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AN OPEN MICROSCOPIC MODEL OF HEAT CONDUCTION:
EVOLUTION AND NON-EQUILIBRIUM STATIONARY STATES∗

TOMASZ KOMOROWSKI† , STEFANO OLLA‡ , AND MARIELLE SIMON§

Abstract. We consider a one-dimensional chain of coupled oscillators in contact at both ends with
heat baths at different temperatures, and subject to an external force at one end. The Hamiltonian
dynamics in the bulk is perturbed by random exchanges of the neighbouring momenta such that the
energy is locally conserved. We prove that in the stationary state the energy and the volume stretch
profiles, in large scale limit, converge to the solutions of a diffusive system with Dirichlet boundary
conditions. As a consequence the macroscopic temperature stationary profile presents a maximum
inside the chain higher than the thermostats temperatures, as well as the possibility of uphill diffusion
(energy current against the temperature gradient). Finally, we are also able to derive the non-stationary
macroscopic coupled diffusive equations followed by the energy and volume stretch profiles.

Keywords. Open chain of oscillators; heat conduction; non-equilibrium stationary state; uphill
heat diffusion.
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1. Introduction
Non-equilibrium transport in one dimension presents itself to be an interesting

phenomenon and in many models numerical simulations can be easily performed. Most
of the attention has been focused on the study of the non-equilibrium stationary states
(NESS), where the systems are subject to exterior heat baths at different temperatures
and other external forces, so that the invariant measure is not the equilibrium Gibbs
measure.

The most interesting models are those with various conserved quantities (energy,
momentum, volume stretch...) whose transport is coupled. The densities of these quan-
tities may evolve at different time scales, particularly when the spatial dimension of the
system equals one. For example, in the Fermi-Pasta-Ulam (FPU) chain, volume stretch,
mechanical energy and momentum all evolve in the hyperbolic time scale. Their evolu-
tion is governed by the Euler equations (see [8]) while the thermal energy is expected
to evolve at a superdiffusive time scale, with an autonomous evolution described by
a fractional heat equation. This has been predicted [22], confirmed by many numeri-
cal experiments on the NESS [18,19] and proved analytically for harmonic chains with
random exchanges of momenta that conserve energy, momentum and volume stretch,
see [12].

In contrast to the situation described above, the present paper deals with a system
for which conserved quantities evolve macroscopically in the same diffusive time scale,
and their macroscopic evolution is governed by a system of coupled diffusive equations.
One example is given by the chain of coupled rotors, whose dynamics conserves the
energy and the angular momentum. In [10] the NESS of this chain is studied numerically,
when Langevin thermostats are applied at both ends, while a constant force is applied
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to one end and the position of the rotor on the opposite side is kept fixed. While heat
flows from the thermostats, work is performed by the torque, increasing the mechanical
energy, which is then transformed into thermal energy by the dynamics of the rotors.
The stationary temperature profiles observed numerically in [10] present a maximum
inside the chain higher than the temperature of both thermostats. Furthermore, a
negative linear response for the energy flux has been observed for certain values of
the external parameters. This phenomenon is referred to in the literature as an uphill
diffusion, see [17] or [7] and references therein. These numerical results have been
confirmed in [11], as well as an instability of the system when thermostats are at zero
temperature.

The present work aims at describing a similar phenomenon for the NESS, but for a
different model. In particular, we are able to show rigorously that the maximum of the
temperature profile occurs inside the system. According to our knowledge it is the first
theoretical result that rigorously establishes the heating inside the system and uphill
diffusion phenomena.

More specifically, we consider a chain of unpinned harmonic oscillators whose dy-
namics is perturbed by a random mechanism that conserves the energy and volume
stretch: any two nearest neighbour particles exchange their momenta randomly in such
a way that the total kinetic energy is conserved. Two Langevin thermostats are at-
tached at the opposite ends of the chain and a constant force τ+ acts on the last particle
of the chain. This system has only two conserved quantities: total energy and volume.
Since the random mechanism does not conserve the total momentum, the macroscopic
behaviour of these two quantities is diffusive, and the non-stationary hydrodynamic
limit with periodic boundary conditions (no thermostats or exterior force present) has
been proven in [16].

The action of this constant force puts the system out of equilibrium, even when the
temperatures of the thermostats are equal. As in the rotor chain described above, the
exterior force performs positive work on the system, that increases the mechanical en-
ergy (concentrated on low frequency modes). The random mechanism, which consists
in the kinetic energy exchange between neighbouring atoms, see Definition (2.8) and
the following explanations, transforms the mechanical energy into the thermal one (uni-
formly distributed in all frequencies, when the system is in a local equilibrium), which
is eventually dissipated by the thermostats. This transfer of mechanical into thermal
energy happens in the bulk of the system and is already completely predicted by the
solution of the macroscopic diffusive system of equations obtained in the hydrodynamic
limit [16], see also [1] for a similar model without boundary conditions.

In the present article we study the NESS of this dynamics. We prove, see Theorem
3.3 below, that the energy and the volume stretch profiles converge to the stationary
solution of the diffusive system, with the boundary conditions imposed by the ther-
mostats and the external tension. It turns out that these stationary equations can be
solved explicitly and the stretch profile is linear between 0 and τ+, while the thermal
energy (temperature) profile is a concave parabola with the boundary conditions co-
inciding with the temperatures of the thermostats. The curvature of the parabola is
proportional to τ2

+, i.e. the increase of the bulk temperature is not a linear response
term. In the case τ+ =0, the NESS was studied in [4], where the temperature profile is
proved to be linear: more details are available in [2, 3]. This heating inside the system
phenomenon is similar to the ohmic loss, due to the diffusion of electricity in a resistive
system (see e.g. [6]).

The NESS for our model also provides a simple example of an uphill energy diffusion:
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if the force τ+ is large enough and applied on the side, where the coldest thermostat is
acting, the sign of the energy current can be equal to that of the temperature gradient,
see Theorem 3.2 below. It is not surprising after understanding that this is regulated
by a system of two diffusive coupled equations. On the other hand, the model does not
work as a stationary refrigerator : i.e. a system where the heat on the coldest thermostat
flows into it.

Our results suggest that there is a universal behaviour of the temperature profiles
in the NESS when there are at least two conserved quantities. This should be tested
on a system with three conserved quantities that evolve in the diffusive scale, such as
e.g. a non-acoustic harmonic chain with a random exchange of momentum as considered
in [15], where the non-stationary hydrodynamic limit is proven. An attempt to describe
more generally the systems for which the phenomena of an uphill energy diffusion and
heating inside the system occur is made in [21].

Let us add a comment on the proofs of our main results. In proving Theorem 3.3 (on
the asymptotics of energy and stretch profile) we need to make an additional hypothesis
concerning the strength γ >0 of the noisy part of the dynamics, see (2.3) and (2.4).
More precisely we suppose that γ =1. This assumption is of purely technical nature and
allows to discard the term corresponding to the equipartition of the mechanical and
kinetic energy in the decomposition (4.8) of the microscopic energy profile of the chain
(the term Hm

n ). We conjecture that this term vanishes in the stationary macroscopic
limit, making the conclusion of the theorem valid for any γ >0, but are unable to prove
this fact at the moment. We do not need this hypothesis in our proof of Theorem 3.2
(on the uphill diffusion phenomenon).

In the appendix we give a proof for the non-stationary macroscopic evolution of the
energy and the volume stretch profiles in the diffusive space-time scaling. As for the
NESS, the proof is rigorous only for γ =1, for similar reasons. The corresponding result
with periodic boundary conditions was contained in [1].

The rest of the paper is organized as follows: in Section 2 we define the microscopic
model under investigation and give the expected macroscopic system of equations, show-
ing the phenomenon of uphill diffusion. In Section 3 we state the main results of the
paper, namely the convergence of the non-equilibrium stationary profiles of elongation,
current and energy. In order to prove them, we need precise computations on the av-
erages and second-order moments taken with respect to the NESS. Section 4 provides
elements of the proofs and preliminary computations on the averages, while Section 5
provides all the remaining technical lemmas, concerning the second-order moments.

2. Microscopic dynamics and macroscopic behaviour

2.1. Open chain of oscillators. Let In ∶={1,...,n}, In ∶= In∪{0} and I ∶= [0,1].

The configuration space Ωn ∶=RIn ×RIn consists of all sequences (q,p) ∶={qx,px}x∈In ,
where px ∈R stands for the momentum of the oscillator at site x, and qx ∈R represents
its position. The interaction between two particles x and x+1 is described by the
quadratic potential energy V (qx−qx+1) ∶=

1
2
(qx−qx+1)

2 of a harmonic spring linking the
particles. At the boundaries the system is connected to two Langevin heat baths at
temperatures T− and T+. Furthermore, on the right boundary acts a force (tension)
τ+, possibly slowly changing in time at a scale t/n2. Note that the system is unpinned,
i.e. there is no external potential binding the particles. Consequently, the absolute
positions qx do not have a precise meaning, and the dynamics only depends on the
interparticle elongations rx ∶=qx−qx−1,x∈ In. The configurations can then be described
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q0 q1 qnqx−1 qx qx+1

rx

T− T+

τ+(t)

Fig. 2.1. Oscillator chains with heat baths and one boundary force.

by

(r,p)=(r1,...,rn,p0,...,pn)∈Ωn. (2.1)

The total energy of the system is defined by the Hamiltonian:

Hn(r,p) ∶= ∑
x∈In
Ex+

p2
0

2
, (2.2)

with

Ex ∶=
p2
x

2
+
r2
x

2
, x∈ In.

