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GLOBAL STABILITY OF LARGE SOLUTIONS TO
THE 3—D COMPRESSIBLE FLOW OF LIQUID CRYSTALS*

YUHUI CHENT, JINGCHI HUANG?!, HAIYAN XUS, AND ZHENG-AN YAOT

Abstract. The current paper is devoted to the investigation of the global-in-time stability of large
solutions to the compressible liquid crystal equations in the whole space. Suppose that the density is
bounded from above uniformly in time in the Héder space C* with « sufficiently small and in L°° space
respectively. Then we prove two results: (1) Such kind of the solution will converge to its associated
equilibrium with a rate which is the same as that for the heat equation. (2) Such kind of the solution is
stable, which means any perturbed solution will remain close to the reference solution if initially they
are close to each other. This implies that the set of the smooth and bounded solutions is open.
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1. Introduction
In this paper, we are concerned with the global stability of the large solutions to
3—D compressible liquid crystal equations:

Ogp+div(pu) =0, (t,r) ERT xR,
O(pu) +div(pu@u) +Vp=divl —Vd-Ad,  (t,z) eRT xR,
Oyd+u-Vd=Ad+|Vd2d,  (t,z)eRT xR?, (L.1)

| l‘lm (p7u7d):(1707£l); teRJra
x| —00

where p=p(t,z) € R denotes the density, u=u(t,z) € R® denotes the velocity, d(t,z)e
S?, the unit sphere in R®, represents the macroscopic average of the nematic liquid
crystal orientation field, and the pressure p is given by smooth function p=p(p). Here
we take p(p)=pY with the adiabatic exponent v>1. And T is the stress tensor given
by T=pu(Vu+ (Vu)')+ A(divu)! with I the identity matrix. The viscosity coefficients
of the flow satisfy >0 and 2;t+3XA>0. And d is a unit constant vector in S2.

The above system is basically a coupling of compressible Navier-Stokes equations
and parabolic heat flow. When d=d, the system (1.1) reduces to the well-known Navier-
Stokes equations for compressible isentropic flows which have been studied by many
researchers, see [3,4,10] and the references therein. When considering the compressible
nematic liquid crystal flow under the assumption that the director d has variable degrees
of orientations, the global existence of weak solutions in R? has been obtained by [14] and
[19]. Inspired by the work of [12] for parabolic incompressible flow, the corresponding
global finite-energy weak solutions to (1.1) was proved in [13]. The local existence of
strong solutions in R® has been studied by [8] and [9]. Recently, Chen and Zhai [2]
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established the global solutions and incompressible limit supplemented with arbitrary
large initial velocity and almost constant density, for large volume (bulk) viscosity.

In the present work, we are interested in the following two problems for the system
(1.1): (i) What is the long-time behavior of the solution to (1.1)? (ii) Which kind of
the solution to (1.1) is stable?

Obviously these two problems are fundamental for (1.1). However both of them
are not solved well. The main obstruction comes from the existence of global smooth
solution. So far, there has been a large amount of literature on this issue, but most of the
results are restricted to the perturbation framework. In other words, the global solution
and its long-time behavior is considered near the equilibrium. We refer readers to [11].
Because of this restriction, the method on the global dynamics and the stability of (1.1)
relies heavily on the analysis of the linearization of the system. The interested reader
is referred to [1,5,15,16,20] and the references therein for details. These results can be
summarized as follows. Assume that the initial data (pg,ug,dp) is a small perturbation
of equilibrium (1,0,d) in (L1 OH?’) X (L1 OH3) X (Ll OH?’). Then it can be proved that

l(p— L., V(d—d)(t)][ 2 <C(L+1)~ . (1.2)

This shows that in the close-to-equilibrium setting the rate of the convergence of the
solution is the same as that for the heat equations if we put the same condition on
the initial data. In this sense, (1.2) can be regarded as the optimal decay estimate for
system (1.1).

The aim of the paper is to investigate the long-time behavior and the global-in-time
stability of the solution to (1.1) for general initial data. The global existence of this
kind of solution is not the purpose of this paper. We refer readers to [2] and [6].

To obtain the long-time behavior and the global-in-time stability, we need to im-
pose some assumptions on the solution itself which at first looks unsatisfactory. Our
key observation is as follows. The basic energy identity shows that the system has a
dissipation structure which is not complete. In the case of liquid crystal system, there
is no dissipation for the density. However the coupling effect behind the system helps us
to obtain the dissipation for the density. Then the system will look like a heat equation.
By time-frequency splitting method, we can get the global dynamics: the propagation
of the smoothness and the convergence to equilibrium with the same rate as the one in
the result obtained by the linearization method. More explanation is given below.

Inspired by [6,7], we separate the process to get the stability of liquid crystal system
into three steps. The first step is to get the uniform-in-time bounds for the propagation
of the regularity. Because of the induction equation, we need to involve some new
methods which come from the corresponding blow-up results (see [9, 18]). Because of
the definition of the effective viscosity flux G which contains the orientation field now,
some new terms from (1.1), come out, see Lemma 2.4. To overcome that, we not only
need to apply methods from [6,7], but also use the structure of the system.

Each time when the uniform-in-time bounds for the regularity of the solution are
improved, the dissipation inequality can also be improved correspondingly. Thanks to
this observation, finally we obtain that

d
PG Lu,V(d=d)|*+[V(p—1,u,V(d-d))|* <0,

which enjoys the same structure as that for the heat equation. Now the time-frequency
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splitting method (see [17]) can be applied to get that

d 1
gl (= LuV(d=d)|*+ 5 ll(p = Lu, V(d - D)
1

<— L= lqu d)) dg. 1.3
1+t \5\s<1+t>*i|( or (13)

The problem of convergence is reduced to the estimate of the low-frequency part of
the solution, which is easy to do for the linear equation. By making full use of the
cancellation and the coupling effect of the system (1.1), we get the control of the right-
hand side of (1.3). Then the optimal decay estimate (1.2) follows.
Once the global dynamics of the equations is clear, we can prove the global-in-time
stability for the system (1.1) as follows:
(1) By the local well-posedness for the system (1.1), we show that the perturbed solution
will remain close to the reference solution for a long time if initially they are close.
(2) The long-time behavior of the solution suggests that the reference solution is close
to the equilibrium after a long time.

