u|∥∥∥2
L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2

)
+C

(
‖∇m‖L∞+‖∇m‖2L∞‖∇m‖2L2

)
‖∇u‖2L2

(
‖∇u‖2L2 +‖∇2m‖2L2

)
, (2.5)

where C is a positive constant depending on η.

Proof. We apply operator ∇ to the third equation of (1.1) and multiplying the
resulting equation by |u|2∇m, and integrating on R3, we obtain that∥∥∥|u||∇2m|

∥∥∥2
L2

=−
∫
|u|2∇m ·∇mtdx−

1

2

∫
∇(|u|2) ·∇(|∇m|2)dx

−
∫
|u|2∇(u ·∇m) ·∇mdx+

∫
|u|2∇(|∇m|2(m+d)) ·∇mdx def

=

4∑
i=1

Ji. (2.6)

It is easy to check that

J1≤C‖∇m‖L3‖u2‖L6‖∇mt‖L2 ≤η‖∇mt‖2L2 +Cη‖∇m‖
2
3

L∞‖∇m‖
4
3

L2

∥∥∥|u||∇u|∥∥∥2
L2
,

J2≤C
(∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2

)
,

J3≤C‖∇m‖L∞(‖u‖3L6‖∇2m‖L2 +‖u‖2L6‖∇m‖L6‖∇u‖L2)

≤C‖∇m‖L∞‖∇u‖2L2

(
‖∇u‖2L2 +‖∇2m‖2L2

)
,
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J4 =

∫
|u|2|∇m|4dx≤C‖|∇m|2‖L6‖∇m‖L∞‖∇m‖L2‖u‖2L6

≤C
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2
+C‖∇m‖2L∞‖∇m‖2L2‖∇u‖4L2 .

Combining these above estimates, we complete the proof of Lemma 2.3.
Now we need to estimate ∇u and ∇2m. First we denote the effective viscosity flux

as G= divu− 1
2µ+λ (n− 1

2 |∇m|
2), which plays a crucial role in the proof of the main

theorem.

Lemma 2.4. Let (ρ,u,d) be a global and smooth solution of (1.1) with 0≤ρ≤M , then
the following inequality holds

d

dt

(
‖∇u‖2L2 +‖divu‖2L2 +‖∇2m‖2L2 +‖4m+ |∇m|2(m+d)‖2L2−

∫
ndivudx

+

∫
F (ρ)dx+

∫
u ·(∇m ·4m)dx

)
+‖ρ 1

2ut‖2L2 +‖∇mt‖2L2

≤η‖G‖2
Ḣ1 +Cη

((
1+‖∇m‖L∞

)2
‖∇u‖2L2 +

∥∥∥|u||∇u|∥∥∥2
L2

+
∥∥∥|u||∇2m|

∥∥∥2
L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2

)
, (2.7)

where η is a small constant and Cη depends on the initial data, M and F (ρ) is defined
as (2.9) below.

Proof. Multiplying the second equation of (1.1) by ut, we apply operator ∇ to
the third equation of (1.1) and multiplying the resulting equation by ∇mt, summing
up and integrating on R3, we obtain that

d

dt

(
µ

2
‖∇u‖2L2 +

µ+λ

2
‖divu‖2L2 +

1

4
‖∇2m‖2L2 +

1

4
‖4m+ |∇m|2(m+d)‖2L2

)
+‖ρ 1

2ut‖2L2 +‖∇mt‖2L2

=−
∫
∇p ·utdx−

∫
(ρu ·∇u) ·utdx−

∫
(∇m ·4m) ·utdx

−
∫
∇(u ·∇m)∇mtdx+

∫
∇(|∇m|2)(m+d) ·∇mtdx

def
=

5∑
i=1

Ki. (2.8)

Observe that

K1 =
d

dt

∫
ndivudx+

∫
γργ |divu|2dx−

∫
n|divu|2dx+

∫
div(nu)divudx

≤ d

dt

∫
ndivudx− 1

2µ+λ

∫
nu ·∇ndx+C‖∇u‖2L2

+C‖n‖L3‖u‖L6‖∇(divu− 1

2µ+λ
n)‖L2

≤ d

dt

∫
ndivudx− 1

2µ+λ

d

dt

∫
F (ρ)dx+C‖∇u‖2L2 +C

∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2
L2

+η‖G‖2
Ḣ1 ,

where

F (ρ) =

{
γ2

2(2γ−1) (ρ−1)2−
(

γ−1
2(2γ−1)ρ

γ + γ(γ−1)
2(2γ−1)ρ−

γ2+2γ−1
2(2γ−1)

)
F (ρ

∣∣1), for γ>1,
1
2 (ρ−1)2−(ρ lnρ−ρ+1), for γ= 1.

(2.9)
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By Taylor expansion, it is not difficult to check that F (ρ
∣∣1)≥C(M)(ρ−1)2 if ρ≤M ,

and |F (ρ)|≤CF (ρ
∣∣1) if ρ≤M .

It is easy to check that

K2≤C‖ρ
1
2 ‖L∞‖ρ

1
2ut‖L2

∥∥∥|u||∇u|∥∥∥
L2
≤η‖ρ 1

2ut‖2L2 +Cη

∥∥∥|u||∇u|∥∥∥2
L2
.

Observe that

K3 +K4 =− d

dt

∫
u ·(∇m ·4m)dx−2

∫
(∇u ·∇m) ·∇mtdx

+

∫
(u ·∇mt) ·4mdx−2

∫
u ·(∇2m ·∇mt)dx

≤− d

dt

∫
u ·(∇m ·4m)dx+η‖∇mt‖L2 +Cη

(
‖∇m‖2L∞‖∇u‖2L2 +

∥∥∥|u||∇2m|
∥∥∥2
L2

)
,

and

K5≤η‖∇mt‖2L2 +Cη

∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2
L2
.

Plugging these estimates, we complete the proof, where η is a small constant and Cη
depends on the initial data and M .

Next, we improve the estimates by using the elliptic system.
Lemma 2.5. Let (ρ,u,d) be a global and smooth solution of (1.1) with 0≤ρ≤M , then
the following inequality holds

‖4Pu‖2L2 +‖G‖2
Ḣ1 ≤C

(
‖ρ 1

2ut‖2L2 +
∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m||4m+ |∇m|2(m+d)|

∥∥∥2
L2

+
(

1+‖∇m‖
2
3

L∞‖∇m‖
4
3

L2

)∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2
L2

)
,

‖∇4m‖2L2 ≤C
(
‖∇mt‖2L2 +‖∇m‖2L∞‖∇u‖2L2 +

∥∥∥|u||∇2m|
∥∥∥2
L2

+
(

1+‖∇m‖
2
3

L∞‖∇m‖
4
3

L2

)∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2
L2

)
, (2.10)

where the constant C depends on M .