We investigate this system in the diffusive time scale (when the ratio of the microscopic
vs macroscopic time is n2), therefore the equations of the microscopic dynamics are
given in the bulk by

drx(t)=n
2
(px(t)−px−1(t))dt, x∈ In (2.3)

dpx(t)=n
2
(rx+1(t)−rx(t))dt−γn2px(t)dt

+n
√
γ(px−1(t)dwx−1,x(t)−px+1(t)dwx,x+1(t)), x∈{1,...,n−1} (2.4)

and at the boundaries:

dp0(t)=n
2 r1(t)dt−

n2

2
(γ+ γ̃)p0(t)dt−n

√
γp1(t)dw0,1(t)+n

√
γ̃T−dw̃0(t) (2.5)

dpn(t)=−n
2 rn(t)dt+n

2 τ+(t)dt−
n2

2
(γ+ γ̃)pn(t)dt

+n
√
γpn−1(t)dwn−1,n(t)+n

√
γ̃T+dw̃n(t) (2.6)

where wx,x+1(t), x∈{0,...,n−1}, w̃0(t) and w̃n(t) are independent, standard one dimen-
sional Wiener processes, and γ >0 (resp. γ̃ >0) regulates the intensity of the random
perturbation (resp. the Langevin thermostats). See Figure 2.1 for a representation of
the chain. Note that the purely Hamiltonian dynamics is perturbed by a stochastic
noise which exchanges kinetic energy between the neighbouring atoms, and with the
boundary thermostats.
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We let

(rn(t),pn(t)) ∶=(r1(t),...,rn(t),p0(t),...,pn(t)), t⩾0 (2.7)

be the Ωn–valued process whose dynamics is determined by the Equations (2.3)–(2.6).
Its generator is given by

L ∶=n2
(A+

γ

2
S+

γ̃

2
S̃), (2.8)

where

A ∶=
n

∑
x=1

(px−px−1)∂rx +
n−1

∑
x=1

(rx+1−rx)∂px +r1∂p0 +(τ+(t)−rn)∂pn

Sf ∶=
n−1

∑
x=0

Xx ○Xx(f),

where Xx is the momentum exchange operator defined as

Xx ∶=px+1∂px −px∂px+1 ,

and moreover the generator of the Langevin heat baths at the boundaries is given by

S̃ ∶=T−∂
2
p0 −p0∂p0 +T+∂

2
pn −pn∂pn .

From the microscopic energy conservation law there exist microscopic energy currents
jx,x+1 which satisfy

n−2LEx =jx−1,x−jx,x+1, for any x∈ In (2.9)

and are given by

jx,x+1 ∶=−pxrx+1+
γ

2
(p2
x−p

2
x+1), if x∈{0,...,n−1}, (2.10)

while at the boundaries

j−1,0 ∶=
γ̃

2
(T−−p

2
0), jn,n+1 ∶=−

γ̃

2
(T+−p

2
n)−τ+(t)pn. (2.11)

2.2. Macroscopic equations. Suppose that r(t,u), e(t,u), (t,u)∈R+×I, are
the macroscopic profiles of elongation (or stretch) and energy of the macroscopic system,
obtained in the diffusive scaling limit. The profiles r(t, ⋅),e(t, ⋅) are the expected limits,
as n gets large, of

1

n
∑
x∈In

rx(t)δx/n(⋅), and
1

n
∑

x∈In

Ex(t)δx/n(⋅),

where δu(⋅) is the Dirac delta function at point u. These convergences are expected
to hold in the weak formulation sense: more details will be given in the appendix. If
both convergences do hold at time t=0 for some given profiles r0(u) and E0(u), then
we expect that they satisfy the following system of equations1,

∂tr(t,u)=γ
−1 ∂2

uur(t,u) (2.12)

1 See also Theorems 3.7 and 3.8 of [16] for a similar model which gives a similar coupled diffusive
system for every value of γ.



756 EVOLUTION AND NON-EQUILIBRIUM STATIONARY STATES

∂te(t,u)=
1

2
∂2
uu{(γ

−1
+γ)e(t,u)+

1

2
(γ−1

−γ)r2
(t,u)}, (t,u)∈R+×I, (2.13)

with the boundary conditions

r(t,0)=0, r(t,1)=τ+(t),

e(t,0)=T−, e(t,1)=T++
(τ+(t))

2

2

and with the initial condition

r(0,u)=r0(u), e(0,u)=E0(u).

In the appendix we will give the proof arguments for a derivation of these macroscopic
equations, which are rigorous for γ =1, and conditioned to a form of local equilibrium
result for γ ≠1, stated in (6.46).

Define now emech(t,u) ∶=
1
2
r2(t,u) and eth(t,u) ∶=e(t,u)−emech(t,u) as respectively

the mechanical and thermal components of the macroscopic energy. From (2.12) and
(2.13) we conclude that

∂temech(t,u)=γ
−1

(∂2
uuemech(t,u)−(∂ur(t,u))

2
), (t,u)∈R+×I

with

emech(t,0)=0, emech(t,1)=
(τ+(t))

2

2
, emech(0,0)=

r2
0(u)

2
, (t,u)∈R+×I

and

∂teth(t,u)=
1

2
(γ−1

+γ)∂2
uueth(t,u)+γ

−1 (∂ur(t,u))
2
, (t,u)∈R+×I, (2.14)

with

eth(t,0)=T−, eth(t,1)=T+, t>0.

2.3. Stationary non-equilibrium states. From now on we assume τ+(t)≡τ+
to be constant in time.

When τ+ =0 and T− =T+ =T , the system is in equilibrium and the stationary prob-
ability distribution is given explicitly by the homogeneous Gibbs measure

νT (dr,dp) ∶=gT (r,p)dp0 ∏
x∈In

dpxdrx,

where

gT (r,p) ∶=
e−p

2
0/2T

√
2πT

∏
x∈In

e−Ex/T

2πT
. (2.15)

If τ+ ≠0, or T− ≠T+, the stationary measure exists and is unique, but it is not given
explicitly. More precisely, we know that there exists a unique stationary probability
distribution µss on Ωn (cf. (2.1)) for the microscopic dynamics described by the Equa-
tions (2.3)–(2.6). As a consequence ⟨LF ⟩ss =0 for any function F in the domain of the
operator L, given by (2.8). Hereafter, we denote

⟨F ⟩ss ∶=∫
Ωn

F dµss.
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The proof of the existence and uniqueness of a stationary state follows from the same
argument as the one used in [4, Appendix A] for τ+ =0. The fact that in our case τ+
does not vanish requires only minor modifications. In addition, one can show, see bound
(A.1) in [4], that for a fixed n we have ⟨Hn⟩ss <+∞ (cf. (2.2)).

The corresponding stationary profiles, denoted respectively by rss(u) and eth,ss(u),
will solve the stationary version of Equations (2.12) and (2.14), i.e.:

rss(u)=τ+u (2.16)

and

(γ−1
+γ)∂2

uueth,ss(u)+2γ−1 τ2
+ =0,

with the boundary conditions

eth,ss(0)=T−, eth,ss(1)=T+.

In other words

eth,ss(u)=
τ2
+

1+γ2
u(1−u)+(T+−T−)u+T−. (2.17)

Taking the average with respect to the stationary state in (2.9), we get the stationary
microscopic energy current

⟨jx,x+1⟩ss =∶js, for any x∈{−1,...,n}. (2.18)

The macroscopic stationary energy current is defined as the limit of njs, as n→+∞. It
equals, see Theorem 3.2 below,

Jss =−
1

2
(γ−1

+γ)(T+−T−)−
τ2
+

2γ
.

Observe that the energy current can flow against the temperature gradient if T− >T+
and ∣τ+∣ is large enough (uphill diffusion). Assuming T+ ⩾T− the maximum stationary
temperature emax

th,ss is reached at

umax =(
1

2
+

1+γ2

τ2
+

(T+−T−))∧1

which implies that, if the condition 2(1+γ2)(T+−T−)⩽τ
2
+ is satisfied, then the maximum

temperature of the chain is attained inside, since umax <1 (see Figure 2.2), and it equals

emax
th,ss =

(T+−T−)

2
+T−+

τ2
+

4(1+γ2)
⩾T+.

Note that this does not depend on the sign of τ+.
This phenomenon was observed by dynamical numerical simulations in [10] for the

stationary states of the rotor model. It has attracted quite some interest from physicists,
see [17] for a review. The present article is devoted to the proof of such a phenomenon,
when γ =1. This restriction is technical and will be further explained in Section 4.2.
According to our knowledge it is the first rigorous proof of this fact in the existing
literature.
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Fig. 2.2. Temperature profile when T+−T− <2τ2
+

.

3. Main results
Let us start with the following:

Theorem 3.1 (Stationary elongation profile). The following uniform convergence
holds:

sup
u∈I

∣⟨r[nu]⟩ss−rss(u)∣ÐÐÐ→
n→∞

0,

where rss(u) ∶=τ+u. In particular, for any continuous test function G ∶ I→R,

1

n
∑
x∈In

G(
x

n
)⟨rx⟩ssÐÐÐ→

n→∞
∫
I
G(u)rss(u)du.

Proof. The averages under the stationary state ⟨rx⟩ss and ⟨px⟩ss are computable
explicitly, see Proposition 4.1 in the next section. It turns out that ⟨px⟩ss is constant
for all x∈ In and equals ps ∶=τ+/(γn+ γ̃) (see (4.1)). From (4.2) we also have

n(⟨rx+1⟩ss−⟨rx⟩ss)=nγps ÐÐÐ→
n→∞

τ+, for x∈{1,...,n−1}

and

⟨r1⟩ss Ð→
n→∞

0, ⟨rn⟩ssÐÐÐ→
n→∞

τ+.