(3) Combining these two facts, we find a time ¢q such that ¢y is far away from the initial
time and at this moment the solution is close to the equilibrium. Then the desired
result follows from the standard perturbation framework.

Before we state our results, let us introduce the notations which are used throughout
the paper. We use the notation a ~ b whenever a < C1b and b < Cya where Cy and Cs are
universal constants. We denote C'(A1,A2,:-+,\,) by a constant depending on parameters
A1, A2, A

Now we are in a position to state our main results on the system (1.1). Our first
result is concerned with the global dynamics of the system.

THEOREM 1.1. Let ,u>%)\, and (p,u,d) be a global and smooth solution of (1.1)
with 0<p< M, and initial data (po,uo,do) verifying that po >c>0 and the admissible
condition

(1.4)

ut‘t:O —ug- Vg + - (leTO—VdO Ndy—Vpyg),
— Ado+|Vdo|*dy — o - Ve,

dy |t:0

and sup,cp+ | Vd(t,)| L +Supt%R+ ot ) lca <M for some 0<a<1. Then if (po—
1,u0,V(dog—4d)) GLl(R3)ﬂH2( ), then there exists a constant p= p(c, M, M) >0 such
that for all t >0, we have

plt,2)>p. (1.5)
We have the uniform-in-time bounds for the regularity of the solutions, assuming that
n=p—1, m=d—d,
||n||fqz+|IUI|§{2+||VmIIsz+/O IV ()1 + V() |32 + V2 m(7) || F2)dr
C(p, M, [[(no,uo, Vmo) | Lrnmz, [|dol|£2)- (1.6)
Moreover, we have the decay estimate for the solution

3
4 .

(1.7)

7l 72 + [[ull zr + [V g < C(p, Mol Lram s [[(wo, Vo) | Lramz, [[moll 22 ) (1+)
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REMARK 1.1.  Once the constants p and M are fixed, our theorem shows that all the
upper bounds obtained in the theorem depend only on the initial data.

REMARK 1.2. Since (1.7) implies (1.2), our decay estimate is optimal in some sense.

REMARK 1.3. It is easy to verify the additional condition that the density belongs
to a Hélder space, if the initial data (po,uo,do) is a small perturbation of equilibrium
(1,0,d).

REMARK 1.4. Here we don’t consider the global existence of the solution with initial
data which is far away from equilibrium. One can refer this in [2] and [6].

Our second result can be stated as follows:

THEOREM 1.2.  Let (p,a,d) be a global solution for (1.1) with the initial data (po, o, do)
verifying that

1 _ _ L N ~ ~
152V pll s + [0, @ Vil s + |, V] e < € (1.8)

Assume that (po—1,u0,V (do —d)) € L*(R*) N H?(R®). Then there exists an € depending
only on C' such that

190 — poll s + [0 —@io || ;s + || do — do | 14 <e, (1.9)

then (1.1) admits a global and unique solution (p,u,d) with the initial data (po,uo,do).
Moreover, for any t>0, we have

1(p—5)(®) | zra + 1l (w—@) (&) s + [1(d — d) (£) | srs < Cmrin{ (1 +¢|Ine]) ™5, e+ (1+1) %1}

(1.10)

where ¢ is a constant independent of €.
2. Global dynamics of the liquid crystal equations

2.1. Uniform-in-time bounds. In what follows, we will set n=p—1, n=p—1
and m=d—d.
We first recall the basic energy identity for (1.1).

LEMMA 2.1.  Let (p,u,d) be a global and smooth solution of (1.1), then the following
equality holds

d 1 .1 ,
pr </F(p|1)dm+2/p|u| dx+§/|Vm| dx)

2
+u||Vu||2La+(u+>\)\|divu||2L2+HAm+|Vm|2(m+d)HL2:0, (2.1)
where
L (p"—1—y(p—1)) for y>1
_ = v(p v>1,
F(p|1 {plnp—p—i—l, for ~v=1. (2:2)

REMARK 2.1. By Taylor expansion, it is not difficult to check that F(p|1) >C(M)(p—
1)2if p< M.
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LEMMA 2.2.  Let p> 32X, and (p,u,d) be a global and smooth solution of (1.1), then
the following inequality holds

i(/p|u| dx+/|Vm| da:)—l—HluHVuH +H|Vm||Am+|Vm| (m+d) |H

+H|Vm|\V2m+|Vm|2(m+d)|HL2

2 2
<C(1+Vmll= ) (IVuls + | am+[vmPm+a)| )
% (I3 + I VulZ + 1 9mi ), (2:3)

where C' is a positive constant depending on ji, \.

Proof.  Multiplying the second equation of (1.1) by 4|u|?u, we apply operator V
to the third equation of (1.1) and multiplying the resulting equation by 4|Vm|*Vm,
summing up and integrating on R>, we obtain that

jt(/p|u|4dm+/Vm|4dx> —4/|u|2(,uAu+(,u+)\)Vdivu)-udx

—4/|Vm|2V(Am+|Vm|2(m+d))'(Vm)daz
:—4/|u|2Vp~udx—4/\u|2(Vm'Am)~udw
74/|Vm| V(u-Vm)-Vmdz < ZI (2.4)
Using the inequality |V|u|| <|Vu|, and p> 1\, we have
—4/|u|2(uAu+(u+A)Vdivu)~udx
:4/\u|2(u\Vu|2+(u+)\)(|divu\—]V|u||)2)+(u—)\)|u|2]V|u||2dx
=C [P |Vuds.
Using the relation |m+d|=|d| =1, we have
—4/|Vm|2V(Am—|—|Vm|2(m+d))-(Vm)dx
:4/|Vm|2\v2m|2dx+8/|vayV|vm|\2dx
—2/|Vm\2V|Vm|2~V|m+d|2dx—4/\Vm|6dx
22/|Vm|2\Am+|Vm\2(m—|—d)\2dm—|—2/|Vm|2\V2m+|Vm|2(m+d)|2dx

