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THE LOCAL WELL-POSEDNESS TO THE DENSITY-DEPENDENT
MAGNETIC BENARD SYSTEM WITH NONNEGATIVE DENSITY*

XIN ZHONGT

Abstract. We study the Cauchy problem of density-dependent magnetic Bénard system with zero
density at infinity on the whole two-dimensional (2D) space. Despite the degenerate nature of the
problem, we show the local existence of a unique strong solution in weighted Sobolev spaces by energy
method.
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1. Introduction

Consider the following density-dependent incompressible magnetic Bénard system
(see [5]):

pt+div(pu) =0,
(pu)¢+div(pu®u) — pAu+VP=b-Vb—1V|b[>+ pfe,,

b;—vAb+u-Vb—b-Vu=0, (1.1)
(p0); +div(pbu) — kAO=pu-es,
divu=divb =0,

where ¢ >0 is the time, x=(x1,72) € QCR? is the spatial coordinate, and p=p(z,t),
u=(ut,u?)(z,t), b= (b*,0?)(x,t), §=0(x,t), and P= P(x,t) denote the density, velocity,
magnetic, absolute temperature, and pressure of the fluid, respectively. >0 stands for
the viscosity constant. The constant v >0 is the resistivity coefficient and x>0 is the
heat conductivity coefficient. e;2 (0,1). The forcing term pfes in the momentum
equation describes the action of the buoyancy force on fluid motion and pu-es models
the Rayleigh-Bénard convection in a heated inviscid fluid. The magnetic Bénard system
illuminates the heat convection phenomenon under the presence of the magnetic field.

Let Q=R? and we consider the Cauchy problem for (1.1) with (p,u,b,f) vanishing
at infinity (in some weak sense) and the initial conditions:

p(z,0)=po(z), pu(z,0)=poug(x), b(z,0)=bo(z), pb(z,0)=pobh(z), :CG]sz (1.2)

for given initial data pg,ug,bg, and 6.

Recently, a great deal of attention has been focused on studying well-posedness
of solutions to the magnetic Bénard system, both from a pure mathematical point of
view and for concrete applications. When p is a constant, which means the fluid is
homogeneous, the magnetic Bénard system has been extensively studied. In particu-
lar, many authors investigated the global existence and regularity of 2D homogeneous
magnetic Bénard system with partial dissipation. Zhou et al. [18] showed the global
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well-posedness of smooth solutions with zero thermal conductivity. Cheng and Du [3]
obtained the global well-posedness without thermal diffusivity and with vertical or hor-
izontal magnetic diffusion. Ye [16] established the global regularity with horizontal
dissipation, horizontal magnetic diffusion and with either horizontal or vertical ther-
mal diffusivity. For other studies of homogeneous magnetic Bénard system, please refer
to [4,9-13,15,17] and references therein.

When the density is not constant, the system (1.1) is the so-called density-dependent
magnetic Bénard system. Imposing a compatibility condition introduced by Choe and
Kim [2], Wu [14] showed the local existence of strong solutions with nonnegative density
in bounded domains Q CR"™ (n=2,3). Later on, for the initial density with positive
lower bound, with the help of a bootstrap argument, Fan et al. [5] proved global strong
solutions of the system (1.1) with v=0 for the general initial data in a two-dimensional
bounded domain. However, even the local existence of strong solutions to the Cauchy
problem of (1.1) in R? is still unknown. On the one hand, for the initial density allowing
vacuum states, the main difficulty lies in the possible degeneracy near vacuum. On
the other hand, when the far field density equals zero, it seems difficult to bound the
LP(R?)-norm of u by [|\/pul|p2(r2) and ||Vul|p2(g2) for any p>1. In this paper, we will
investigate the local existence of strong solutions to the Cauchy problem of the density-
dependent magnetic Bénard system (1.1) in R? with vacuum as far field density. The
initial density is allowed to vanish and the spatial measure of the set of vacuum can be
arbitrarily large, in particular, the initial density can even have compact support.

Now, we wish to define precisely what we mean by strong solutions.

DEFINITION 1.1.  If all derivatives involved in (1.1) for (p,u,P,b,0) are reqular dis-
tributions, and equations (1.1) hold almost everywhere in R? x (0,T) and (1.2) almost
everywhere in R?, then (p,u, P,b,0) is called a strong solution to (1.1).