Finally, (4.2) directly implies the conclusion of the theorem.

Concerning the stationary energy flow and the validity of the Fourier law we show
the following result on the macroscopic stationary energy current.

Theorem 3.2 (Stationary energy current and Fourier law).

njs ÐÐÐ→
n→∞

−
1

2
(γ−1

+γ)(T+−T−)−
τ2
+

2γ
. (3.1)

Note that Theorems 3.1 and 3.2 are valid for any γ >0. We now state our last
main result about the stationary energy profile, which we are able to prove only for
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γ =1. Before stating it we introduce the stationary microscopic mechanical and thermal
energy per particle as follows

E
mech
x ∶=

1

2
⟨r2
x⟩ss

E
th
x ∶=Ex−E

mech
x =

1

2
p2
x+

1

2
(r2
x−⟨r2

x⟩ss), x∈ In.

Theorem 3.3 (Stationary energy profile). Assume that γ =1. For any continuous test
function G ∶ I→R we have

1

n
∑
x∈In

G(
x

n
)⟨E

mech
x ⟩ss ÐÐÐ→

n→∞
∫
I
G(u)

1

2
r2
ss(u)du, (3.2)

1

n
∑
x∈In

G(
x

n
)⟨E

th
x ⟩ss ÐÐÐ→

n→∞
∫
I
G(u)eth,ss(u)du, (3.3)

1

n
∑
x∈In

G(
x

n
)⟨Ex⟩ss ÐÐÐ→

n→∞
∫
I
G(u)(eth,ss(u)+

1

2
r2
ss(u))du, (3.4)

where

rss(u)=τ+u,

eth,ss(u)=
τ2
+

2
u(1−u)+(T+−T−)u+T+.

The remaining part of the paper deals with the proofs of Theorems 3.2 and 3.3.

4. The stationary state
Let us start with explicit computations for the average momenta and elongations

with respect to the NESS.

4.1. Elongation and momenta averages.
Proposition 4.1. The average stationary momenta are equal to

⟨px⟩ss =ps ∶=
τ+

γn+ γ̃
, for any x∈ In. (4.1)

The average stationary elongations are equal to

⟨rx⟩ss =
ps
2
(γ̃−γ+2γx)=

τ+(2γx+ γ̃−γ)

2(γn+ γ̃)
for any x∈ In. (4.2)

Proof. We start with some useful relations that hold for the stationary state:
(1) since ⟨Lrx⟩ss =0, applying (2.8), we conclude

⟨px⟩ss =⟨px−1⟩ss =ps, for any x∈ In;

(2) from ⟨Lpx⟩ss =0 we get

⟨rx+1⟩ss−⟨rx⟩ss =γps, for any x∈{2,...,n−2}

⟨r1⟩ss =
1

2
(γ+ γ̃)ps,

⟨rn⟩ss =−
1

2
(γ+ γ̃)ps+τ+.

These equations determine the average stationary momentum and elongation as given
in formulas (4.1) and (4.2).
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4.2. Elements of the proofs of Theorems 3.2 and 3.3. One of the main
characteristics of this model is the existence of an explicit fluctuation-dissipation rela-
tion, which permits to write the stationary current js as a discrete gradient of some
local function, as given in the following:
Proposition 4.2 (Decomposition of the stationary current). We can write js as a
discrete gradient, namely

js =∇φ(x) ∶=φ(x+1)−φ(x), x∈{1,...,n−1}, (4.3)

with

φ(x) ∶=−
1

2γ
(⟨r2

x⟩ss+⟨px−1px⟩ss)−
γ

4
(⟨p2

x⟩ss+⟨p2
x−1⟩ss), x∈ In. (4.4)

Remark 4.1. Thanks to (4.3), the function φ(x) is harmonic, i.e.:

∆φ(x) ∶=φ(x+1)+φ(x−1)−2φ(x)=0, for any x∈{2,...,n−1}. (4.5)

Proof. (Proof of Proposition 4.2.) By a direct calculation one can easily check
that the energy currents jx,x+1 (defined in (2.10)) satisfy the following fluctuation-
dissipation relation:

jx,x+1 =n
−2Lgx−

1

2γ
∇(r2

x+px−1px)−
γ

4
∇(p2

x−1+p
2
x), (4.6)

for any x∈{1,...,n−1}, with

gx ∶=−
1

4
p2
x+

1

2γ
px(rx+rx+1).

Therefore, (4.3) is obtained by taking the average in (4.6) with respect to the stationary
state.

We can now sketch the proof of Theorem 3.3: straightforward computations, using
the Definition (4.4) of φ, yield

⟨Ex⟩ss =
1

2
(⟨p2

x⟩ss+⟨r2
x⟩ss)=−

2γ

1+γ2
φ(x)+

γ2

2(1+γ2)
(⟨p2

x⟩ss−⟨p2
x−1⟩ss)

−
1

1+γ2
⟨pxpx−1⟩ss+

1−γ2

2(1+γ2)
(⟨p2

x⟩ss−⟨r2
x⟩ss). (4.7)

Therefore, the microscopic energy profile can be decomposed as the sum of four terms:

Hn(G) ∶=
1

n
∑
x∈In

G(
x

n
)⟨Ex⟩ss =H

φ
n(G)+H

∇
n (G)+H

corr
n (G)+H

m
n (G), (4.8)

where

H
φ
n(G) ∶=−

2γ

1+γ2

1

n
∑
x∈In

G(
x

n
)φ(x),

H
∇
n (G) ∶=

γ2

2(1+γ2)

1

n
∑
x∈In

G(
x

n
)(⟨p2

x⟩ss−⟨p2
x−1⟩ss),
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H
corr
n (G) ∶=−

1

1+γ2

1

n
∑
x∈In

G(
x

n
)⟨px−1px⟩ss,

H
m
n (G) ∶=

1−γ2

2(1+γ2)

1

n
∑
x∈In

G(
x

n
)(⟨p2

x⟩ss−⟨r2
x⟩ss).

Note that, if γ =1, then Hm
n ≡0. If γ ≠1, we conjecture that this last term vanishes as

n→∞, but we are not able to prove it at the moment. The limits of the other three terms
will be obtained in the next section and are summarized in the following proposition:

Proposition 4.3. For any continuous test function G ∶ I→R,

H
φ
n(G)ÐÐÐ→

n→∞
∫
I
G(u)(

τ2
+

1+γ2
u+(T+−T−)u+T−)du, (4.9)

H
∇
n (G)ÐÐÐ→

n→∞
0, (4.10)

H
corr
n (G)ÐÐÐ→

n→∞
0. (4.11)

The complete proof of the proposition will be given in Section 5.4. Let us first comment
on the ideas used in the argument. The limit (4.9) will be concluded using the fact that φ
is harmonic, (4.10) is a consequence of the presence of a discrete gradient ⟨p2

x⟩ss−⟨p2
x−1⟩ss

inside the sum, and (4.11) will be shown thanks to the second-order bounds, which are
obtained in the next section.

Proof. (Proof of Theorem 3.3.) With the help of Proposition 4.3 the proof
of Theorem 3.3 becomes straightforward. Assume that γ =1. From the decomposition
(4.7) and Proposition 4.3, we get

1

n
∑
x∈In

G(
x

n
)⟨Ex⟩ssÐÐÐ→

n→∞
∫
I
G(u)(

τ2
+

2
u+(T+−T−)u+T−)du

=∫
I
G(u)(

τ2
+

2
u(1−u)+(T+−T−)u+T−+

(τ+u)
2

2
)du.

Recalling (2.16) and (2.17) we conclude that the right-hand side equals

∫
I
G(u)(eth,ss(u)+

r2
ss(u)

2
)du.

Thus (3.4) follows. From Theorem 3.1 we immediately conclude (3.2). The convergence
of the stationary microscopic thermal energy profile in (3.3) is an immediate consequence
of these two statements.

5. Moment bounds under the stationary state
In this section we present a complete proof of Proposition 4.3 (see Section 5.4) and

we show Theorem 3.2 (see Proposition 5.5). Before presenting the proof, we need a few
technical estimates on the entropy production (Section 5.1) and second-order moments
(Section 5.2 and Section 5.3). In the whole section we do not assume γ =1, since our
results hold for any γ >0.

5.1. Entropy production of the stationary state. Recall Definition (2.15).
For a given T we will use

νT (dr,dp)=gT (r,p)dp0 ∏
x∈In

dpxdrx,



762 EVOLUTION AND NON-EQUILIBRIUM STATIONARY STATES

as a reference measure, and denote its respective expectation by ⟪⋅⟫T .
Stationarity of µss under the microscopic dynamics implies that L⋆µss =0 (in the

sense of distributions). The operator L⋆ is hypoelliptic, thus by [9, Theorem 1.1, p. 149],
the measure µss has a smooth density fs with respect to νT+ , i.e.

⟨F ⟩ss =⟪Ffs⟫T+ =∫ Ffs dνT+ .

Proposition 5.1 (Entropy production). Denote h ∶=gT−/gT+ .The following formula
holds

γ
n−1

∑
x=0

Dx(fs)+ γ̃T−⟪
(∂p0(fs/h))

2

(fs/h)
⟫
T−
+ γ̃T+⟪

(∂pnfs)
2

fs
⟫
T+

=
τ2
+

T+(γn+ γ̃)
+ γ̃(

1

T+
−

1

T−
)(T−−⟨p2

0⟩ss), (5.1)

where

Dx(fs) ∶=⟪
(Xxfs)

2

fs
⟫
T+
.