+8/|vm\2|V|vm\|2dz.
It is easy to check that

1= [ Influ? Vaddo < Clnl o e Va2 < CIValf (ol + [Vul ).
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Similarly,

L <Ol Vml| = ||V2ml|p2]|ullzs < Ol Vml| L= | Vul[ 7. (IIVuIIQLQ +||V2m||2m),
and

I :4/|vm\2(u-vm).(Am+|Vm|2(m+gl))dx+4/V(|Vm|2)(u.vm)-vmdx

<C[[Vm| e~ [|ul| e

s+ [V me+d)| | 9mils

+CH\Vm|]V|Vm|”

LIVl [z [Vm] s
2 2
<n[[9m|VTmll|| |, +Co (141 9ml )

2
x (IVale + [ am+ (VmPem+ )| ) I9mi.

Combining these above estimates, we can prove Lemma 2.2. 0

LEmMA 2.3.  Let (p,u,d) be a global and smooth solution of (1.1), then the following
inequality holds for any positive number ),

2
1l [92m|
L2

<oVl +0 (L Iml 1Vl ) (it v |+ 19mi[19mi]|)
+C(IVmllo + VI3« [Vml2: ) IVule (IVulfe +192m]3:),  (25)

where C' is a positive constant depending on n.

Proof.  We apply operator V to the third equation of (1.1) and multiplying the
resulting equation by |u|?Vm, and integrating on R?, we obtain that

2
[l [92m|
L2

1
:—/\u|2Vm~thdx—5/V(|u\2).V(|Vm|2)dx
e &
—/|u|2V(u~Vm)~dex+/\u|2V(|Vm|2(m+d))-dex et Z‘]i' (2.6)
i=1

It is easy to check that

2 4 2
J1 <C|Vml|s |6 o[ Vmell 2 <nllVmel|72 +Col[ V| Vml| 7 Lo

ol V|

<0 ([livul]|”, + | 1wmlwm]|).

I3 <CIVml| e (ull e V2 2 + a3 |V o |Vl £2)
<CIVm| = [ VulE: (IIVals + 1V2m 32 )
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Ja :/ |uf*|Vm|*da < C|[[Vm (| o[V oo [V 2 [ 2o

2
<C|Ivml[VIvml|| +CIVmI~ [Vml3a [ Vula.

Combining these above estimates, we complete the proof of Lemma 2.3. ]

Now we need to estimate Vu and V?m. First we denote the effective viscosity flux
as G=divu— 2Mﬁ(n—anP), which plays a crucial role in the proof of the main
theorem.

LEMMA 2.4. Let (p,u,d) be a global and smooth solution of (1.1) with 0<p<M, then
the following inequality holds

d

i (|Vu||%2+||divu%2+||V2m||2L2+|Am+|Vm|2(m+d)|I%2 —/ndivudm

+ [P [ur(m-smyds) + lobuls + [ 9ml3:
2 2 2 2
<l Gl +Co (L4 1Vmll e ) IFulFa + ||l |
2 2
o [raliwzml|| |+ | omilviomi]| ) (2.7)
where 1 is a small constant and C,, depends on the initial data, M and F(p) is defined

s (2.9) below.

Proof.  Multiplying the second equation of (1.1) by u;, we apply operator V to
the third equation of (1.1) and multiplying the resulting equation by Vm;, summing
up and integrating on R?, we obtain that

d (1 LA, 1 1
& (B9l + 22 v+ {92 + ) At (9P + D

+ 2|2+ (Ve 72
:—/Vp~utdx—/(pu~Vu)~utdx—/(Vm-Am)~utdx
S
—/V(u-Vm)thdm—i—/V(\Vm|2)(m+d)-thdac ifZKi. (2.8)

i=1
Observe that

d
K1:a/ndivudw+/7p7|divu|2dx—/n|divu\Qd;v—i—/div(nu)divudx

d 1
S%/ndivudm—2u+)\/nu~Vndx+C||VuHiz

+Cln| s |[ull s [V (divu — 2u+)\n)”L2
<94 [wdivuds— —— 2 [ pp)do+ | vul? +CH|Vm||V|Vm|]‘2 Gl
— vudr — ——— — u -
=t utadt) VP L2 o Ml
where

2 -1 (y—1) 24oy—1

Fp)= 72(21—1>(p_1)2_(2(37—1%”27(277—1%_Vz(ﬁl))F(p“)’ for v>1,
3(0=1°=(plnp—p+1), for ~=1.

(2.9)
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By Taylor expansion, it is not difficult to check that F(p|1)>C(M)(p—1)* if p<M,
and |F(p)| <CF(p|1) if p<M.
It is easy to check that

2
1 1 1
Ky <Cllp3 | lpduele |l Vul|_ <nllobucle+Cy|lullvul| .

Observe that
K3+K4:—%/w(Vm~Am)dx—2/(Vu-Vm)~thdm
+/(U-th)-Amdx—2/u-(VQm-th)dx

d
<— 2 [ w (T Am)da -+l Fmal 2+ Cy (I9m 3 [Vula + ||l [92ml|

2
L2)7

and
2
K <nl[Vmelz +Cy| [Vl [91Vmal | .

Plugging these estimates, we complete the proof, where 7 is a small constant and C),
depends on the initial data and M. 0

Next, we improve the estimates by using the elliptic system.
LEMMA 2.5.  Let (p,u,d) be a global and smooth solution of (1.1) with 0<p<M, then
the following inequality holds

2 2
laPulg: G113 <C (llobuelie +{|lul Vul|[ | +|[1Vmllam+ [vmEm+d)| |

2 4 2
+ (1 19ml = I9mil ) | omi|vIoml]| ),
2
IVAm|E: <C (I9mel 32+ Vml3« | Vula +||lul V2ml]|
2 4 2
+ (1 IV ml e [l ) |l [V I7ml]| ). (2.10)

where the constant C' depends on M.