In this section, for 1<r<oo and k>1, we denote the standard Lebesgue and
Sobolev spaces as follows:

LT:LT(R2)7 Wk,T‘Zwk,T(RQ), Hk:Wk72.

Our main result can be stated as follows:

THEOREM 1.1. Let ng be a positive constant and
Z:=(3+z[?)7 log' T (34 |x[?). (1.3)
For constants ¢>2 and a>1, assume that the initial data (pg>0,u9,bg,0p) satisfy

poj(LeleHlﬁW17q7 MUOELQ, VU.()ELQ,
boz% €L?, Vbg € L?, divug =divby =0, 4
Vpbo € L?, Ve L2

Then there exists a positive time Ty >0 such that the problem (1.1)=(1.2) has a unique



XIN ZHONG 727

strong solution (p>0,u,P,b,0) on R? x (0,Ty] satisfying

p€C([0,To); L' nH nWh9),

pT* € L°(0,To; L' NH' nW),

VP, Vu, z7u, Viy/pu, VIV P, ViEViue L®(0,To; L?),

VPO, V0,510, \/1\/pfy, VIV € L™(0,To; L?),
b,bZ?,Vb,\/tb:, VIV*b e L>=(0,Ty; L?),

Vue L2(0,To; HY)NL T (0,To; W), (1.5)
VPeL(0,To; L2)NL " (0,To; LY),

Vb e L?(0,To; H'), by, Vb2 € L?(0,To; L?),

VIVue L2 (0,To; Wha),

VAU, VIVbZE IV, VtVb, € L2 (R? x (0,T0)),

and

1
. > 2 ,
Ogltnngo - pz,t)dx 1 /11%2 po(z)dz, (1.6)

for some constant N >0 and By = {:UER2| |z| <N}.

REMARK 1.1. The a priori estimates in [5,14] for the bounded domain case cannot be
applied here. The main reason is that the whole two-dimensional space is the critical
case for the standard Sobolev embedding theorem. When the far field density vanishes,
it seems difficult to bound the LP-norm of u by ||\/pul[z> and ||[Vul[z2 for any p> 1.

REMARK 1.2. If p(x,t) = p as |z| — oo for positive constant p, that is, the far field
density is away from vacuum, then LP-norm (p>1) of u can be bounded by ||\/pul| 12
and ||[Vu||z2. Indeed, we obtain from Hélder’s inequality and the Gagliardo-Nirenberg

inequality that
o[ wlde= [ phupars [ (- pulde
R2 R2 R2

<Ilvpulliz +lp—pll 2[lull 74
<llvpullzz+Cllp—pllzzllul 2 [ Vul| 2,

which, combined with Young’s inequality, gives

lallZ- <C (Ivpulliz +llp=plZ: 1 Vull2).
Hence, Sobolev’s embedding theorem yields the desired result.

We now make some comments on the key ingredients of the analysis in this paper.
We take advantage of the method of invading domains to prove Theorem 1.1. Since the
local existence of strong solutions of (1.1) with the initial density away from vacuum in
bounded domains has been established by Wu [14] (see Lemma 2.1), we thus construct
approximate solutions (pg,ur,Pr,br,0r) to (1.1), that is, for the density strictly away
from vacuum initially, consider (1.1) in any bounded ball Br with radius R >0 and then
letting R — oo to obtain the solution of (1.1) in R2. In this limit process, uniform-in-R
a priori estimates of (pg,ur,Pr,br,0r) play a decisive role in the proof.
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As mentioned above, due to criticality of Sobolev’s embedding theorem, it seems
difficult to bound the LP(R?)-norm of u just in terms of ||\/pul|p2(r2) and ||Vul|z2(ge2),
some new elaborate estimates are needed to achieve our goal. Motivated by [7], using a
Hardy-type inequality (see (2.6)) which is originally due to Lions [8] with some careful
estimates on the essential support of the density (see (3.13)), we obtain a key Hardy-
type inequality (see (3.14)) to bound the LP-norm of uZ~" instead of just the velocity
u, and then establish a crucial inequality (see (3.21)) which is used to control the LP-
norm of pu. These are the main ones of this paper, in bounding the LP-norm of pu and
pf. Combining some careful estimates on suitable spatially weighted estimates of the
magnetic field b with the time-weighted estimates of the solution (pg,ur,Pgr,br,0r),
we obtain the desired bounds on the solution. These facts are enough to close our
arguments.