Proof.
Integration by parts yields

⟪gS̃f⟫
T+
=T+⟪∂pnf∂png⟫T+ +T−⟪∂p0f∂p0g⟫T+ +T−(

1

T−
−

1

T+
)⟪g∂p0f⟫T+

for any f,g ∈C∞
0 (Ωn), where C∞

0 (Ωn) is the space of compactly supported smooth func-
tions. As

A(Hn(r,p))=τ+pn and Xx(
n

∑
y=0

p2
y)=0, x∈{0,...,n−1}

we conclude

−⟪gAf⟫T+ =⟪fAg⟫T+ +τ+⟪pnfg⟫T+ ,

−⟪gX 2
xf⟫T+

=⟪XxfXxg⟫T+ ,

for any x=0,...,n−1, and any f,g ∈C∞
0 (Ωn). We take the average of −n−2L(logfs) with

respect to the stationary state µss. Taking into account the above identities we obtain

0=−n−2
⟨Llogfs⟩ss =−n

−2
⟪fsLlogfs⟫T+

=γ
n−1

∑
x=0

Dx(fs)+ γ̃T+⟪
(∂pnfs)

2

fs
⟫
T+
−τ+⟪∂pnfs⟫T+ − γ̃ ⟨(T−∂

2
p0 −p0∂p0)logfs⟩ss

.

From the definition h=gT−/gT+ , the last term can be rewritten in the form:

−⟨(T−∂
2
p0 −p0∂p0)logfs⟩ss

=−∫
fs
h

(T−∂
2
p0 −p0∂p0)(log(

fs
h

))gT−dp0

n

∏
x=1

dpxdrx
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−∫ fs(T−∂
2
p0 −p0∂p0)(logh)gT+dp0

n

∏
x=1

dpxdrx

=T−⟪
(∂p0(fs/h))

2

(fs/h)
⟫
T−
+(

1

T−
−

1

T+
)(T−−⟨p2

0⟩ss).

Moreover, by integration by parts and (4.1), we obtain

⟪∂pnfs⟫T+ =T
−1
+ ⟪pnfs⟫T+ =

ps
T+

=
τ+

T+(γn+ γ̃)

and (5.1) follows. Since fs need not be compactly supported the above calculation
is somewhat formal. A rigorous argument (using variational principles) can be found
in [5, Section 3].

5.2. Bounds on second moments. In the present section we obtain some
bounds on the covariance functions of momenta and positions, with respect to the
stationary states. In particular, we estimate the magnitude of the average current ∣js∣,
see (2.18) and investigate the behaviour of φ(1) and φ(n) as n→∞, see (4.4).

Let us first state a rough estimate on the second moments at the boundaries, which
is going to be refined further.

Proposition 5.2 (Second moments at the boundaries: Part I). The following equality
holds

⟨p2
0⟩ss+⟨p2

n⟩ss =T++T−+
2τ+ps
γ̃

for all n⩾1. (5.2)

Moreover, there exists a constant C =C(γ,γ̃,τ+,T+,T−)>0, such that

⟨r2
1⟩ss+⟨r2

n⟩ss ⩽C for all n⩾1. (5.3)

Remark 5.1. By convention, the constants appearing in the statements below depend
only on the parameters indicated in parentheses in the statement of the proposition.

Proof. (Proof of Proposition 5.2.) The first identity (5.2) is an easy consequence
of (2.11) and (2.18), which yields

js =
γ̃

2
(T−−⟨p2

0⟩ss), (5.4)

js =−τ+ps−
γ̃

2
(T+−⟨p2

n⟩ss). (5.5)

Identity (5.2) is obtained by adding sideways the above equalities. To show estimate
(5.3) note that

n−2L(p0r1)=(p1−p0)p0+r
2
1−

1

2
(γ̃+γ)p0r1 (5.6)

n−2L(pnrn)=pn(pn−pn−1)+(τ+−rn)rn−
1

2
(γ̃+γ)pnrn. (5.7)

After taking the average with respect to the stationary state from (5.6) we conclude

⟨r2
1⟩ss =⟨p2

0⟩ss−⟨p1p0⟩ss+
1

2
(γ̃+γ)⟨p0r1⟩ss. (5.8)
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Recalling the definition of the current (2.10) and then invoking (5.4), we get

⟨r2
1⟩ss =⟨p2

0⟩ss−⟨p1p0⟩ss−
1

2
(γ̃+γ)(⟨j0,1⟩ss+

γ

2
(⟨p2

1⟩ss−⟨p2
0⟩ss))

=⟨p2
0⟩ss−⟨p1p0⟩ss−

γ̃

4
(γ̃+γ)(T−−⟨p2

0⟩ss)−
γ

4
(γ̃+γ)(⟨p2

1⟩ss−⟨p2
0⟩ss).

Using Young’s inequality

∣⟨p1p0⟩ss∣ ⩽
A

2
⟨p2

1⟩ss+
1

2A
⟨p2

0⟩ss,

with A=
γ
2
(γ+ γ̃), we get

⟨r2
1⟩ss ⩽(

1

γ(γ+ γ̃)
+1+

1

4
(γ+ γ̃)2

)⟨p2
0⟩ss. (5.9)

From (5.2) we conclude that ⟨r2
1⟩ss is bounded.

To estimate ⟨r2
n⟩ss, note that from (5.7) we write

⟨r2
n⟩ss =⟨p2

n⟩ss−⟨pnpn−1⟩ss+τ+⟨rn⟩ss−
1

2
(γ̃+γ)⟨pnrn⟩ss. (5.10)

We use Young’s inequality again

∣⟨pnpn−1⟩ss∣ ⩽
A

2
⟨p2
n⟩ss+

1

2A
⟨p2
n−1⟩ss,

with A=1/(2γ) and we get

⟨r2
n⟩ss ⩽(1+

1

4γ
)⟨p2

n⟩ss+γ⟨p
2
n−1⟩ss+τ⟨rn⟩ss−

1

2
(γ̃+γ)⟨pnrn⟩ss. (5.11)

To replace ⟨p2
n−1⟩ss, note that

n−2L(p2
n)=2(τ+−rn)pn+γ(p

2
n−1−p

2
n)+ γ̃(T+−p

2
n). (5.12)

Taking the average with respect to the stationary state, we obtain:

γ⟨p2
n−1⟩ss =2⟨rnpn⟩ss−2τ+⟨pn⟩ss+(γ+ γ̃)⟨p2

n⟩ss− γ̃T+, (5.13)

which, in (5.11), gives

⟨r2
n⟩ss ⩽(1+

1

4γ
+γ+ γ̃)⟨p2

n⟩ss+τ+ (⟨rn⟩ss−2⟨pn⟩ss)+
1

2
(4− γ̃−γ)⟨pnrn⟩ss− γ̃T+.

Using Young’s inequality again

∣⟨pnrn⟩ss∣ ⩽
A

2
⟨p2
n⟩ss+

1

2A
⟨r2
n⟩ss

with A= 1
2
∣4−γ− γ̃∣, we finally arrive at

1

2
⟨r2
n⟩ss ⩽(1+

1

4γ
+γ+ γ̃+

1

4
(4−γ− γ̃)2

)⟨p2
n⟩ss+τ+ (⟨rn⟩ss−2⟨pn⟩ss)− γ̃T+. (5.14)
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We now invoke (5.2), (4.1) and (4.2) to conclude the bound on ⟨r2
n⟩ss, which combined

with the already obtained bound on ⟨r2
1⟩ss, yields (5.3).

Corollary 5.1 (Second moments at the boundaries: Part II). There exists C =

C(γ,γ̃,τ+,T+,T−)>0, such that

⟨p2
1⟩ss+⟨p2

n−1⟩ss ⩽C for all n⩾1. (5.15)

Proof. To bound ⟨p2
n−1⟩ss we use formula (5.13). From an elementary inequality

∣⟨rnpn⟩ss∣ ⩽
1
2
(⟨p2

n⟩ss+⟨r2
n⟩ss) and Proposition 5.2, we easily conclude that ⟨p2

n−1⟩ss is
bounded.

The bound for ⟨p2
1⟩ss is obtained similarly. First, note that

n−2L(p2
0)=2r1p0+γ(p

2
1−p

2
0)+ γ̃(T−−p

2
0). (5.16)

Taking the average with respect to the stationary state, using the inequality ∣⟨r1p0⟩ss∣ ⩽
1
2
(⟨r2

1⟩ss+⟨p2
0⟩ss), and invoking Proposition 5.2, we conclude the desired bound on ⟨p2

1⟩ss.
Thus (5.15) follows.

In the next proposition we provide a bound on the energy current under the sta-
tionary state, which will be further refined in Proposition 5.5.

Proposition 5.3 (The stationary current: Part I). There exists a constant C =

C(γ,γ̃,τ+,T+,T−)>0, such that the stationary current satisfies

∣js∣ ⩽
C

n
for all n⩾1. (5.17)

Proof. We sum the identity (4.3) from x=1 to n−1 and apply (4.4) to express
φ(n) and φ(1). In this way we get

(n−1)js =φ(n)−φ(1)

=⟨−
pn−1pn+r

2
n

2γ
−
γ(p2

n−1+p
2
n)

4
⟩
ss
+⟨
p1p0+r

2
1

2γ
+
γ(p2

1+p
2
0)

4
⟩
ss
. (5.18)

Therefore, (5.17) follows from the elementary inequalities

∣⟨px−1px⟩ss∣ ⩽
1

2
(⟨p2

x⟩ss+⟨p2
x−1⟩ss) for x=n and x=1

together with the bounds obtained in Proposition 5.2 and Corollary 5.1.