Proof. We apply operators P and Λ−1div to the second equation of (1.1) where
Λ =
√
−4, then we have

−µ4Pu=P(−ρ(ut+u ·∇u)−∇m ·4m),

−(2µ+λ)Λdivu−Λ(n− 1

2
|∇m|2) = Λ−1div(−ρ(ut+u ·∇u)−∇(∇m ·∇m)).

(2.11)

By the standard elliptic estimates, we can get that

µ‖4Pu‖2L2 +(2µ+λ)‖G‖2
Ḣ1

≤C
(
‖ρut‖2L2 +‖ρu ·∇u‖2L2 +‖∇m ·4m‖2L2 +‖∇|∇m|2‖2L2

)
≤C
(
‖ρ 1

2ut‖2L2 +
∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m||4m+ |∇m|2(m+d)|

∥∥∥2
L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2
+‖∇m‖6L6

)
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≤C
(
‖ρ 1

2ut‖2L2 +
∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m||4m+ |∇m|2(m+d)|

∥∥∥2
L2

+
(

1+‖∇m‖
2
3

L∞‖∇m‖
4
3

L2

)∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2
L2

)
.

We also have

‖∇4m‖2L2

≤C
(
‖∇mt‖2L2 +‖∇m‖2L∞‖∇u‖2L2 +

∥∥∥|u||∇2m|
∥∥∥2
L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2
+‖∇m‖6L6

)
,

thus we complete the proof of this Lemma.

Now we are in a position to estimate n, for which we have the following Lemma.

Lemma 2.6. Let (ρ,u,d) be a global and smooth solution of (1.1), then the following
inequality holds

d

dt
‖n‖2L6 +‖n‖2L6 ≤C‖G‖2Ḣ1 +C

∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2
L2
, (2.12)

where C is a positive constant depending on γ.

Proof. The first equation of (1.1) can be rewritten as

nt+u ·∇n+
γ

2µ+λ
n+γndivu=−γ(divu− 1

2µ+λ
n). (2.13)

Multiplying the above equation by |n|4n and integrating on R3, we have

1

6

d

dt
‖n‖6L6 +

1

2µ+λ

∫
[γ+(γ− 1

6
)n]|n|6dx≤C‖n‖5L6‖divu− 1

2µ+λ
n‖L6 .

Dividing the above estimate by ‖n‖4L6 , and using γ+(γ− 1
6 )n≥ 1

6 , we can obtain that

d

dt
‖n‖2L6 +‖n‖2L6 ≤C‖divu− 1

2µ+λ
n‖2L6

≤C‖G‖2L6 +C
∥∥|∇m|2∥∥2

L6 ,

thus we complete the proof.

Proposition 2.1. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of

(1.1) with 0≤ρ≤M and supt∈R+ ‖∇m‖L∞ ≤M, then we have ρ
1
2u∈L∞(R+;L2∩L4),

u∈L∞(R+;Ḣ1)∩L2(R+;Ḣ1), ρ
1
2ut∈L2(R+;L2), ∇m∈L∞(R+;H1∩L4), (4m+

|∇m|2(m+ d̄))∈L2(R+;L2), ∇mt∈L2(R+;L2), n∈L∞(R+;L2∩L6)∩L2(R+;L6),
|u||∇u|, |∇m|

∣∣∇|∇m|∣∣,|∇m||4m+ |∇m|2(m+ d̄)|,|u||∇2m|∈L2(R+;L2). Furthermore,
the following inequality holds

d

dt

{∫
F (ρ

∣∣1)dx+‖ρ 1
2u‖2L2 +‖∇m‖2L2 +‖ρ 1

4u‖4L4 +‖∇m‖4L4 +‖∇u‖2L2 +‖∇2m‖2L2

+‖n‖2L6

}
+C

(
‖n‖L6 +‖∇u‖2L2 +

∥∥∥4m+ |∇m|2(m+d)
∥∥∥2
L2

+‖ρ 1
2ut‖2L2 +‖∇mt‖2L2

+
∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2
+
∥∥∥|u||∇2m|

∥∥∥2
L2

+
∥∥∥|∇m||4m+ |∇m|2(m+ d̄)|

∥∥∥2
L2
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+
∥∥∥|∇m||∇2m+ |∇m|2(m+ d̄)|

∥∥∥2
L2

+‖4Pu‖2L2 +‖G‖2
Ḣ1 +‖∇4m‖2L2

)
≤0, (2.14)

where C is a positive constant depending on the initial data and µ,λ,M,M.

Proof. First, from Lemma 2.1, we have∇m∈L∞(R+;L2). Combining the Lemmas
2.1-2.6, and choosing η small enough and choosing 0<A5�A7�A4�A3�A2�A1,
where Ai are positive constants depending on the initial data and µ,λ,ρ̄,M, we can
obtain that

d

dt

{
A1

(∫
F (ρ

∣∣1)dx+‖ρ 1
2u‖2L2 +‖∇m‖2L2

)
+A2

(
‖ρ 1

4u‖4L4 +‖∇m‖4L4

)
+A4

(
‖∇u‖2L2 +‖divu‖2L2 +‖∇2m‖2L2 +‖4m+ |∇m|2(m+d)‖2L2−

∫
ndivudx

+

∫
F (ρ)dx+

∫
u ·(∇m ·4m)dx

)
+A5‖n‖2L6

}
+A6

(
‖n‖2L6 +‖∇u‖2L2 +‖divu‖2L2 +

∥∥∥4m+ |∇m|2(m+d)
∥∥∥2
L2

+‖ρ 1
2ut‖2L2 +‖∇mt‖2L2

+
∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m||4m+ |∇m|2(m+d)|

∥∥∥2
L2

+
∥∥∥|∇m||∇2m+ |∇m|2(m+d)|

∥∥∥2
L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2

)
+A3

∥∥∥|u||∇2m|
∥∥∥2
L2

+A7

(
‖4Pu‖2L2 +‖G‖2

Ḣ1 +‖∇4m‖2L2

)
≤A8

(
‖∇u‖2L2 +

∥∥∥4m+ |∇m|2(m+ d̄)
∥∥∥2
L2

)(
‖n‖2L6 +‖∇u‖2L2 +‖∇m‖2H1

)
, (2.15)

which ensure that the term A4

∫
ndivudx can be controlled by A4‖divu‖2L2 and

A1

∫
F (ρ

∣∣1)dx, the term A4

∫
u ·(∇m ·4m)dx can be controlled by A4‖∇2m‖2L2

and A1‖∇m‖2L∞‖u‖2L2 . By Grönwall’s inequality, using Lemma (2.1), we can ob-

tain that ρ
1
2u∈L∞(R+;L2∩L4), u∈L∞(R+;Ḣ1)∩L2(R+;Ḣ1), ρ

1
2ut∈L2(R+;L2),

∇m∈L∞(R+;H1∩L4), (4m+ |∇m|2(m+d))∈L2(R+;L2), ∇mt∈L2(R+;L2),
n∈L∞(R+;L2∩L6)∩L2(R+;L6), |u||∇u|,|∇m|