Proof.  We apply operators P and A~!div to the second equation of (1.1) where
A=+/—A, then we have

—uAPu=P(—p(u+u-Vu) —Vm-Am),
—(2u+/\)Adivu—A(n—%|Vm|2):A’ldiv(—p(utJru.Vu)fV(Vm~Vm)). (211)
By the standard elliptic estimates, we can get that
Pl APullE: + (2u+ NG,
<C(Jlpuel2= + llou- Vullfe + [ Vm- Amla + VI Vm|2|3: )
<O (ol + | fulvul]| +]Ivmllam+ [wmPon+ |

2
+ |1Vl v 7ml ||+ 19milss)
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1 2 2 9 2
<C(llpbudla +||lul Vull| ,+[I9mllam+ 1 vmEm+a)|

2
L2>'

+ (LIl IV L ) || 7ml [V 19ml|

We also have
IVAm|7

2 2
<C(I9me +1Vml3 IVale + | [ullV2ml ||+ vmi|VI9ml]| +19mIS),

thus we complete the proof of this Lemma. ]
Now we are in a position to estimate n, for which we have the following Lemma.

LEMMA 2.6. Let (p,u,d) be a global and smooth solution of (1.1), then the following
inequality holds

d 2
Zlnle +lInliFe < CIGIE, +C | 1vml|vvm[| . (212)
where C' is a positive constant depending on .
Proof. The first equation of (1.1) can be rewritten as
n+u-Vn+ 2 n+yndive = —vy(divu — n). (2.13)
2u+A 2u+A

Multiplying the above equation by |n|*n and integrating on R?, we have

1d
6 dt

1 1 .
I+ 5o [ Dt (= gnlinl*de < Clfnl divu— 5=l .

1
2u+

Dividing the above estimate by [|n||3s, and using v+ (y— §)n> ¢, we can obtain that

1
67
d . 1
aH“H%G +n[7s <C|ldivu— m"”iﬁ
2
<CO|G|Fs +Cl[IVmP|| s

thus we complete the proof. 0

ProroSITION 2.1. Let u>%)\, and (p,u,d) be a global and smooth solution of
(1.1) with 0< p< M and sup,cp+ | Vml| L <M, then we have pzue L= (R*; L2NLY),
we L®°(RY; HYNL2ARY HY), pru,e L2(RT;L2), VmeL>®(RT;H'NLY), (Am+
|Vm|?(m+d)) e L2(RT;L?), Vm;eL?>(R";L?), neL>®R"L2NLSNL*(RT;LY),
[ul|Vul, |[Vm||V|Vm||,|Vm||Am+ |Vm|?(m+d)|, |u|][V?m| € L2(RT;L?). Furthermore,
the following inequality holds

d 1 1
{0 1okl 4 [Tl bl 9+ (9l + 9]
2
10l p+ (Il + ITul + | At (9P n D, + okl + 19l

2 2 2 _ 112
trliwal |+ 1wl e wmll|| |zl | 19mliams [ vmEen |
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_ 12
+H|vm||v2m+|vm|2(m+d)|HL2+|Apu||§2+|a||§.{1+||VAm|iz)<o, (2.14)

where C' is a positive constant depending on the initial data and p,\, M, M.

Proof. First, from Lemma 2.1, we have Vim € L (R™"; L?). Combining the Lemmas
2.1-2.6, and choosing 7 small enough and choosing 0 < A5 € A7 K Ay K Az < Ay < Ay,
where A; are positive constants depending on the initial data and w,A,p, M, we can
obtain that

d 1 1
Gl [ Pomas ot 19mlz: ) + a2 (Iob o+ (9l

+A4(||Vu|2LQ+||divu||2L2+V2m||2Lz+||Am+|Vm|2(m+d)|%2—/ndivudac
+/F(,o)dac+/u~(Vm~Am)dx)+A5||n|%e}
2

+A6<||n||i6+||w||%z+|divu||%z+HAm+|Vm|2<m+d>HL2+|p%ut||iz+|th||%z

2 2 2 2 2 2
+rlivul |+ |IVmliam+ [vmE |+ [ I9mlI92m + [mEm |

2 2

+HVm||V|Vm|HL2)+A3H|u||v2m|HL2+A7(||A7>u|%2+||G||zl+||m7n||%2)

<As (IVulifa + | am+ (9mPmt D)) (Inls + Va3 +19mlZ ), (215)

which ensure that the term A4 [ndivudz can be controlled by A4l divul?, and
Ay [F(p|l)dz, the term Ay [u-(Vm-Am)dz can be controlled by A4|VZm||2,
and A1[|Vm|7«|lul|32. By Gronwall’s inequality, using Lemma (2.1), we can ob-
tain that pzueL®R*Y;L2NLY), we L®RT;HYNL2(RT;HY), pzu;eL2(RT;L?),
Vme L>® (R, H'NLY), (Am+|Vm|?(m+d)) € L2(RT;L?),  Vm,cL*(RT;L?),

ne L®(RT;L2NLS)NL2(RT; LY), |u||Vu\,|Vm||V|Vm||,\Vm||Am+|Vm|2(m+
d)|,[u||V?m| € L*(RT; L?). O
2.2. Improving regularity estimate for v and Vm. In order to get the

dissipation estimate for n, we first improve regularity estimate for v and Vm in this
subsection. We set up some notations. For a function or vector field (or even a 3x3
matrix) f(¢,z), the material derivative f is defined by

f=firu-Vi,
and div(f®u) 225:1 0;(fu;). For two matrices A= (a;;)3x3 and B=(b;j)3x3, we use

the notation A: B= Zf =1 a;;b;; and AB is as usual the multiplication of matrices.

LEMMA 2.7.  Let p>1iX, and (p,u,d) be a global and smooth solution of (1.1) with
0<p<M and sup,cp+ ||[Vm| e <M, then the following inequality holds

d
% ([)’L.L2 + (th)Q) d$+ HVUH%Z + || diVI'LH%; + ||V2mt||%2

<C(IVullts + (IVullZe + 192mle + IVuld + 1V2mlide ) (141 Vmill3: ) ). (216)
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where u=us+u-Vu, and C is a positive constant depending on the initial data and
s Ay M, M.