Proposition 5.3 permits to get a better estimate on the entropy production. Namely,
combining (5.1), (5.4) and (5.17) we conclude the following.

Corollary 5.2. There exists C =C(γ,γ̃,τ+,T+,T−)>0, such that

γ
n−1

∑
x=0

Dx(fs)+ γ̃T−⟪
(∂p0(fs/h))

2

(fs/h)
⟫
T−
+ γ̃T+⟪

(∂pnfs)
2

fs
⟫
T+
⩽
C

n
, n⩾1. (5.19)

Thanks to Proposition 5.3 we are now able to estimate the covariances of momenta
and stretches at the boundaries as follows:
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Proposition 5.4 (Second moment at the boundaries: Part III). There exists C =

C(γ,γ̃,τ+,T+,T−)>0, such that, at the left boundary point

∣⟨p0p1⟩ss∣+ ∣⟨r1p1⟩ss∣+ ∣⟨r1p0⟩ss∣ ⩽
C
√
n
, n⩾1, (5.20)

and at the right boundary point

∣⟨pnpn−1⟩ss∣+ ∣⟨rnpn⟩ss∣+ ∣⟨rnpn−1⟩ss∣ ⩽
C
√
n
, n⩾1. (5.21)

Proof. Integration by parts yields

⟨p0p1⟩ss =−T−⟪p1(fs/gT−)∂p0gT−⟫T+
=T−⟪p1∂p0(fs/h)⟫T−

.

We use the entropy production bound (5.19) and estimate (5.15) on ⟨p2
1⟩ss, to estimate

the right-hand side. As a result we get

∣⟨p0p1⟩ss∣ =T−∣⟪p1∂p0(fs/h)⟫T−
∣ ⩽T−⟨p

2
1⟩

1
2

ss
⟪
(∂p0(fs/h))

2

(fs/h)
⟫

1
2

T−
⩽
C
√
n
.

Similarly,

∣⟨pnpn−1⟩ss∣ =T+∣⟪pn−1∂pnfs⟫T+
∣ ⩽T+⟨p

2
n−1⟩

1
2

ss
⟪
(∂pnfs)

2

fs
⟫

1
2

T+
⩽
C
√
n
.

Finally, note that, for any x∈ In

n−2L(r2
x)=2(px−px−1)rx. (5.22)

Therefore, upon averaging with respect to the NESS, we get

⟨pxrx⟩ss =⟨px−1rx⟩ss, x∈ In. (5.23)

In particular, applying (5.23) for x=1 and x=n, we remark that the only quantities
we need to yet estimate are ∣⟨r1p0⟩ss∣ and ∣⟨rnpn⟩ss∣. This is done using the entropy
production bound (5.19) in the same manner as before, namely:

∣⟨r1p0⟩ss∣ =T−∣⟪r1∂p0(fs/h)⟫T−
∣ ⩽T−⟨r

2
1⟩

1
2

ss
⟪
(∂p0(fs/h))

2

(fs/h)
⟫

1
2

T−
⩽
C
√
n
,

from (5.3) and (5.1). We leave the last estimate for the reader.

We now have all the ingredients necessary to prove moments convergences at the
boundaries:

Corollary 5.3 (Second moments at the boundaries: Part IV). The following limits
hold: at the left boundary point,

⟨p2
x⟩ss ÐÐÐ→

n→∞
T− for x∈{0,1}, (5.24)

⟨r2
1⟩ss ÐÐÐ→

n→∞
T−, (5.25)

⟨r1r2⟩s ÐÐÐ→
n→∞

0, (5.26)
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and at the right boundary point,

⟨p2
x⟩ss ÐÐÐ→

n→∞
T+ for x∈{n−1,n}, (5.27)

⟨r2
n⟩ss ÐÐÐ→

n→∞
T++τ

2
+, (5.28)

⟨rn−1rn⟩s ÐÐÐ→
n→∞

τ2
+. (5.29)

Proof. (Proofs of (5.24) and (5.27).) From (5.4) and Proposition 5.3 we get
⟨p2

0⟩ss→T−. Thanks to (5.16) and (5.20) we deduce ⟨p2
1⟩ss→T−, which in turn proves

(5.24). A similar argument proves (5.27). Indeed, from (5.5) and Proposition 5.3, we
get ⟨p2

n⟩ss→T+ and from (5.13) and (5.21), we deduce ⟨p2
n−1⟩ss→T+.

Proofs of (5.25) and (5.28). The limit (5.25) follows directly from (5.8) and
Proposition 5.4. From (4.2) we conclude that ⟨rn⟩ss→τ+. Using then (5.10) together
with Proposition 5.4 we conclude (5.28).

Proofs of (5.26) and (5.29). Note that

n−2L(r1p1)=(p1−p0)p1+(r2−r1)r1−γr1p1 (5.30)

n−2L(rnpn−1)=(pn−pn−1)pn−1+(rn−rn−1)rn−γrnpn−1. (5.31)

Taking the average with respect to the stationary state, and using Proposition 5.4
together with (5.24) proved above, we get

⟨r2
1⟩ss−⟨r1r2⟩sÐÐÐ→

n→∞
T− (5.32)

and

⟨r2
n⟩ss−⟨rn−1rn⟩sÐÐÐ→

n→∞
T+. (5.33)

Using the already proved limits (5.25) and (5.28) we conclude (5.26) and (5.29).

Proposition 5.5 (The stationary current: Part II). The following limits hold:

φ(1)ÐÐÐ→
n→∞

−
1

2
(γ−1

+γ)T− (5.34)

φ(n)ÐÐÐ→
n→∞

−
1

2
(γ−1

+γ)T+−
τ2
+

2
. (5.35)

In consequence, (3.1) holds and Theorem 3.2 is proved.

Proof. Limits in (5.34) and (5.35) follow from formula (4.4), Proposition 5.4 and
the limits computed in Corollary 5.3. The limit (3.1) is a consequence of (5.34), (5.35)
and formula (5.18).

5.3. Energy bounds. We now provide bounds on the total energy under the
stationary state:

Proposition 5.6 (Energy bounds). There exists C =C(γ,γ̃,τ+,T+,T−)>0, such that

1

n

n

∑
x=1

⟨p2
x⟩ss ⩽C and

1

n

n

∑
x=1

⟨r2
x⟩ss ⩽C, n⩾1. (5.36)
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Proof. From the current decomposition given by (4.3), we easily get that

φ(x)=(x−1)js+φ(1), for any x∈ In.

Summing over x, this gives

1

n

n

∑
x=1

φ(x)=
1

n

n

∑
x=2

(x−1)js+φ(1)=
n(n−1)

2n
js+φ(1).

Therefore, recalling (5.34) and (3.1), we get

1

n

n

∑
x=1

φ(x)ÐÐÐ→
n→∞

−
1

4
(γ−1

+γ)(T++T−)−
τ2
+

4γ
. (5.37)

From (4.4), we have

1

n

n

∑
x=1

φ(x)=−
1

2γn

n

∑
x=1

⟨r2
x⟩ss−

1

2γn

n

∑
x=1

⟨pxpx−1⟩ss−
γ

2n

n

∑
x=1

⟨p2
x⟩ss+

γ

4n
(⟨p2

n⟩ss−⟨p2
0⟩ss).

(5.38)
To compute the limit of the second sum in the right-hand side of (5.38), we first write:

n−2L(px−1px)=(rx+1−rx)px−1+(rx−rx−1)px−2γpxpx−1, x∈{2,...,n−1}. (5.39)

Thus, taking the average with respect to the stationary state and subsequently using
(5.23), we obtain

2γ⟨pxpx−1⟩ss =⟨pxrx⟩ss+⟨px−1rx+1⟩ss−⟨pxrx−1⟩ss−⟨px−1rx⟩ss

=⟨px−1rx+1⟩ss−⟨pxrx−1⟩ss. (5.40)

On the other hand

n−2L(rxrx+1)=(px−px−1)rx+1+(px+1−px)rx, x∈{1,...,n−1}.