∣∣∇|∇m|∣∣,|∇m||4m+ |∇m|2(m+

d)|, |u||∇2m|∈L2(R+;L2).

2.2. Improving regularity estimate for u and ∇m. In order to get the
dissipation estimate for n, we first improve regularity estimate for u and ∇m in this
subsection. We set up some notations. For a function or vector field (or even a 3×3
matrix) f(t,x), the material derivative ḟ is defined by

ḟ =ft+u ·∇f,

and div(f⊗u) =
∑3
j=1∂j(fuj). For two matrices A= (aij)3×3 and B= (bij)3×3, we use

the notation A :B=
∑3
i,j=1aijbij and AB is as usual the multiplication of matrices.

Lemma 2.7. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1) with

0≤ρ≤M and supt∈R+ ‖∇m‖L∞ ≤M, then the following inequality holds

d

dt

∫ (
ρu̇2 +(∇mt)

2
)
dx+‖∇u̇‖2L2 +‖div u̇‖2L2 +‖∇2mt‖2L2

≤C
(
‖∇u‖4L4 +

(
‖∇u‖2L2 +‖∇2m‖2L2 +‖∇u‖2L6 +‖∇2m‖2L6

)(
1+‖∇mt‖2L2

))
, (2.16)



YUHUI CHEN, JINGCHI HUANG, HAIYAN XU, AND ZHENG-AN YAO 897

where u̇=ut+u ·∇u, and C is a positive constant depending on the initial data and
µ,λ,M,M.

Proof. We rewrite the second equation and the third equation of (1.1) asρu̇t+ρu ·∇u̇−µ(4ut+div(u⊗4u))−(µ+λ)(∇divut+div(u⊗∇divu))
+∇nt+div(u⊗∇n) =−(∇m ·4m)t−div(u⊗(∇m ·4m)),
∇mtt+∇(u ·∇m)t=∇(4m+ |∇m|2(m+d))t.

(2.17)

Multiplying above the first equation by u̇, the second equation by ∇mt, summing up
and integrating on R3, we obtain that

1

2

d

dt

∫ (
ρu̇2 +(∇mt)

2
)
dx+‖∇2mt‖2L2

=

∫
(ntdiv u̇+(u ·∇u̇) ·∇n)dx−µ

∫
(∇u̇ :∇ut+∇u̇ : (u⊗4u))dx

+(µ+λ)

∫
(∇divut+div(u⊗∇divu)) · u̇dx

−
∫

div(u⊗(∇m ·4m)) · u̇dx+

∫
∇(|∇m|2(m+d))t ·∇mtdx

−
∫ (

(∇m ·4m)t · u̇+∇(u ·∇m)t∇mt

)
dx

def
=

6∑
i=1

Li. (2.18)

It is not difficult to derive that

L1 =−γ
∫
ργ divudiv u̇dx+

∫
n
(
divudiv u̇−(∇u)t :∇u̇

)
dx≤η‖∇u̇‖2L2 +Cη‖∇u‖2L2 ,

L2≤−
3µ

4
‖∇u̇‖2L2 +C‖∇u‖4L4 ,

L3≤−
µ+λ

2
‖div u̇‖2L2 +

µ

4
‖∇u̇‖2L2 +C‖∇u‖4L4 ,

L4≤C‖∇u̇‖L2‖u‖L6‖∇m‖L6‖∇2m‖L6 ≤η‖∇u̇‖2L2 +Cη

(
‖∇u‖4L2 +‖∇2m‖4L2

)
‖∇2m‖2L6 ,

L5≤C‖∇m‖2L6‖mt‖L6‖∇2mt‖L2 +‖∇m‖L6‖∇mt‖L3‖∇2mt‖L2

≤η‖∇2mt‖2L2 +Cη‖∇2m‖4L2‖∇mt‖2L2 ,

As for the last term L6, observe that

L6 =−
∫

(∇mt ·4m) · u̇dx−
∫

(u ·∇u) ·∇m ·4mtdx+

∫
(u ·∇mt) ·4mtdx

def
=

3∑
i=1

L6i.

In a similar calculation, we also have

L61≤C‖∇mt‖L3‖4m‖L2‖u̇‖L6 ≤η‖∇u̇‖2L2 +η‖∇2mt‖2L2 +Cη‖∇2m‖4L2‖∇mt‖2L2 ,
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L62≤η‖∇2mt‖2L2 +Cη

(
‖∇u‖4L2 +‖∇2m‖4L2

)
‖∇u‖2L6 ,

L63≤‖u‖L∞‖∇mt‖L2‖∇2mt‖L2 ≤η‖∇2mt‖2L2 +Cη(‖∇u‖2L2 +‖∇u‖2L6)‖∇mt‖2L2 .

Substituting these estimates, choosing η small enough and applying the Proposition 2.1,
we proof the Lemma.

Lemma 2.8. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1) with

0≤ρ≤M and supt∈R+ ‖∇m‖L∞ ≤M, then the following inequality holds

d

dt

∫
|∇m|2|∇2m|2dx+

∥∥∥|∇m||∇4m|∥∥∥2
L2

≤C
(
‖∇2m‖2L2 +‖∇u‖2L6 +‖∇2m‖2L6

)(
1+‖∇mt‖2L2

)
, (2.19)

where C is a positive constant depending on the initial data and µ,λ,M,M.