Proof. 'We rewrite the second equation and the third equation of (1.1) as

Pl +pu- Vi — p(Aup +div(u @ Au)) — (p+ ) (Vdivu +div(e®@ Vdiva))
+Vn +diviu®@Vn)=—(Vm-Am), —div (u® (Vm-Am)), (2.17)
Vg +V(u-Vm)y =V (Am+|Vm[2(m+d)).

Multiplying above the first equation by 4, the second equation by Vm;, summing up
and integrating on R®, we obtain that

1d
2dt
:/(ntdiva+(u-vu)~Vn)dm—u/(Vu:Vut+Vu:(u®Au))dx

(pi* + (Vme)?) de+ [[V2m [25

+ (;H—A)/(Vdivut +div(u®@ Vdivu)) - tdx

f/div(u®(Vm~Am))'udx+/V(|Vm\2(m+d))t~thdz

_/((Vm-Am)t~1Z+V(U'Vm)tht>d$ = 26:“ (2.18)

i=1

It is not difficult to derive that

Ll:77/p”divudivﬁdaﬂr/n(divudivﬂf(Vu)t2V1l) d$§77||va||%2 +C,]||Vu||2L2,
3 .
Lo < == |[Vil[3 +C||Vullfs,
+A .
Ly <~ 2 | divillfa + F Vil + Ol Vul s,

Ly <C|[Vill 2 ul 2o [[Vml| o[ Vml| o <nl[Vall72 +C, (IIVUH% + ||V2m||i2> IV2ml[7e,

Ls <C|[Vm|[7ollmell o [ Vmel| L2 + |V o | Ve s | Vm| 2
<[ VPme]| 22 +Cyl|VPml| 72| Vimel| 72,

As for the last term Lg, observe that
o &8
ng—/(th~Am)-udx—/(qu)-Vm-Amtdx—i—/(met)-Amtdx lef ZL&».
i=1
In a similar calculation, we also have

Le1 < C|[Vm s | Am] Lz [l 2o <nllVall72 +allV2mel| 22 + ColV2ml L [Vme |22,
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Loa <nl|V3mi |32+ Cy (IIVullfz +1V2ml1£2 ) IV,

Les < |lull oo [[Vme| 2 [ V*me || 2 <ol V2me|[ 7o + Cp ([ Vull 72 + [Vl 16) [ Vme |7

Substituting these estimates, choosing 1 small enough and applying the Proposition 2.1,
we proof the Lemma. ]

LEMMA 2.8.  Let p>1X, and (p,u,d) be a global and smooth solution of (1.1) with
0<p<M and sup,cp+ ||[Vm|| e <M, then the following inequality holds

d 2 2 2 2
£/|Vm| 1V2m| dx—i—H|Vm||VAm|HL2
<C(IV*mll3s +IVulds + [92mle ) (14 19m32 ). (2.19)

where C' is a positive constant depending on the initial data and p,\, M, M.

Proof. ~ We apply the V operator to the third equation of (1.1), multiplying by
—|Vm|?VAm, and integrating on R®, we obtain that

1d
5%/|Vm|2\vzm|2dx+/|Vm|2|VAm|2dx
:72/(V2m~th):(V2m~Vm)dx+/|V2m\2Vm:thdx

+/|Vm|2V(u-Vm)'VAmdx—/|Vm|2V(|Vm|2(m+d))~VAmdx
e
=Y’ (2.20)
i=1
It is not difficult to derive that

My + My < C|[Vml| ][ Vinel| 2 V2ml[Fe < C (IV2ml[ 3 + [ Fmal[32 ) 921,

2
My <n||Fmf|Vaml|[ | +Co(IVullts +[92mile),

2
My <[Vl [V2mI|| | +Cy (172 m|2a + [ V2milo).

Substituting these estimates, choosing 7 small enough, we prove the Lemma. 0

LEMMA 2.9.  Let u> 43X, and (p,u,d) be a global and smooth solution of (1.1) with
0<p<M and sup,cp+ ||[Vm| e <M, then the following inequality holds

d 2
%/|u|2|V2m|2dz—|—H\u||VAm|HL2
<[ Val7: +C (IV2mll7e + IVl 1+ [ VPml|7a + [Vl Fe + [ VPmllTs),  (2:21)

where C is a positive constant depending on the initial data and p,\, M, M.
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Proof. Applying V2 operator to the third equation of (1.1), multiplying by
|u|?V?m, and integrating on R®, we obtain that
SO [P midet [ uPivamPa
5 | 1 m|“dx u m|“dx

z/\V2m|2u-utdm—2/(VAm-V2m):(Vu-u)dx
o &
—/\u|2V2(u-Vm)~V2mdx+/|u\2V2(|Vm|2(m+d)).Vzmdx ef ZNi' (2.22)
i=1
It is not difficult to derive that

N1=/|V2m|2u~udx—/|v2m|2u.(u.vwdx

<nll Vs +Cy (IV2mllfa +IVul3s + [92mi%e),
2
N < |jullVaml|| | +Cy (IVullts+I92ml1Ls ),
2
N3 <q|[[ul|VAm|||  +Cy([IVulls+ IV>ml L+ VullFe + [ V?ml|7e
3=T7 2 TN L L L LS )s

2
No<n|[ullVaml|[ |+, (IV*mla + [ Vults + 1 V2milLe+ [ Vulfo + [V2m3).

Substituting these estimates, choosing 1 small enough, we prove the Lemma. ]