Hence, taking the average and using (5.23) again, we get

0=⟨px+1rx⟩ss+⟨pxrx+1⟩ss−⟨pxrx⟩ss−⟨px−1rx+1⟩ss

=⟨px+1rx⟩ss+⟨px+1rx+1⟩ss−⟨pxrx⟩ss−⟨px−1rx+1⟩ss,

which yields

⟨px+1rx+1⟩ss−⟨pxrx⟩ss =⟨px−1rx+1⟩ss−⟨px+1rx⟩ss

for any x∈{2,...,n−1}. Combining with (5.40) we get

2γ⟨pxpx−1⟩ss =⟨px+1rx+1⟩ss−⟨pxrx⟩ss+⟨px+1rx⟩ss−⟨pxrx−1⟩ss, (5.41)

for any x∈{2,...,n−1}. Summing over x, one gets:

n−1

∑
x=2

⟨pxpx−1⟩ss =
1

2γ
(⟨pnrn⟩ss−⟨p2r2⟩ss+⟨pnrn−1⟩ss−⟨p2r1⟩ss). (5.42)

To compute the limit as n→∞, we need to estimate the covariances appearing in the
right-hand side. The covariance ⟨pnrn⟩ss can be estimated thanks to Proposition 5.4.
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We still need the bounds on the covariances ⟨p2r2⟩ss, ⟨pnrn−1⟩ss and ⟨p2r1⟩ss. To deal
with it we write

n−2L(p0p1)=(r2−r1)p0+r1p1−
1

2
(3γ+ γ̃)p0p1 (5.43)

n−2L(r1r2)=(p1−p0)r2+(p2−p1)r1 (5.44)

n−2L(pn−1pn)=(τ+−rn)pn−1+(rn−rn−1)pn−
1

2
(3γ+ γ̃)pn−1pn. (5.45)

Taking averages with respect to the stationary state and summing (5.43) and (5.44)
sideways gives (using ⟨p2r2⟩ss =⟨p1r2⟩ss from (5.23))

⟨p2r2⟩ss+⟨p2r1⟩ss =⟨p0r1⟩ss+
1

2
(3γ+ γ̃)⟨p0p1⟩ssÐÐÐ→

n→∞
0, (5.46)

from Proposition 5.4. Moreover, (5.45) gives (using ⟨pnrn⟩ss =⟨pn−1rn⟩ss)

⟨rn−1pn⟩ss =τ+⟨pn−1⟩ss−
1

2
(3γ+ γ̃)⟨pn−1pn⟩ssÐÐÐ→

n→∞
0, (5.47)

from (4.1) and Proposition 5.4. Therefore, we have proved that (5.42) vanishes as n→∞.
In fact, due to the estimates obtained in Proposition 5.4 we have even proved that there
exists a constant C =C(γ,γ̃,τ+,T+,T−)>0, such that

∣
n

∑
x=1

⟨pxpx−1⟩ss∣ ⩽
C
√
n
, n⩾1. (5.48)

From (5.38) it follows that

1

2γn

n

∑
x=1

⟨r2
x⟩ss+

γ

2n

n

∑
x=1

⟨p2
x⟩ss =−

1

2γn

n

∑
x=1

⟨pxpx−1⟩ss−
1

n

n

∑
x=1

φ(x)+
γ

4n
(⟨p2

n⟩ss−⟨p2
0⟩ss)

ÐÐÐ→
n→∞

1

4
(γ−1

+γ)(T++T−)+
τ2
+

4γ
,

due to (5.37) and (5.48). This in particular implies estimate (5.36).

Thanks to the energy bounds, we are finally able to prove one further convergence,
which will be essential in establishing Proposition 4.3.

Proposition 5.7. For any continuous test function G ∶ I→R we have

1

n

n−1

∑
x=1

G(
x

n
)⟨pxpx+1⟩ssÐÐÐ→

n→∞
0. (5.49)

Proof. Assume first that G∈C1(I). For the sake of brevity we denote Gx ∶=G(x/n)
for any x∈ In and ψ(x)=⟨px+1rx+1⟩ss+⟨px+1rx⟩ss. Then (5.41) says that

⟨pxpx+1⟩ss =
1

2γ
(ψ(x+1)−ψ(x)), for any x∈{1,...,n−2}.

Therefore, by an application of summation by parts formula, we get

1

n

n−1

∑
x=1

Gx⟨pxpx+1⟩ss =
1

2γn2

n−2

∑
x=2

n(Gx−1−Gx)ψ(x) (5.50)
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+
1

n
⟨pnpn−1⟩ssGn−1+

1

2γn
(⟨pnrn⟩ss+⟨pnrn−1⟩ss) (5.51)

−
1

2γn
(⟨p2r2⟩ss+⟨p2r1⟩ss)G1. (5.52)

The boundary terms (5.51) and (5.52) vanish, as n→∞, thanks to (5.21), (5.46) and
(5.47). To deal with the sum in the right-hand side of (5.50) note that, since G∈C1(I),
we have

sup
x∈{2,...,n−2}

n∣Gx−1−Gx∣ ⩽∥G′
∥∞. (5.53)

Since

∣ψ(x)∣⩽2(2⟨p2
x+1⟩ss+⟨r2

x⟩ss+⟨r2
x+1⟩ss), x∈{1,...,n−1}

we conclude that

1

2γn2
∣
n−2

∑
x=2

n(Gx−1−Gx)ψ(x)∣⩽
C

n
{

1

n

n

∑
x=1

(⟨p2
x⟩ss+⟨r2

x⟩ss)}, (5.54)

which vanishes, as n→+∞, thanks to the energy bound (5.36). This proves (5.49) for
any test function G∈C1(I). The result can be extended to all continuous functions by
the standard density argument and the energy bound (5.36).

5.4. Proof of Proposition 4.3. We now have at our disposal all components
needed to prove Proposition 4.3 and thus conclude the proof of Theorem 3.3. There are
three convergences to prove:

Proof of (4.9). From Proposition 4.2 (in particular (4.5)), the function φ is linear
and is completely determined from the values at the endpoints. More precisely,

φ(x)=
φ(n)−φ(1)

n−1
x+

nφ(1)−φ(n)

n−1
, for any x∈ In.

Since, from Proposition 5.5, the values φ(1) and φ(n) are of order 1 as n→∞, we see
that

φ(x)≃(φ(n)−φ(1))
x

n
+φ(1), as n→∞,

and therefore we easily obtain

1

n
∑
x∈In

G(
x

n
)φ(x)ÐÐÐ→

n→∞
∫
I
G(u){−

τ2
+

2γ
u−

1

2
(γ−1

+γ)[(T+−T−)u+T−]}du.

which proves (4.9) directly.

Proof of (4.10). Concerning H∇
n (G) we use a summation by parts formula (with

the notation Gx =G(x/n)), which leads to:

H
∇
n (G)=

γ2

2(1+γ2)
(
Gn
n

⟨p2
n⟩ss−

G1

n
⟨p2

0⟩ss+
1

n2

n−1

∑
x=1

n(Gx−Gx+1)⟨p
2
x⟩ss).

The boundary terms in the right-hand side vanish, as n→+∞, since ⟨p2
n⟩ss and ⟨p2

0⟩ss
are bounded, due to (5.2). To deal with the limit of the last sum in the right-hand side,
we can repeat the argument made in (5.53)-(5.54), which shows that the expression
vanishes. Thus (4.10) holds.
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Proof of (4.11). This is a consequence of (5.49).
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Appendix. Non-Stationary behaviour. In this section we explain how to de-
rive (2.12) and (2.13): while the derivation of (2.12) is rigorous, in order to obtain (2.13)
we need to assume a form of local equilibrium that allows for the local equipartition
of kinetic and potential energy, see (6.46) below. In the stationary setting this term
corresponds to Hm

n (G) in (4.8) and, similarly, does not appear in the case γ =1. Unfor-
tunately, quite analogously with the stationary situation, the relative entropy method
does not allow us to treat the case γ /=1. Throughout the present section we allow τ+(t)
to be a C1 function.

6.1. Preliminaries. In the present section we establish non-stationary asymp-
totics corresponding to Corollary 5.3. They will be useful in proving the hydrodynamic
limit in Section 6.2. Since νT+ is not stationary, except for the corresponding equilibrium
boundary conditions, the relative entropy Hn(t) defined as

Hn(t) ∶=∫ fn(t)logfn(t)dνT+

is not strictly decreasing in time, where hereafter fn(t) is the density of the Ωn–valued
random variable (rn(t),pn(t)) (recall (2.7)), with respect to νT+ . However, the effect
of the boundary condition can be controlled and one can obtain a linear-in-n bound at
any time t, i.e. (see the proof of Proposition 4.1 in [20] for the details of the argument)

Hn(t)⩽C(t)n, n⩾1, t⩾0. (6.1)

Both here and throughout the remainder of the paper C(t) shall denote a generic con-
stant, always independent of n and locally bounded in t.

Furthermore, one obtains the bounds on the Dirichlet form controlling the entropy
production, similar to (5.19),

∫

t

0
ds[γ

n−1

∑
x=0

Dx(fn(s))+ γ̃T−⟪
(∂p0(fn(s)/h))

2

(fn(s)/h)
⟫
T−
+ γ̃T+⟪

(∂pnfn(s))
2

fn(s)
⟫
T+

]

⩽
C(t)

n
, (6.2)

where h=gT−/gT+ and n⩾1, t⩾0, see Proposition 4.1 and Appendix D of [20] for the
proof.

Below we list some consequences of the above bounds on the entropy and Dirichlet
forms.

Lemma 6.1. The following equalities hold:

lim
n→∞

E[∫

t

0
(p2
n(s)−T+)ds]=0, lim

n→∞
E[∫

t

0
(p2

0(s)−T−)ds]=0 (6.3)
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and

lim
n→∞

E[∫

t

0
jn−1,n(s)ds]=0, lim

n→∞
E[∫

t

0
j0,1(s)ds]=0. (6.4)

Proof. Note that,

E[∫

t

0
(p2
n(s)−T+)ds]=∫

t

0
ds∫ (p2

n−T+)fn(s)dνT+

=T+∫
t

0
ds∫ pn∂pnfn(s)dνT+ .