Proof. We apply the ∇ operator to the third equation of (1.1), multiplying by
−|∇m|2∇4m, and integrating on R3, we obtain that

1

2

d

dt

∫
|∇m|2|∇2m|2dx+

∫
|∇m|2|∇4m|2dx

=−2

∫
(∇2m ·∇mt) : (∇2m ·∇m)dx+

∫
|∇2m|2∇m :∇mtdx

+

∫
|∇m|2∇(u ·∇m) ·∇4mdx−

∫
|∇m|2∇(|∇m|2(m+d)) ·∇4mdx

def
=

4∑
i=1

Mi. (2.20)

It is not difficult to derive that

M1 +M2≤C‖∇m‖L6‖∇mt‖L2‖∇2m‖2L6 ≤C
(
‖∇2m‖2L2 +‖∇mt‖2L2

)
‖∇2m‖2L6 ,

M3≤η
∥∥∥|∇m||∇4m|∥∥∥2

L2
+Cη(‖∇u‖2L6 +‖∇2m‖2L6),

M4≤η
∥∥∥|∇m||∇4m|∥∥∥2

L2
+Cη(‖∇2m‖2L2 +‖∇2m‖2L6).

Substituting these estimates, choosing η small enough, we prove the Lemma.

Lemma 2.9. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1) with

0≤ρ≤M and supt∈R+ ‖∇m‖L∞ ≤M, then the following inequality holds

d

dt

∫
|u|2|∇2m|2dx+

∥∥∥|u||∇4m|∥∥∥2
L2

≤η‖∇u̇‖2L2 +C
(
‖∇2m‖2L2 +‖∇u‖4L4 +‖∇2m‖4L4 +‖∇u‖2L6 +‖∇2m‖2L6

)
, (2.21)

where C is a positive constant depending on the initial data and µ,λ,M,M.
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Proof. Applying ∇2 operator to the third equation of (1.1), multiplying by
|u|2∇2m, and integrating on R3, we obtain that

1

2

d

dt

∫
|u|2|∇2m|2dx+

∫
|u|2|∇4m|2dx

=

∫
|∇2m|2u ·utdx−2

∫
(∇4m ·∇2m) : (∇u ·u)dx

−
∫
|u|2∇2(u ·∇m) ·∇2mdx+

∫
|u|2∇2(|∇m|2(m+d)) ·∇2mdx

def
=

4∑
i=1

Ni. (2.22)

It is not difficult to derive that

N1 =

∫
|∇2m|2u · u̇dx−

∫
|∇2m|2u ·(u ·∇u)dx

≤η‖∇u̇‖2L2 +Cη

(
‖∇2m‖4L4 +‖∇u‖2L6 +‖∇2m‖2L6

)
,

N2≤η
∥∥∥|u||∇4m|∥∥∥2

L2
+Cη

(
‖∇u‖4L4 +‖∇2m‖4L4

)
,

N3≤η
∥∥∥|u||∇4m|∥∥∥2

L2
+Cη

(
‖∇u‖4L4 +‖∇2m‖4L4 +‖∇u‖2L6 +‖∇2m‖2L6

)
,

N4≤η
∥∥∥|u||∇4m|∥∥∥2

L2
+Cη

(
‖∇2m‖2L2 +‖∇u‖4L4 +‖∇2m‖4L4 +‖∇u‖2L6 +‖∇2m‖2L6

)
.

Substituting these estimates, choosing η small enough, we prove the Lemma.

Proposition 2.2. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1)

with 0≤ρ≤M and supt∈R+ ‖∇m‖L∞ ≤M, and the admissible condition (1.4), then the
following inequality holds

d

dt

{∫
F (ρ

∣∣1)dx+‖ρ 1
2u‖2L2 +‖∇m‖2L2 +‖ρ 1

4u‖4L4 +‖∇m‖4L4 +‖∇u‖2L2 +‖∇2m‖2L2

+‖n‖2L6 +‖ρ 1
2 u̇‖2L2 +‖∇mt‖2L2 +

∥∥∥|∇m||∇2m|
∥∥∥2
L2

+
∥∥∥|u||∇2m|

∥∥∥2
L2

}
+C

(
‖n‖L6 +‖∇u‖2L2 +

∥∥∥4m+ |∇m|2(m+d)
∥∥∥2
L2

+‖ρ 1
2ut‖2L2 +‖∇mt‖2L2

+
∥∥∥|u||∇u|∥∥∥2

L2
+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2
+
∥∥∥|u||∇2m|

∥∥∥2
L2

+
∥∥∥|∇m||4m+ |∇m|2(m+d)|

∥∥∥2
L2

+‖4Pu‖2L2 +‖G‖2
Ḣ1 +‖∇4m‖2L2 +‖∇Pu‖2W 1,6 +‖G‖2W 1,6 +‖∇u‖2L6

+‖∇2m‖2L6 +‖∇u̇‖2L2 +‖∇2mt‖2L2 +
∥∥∥|∇m||∇4m|∥∥∥2

L2
+
∥∥∥|u||∇4m|∥∥∥2

L2

)
≤0,

(2.23)

where C is a positive constant depending on the initial data and µ,λ,M,M.

Proof. Together with (2.16), (2.19) and (2.21), we deduce that

d

dt

(
‖ρ 1

2 u̇‖2L2 +‖∇mt‖2L2 +
∥∥∥|∇m||∇2m|

∥∥∥2
L2

+
∥∥∥|u||∇2m|

∥∥∥2
L2

)
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+‖∇u̇‖2L2 +‖∇2mt‖2L2 +
∥∥∥|∇m||∇4m|∥∥∥2

L2
+
∥∥∥|u||∇4m|∥∥∥2

L2

≤C
(
‖∇u‖4L4 +‖∇2m‖4L4 +

(
‖∇u‖2L2 +‖∇2m‖2L2 +‖∇u‖2L6 +‖∇2m‖2L6

)
×
(

1+‖∇mt‖2L2

))
. (2.24)

Then the Lemma 2.5 implies that

‖∇u‖4L4 ≤C‖∇u‖L2‖∇u‖3L6

≤C‖∇u‖L2‖∇u‖2L6

(
‖∇Pu‖L6 +‖G‖L6 +‖|∇m|2‖L6 +‖n‖L6

)
≤C‖∇u‖2L6

(
1+‖ρ

1
2 u̇‖2L2 +

∥∥∥|∇m||4m+ |∇m|2(m+d)|
∥∥∥2
L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥2

L2

)
≤C‖∇u‖2L6

(
1+‖ρ

1
2 u̇‖2L2 +

∥∥∥|∇m||∇2m|
∥∥∥2
L2

)
,

and we also have

‖∇2m‖4L4 ≤C‖∇2m‖2L6

(
‖∇mt‖L2 +

∥∥∥|u||∇2m|
∥∥∥
L2

+
∥∥∥|∇u||∇m|∥∥∥

L2

+
∥∥∥|∇m|∣∣∇|∇m|∣∣∥∥∥

L2
+‖|∇m‖6L6

)
≤C‖∇2m‖2L6

(
1+‖∇mt‖L2 +

∥∥∥|u||∇2m|
∥∥∥
L2

+
∥∥∥|∇m||∇2m|

∥∥∥
L2

)
.