The rest of the paper is organized as follows: In Section 2, we collect some elemen-
tary facts and inequalities which will be needed in later analysis. Section 3 is devoted
to the a priori estimates which are needed to obtain the local existence and uniqueness
of strong solutions. The main result Theorem 1.1 is proved in Section 4.

2. Preliminaries

In this section, we will recall some known facts and elementary inequalities which
will be frequently used later. First of all, if the initial density is strictly away from
vacuum, the following local existence theorem on bounded balls was shown in [14].

LEMMA 2.1.  For R>0 and Br={z € R?||z| < R}, assume that (po,ug,bo,0) satisfies

(po,llo,bo,go) S HQ(BR), wiel’ngo(x) >0, divug=divby=0. (21)

Then there exists a small time Tr >0 such that the Equations (1.1) with the following
initial-boundary-value conditions

{(pau7ba0)(m7t:0):(pOauO,b0790)7 l‘EBR,

2.2
u(z,t)=0, b(z,t)=0, 6(z,t)=0, x€0BR,t>0, (22)

has a unique classical solution (p,u, P,b,0) on Bgr x (0,TR] satisfying

peC([0,Tg];H?),
(u,b,0) € C([0,Tr]; H*)NL*(0,Tr; H?), (2.3)
PeC([0,Tr; H*)NL?(0,Tr; H?),

where we denote H* = H*(BR) for positive integer k.

Next, the following Gagliardo-Nirenberg inequality (see [6, Theorem 10.1, p. 27])
will be useful in the next section.

LEMMA 2.2 (Gagliardo-Nirenberg). Let Q CRR? be a bounded smooth domain. Assume
that 1<q,r <oo, and j,m are arbitrary integers satisfying 0<j<m. Ifve W™ (Q)N
L1(Q), then we have

1D vllze < Cllvll g ol m.r,

where

2 2 2
j+(1a)+a<m+>,
p q r
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and

S

c {[ 1), ifm—yj —% 18 a nonnegative integer,
a f

[

The constant C' depends only on m,j,q,r,a, and Q. In particular, we have

,1], otherwise.

ik

lolzs <CllvlZa vl

Next, for QCR?, the following weighted L™-bounds for elements of the Hilbert
space DV2(Q) & {ve HL (Q)|[Vve L2(2)} can be found in [8, Theorem B.1].

loc
LEMMA 2.3.  Form¢€[2,00) and § € (143 ,00), there exists a positive constant C' such
that for either Q=R? or Q= Bg with R>1 and for any ve D'2(Q),

1

v|™ _ ™
([ s atona 1ol 2de) " <Cllllisqay + Oy (24)

A useful consequence of Lemma 2.3 is the following crucial weighted bounds for
elements of D12(£2), which have been proved in [7, Lemma 2.4].

LEMMA 2.4. Let T and ng be as in (1.3) and Q be as in Lemma 2.3. Assume that
p€LY(Q)NL>®(Q) is a non-negative function such that

/ pdx > M, |pllor@)np= (o) < M, (2.5)
Bn,

for positive constants My, Ms, and N1 >1 with By, CS). Then for e >0 and n>0, there
is a_positive constant C depending only on &,m,My,M2,N1, and no such that every
ve DY2(Q) satisfies

[0z 24
L 7

@ <ClVpvllL2) +ClIVYlL2(0) (2.6)

with 7=min{1,n}.

Finally, the following LP-bound for elliptic systems is a direct result of the combi-
nation of the well-known elliptic theory [1] and a standard scaling procedure.

LEMMA 2.5. Forp>1 and k>0, there exists a positive constant C' depending only on
p and k such that

V¥l Lo () < CllAV] e (B1) (2.7)
for every v € Wk+2P(Bpg) satisfying

v=0 on Bpg.

3. A priori estimates
In this section, for r € [1,00] and k>0, we denote

/~dx: dx, L"=L"(Bgr), Wk'=W"r(Bg), HF=W"2
Br
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Moreover, for R> 4Ny >4, assume that (po,ug,bg,0p) satisfies, in addition to (2.1), that
1 3
fS/ po(as)dxg/ po(z)dx < —. (3.1)
2~ /o, B 2

Lemma 2.1 thus yields that there exists some T >0 such that the initial-boundary-
value problem (1.1) and (2.2) has a unique classical solution (p,u, P,b,0) on Bg x [0,Tx]
satisfying (2.3).