Thus, by the Cauchy-Schwarz inequality

∣E[∫

t

0
(p2
n(s)−T+)ds]∣

⩽T+(∫
t

0
ds∫ p2

nfn(s)dνT+)
1/2⎛

⎝
∫

t

0
ds∫

(∂pnfn(s))
2

fn(s)
dνT+

⎞

⎠

1/2

. (6.5)

By the entropy inequality, see e.g. [14, p. 338], we can write (recall (2.2))

∫ Hn(r,p)fn(s,r,p)νT+(dr,dp)

⩽
1

α
{log[∫ exp{αHn(r,p)}νT+(dr,dp)]+Hn(s)}

for any α>0. By (6.1), for any t>0 and a sufficiently small α>0, there exists C >0 such
that

sup
s∈[0,t]

∫ Hn(r,p)fn(s,r,p)νT+(dr,dp)⩽Cn, n⩾1. (6.6)

Consequently, by (6.2) and (6.5), there exists C >0 such that

sup
s∈[0,t]

∣E[∫

t

0
(p2
n(s)−T+)ds]∣⩽C, n⩾1.

Hence, in particular we obtain

∫

t

0
ds ∫ p2

nfn(s)dνT+ ⩽C. (6.7)

Using this estimate in (6.5) together with (6.2) we conclude that for any t⩾0 there exists
C >0 for which

∣E[∫

t

0
(p2
n(s)−T+)ds]∣⩽

C
√
n
, n⩾1. (6.8)

Hence the first equality of (6.3) follows. The proof of the second equality of (6.3) is
similar.

Concerning (6.4): from the energy conservation it follows that

n−2LEn =jn−1,n+
γ̃

2
(T+−p

2
n)+τ+(t)pn.
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To deal with the term τ+(t)pn, note that

∣∫

t

0
τ+(s)E[pn(s)]ds∣⩽∥τ+∥∞∫

t

0
∣∫ pnfn(s)dνT+ ∣ds

=
∥τ+∥∞
T+

∫

t

0
∣∫ ∂pnfn(s)dνT+ ∣ds

⩽
∥τ+∥∞
T+

∫

t

0
(∫ fn(s)dνT+)

1/2⎛

⎝
∫

(∂pnfn(s))
2

fn(s)
dνT+

⎞

⎠

1/2

ds

⩽
∥τ+∥∞
T+

C
√
n
Ð→
n→∞

0, (6.9)

by virtue of (6.2).
The first equality of (6.4) is then a direct consequence of (6.3). The same argument

works for j0,1.

Using the energy conservation it follows immediately:

Corollary 6.1. The currents, defined in (2.10) and (2.11), satisfy

lim
n→∞

E[∫

t

0
jx,x+1(s)ds]=0, x=−1,...,n, t⩾0. (6.10)

Concerning the potential energy at the boundary points we have the following
bound.

Lemma 6.2. There exists a constant C <∞ such that

E[∫

t

0
(r2

1(s)+r
2
n(s)) ds]⩽C, n⩾1. (6.11)

Proof. Using (5.7) we get

n−2E[pn(t)rn(t)−pn(0)rn(0)]

=∫

t

0
E[pn(s)(pn(s)−pn−1(s))+(τ+(s)−rn(s))rn(s)−

1

2
(γ̃+γ)pn(s)rn(s)]ds. (6.12)

The term in the left-hand side vanishes, as n→+∞, due to estimate (6.6). We can
repeat then the same arguments as we have used to obtain (5.14) and conclude that
there exists C >0 such that

E[∫

t

0
r2
n(s)ds]⩽C{E[∫

t

0
p2
n(s)ds]+1}, n⩾1. (6.13)

Estimate (6.7) can be used to obtain the desired bound for E[∫
t

0 r
2
n(s)ds]. An analogous

estimate on E[∫
t

0 r
2
1(s)ds] follows from the same argument, using (5.6) and the second

equality in (6.3) instead.

Lemma 6.3. The following convergences hold: at the left boundary point:

E[∫

t

0
p0(s)r1(s)ds]ÐÐÐ→

n→∞
0, (6.14)
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E[∫

t

0
(p2

1(s)−p
2
0(s))ds]ÐÐÐ→

n→∞
0, (6.15)

E[∫

t

0
r1(s)r2(s)ds]ÐÐÐ→

n→∞
0 (6.16)

and at the right boundary point:

E[∫

t

0
pn−1(s)rn(s)ds]ÐÐÐ→

n→∞
0, (6.17)

E[∫

t

0
(p2
n−1(s)−p

2
n(s))ds]ÐÐÐ→

n→∞
0, (6.18)

E[∫

t

0
(rn−1(s)rn(s)−τ

2
+(s))ds]ÐÐÐ→

n→∞
0. (6.19)

Proof. Since n−2Lr2
n =2rnpn−2rnpn−1, we conclude that (6.17) holds, provided that

we can prove

E[∫

t

0
rn(s)pn(s)ds]ÐÐÐ→

n→∞
0. (6.20)

The latter is a consequence of the following estimate, cf. (6.2),

∣E[∫

t

0
rn(s)pn(s)ds]∣= ∣∫

t

0
ds∫ rn∂pnfn(s)dνT+ ∣

⩽(∫

t

0
ds∫ r2

nfn(s)dνT+)
1/2⎛

⎝
∫

t

0
ds∫

(∂pnfn(s))
2

fn(s)
dνT+

⎞

⎠

1/2

⩽(∫

t

0
ds∫ r2

nfn(s)dνT+)
1/2 C

√
n
ÐÐÐ→
n→∞

0.

The proof of (6.14) is similar.
To show (6.18) note that (see (5.12))

γ∫
t

0
E[p2

n−1(s)−p
2
n(s)]ds=2∫

t

0
τ+(s)E[pn(s)]ds−2∫

t

0
E[rn(s)pn(s)]ds

+ γ̃∫
t

0
E[T+−p

2
n(s)]ds−

1

n2
E[p2

n(t)−p
2
n(0)].

The second, third and fourth terms in the right-hand side vanish due to (6.20), Lemma
6.1 and (6.6), respectively. The first term has been already treated in (6.9). An analo-
gous argument, starting from (5.16) allows us to prove (6.15).

In addition, we have

E[∫

t

0
pn−1(s)pn(s)ds]

=E[∫

t

0
pn−1(s)(pn(s)−T+)ds]+T+E[∫

t

0
pn−1(s)ds]ÐÐÐ→

n→∞
0. (6.21)

The above convergence is proved as follows: the first term in the right-hand side can be
estimated by the Cauchy-Schwarz inequality. Then we can use the bound

E[∫

t

0
p2
n−1(s)ds]⩽C, n⩾1
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(it follows from the already proved (6.18)) and Lemma 6.1 to prove that it vanishes,
as n→+∞. To show that the second term vanishes we can use estimates analogous to
(6.9). The argument for (6.14) follows essentially along the same lines.

By (5.7) we can now write

E[∫

t

0
(r2
n(s)−T+−τ

2
+(s))ds]= ∫

t

0
τ+(s)E[rn(s)−τ+(s)]ds

+∫

t

0
E[p2

n(s)−T+]ds−∫
t

0
E[pn(s)pn−1(s)]ds

−
1

2
(γ̃+γ)∫

t

0
E[pn(s)rn(s)]ds

−
1

n2
E[pn(t)rn(t)−pn(0)rn(0)]. (6.22)

By the previous results, the last four terms in the right-hand side vanish, as n→+∞.
Concerning the first term we use

n−2Lpn(s)=τ+(s)−rn(s)−
1

2
(γ̃+γ)pn(s) (6.23)

to conclude that

∫

t

0
τ+(s)E[rn(s)−τ+(s)]ds=

1

2
(γ̃+γ)∫

t

0
τ+(s)E[pn(s)]ds

−
1

n2 ∫

t

0
τ+(s)

d

ds
E[pn(s)]ds. (6.24)

The first term vanishes, as n→+∞, by (6.9). By integration by parts the second term
equals

1

n2 ∫

t

0
τ ′+(s)E[pn(s)]ds−

1

n2
(τ+(t)E[pn(t)]−τ+(0)E[pn(0)])

which also vanishes, thanks to (6.9) and (6.6). Therefore,

E[∫

t

0
(r2
n(s)−T+−τ

2
+(s))ds]Ð→0.

To see (6.19) it suffices to show that

E[∫

t

0
(r2
n(s)−rn(s)rn−1(s)−T+)ds]Ð→0.

For that purpose we invoke (5.31), which permits to write

E[∫

t

0
((rn−1(s)−rn(s))rn(s)+T+)ds]=E[∫

t

0
(p2
n(s)−p

2
n−1(s))ds]

+E[∫

t

0
pn(s)pn−1(s)ds]+E[∫

t

0
(T+−p

2
n(s))ds]

−γE[∫

t

0
rn(s)pn−1(s)ds]−

1

n2
E[rn(t)pn−1(t)−rn(0)pn−1(0)].