By using these∇2 operator estimates, we can obtain that

d

dt

(
‖ρ 1

2 u̇‖2L2 +‖∇mt‖2L2 +
∥∥∥|∇m||∇2m|

∥∥∥2
L2

+
∥∥∥|u||∇2m|

∥∥∥2
L2

)
+‖∇u̇‖2L2 +‖∇2mt‖2L2 +

∥∥∥|∇m||∇4m|∥∥∥2
L2

+
∥∥∥|u||∇4m|∥∥∥2

L2

≤C
(
‖∇u‖2L2 +‖∇2m‖2L2 +‖∇u‖2L6 +‖∇2m‖2L6

)
×
(

1+‖ρ 1
2 u̇‖2L2 +‖∇mt‖L2 +

∥∥∥|u||∇2m|
∥∥∥
L2

+
∥∥∥|∇m||∇2m|

∥∥∥
L2

)
. (2.25)

Noting that ∇u∈L2(R+;L2∩L6) and ∇2m∈L2(R+;L2∩L6), by Proposition 2.1, it
follows that

‖∇u‖L6 ≤‖∇Pu‖L6 +‖G‖L6 +
1

2µ+λ
‖n‖L6 +

1

2(2µ+λ)

∥∥|∇m|2∥∥
L6 ,

‖∇2m‖L6 ≤C‖∇3m‖L2 ≤C‖∇4m‖L2 .

Then we get by Grönwall’s inequality that

d

dt

(
‖ρ 1

2 u̇‖2L2 +‖∇mt‖2L2 +
∥∥∥|∇m||∇2m|

∥∥∥2
L2

+
∥∥∥|u||∇2m|

∥∥∥2
L2

)
+‖∇u̇‖2L2 +‖∇2mt‖2L2 +

∥∥∥|∇m||∇4m|∥∥∥2
L2

+
∥∥∥|u||∇4m|∥∥∥2

L2
≤0. (2.26)

On the other hand, from Lemma (2.5), we have

‖4Pu‖2L6 +‖∇G‖2L6 ≤C
(
‖∇u̇‖2L2 +

∥∥∥|∇m||∇4m|∥∥∥2
L2

+‖∇2m‖4L4

)
≤C

(
‖∇u̇‖2L2 +

∥∥∥|∇m||∇4m|∥∥∥2
L2

+‖∇2m‖2L6

)
,

which, together with Proposition 2.1, completes the proof of this proposition.
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2.3. Estimate for the propagation of ∇n. In this subsection, we want to give
the proof of the upper bound of ‖∇u‖L2(R+;L∞) which in turn gives the estimates for
the propagation of ∇n.

Proposition 2.3. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1)

with 0≤ρ≤ ρ̄, supt∈R+ ‖∇m‖L∞ ≤M, and initial data (ρ0,u0,d0) verifying that ρ0≥ c>
0, the admissible condition (1.4) and

sup
t∈R+

‖ρ(t,·)‖Cα ≤M, with 0<α<1. (2.27)

As a consequence, there exists a constant ρ=ρ(c,M,M)>0 such that for all t≥0, we

have ρ(t,x)≥ρ. Then we have ∇u∈L2(R+;L∞), moreover, the following inequality
holds

d

dt
‖∇n‖2L2 +‖∇n‖2L2

≤C
(
‖n‖2L6 +‖G‖2

Ḣ1 +‖G‖2W 1,6 +‖∇Pu‖2W 1,6 +
∥∥∥|∇m||∇2m|

∥∥∥2
L2

+
∥∥∥|∇m||∇4m|∥∥∥2

L2

)
,

(2.28)

where C is a constant depending on the initial data, M and M.

Proof. First of all, by using the interpolation inequality, we can get ‖∇Λ−1n‖L∞ ≤
‖n‖βL6 |n‖1−βCα , with β= 1− 1

1+2α ∈ (0,1), then we have

‖∇u‖2L∞ ≤C
(
‖∇Pu‖2L∞+‖∇Λ−1(divu− 1

2µ+λ
(n− 1

2
|∇m|2))‖2L∞

+‖∇Λ−1n‖2L∞+‖∇Λ−1|∇m|2‖2L∞
)

≤C
(
‖∇Pu‖2W 1,6 +‖∇Λ−1G‖2W 1,6 +‖n‖2βL6‖n‖2(1−β)Cα +‖|∇m|2‖2W 1,6

)
≤η+Cη

(
‖∇Pu‖2W 1,6 +‖G‖2W 1,6 +‖n‖2L6 +

∥∥∥|∇m||∇2m|
∥∥∥2
L2

+
∥∥∥|∇m||∇4m|∥∥∥2

L2

)
. (2.29)

On the other hand, it is not difficult to derive that

∂t∇n+(u ·∇)∇n+
γργ

2µ+λ
∇n=−∇u∇n−γdivu∇n−γργ∇(divu− 1

2µ+λ
n).

By energy estimates, we can derive that for any q≥2,

1

2

d

dt
‖∇n‖2Lq +

1

(2µ+λ)q
‖∇n‖2Lq ≤C

(
‖∇u‖L∞‖∇n‖2Lq +‖∇(divu− 1

2µ+λ
n)‖Lq‖∇n‖Lq

+‖divu− 1

2µ+λ
n‖L∞‖∇n‖2Lq

)
,

which implies that

d

dt
‖∇n‖2Lq +‖∇n‖2Lq ≤C

(
‖∇u‖2L∞‖∇n‖2Lq +‖∇(divu− 1

2µ+λ
n)‖2Lq

+‖divu− 1

2µ+λ
n‖2W 1,6‖∇n‖2Lq

)
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≤C
(
‖∇u‖2L∞‖∇n‖2Lq +‖∇G‖2Lq +‖G‖2W 1,6‖∇n‖2Lq

)
+C

(
‖∇(|∇m|2)‖2Lq +

∥∥|∇m|2∥∥2
W 1,6‖∇n‖2Lq

)
. (2.30)

By taking q= 6 in (2.30) and using (2.29) and Propostion 2.2, we obtain from
Grönwall’s inequality that ‖n‖L∞(R+;W 1,6)∩L2(R+;W 1,6)≤C; from which, together with
(2.29), it implies that ‖∇u‖L2(R+;L∞)≤C.