PROPOSITION 2.2.  Let > 1), and (p,u,d) be a global and smooth solution of (1.1)

with 0< p<M and sup,cp+ || VM| <M, and the admissible condition (1.4), then the
following inequality holds

d 1 1
dt{/F(ﬂ!l)dﬂH lp2ull 72+ Vmll7: + | pTullpe + IVml 1+ ([ VullZ2 + [V m])7

2
L2

2 1
+c(||n||m+||Vu||%z+HAm+|Vm|2<m+d>HL2+|p2ut||%2+||th||%z

1. 2
Il + o3l 22 + Vel 3+ |1Vl V2m |+ |92l

2 2 2 2
+H|u||vu|H +H|Vm||V|Vm\|H +H\u||v2m\H +H|vm||Am+|vm|2(m+d)I)
L2 L2 L2 L2
+HAPu| 2 +GF +IVAm|Z: IV Pullfs + G e + | VullZe
2 2
IV2m 20+ | Vatl|Za + |V 2me |22 + H|Vm\|VAm\HL2 + H|u|VAm|HL2> <0,
(2.23)

where C' is a positive constant depending on the initial data and p,\, M, M.
Proof. Together with (2.16), (2.19) and (2.21), we deduce that

2
)

d 1., 2
= (¥ all3e + 19me22 + |1Vl 92l |+ | jullV2m|
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2 2
+Vile +192mel e + | [mli v 2ml|| | ||l vam]|
<C(IVullta +1IV2miiLe+ (IVals +1V2ml3e + [ ullfe + 1 92m] %)
x (1+\|th||iz)). (2.24)

Then the Lemma 2.5 implies that
IVul|zs <C||Vull L2 | Vul 7o
<CIIVull 2 VullZs (IVPul o + 1G] 2o + 1V 2o +linl o

2 2
<ClIVullgs (1+ o2 lla + [ [Tml| Am-+[Vmf (m+-d) ||| +][[ml| v )

2
L2)’
and we also have

I92milts <ClI92milgs (IVmellza+ | jullV2mi]| |+ I9ullvml|

1
<C|IVullis (1+ otz + || mIv>ml|

2
+ H|Vm\|V\Vm||HL2 + H|vm||6L6>

<CIV2ml3s (1 Vmellps + | [ullV2ml | +]|Im]Iv2m|

)

By using theseV? operator estimates, we can obtain that

2
)

d 1, 2
= (Iod a2z + 19 mel3+ |1Vl V2l |+ |l 92|

2 2
+Vile +192mel e + | [omli v 2ml|| | ||l vami|
<C(IVullfa +IV2ml3e + [ Vullfs + 1 92m] %)
% (Lol Fe + [ Vmelss + | [ullV2ml | +[[vmlivimi| ). (@25)

Noting that Vue€ L>(R*;L2NLY) and V?me L?(R";L?NLY), by Proposition 2.1, it
follows that

1 1
2Mﬁ||“\|m+2 )|||Vm\2||,;e,

[Vulls <[[VPul s + (|G| s + oY
IV2ml| s <C|V3m|| 12 <C|VAmM|| 2.

Then we get by Gronwall’s inequality that

2
)

IVl + 1920+ ||Vl v m| - lliwam]]) <0 (220

d( 1. 2
= (IoFallze+ 19 meli3+ | 1Fml 92l |+ |lull92m|

On the other hand, from Lemma (2.5), we have
2
|aPulEs +IVGIEe <C(IVile + | [Tmlivaml||| +1v2mlL )
2
<C(IVile +||vmlivaml| +1v2mI3),

which, together with Proposition 2.1, completes the proof of this proposition. ]
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2.3. Estimate for the propagation of Vn. In this subsection, we want to give
the proof of the upper bound of ||Vl 2(g+;1) Which in turn gives the estimates for
the propagation of Vn.

PROPOSITION 2.3.  Let > 31X, and (p,u,d) be a global and smooth solution of (1.1)
with 0 < p < p, sup,ep+ [|Vm| Lo <M, and initial data (po,uo,do) verifying that po >c>
0, the admissible condition (1.4) and

sup ||p(t, ) lce <M, with 0<a<l. (2.27)
teRt

As a consequence, there exists a constant p=p(c, M, M) >0 such that for all t>0, we

have p(t,z)>p. Then we have Vue L2(RT; L), moreover, the following inequality
holds

d
S 1Vnlze+ Va7

2 2
<C(Inl3e +IGI% +IG o+ IVPuliyss + | [9mlIF2ml| |+ |1 vmiv2mi| ),
(2.28)

where C is a constant depending on the initial data, M and M.

Proof. First of all, by using the interpolation inequality, we can get |[VA™!n||ze <
n)l7alnllee?, with B=1— 1755 €(0,1), then we have

1 1
IVull7~ SC<|IV7’UIIQL«>+HV/\ Hdivu— (n—=3|Vm[*)l[Z=

20+ A
+ VA 0] + [ VATl )
<C(IVPulfyro + VAT Gllyno + Inll 2 Il + 11Vml [0
<+ Cy (IVPulyr + 16 Rn + Il + |7l 2m|
+ H|Vm||VAm|H;). (2.29)
On the other hand, it is not difficult to derive that

vp?

HVn+(u-V)Vn+ SN

Vn=—-VuVn—vydivuVn—vp"V(divu —

2u+)\n)'

By energy estimates, we can derive that for any ¢ > 2,
1d

e[\ v/ 2q
oIVl +

, 1
. IVnllZa SC(IIVulle IVl Ze + [V (dive— o )| Lal[ Vil La

1
(2u+A) +A

+diva— ——n| < Vull3, ),

1
20+
which implies that

d .
ZInl, + 1V 3, <O (IVulf~ V)i, + 9 (divu—

2
s

+||divu— n||‘2/V1,6||VnH2Lq>

20+ A
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<C(INVulB V82 + VGl + G By 7013
2
+C(IVGVmP) e+ [V c 90l ). (230)

By taking ¢=6 in (2.30) and using (2.29) and Propostion 2.2, we obtain from
Grénwall’s inequality that ([n| e m+,w1.6)nr2@+;w1.6) < C; from which, together with
(2.29), it implies that ||[Vul[p2g+,1) < C.