Each term in the right-hand side of the above equality vanishes, as n→+∞, by virtue
of the already proved estimates. With a similar procedure we obtain (6.16).
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6.2. Hydrodynamic limit. Let us now turn to equation (2.12), which can be
formulated in a weak form as:

∫

1

0
duG(u)(r(t,u)−r(0,u))

=
1

γ
∫

t

0
ds∫

1

0
duG′′

(u)r(s,u)−
1

γ
G′

(1)∫
t

0
τ+(s)ds, (6.25)

for any test function G∈C2
0,1(I) – the class of C2 functions on [0,1] such that G(0)=

G(1)=0. Existence and uniqueness of such weak solutions in an appropriate space of
integrable functions are standard. By the microscopic evolution equations (2.3) we have
(recall that Gx =G(x/n))

E[
1

n

n

∑
x=1

Gx(rx(t)−rx(0))]=E[∫

t

0
ds n

n

∑
x=1

Gx(px(s)−px−1(s))]

=E[∫

t

0
ds{−

n−1

∑
x=1

(∇nG)x px(s)−nG1p0(s)}], (6.26)

where (∇nG)x ∶=n(Gx+1−Gx). Using (2.4) we can write (6.26) as

E[−∫

t

0
ds{

n−1

∑
x=1

1

γ
(∇nG)x(rx+1(s)−rx(s))+

1

2(γ+ γ̃)
nG1r1(s)}] (6.27)

+E[
1

γn2

n−1

∑
x=1

(∇nG)x(px(t)−px(0))+
1

2(γ+ γ̃)n2
nG1(p0(t)−p0(0))]. (6.28)

Since G is smooth, nG1→G
′(0) and (∇nG)x→G

′(x), as n→+∞. Using this and (6.6),
one shows that the expression (6.28) converges to 0. The only significant term is there-
fore the first one (6.27). Summing by parts, using the notation

(∆nG)x ∶=n
2
(Gx+1+Gx−1−2Gx)

and recalling that G(0)=0, it can be rewritten as

E[∫

t

0

1

γ
{

1

n

n−1

∑
x=2

(∆nG)x rx(s)−(∇nG)n−1 rn(s)}ds]

−(
1

2(γ+ γ̃)
(∇nG)0−

1

γ
(∇nG)1)E[∫

t

0
r1(s)ds]. (6.29)

It is easy to see, using (2.5), that

lim
n→+∞

E[∫

t

0
r1(s)ds]=

γ+ γ̃

2
lim
n→+∞

∫

t

0
ds∫ p1fn(s)dνT+

=
γ+ γ̃

2T+
lim
n→+∞

∫

t

0
ds∫ ∂p1fn(s)dνT+ =0,

by (6.2). Using (6.23) we also obtain

lim
n→+∞

E[∫

t

0
rn(s)ds]=∫

t

0
τ+(s)ds.
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Therefore, we can rewrite (6.29) as

∫

t

0
ds{

1

γ
∫

1

0
G′′

(u)r(n)(s,u)du−G′
(1)τ+(s)}+on(t), (6.30)

where

r(n)(t,u)=E[rx(t)] for u∈[ x
n

; x+1
n

), n⩾1 (6.31)

and limn→+∞ sups∈[0,t]on(s)=0. Thanks to (6.6) we know that there exists R>0 such
that

sup
n⩾1

sup
s∈[0,t]

∥r(n)(s, ⋅)∥
L2(I) =∶R<+∞. (6.32)

The above means that for each s∈ [0,t] the sequence {r(n)(s, ⋅)}
n⩾1

is contained in BR

– the closed ball of radius R>0 in L2(I), centered at 0. The ball is compact in L2
w(I)

– the space of square integrable functions on I equipped with the weak L2 topology.
The topology restricted to BR is metrizable. From the above argument it follows in
particular that for each t>0 the sequence {r(n)(⋅)} is equicontinuous in C([0,t],BR).
Thus, according to the Arzela theorem, see e.g. [13, p. 234], it is sequentially pre-
compact in the space C([0,t],L2

w(I)) for any t>0. Consequently, any limiting point of
the sequence satisfies (6.25).

Concerning equation (2.13) with the respective boundary condition, its weak for-
mulation is as follows: for any G∈L1([0,+∞);C2

0,1(I)) we have

0= ∫
1

0
G(0,u)e(0,u)du

+∫

+∞

0
ds∫

1

0
(∂sG(s,u)+

1

2
(γ−1

+γ)∂2
uG(s,u))e(s,u)du

+
1

4
(γ−1

−γ)∫
+∞

0
ds∫

1

0
∂2
uG(s,u)r2

(s,u)du

−∫

+∞

0
(∂uG(s,1)[(γ−1

+γ)T++
1

4
(γ−1

−γ)τ+(s)
2
]−∂uG(s,0)T−)ds. (6.33)

Given a non-negative initial data e(0, ⋅) ∈L1(I) and the macroscopic stretch r(⋅) (de-
termined via (6.25)) one can easily show that the respective weak formulation of the
boundary value problem for a linear heat equation, resulting from (6.33), admits a
unique measure-valued solution.

The averaged thermal energy function is defined as

En(t,u) ∶=E[Ex(t)], u∈[ x
n
, x+1
n

), x=0,...,n−1.

It is easy to see, thanks to (6.6), that (En(t))n⩾1
is bounded in the dual to the separable

Banach space L1([0,+∞);C2
0,1(I)). Thus it is ⋆-weakly compact. In what follows we

identify its limit e(t) by showing that it satisfies (6.33). To achieve this goal we are
going to use the microscopic energy currents given in (2.10).

Consider now a smooth test functionG∈C∞
0 ([0,+∞)×I) such that G(s,0)=G(s,1)≡

0, s⩾0. Then, from (2.9), we get

−
1

n
E[

n

∑
x=0

Gx(0)Ex(0)]=−
1

n
E[

n−1

∑
x=1

Gx(0)Ex(0)]=−
1

n
∫

t

0
dsE[

n−1

∑
x=0

∂sGx(s)Ex(s)]
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+∫

t

0
dsE[

n−2

∑
x=1

(∇nG)x(s)jx,x+1(s)−nGn−1(s)jn−1,n(s)+nG1(s)j0,1(s)]. (6.34)

Here Gx(s) ∶=G(s,x/n) and we use a similar notation for ∇nGx(s), ∆nGx(s).
Concerning (6.34): by (6.4), the expectation of its last two terms are negligible. In

order to treat the first term of (6.34), we use the fluctuation-dissipation relation (4.6),
i.e.

jx,x+1 =n
−2Lgx+∇Vx, (6.35)

with

Vx =−
1

2γ
r2
x−

γ

4
(p2
x+p

2
x−1)−

1

2γ
pxpx−1.

Using this relation we can rewrite the last term (6.34) as

∫

t

0
dsE[

1

n

n−2

∑
x=2

(∆nG)x(s)Vx(s)−(∇nG)n−2(s)Vn−1(s)+(∇nG)1(s)V1(s)] (6.36)

plus expressions involving the average fluctuating term

∫

t

0
dsE[

1

n2

n−2

∑
x=1

(∇nG)x(s)Lgx(s)]

=E[
1

n2

n−2

∑
x=1

((∇nG)x(t)gx(t)−(∇nG)x(0)gx(0))]−∫
t

0
dsE[

1

n2

n−2

∑
x=1

(∇n∂sG)x(s)gx(s)]

which turns out to be small, as n→+∞, thanks to the energy bound (6.6). By Lemmas
6.1 and 6.3 we have:

lim
n→∞

E[∫

t

0
ds(∇nG)1(s)V1(s)]=−∫

t

0
ds∂uG(s,0)

1

2
(γ−1

+γ)T−, (6.37)

which takes care of the left boundary condition. Concerning the right one we have

E[∫

t

0
ds(∇nG)n−2(s)Vn−1(s)]=−E[∫

t

0
ds(∇nG)n−2(s)∇Vn−1(s)] (6.38)

+E[∫

t

0
ds(∇nG)n−2(s)Vn(s)]. (6.39)

Using the results of Lemmas 6.1 and 6.3 again we conclude that the limit of the second
term (6.39) equals

−∫

t

0
ds∂uG(s,1)(

1

2
(γ−1

+γ)T++
1

2γ
τ2
+(s)).

On the other hand, using (6.35), the term (6.38) equals

1

n2
E[∫

t

0
ds(∇nG)n−2(s)Lgn−1(s)]+∫

t

0
ds(∇nG)n−2(s)E[jn−1,n(s)]. (6.40)

From (6.10) we conclude that the second term vanishes, with n→+∞. By integration
by parts the first term equals
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1

n2
E[(∇nG)n−2(t)gn−1(t)−(∇nG)n−2(0)gn−1(0)]

−
1

n2
E[∫

t

0
ds(∇n∂sG)n−2(s)gn−1(s)], (6.41)

which vanishes, thanks to (6.6). Summarizing, we have shown that

lim
n→+∞

E[∫

t

0
ds(∇nG)n−2(s)Vn−1(s)]

=−∫

t

0
ds∂uG(s,1)[

1

2
(γ−1

+γ)T++
1

2γ
τ2
+(s)].

Now, for the bulk, it follows from (5.22) and (5.39) that

n−2Lhx =∇Wx−3γpxpx−1, x=2,...,n−1, (6.42)

with

hx ∶=
1

2
(rx+rx−1)

2
+pxpx−1−r

2
x, Wx ∶=(rx−1+rx)px−2.

Therefore by (6.2) and an argument similar to the one used above we conclude that

lim
n→∞
∫

t

0
dsE[

1

n

n−2

∑
x=2

(∆nG)x(s)px(s)px−1(s)]=0. (6.43)

In the case γ =1 we can rewrite

Vx =−Ex+
1

4
(p2
x−p

2
x−1)−

1

2
pxpx−1 (6.44)

so that it is easy to see that (6.36) is equivalent to

−∫

t

0
dsE[

1

n

n−2

∑
x=2

(∆nG)x(s)Ex(s)]+on(1), (6.45)

closing the energy conservation equation and concluding the proof.
Finally, for γ ≠1 we expect the following term to vanish as n→+∞:

∫

t

0
dsE[

1

n

n−2

∑
x=2

(∆nG)x (p
2
x(s)−(rx(s)−E[rx(s)])

2
)], (6.46)

as can be guessed by local equilibrium considerations. Unfortunately in order to prove
the last limit one needs some higher moment bounds that are not available from relative
entropy considerations. One prospective work could be to proceed in an analogous way
as in the periodic case [16], by studying the evolution of the Wigner distribution of the
thermal energy in Fourier coordinates.
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