Now we go back to (2.30) with q= 2. By Grönwall’s inequality, we obtain that
∇n∈L∞(R+;L2)∩L2(R+;L2). Thanks to the uniform-in-time bounds obtained above,
(2.30) with q= 2 will yield that

d

dt
‖∇n‖2L2 +‖∇n‖2L2 ≤C

(
‖∇G‖2L2 +‖G‖2W 1,6 +‖∇Pu‖2W 1,6

+
∥∥∥|∇m||∇2m|

∥∥∥2
L2

+
∥∥∥|∇m||∇4m|∥∥∥2

L2

)
+C‖n‖2L6 ,

then we obtain (2.28).
Now using the first equation of (1.1) and above inequality, we have

ρ(t,x)≥ρ0(x)e−
∫ t
0
‖divu(τ)‖L∞dτ ≥ρ0(x)e−Ct

1
2 . (2.31)

On the other hand, thanks to Lemma 2.6, we derive that lim
t→∞
‖n(t)‖L6 = lim

t→∞
‖n(t)‖L6 =

0, from which, together with upper bounds for ρ in Cα, we derive that lim
t→∞
‖n(t)‖L∞ = 0.

These two facts imply that there exists a constant ρ=ρ(c,M,M)>0 such that for all
t≥0, ρ(t,x)≥ρ. We complete the proof of the proposition.

2.4. Deriving the dissipation inequality. Thanks to Propositions 2.1-2.3, we
obtain that:
Proposition 2.4. Let µ> 1

2λ, and (ρ,u,d) be a global and smooth solution of (1.1)
with 0≤ρ≤M and supt∈R+ ‖∇d(t,·)‖L∞+supt∈R+ ‖ρ(t,·)‖Cα ≤M with 0<α<1, initial
data (ρ0,u0,d0) verifying that ρ0≥ c>0 and the admissible condition (1.4). Set

X(t) =‖n‖2H1 +‖u‖2H1 +‖∇m‖2H1 +‖u̇‖2L2 +‖∇mt‖2L2

+
∥∥∥|∇m||∇2m|

∥∥∥2
L2

+
∥∥∥|u||∇2m|

∥∥∥2
L2
. (2.32)

It is easy to check that

‖∇m‖L4 ≤‖∇m‖
1
4

L2‖∇2m‖
3
4

L2 , ‖∇m‖L4 ≤‖∇m‖
5
8

L2‖∇2m‖
3
8

L6 ,

so that

‖∇2m‖2L2 ≤
∥∥∥4m+ |∇m|2(m+d)

∥∥∥2
L2

+‖∇m‖4L4

≤
∥∥∥4m+ |∇m|2(m+d)

∥∥∥2
L2

+C‖∇m‖2L2‖∇2m‖L2‖∇2m‖L6

≤
∥∥∥4m+ |∇m|2(m+d)

∥∥∥2
L2

+η‖∇2m‖2L2 +C‖∇m‖4L2‖∇2m‖2L6 ,

∥∥∥∇(|∇m||∇2m|)
∥∥∥2
L2
≤C
∥∥∥|∇m||∇4m|∥∥∥2

L2
+C‖∇2m‖4L4

≤C
∥∥∥|∇m||∇4m|∥∥∥2

L2
+C‖∇2m‖2L6 ,
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and

∥∥∥∇(|u||∇2m|)
∥∥∥2
L2
≤C
∥∥∥|u||∇4m|∥∥∥2

L2
+C‖∇u‖4L4 +C‖∇2m‖4L4

≤C
∥∥∥|u||∇4m|∥∥∥2

L2
+C‖∇u‖2L6 +C‖∇2m‖2L6 .

Then the following inequality holds

d

dt
X(t)+C

(
‖∇n‖L2 +‖∇u‖2L2 +‖∇2m‖2L2 +‖∇u̇‖2L2 +‖∇2mt‖2L2

+
∥∥∥|u||∇4m|∥∥∥2

L2
+
∥∥∥|∇m||∇4m|∥∥∥2

L2
+‖∇u‖2L6 +‖∇2m‖2L6

)
≤0, (2.33)

where C is a constant depending on the initial data (ρ0,u0,d0) and µ,λ,c,M,M.

3. Convergence to the equilibrium

The aim of this section is to show the convergence of the solution to the equilibrium.

Proposition 3.1. Let µ> 1
2λ, and (ρ,u,d) be a global and smooth solution of (1.1)

with 0≤ρ≤M and supt∈R+ ‖∇d(t,·)‖L∞+supt∈R+ ‖ρ(t,·)‖Cα ≤M with 0<α<1, initial
data n0∈L1(R3)∩H1(R3),u0∈L1(R3)∩H2(R3),∇m0∈L1(R3),m0∈H3(R3) verifying
that ρ0≥ c>0 and the admissible condition (1.4). Then we have

‖n(t)‖H1 +‖u(t)‖H1 +‖∇m(t)‖H1 ≤C(1+ t)−
3
4 , (3.1)

where C is a constant depending on the initial data (ρ0,u0,m0) and µ,λ,c,M,M.

Proof. We take the Fourier transform of the first and second equations in
(1.1), we apply the ∇ operator to the third equation in (1.1) then apply the Fourier
transform, and multiplying the resulting first equation by γ ¯̂n, the resulting second

equation by ρ̂u, the resulting third equation by
¯̂∇m, summing up and integrating on

S(t) =
{
ξ
∣∣|ξ|≤C(1+ t)−

1
2

}
, we obtain that

1

2

∫
S(t)

(
γ|n̂(t,ξ)|2 + |ρ̂u(t,ξ)|2 + |∇̂m(t,ξ)|2

)
dξ

+

∫ t

0

∫
S(t)

(
µ|ξ|2|û(s,ξ)|2 +(µ+λ)|ξ · û(s,ξ)|2 + |ξ|2|∇̂m(s,ξ)|2

)
dξds

=
1

2

∫
S(t)

(
γ|n̂(0,ξ)|2 + |ρ̂u(0,ξ)|2 + |∇̂m(0,ξ)|2

)
dξ+Re

∫ t

0

∫
S(t)

{
− ̂div(ρu⊗u) · ρ̂u

+(µ4̂u+(µ+λ)∇̂divu) · n̂u+ i(γ−1)ξF̂ (ρ
∣∣1) · ρ̂u

−( ̂∇m ·4m) · ρ̂u−( ̂∇(u ·∇m)) · ¯̂∇m+( ̂∇(|∇m|2(m+d))) · ¯̂∇m
}
dξds

=
1

2

∫
S(t)