Let Z,n9,a, and ¢ be as in Theorem 1.1, the main aim of this section is to derive
the following key a priori estimate on 1 defined by

Y(t):=1+[/pul|2 +[[v/p0] L2 + |Vl 2 + (| VO] 2
+ Vb2 + 125 bl 22+ |2°p]l L1 rrr Ao (3.2)

ProposITION 3.1. Assume that (po,uo,bo,00) satisfies (2.1) and (3.1). Let
(p,u,P,b,0) be the solution to the initial-boundary-value problem (1.1) and (2.2) on
Bpg x (0,TR] obtained by Lemma 2.1. Then there exist positive constants Ty and M both
depending only on u,v,Kk,q, a, ng, No, and Eg such that

JSup [w(®) +VE(lVpuel 2 +1/pb:l 22 + bt 2 + [Vl g2 + V20 2 + [V Pl 2
+[[Vb] 2)]

IVpaellZo+HIVpO: oIVl Lo+ V2D 2o + (V20 22+ b7+ Vb2 [72) dt

To
+/ (
0
To PESY PESY
v/ (||v2u|Lz LR +tv2u||%q+t|vp|%q)dt
To
[ Tl PRI 19+ 7202 7)< M, (3.3)
0

where

Eo:=|v/pouol| 2+ |v/pobol 2 + | Vug || 2 4[| VOo]| 2
+11Z%oll i awra + | Vbo|l 22 + |22 bol| 2.

To show Proposition 3.1, whose proof will be postponed to the end of this section,
we begin with the following standard energy estimate for (p,u, P,b,0) and the estimate
on the LP-norm of the density.

LEMMA 3.1. Under the conditions of Proposition 3.1, let (p,u,P,b,0) be a smooth
solution to the initial-boundary-value problem (1.1) and (2.2). Then for any t€ (0,T1],

Oiugt(l\p\lmmo +llvpullz: +IblZ: +11veolIZ:)

t
+ / (IVu]22 + [ Vb]22 + [V6]2.) ds < C, (3.4)

where (and in what follows) C denotes a generic positive constant depending only on
WV, K,q,a, Mo, No, and Ey. Ty is as that of Lemma 3.2.

Proof.
(1) Since divu=0, it is easy to deduce from (1.1); that (see [8, Theorem 2.1]),

sup |plloinz= <C. (3.5)
0<s<t
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(2) Multiplying (1.1)2 by u and integrating by parts, we obtain from (1.1); and (1.1)5
that

1d

Iq% p\u\de+u/|Vu\ dx= /b Vb- udx—i—/pﬂu eqdx. (3.6)

Multiplying (1.1)s by b and integrating by parts, we find that

2dt/|b\2dz+u/|Vb|2dx+/b Vb-udz=0. (3.7)

Testing (1.1)4 by 6 and using (1.1); and (1.1)5, we get

1d

Sq p92daj+/ﬁ/\V9|2da:=/p9u-e2da:. (3.8)

Combining (3.6)—(3.8), we have

5 5 (PRI D3 + /A1) + (Pl 2+ v Vb + ] V0] )

:2/p9u~e2dx

<2||Vpu|L2[lv/p0] L2
<|lvpullz: +lIVeoll7:- (3.9)

Thus, Gronwall’s inequality leads to

t
S (||x/EUHLz+||b||L2+H\f9IIL2) /(IIVullinrIIVblliz+||V9||2L2)d5§07

which together with (3.2) yields (3.4) and completes the proof of Lemma 3.1.
O

Next, we will give some spatial-weighted estimates on the density and the magnetic
field.

LEMMA 3.2. Under the conditions of Proposition 3.1, let (p,u,P,b,8) be a smooth
solution to the initial-boundary-value problem (1.1) and (2.2). Then there exists a Ty =
T1(No, Eo) >0 such that for all t€ (0,T1],
¢
sup (a® + b2 [3:) + [ Vbt Fads <C. (3.10)
0<s<t 0
Proof.
(1) For N>1, let oy € C§°(By) satisty
. N —1
0<on <1, pn(x)=1, if |x|§?, [Von|<CN7-. (3.11)

It follows from (1.1); and (3.4) that

d

7 | PeaNode = / pu-Von,ds

>-CNy! (/pdx) (/p|u|2dx)2 >—C(Ey). (3.12)

[N
-
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Integrating (3.12) and using (3.1) give rise to

~ 1
i > i > — > —. .
ogltnngl /BzNO de,OSI?Sle/P@QNOdCU,/P0<,02N0d=’ﬂ CTy > 1 (3.13)

Here, Ty 2min{1,(4C)~'}. From now on, we will always assume that ¢t <7T}. The
combination of (3.13), (3.4), and (2.6) implies that for e>0 and 1 >0, every ve
D'2(Bg) satisfies

027 24 <Clem)|Vpvllz: + Clem)[VollZe, (3.14)
with 7=min{1,7n}.