Now we go back to (2.30) with ¢=2. By Gronwall’s inequality, we obtain that
Vne L2 (RY; L2)N L*(RT; L?). Thanks to the uniform-in-time bounds obtained above,
(2.30) with ¢=2 will yield that

d
IR+ V0l <O(IVGI: +IG o+ VPul e
2 2
+ (vl vzl |+ | Ivmlvami| )+l

then we obtain (2.28).
Now using the first equation of (1.1) and above inequality, we have

t : 1
p(t,x) > po(x)e o I HllLocdr > ) (g)e=Ct2, (2.31)

On the other hand, thanks to Lemma 2.6, we derive that tlim ln(®)||lLe = tlim [n(t)|lLs =
—00 —00
0, from which, together with upper bounds for p in C*, we derive that tlim [In(t)]| Lo =0.
bade el
These two facts imply that there exists a constant p=p(c,M, M) >0 such that for all
t>0, p(t,z) > p. We complete the proof of the proposition. d

2.4. Deriving the dissipation inequality. Thanks to Propositions 2.1-2.3, we
obtain that:
PROPOSITION 2.4. Let p>1X, and (p,u,d) be a global and smooth solution of (1.1)
with 0 < p <M and sup,cp+ | Vd(t,")| o +supcr+ [|p(t, ) |co <M with 0 < a <1, initial
data (po,up,do) verifying that po >c>0 and the admissible condition (1.4). Set

X (&) =lnllzn + llullz +IVmllE +lalEs + Ve 7.

2 2
+|omivzml| (v (2.32)
L2 L2
It is easy to check that
I o215 S 02,8
[Vmll s <[Vl [Vomlizo,  IVmlls <[[Vm| 2 [Vom]| s,

so that
2
I92mil3: <|[am+ [VmPem+a)| -+ IVmliL
2
<||am+1FmPm+a)||  +CIvmIEF3mil V2mi s

2
<||amt 1vmPam+ )| 40l Vimis +ClIVmIEa | Vimis,

HV(|Vm||V2m|)H; <c| \vm||VAm|H;+ch2m||§4

g()’ \Vm||VAm|Hi2 +C[|V?ml[7s,
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and

[vauvzm|, <c|uwam| +civult+civsmis,

2
<C|lullvaml|[ , +CIVuls+C 92 m| s

Then the following inequality holds

d

X )+C(IIVﬂIIL2 HIVullZe + 1V?ml|2s + Vil 2o + [V

t]latvam| +[vmivam| +1vule+Iv2mlz) <o, (233)

where C is a constant depending on the initial data (po,ug,do) and p,\,c, M, M.

3. Convergence to the equilibrium

The aim of this section is to show the convergence of the solution to the equilibrium.

PROPOSITION 3.1.  Let pi> 5 L\, and (p,u,d) be a global and smooth solution of (1.1)
with 0 < p < M and sup,cp+ HVd( ) zoe +supser+ [|p(t, )| ce <M with0<a <1, initial
data nge L' (R*)NH'(R?),ug € Ll(R?’) NH2(R?),Vmg € Ll(]RB) mo € H3(R?) wverifying
that po >c¢>0 and the admissible condition (1.4). Then we have

()L + ()| + V()]s <COA+1) 7T, (3.1)

where C is a constant depending on the initial data (po,ug,mo) and p,\,c, M, M.

Proof. We take the Fourier transform of the first and second equations in
(1.1), we apply the V operator to the third equation in (1.1) then apply the Fourier
transform, and multiplying the resulting first equation by ~f, the resulting second
equation by pu, the resulting third equation by ﬂz, summing up and integrating on

= {§||€| <C(1 —l—t)_%}, we obtain that

1

5 L, (AP + O+ Tmit ) de

t ——
[ (ePIa O + (et VIE s, )P+ €1 Tms.€)) deds
0 Js@)

—

_1 L 24 |pu 24 1Vm 2 ! . =
‘2/5@ (+12(0.6)P +7u(0.)1* + [ Tm(0.) )dg+Re/0 /S(t){—dlv(pu@)u).pu

—

(Dt (ut A Vdiva) -7+ iy~ DEF (p|1) -7 )
—(Vm-Am)-pu- (W/-?m))ﬁ?m(qumwm-%}dsds

=3 [, (1O 7O +1Tm0.6 \2)d5+20 (32)
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Applying the Proposition 2.3 and Proposition 2.4, we have

t t t
oven [ [ eplapagasc, [ [ pumupdeds+ [ [ jelpnoumideds
0 Js@) 0 Js@) 0 Js@)
t t o
<[ [ lePlafadsc, [ mult [ acas
0 JS(t) 0 S(t)
t
+ [ Nl o /S eldgds

<n// ul€2laf2deds +Cyy(1+1) */ lul|tads +C(1+4)" /||n||Lz||u||des

in a similar fashion, we have

oo [\ [ PlifacasCya? [l
0o [ [ wieiadease,00072 [ pulaaer o0 [ nlfalulaas,

o4<77// pl¢ a2 déds + Cyy (1+1) */ IVml[%.ds

+C(1+t)_2/0 [l 2 llull 2] V|32 ds,
05<n// (€12 [2deds+ Cyy(14+1) / 2 [ V|2 ds,

O6<77// 1€)? |Vm|2d§ds+C (1+¢) %/ ||m+d\|LocHVm||L2ds

Note that (ng,poto, Vime) € L' (R?), then we have
1

~ — = = -3
5/ o, (O +IFIO0.+Fm0.0)7) de <O (Imalls + valls + [Vl ) 1+,
S(t

Plugging above estimates, and choosing 7 small enough, we arrive at

[, (ROP PO + .o de

t
SC(1+t)’%+C(1+t)’%/ (Inllde+llullte +Vml[iz)ds<CA+6)"2.  (3.3)
0
We recall the dissipation inequality from Proposition 2.4, by frequency splitting
method, it is not difficult to derive that
d 1 1

X0+ X< [ o (ACOP AP+ [Tt O +it O+t

|Vl [V (£,) [+ ][ V2| (2.€)[? ) de,
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due to the fact u= pu—nu, we have
/ fa(t,€) e < / piu(t, )P + / 7a(t,6)2de < C(1 1),
S(t) S(t) S(t)

following the same argument, we can obtain that

L —

[ bt e)Pds <C [ [uBu(e.e)+ (4 NVavu(t.) - (- DVF Rt
S(t) S(t)

— V() + Vm- Am(t,€) ng <C(1+4t)73,

| 1Fmtorde<c [ |[VEmte)+T(VmPin+ d)) - Vuvm(to <o E,
S(t) S(t)

/ [Vl 2 (¢,€) Pde + / [l [ V2| (1,)[2de < C(1 1) E,
S(t) S(t)

which implies that

d 1 -
X0+ mX(t) <C(1+t)

3
2

o 1w, V) ()] Sc(l-i-t)_i.