(
γ|n̂(0,ξ)|2 + |ρ̂u(0,ξ)|2 + |∇̂m(0,ξ)|2

)
dξ+

6∑
i=1

Oi. (3.2)
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Applying the Proposition 2.3 and Proposition 2.4, we have

O1≤η
∫ t

0

∫
S(t)

µ|ξ|2|û|2dξds+Cη

∫ t

0

∫
S(t)

|ρ̂u⊗u|2dξds+

∫ t

0

∫
S(t)

|ξ||ρ̂u⊗u||n̂u|dξds

≤η
∫ t

0

∫
S(t)

µ|ξ|2|û|2dξds+Cη

∫ t

0

‖ρ̂u⊗u‖2L∞
∫
S(t)

dξds

+

∫ t

0

‖ρ̂u⊗u‖L∞‖n̂u‖L∞
∫
S(t)

|ξ|dξds

≤η
∫ t

0

∫
S(t)

µ|ξ|2|û|2dξds+Cη(1+ t)−
3
2

∫ t

0

‖u‖4L2ds+C(1+ t)−2
∫ t

0

‖n‖L2‖u‖3L2ds,

in a similar fashion, we have

O2≤η
∫ t

0

∫
S(t)

µ|ξ|2|û|2dξds+Cη(1+ t)−
5
2

∫ t

0

‖n‖2L2‖u‖2L2ds,

O3≤η
∫ t

0

∫
S(t)

µ|ξ|2|û|2dξds+Cη(1+ t)−
3
2

∫ t

0

‖n‖4L2ds+Cη(1+ t)−
5
2

∫ t

0

‖n‖2L2‖u‖2L2ds,

O4≤η
∫ t

0

∫
S(t)

µ|ξ|2|û|2dξds+Cη(1+ t)−
3
2

∫ t

0

‖∇m‖4L2ds

+C(1+ t)−2
∫ t

0

‖n‖L2‖u‖L2‖∇m‖2L2ds,

O5≤η
∫ t

0

∫
S(t)

|ξ|2|∇̂m|2dξds+Cη(1+ t)−
3
2

∫ t

0

‖u‖2L2‖∇m‖2L2ds,

O6≤η
∫ t

0

∫
S(t)

|ξ|2|∇̂m|2dξds+Cη(1+ t)−
3
2

∫ t

0

‖m+d‖2L∞‖∇m‖4L2ds.

Note that (n0,ρ0u0,∇m0)∈L1(R3), then we have

1

2

∫
S(t)

(
γ|n̂(0,ξ)|2+ |ρ̂u(0,ξ)|2+ |∇̂m(0,ξ)|2

)
dξ≤C

(
‖n0‖2L1 +‖ρ0u0‖2L1 +‖∇m0‖2L1

)
(1+ t)−

3
2 .

Plugging above estimates, and choosing η small enough, we arrive at∫
S(t)

(
|n̂(t,ξ)|2 + |ρ̂u(t,ξ)|2 + |∇̂m(t,ξ)|2

)
dξ

≤C(1+ t)−
3
2 +C(1+ t)−

3
2

∫ t

0

(
‖n‖4L2 +‖u‖4L2 +‖∇m‖4L2

)
ds≤C(1+ t)−

1
2 . (3.3)

We recall the dissipation inequality from Proposition 2.4, by frequency splitting
method, it is not difficult to derive that

d

dt
X(t)+

1

1+ t
X(t)≤ 1

1+ t

∫
S(t)

(
|n̂(t,ξ)|2 + |û(t,ξ)|2 + |∇̂m(t,ξ)|2 + |ˆ̇u(t,ξ)|2 + |∇̂mt(t,ξ)|2

+ | ̂|∇m||∇2m|(t,ξ)|2 + | ̂|u||∇2m|(t,ξ)|2
)
dξ,
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due to the fact u=ρu−nu, we have∫
S(t)

|û(t,ξ)|2dξ≤
∫
S(t)

|ρ̂u(t,ξ)|2dξ+

∫
S(t)

|n̂u(t,ξ)|2dξ≤C(1+ t)−
1
2 ,

following the same argument, we can obtain that∫
S(t)

|ρ̂u̇(t,ξ)|2dξ≤C
∫
S(t)

∣∣∣µ4̂u(t,ξ)+(µ+λ)∇̂divu(t,ξ)−(γ−1)∇̂F (ρ
∣∣1)(t,ξ)

−γ∇̂n(t,ξ)+ ̂∇m ·4m(t,ξ)
∣∣∣2dξ≤C(1+ t)−

3
2 ,

∫
S(t)

|∇̂mt(t,ξ)|2dξ≤C
∫
S(t)

∣∣∣∇̂4m(t,ξ)+ ̂∇(|∇m|2(m+d))(t,ξ)− ̂∇(u ·∇m)(t,ξ)≤C(1+ t)−
5
2 ,

∫
S(t)

| ̂|∇m||∇2m|(t,ξ)|2dξ+

∫
S(t)

| ̂|u||∇2m|(t,ξ)|2dξ≤C(1+ t)−
3
2 ,

which implies that

d

dt
X(t)+

1

1+ t
X(t)≤C(1+ t)−

3
2 , ‖(n,u,∇m)(t)‖H1 ≤C(1+ t)−

1
4 .

We need to improve the decay estimate. Now following a similar argument used in the
previous proof, we conclude that∫

S(t)

(
|n̂(t,ξ)|2 + |ρ̂u(t,ξ)|2 + |∇̂m(t,ξ)|2

)
dξ≤C(1+ t)−

3
2 +C(1+ t)−

3
2 log(1+ t),

which implies that

d

dt
X(t)+

1

1+ t
X(t)≤C(1+ t)−

5
2 log(1+ t), ‖(n,u,∇m)(t)‖H1 ≤C(1+ t)−

3
4 log

1
2 (1+ t).

Now we repeat the same process as above to get that∫
S(t)

(
|n̂(t,ξ)|2 + |ρ̂u(t,ξ)|2 + |∇̂m(t,ξ)|2

)
dξ≤C(1+ t)−

3
2 ,

which implies that

d

dt
X(t)+

1

1+ t
X(t)≤C(1+ t)−

5
2 .

And this completes the proof of the proposition.

4. Global-in-time stability for liquid crystal system
In this section, we want to prove Theorem 1.2. By the local well-posedness for the

system (1.1), we can show that the perturbed solutions will remain close to the reference
solutions for a long time if their initial values are close. Then the convergence result
implies that the reference solutions are close to the equilibrium after a long time, and
the perturbed solutions are also close to the equilibrium. Then we can prove the global
existence in the equilibrium framework.
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Let (ρ̃, ũ, d̃) be a global solution for (1.1) with the initial data (ρ̃0,ũ0, d̃0), and
let (ρ,u,d) be a global solution for (1.1) with the initial data (ρ0,u0,d0). We denote
h=ρ− ρ̃, v=u− ũ, b=d− d̃ which satisfy the following error equations:

∂th+(v+ ũ) ·∇h=−v ·∇ρ̃−(h+ ρ̃)divv−hdiv ũ, (t,x)∈R+×R3,

∂tv+v ·∇v−µdiv(
1

ρ
∇v)−(µ+λ)∇(

1

ρ
divv) =F,

∂tb−4b=G,

(4.1)

where

F =− 1

ρ

(
hũt+hv ·∇ũ+hũ ·∇v+hũ ·∇ũ+ ρ̃v ·∇ũ+γ(ργ−1− ρ̄γ−1)∇ρ̃

+∇b ·4b+∇b ·4d̃
)
−γ(ργ−2− ρ̃γ−2)∇h−(

∇d̃
ρ
−∇d̃

ρ̃
) ·4b−∇d̃

ρ̃
·4b

− ρ̃γ−2∇h−(
ρ̃ũ

ρ
− ρ̃ũ
ρ̃

) ·∇v− ρ̃ũ
ρ̃
·∇v+µ

∇h
ρ2
∇v+(µ+λ)

∇h
ρ2

divv

+µ(
∇ρ̃
ρ2
−∇ρ̃
ρ̃2

)∇v+µ
∇ρ̃
ρ̃2
∇v+(µ+λ)(

∇ρ̃
ρ2
−∇ρ̃
ρ̃2

)divv+(µ+λ)
∇ρ̃
ρ̃2

divv,

G=−(v+ ũ) ·∇b−v ·∇d̃+ |∇b|2b+ |∇b|2d̃+ |∇d̃|2b+2∇b :∇d̃(b+ d̃).

Proposition 4.1. Let (ρ̃, ũ, d̃) be the smooth solution for (1.1) satisfying assumption
of Theorem 1.2. Given an ε>0, if the initial data (h0,v0,b0) of (4.1) satisfy that

‖h0‖H4 +‖v0‖H4 +‖b0‖H4 ≤ ε, (4.2)

then there exists a constant c independent of ε, such that for any t∈ [0,c| lnε|], there
holds

‖h(t)‖H4 +‖v(t)‖H4 +‖b(t)‖H4 ≤ ε 1
2 . (4.3)

Proof. We use the continuity argument to prove the desired results. Let T be the
maximum time such that for any t∈ [0,T ], there holds

‖h(t)‖H4 +‖v(t)‖H4 +‖b(t)‖H4 ≤ ε 1
2 .

The existence of T can be obtained by the local well-posedness, then we need to prove
that T ≥ c| lnε|, where c is a constant independent of ε.

Now for 0≤k≤4, applying ∇k to (4.1) and then multiplying the first equation by
∇kh and integrating over R3, we have

d

dt
‖h(t)‖2H4 ≤C(‖ũ‖H5 +‖v‖H4)‖h‖2H4 +C(1+‖ρ̃−1‖H5 +‖h‖H4)‖∇v‖H4‖h‖H4

≤Cη‖h‖2H4 +η‖∇v‖2H4 ,

then the second equation by ∇ku and integrating over R3, we have

d

dt
‖v(t)‖2H4 +‖∇v(t)‖2H4

≤C(‖h‖2H4 +‖v‖2H4 +‖b‖2H4)+Cε
1
2 (‖∇v‖2H4 +‖∇b‖2H4)+η‖∇v‖2H4 +Cη‖∇b‖2H4 ,
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then the third equation by ∇kb and integrating over R3, we have

d

dt
‖b(t)‖2H4 +‖∇b(t)‖2H4

≤C(‖ũ‖H4 +‖v‖H4)‖b‖2H4 +C(1+‖d̃− d̄‖H4)‖v‖H4‖∇b‖H4

+C(‖b‖3H4 +(1+‖d̃− d̄‖H4)‖b‖2H4 +(1+‖d̃− d̄‖2H4)‖b‖H4)‖∇b‖H4

≤C‖v‖2H4 +C‖b‖2H4 +η‖∇b‖2H4 .

Summing up above estimates, choosing η small enough, we obtain that

‖h(t)‖2H4 +‖v(t)‖2H4 +‖b(t)‖2H4

≤‖h0‖2H4 +‖v0‖2H4 +‖b0‖2H4 +C

∫ t

0

(‖h(τ)‖2H4 +‖v(τ)‖2H4 +‖b(τ)‖2H4)dτ,

for any t∈ [0,T ]. By Grönwall’s inequality, we get that

‖h(t)‖2H4 +‖v(t)‖2H4 +‖b(t)‖2H4 ≤C
(
‖h0‖2H4 +‖v0‖2H4 +‖b0‖2H4

)
eCt,

for any t∈ [0,T ]. According to the definition of T , which implies that T ≥ c| lnε| for a
suitable c independent of ε. Then we complete the proof.

Proof. (Proof of Theorem 1.2.) Thanks to Theorem 1.1, we can choose t0 =
1
2 (1+c| lnε|), then we have

‖(ρ̃−1)(t0)‖H4 +‖ũ(t0)‖H4 +‖(d̃− d̄)(t0)‖H4 ≤C(1+c|lnε|)− 3
4 ,

then we derive that

‖(ρ−1)(t0)‖H4 +‖u(t0)‖H4 +‖(d− d̄)(t0)‖H4 ≤ ε 1
2 +C(1+c| lnε|)− 3

4 ≤C(1+c|lnε|)− 3
4 .

(4.4)
This means that at t0, the system (1.1) is in the close-to-equilibrium regime. Then we
can obtain the global existence for (ρ−1,u,d− d̄). Moreover due to the definition of T ,
we conclude that for any t>0

‖h(t)‖H4 +‖v(t)‖H4 +‖b(t)‖H4 ≤Cmin{(1+c| lnε|)− 3
4 ,ε

1
2 +(1+ t)−

3
4 }. (4.5)

It completes the proof to Theorem 1.2.
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