We need to improve the decay estimate. Now following a similar argument used in the
previous proof, we conclude that

| (9P +igueo P + [FmtoR )< e+t +c+o o1 +o),
S(t)

which implies that

d 1 5 3 1
FXOF X0 <0+ Hog(14), [|(nw, Vm)(0) | < C(1+1) Flog® (1+2).

Now we repeat the same process as above to get that

[ (1cop+me.er+Fneor)a<oa o,
5(t)

which implies that

d 1 5
— X))+ —X(@)<C(1+¢) 2.
XD+ XM =C1+0

And this completes the proof of the proposition. 0

4. Global-in-time stability for liquid crystal system

In this section, we want to prove Theorem 1.2. By the local well-posedness for the
system (1.1), we can show that the perturbed solutions will remain close to the reference
solutions for a long time if their initial values are close. Then the convergence result
implies that the reference solutions are close to the equilibrium after a long time, and
the perturbed solutions are also close to the equilibrium. Then we can prove the global
existence in the equilibrium framework.
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Let (p,4,d) be a global solution for (1.1) with the initial data (g, g,do), and
let (p,u,d) be a global solution for (1.1) with the initial data (po,uo,do). We denote
h=p—p, v=u—1u, b=d—d which satisfy the following error equations:

Oth+(v+1a) - Vh=—v-Vp— (h+p)dive — hdiva, (t,x) eRT x R3,

1 1
3tv+v~va,udiv(;Vv)f(,qu)\)V(;divv):F, (4.1)
Ob—Ab=G,

where

1
F:—;(hﬂt+iw-va+ha~vu+ha~va+,av-va+y(p7*1 — Y

Vb Ab+ Vb Ad) = (77— 572 Vh— YV Yy
PP p
pi pil p h Vh
—,54’72Vh—(%—%)~vv—7 -Vu —Htv VU-!—(,LH-/\)—dlvv
Vi Vp Vj v Vj \g
+u(p2p pf’) va—i—(/H-)\)( P pz)divv+(u+)\)ﬁ2pdivv,

G:—(v+ﬂ)-Vb—v~Vd+|Vb| b+|Vb|2d+|Vd|2b+2Vb:ch(b+d).

PROPOSITION 4.1. Let (ﬁ,ﬂd) be the smooth solution for (1.1) satisfying assumption
of Theorem 1.2. Given an € >0, if the initial data (ho,vo,bo) of (4.1) satisfy that

ol s+ [[voll s + [[bol s <, (4.2)

then there exists a constant ¢ independent of €, such that for any t€[0,c|lne|], there
holds

A | gre + [ (E) | e+ [1B(E) || s < €3 (4.3)

Proof.  We use the continuity argument to prove the desired results. Let T be the
maximum time such that for any ¢ € [0,7], there holds

()L + ()13 + 1B(E) | s < €2

The existence of T can be obtained by the local well-posedness, then we need to prove
that 7 > c|lne|, where ¢ is a constant independent of e.

Now for 0 <k <4, applying V¥ to (4.1) and then multiplying the first equation by
VFh and integrating over R®, we have

d i _
— B 7s <Cllall s + [[vll ) 1l + C A+ 16— Us + | oll ) V0] s |2 s
dt

<Cyllhll7s +0ll V0l

then the second equation by V¥u and integrating over R®, we have

d
Ol + Vo)l

<C(IhllFa + 11l + 10l Fra) + Ce2 (IVoll 7 + VOl Fra) + 0l Vol 3z +Co | VBl s,
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then the third equation by V*b and integrating over R*, we have

d

1@ e+ V014
<Ol s + ol ) Bl +C L+ lld = dl ) [0 4 [ VO] o

+C (bl + A+l —dll ) I3 + (L4 | d =l Za) 5]l zr4) [ VD 4
<Clvllzzs +Cbll 7 +nll VBl

Summing up above estimates, choosing 7 small enough, we obtain that
1R s+ [0 () 74 + 16() 177

t
Sllhollizﬁllvo\lfqzx+Hbolli4+0/o (IR Zrs + () s+ 10(7) 774 )

for any t€[0,7]. By Gronwall’s inequality, we get that
1R Fa + o)1 s + 10775 < C (I10l1 37 + [[vo | Fra +[[Bo 34 ) €,

for any ¢€[0,7]. According to the definition of 7, which implies that 7 > c|lne| for a
suitable ¢ independent of . Then we complete the proof. 0

Proof. (Proof of Theorem 1.2.) Thanks to Theorem 1.1, we can choose to=
1(1+c|Ine|), then we have

- - -5 _3
[(p—1) (o)l s + [|@(to) | s + [ (d—d) (to) | rs < C(1+c|lne|) ™3,
then we derive that

o= 1) o)l + fu(to) s+ [[(d— @) o) 25 < €2 +C 1+ el mel) ™% < C(1+-clIme) 2.
(4.4)
This means that at to, the system (1.1) is in the close-to-equilibrium regime. Then we

can obtain the global existence for (p—1,u,d—d). Moreover due to the definition of T,
we conclude that for any ¢t >0

1A | zza + [0 (E) ]| 4 +1[b(2) | 2 < Cmain{ (1 +c|Ine) ™%, e% + (1+) 77} (4.5)

It completes the proof to Theorem 1.2. O
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