(2) Noting that

4

IVZ| < (3+2m0)log" ™™ (3+ |z|*) < C(a,no)T5,

multiplying (1.1); by Z* and integrating by parts imply that

d

Gl = [ p(a-V)zazttda
SC/p\u\:?ang%adx
<Ollpz || s [[uE T |
- L7+a

1 Tta
<Clplz ozl i (lveual 2 + 1 Vull£2)
<O+ pz®pr) 1+ [VulZ:)

due to (3.4) and (3.14). This combined with Gronwall’s inequality and (3.4) leads
to

t
sup ||pz®| 1 <Cexp{C/ (1+||Vu%2)ds}<C. (3.15)
0<s<t 0

(3) Multiplying (1.1)3 by bZ® and integrating by parts yield

1d
o ba 2+ Vb 2|,
1
:g/|b|2A:E“dx+/b~Vu~bi“dm+§/|b|2u~V:E“dx
Zijl +j2—|—j3, (316)

where
|| < c/ Ib|2z°Z~210g?! ™) (3 + |x|?)dx < c/ b|2z%da,

|12| < C|| V| 2oz ? |74
<C|Vul 2oz |2 (| Vbz 2 | 2 + [bVZE || 2)
<C(IVulZ+1)|bz |7 +Z\|be% 172,

7 _a _a __3
[I3| < C[bz? || L4 b2 [| L2 [[uz™ % || £
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<C|bz? |74+ Clbz? |7 ([vpull 72 + [ Vul72)
_a v _a
<C (14| Vul3.)|bz? ||%2+Z||me2 122, (3.17)

due to the Gagliardo-Nirenberg inequality, (3.4), and (3.14). Putting (3.17) into
(3.16), we get after using Gronwall’s inequality and (3.4) that

t t
sup ||bz 2|2, —|—/ beg||2L2ds<Cexp{C/ (1—|—||Vu||%2)ds}<C’, (3.18)
0 0

0<s<t

which together with (3.15) gives (3.10) and finishes the proof of Lemma 3.2.
]

LEMMA 3.3.  Let (p,u,P,b,0) and Ty be as in Lemma 3.2. Then there exists a positive
constant a>1 such that for all t € (0,T1],

sup ([[VullZz +[VblZ:+V0|7:)
0<s<t
t
+/0 (IvVpusllzz +1IV2ull72 + [bal72 + Vb1 72 + V20172 + |/p0sl72) ds

<C’—|—C’/Otd1a(s)ds. (3.19)

Proof.
(1) Tt follows from (3.4), (3.10), and (3.14) that for any € >0 and any >0,

__3fa _ __ _3fna
[P0 21e SC|pTZTEF || aeie [|[E7TCFI || are
L 7 L 37 L 7

37
(24¢) 14(2+e) __3iia
SC(/p4 25 nlpl‘ad.’lﬁ) vz fez=) | acto
L7
<Cllpllp=""" llpz® " (Ivpvll e + Vol )
<Clly/pvllz +C Vol 2, (3.20)

where 7=min{1,n} and ve D“?(Bg). In particular, this together with (3.4) and
(3.14) yields

lp"all ze +uz™"] 2e <C(1+[[Vullz2), (3:21)
POl e +[[0277 242 SC(1+[IVO] 12). (3.22)
2) Multiplying (1.1), by u; and integrating by parts, one has
( 2
d
u%/|Vu|2dx+/p\ut|2dx§C’/p|u|2|Vu|2dac+/b-Vb~utdx+/p9|ut|d3:.
(3.23)

We derive from (3.21), Holder’s inequality, and the Gagliardo-Nirenberg inequality
that

[ olaIvapde<clypultval?
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3 1
<Cllvpulzs Va2 [Vul 7.
<Oy +e|[ Vg, (3.24)
where (and in what follows) we use a>1 to denote a generic constant, which may
be different from line to line. For the second term on the right-hand side of (3.23),

integration by parts together with (1.1);5 and the Gagliardo-Nirenberg inequality
deduces that for any € >0,

d
/b~Vb~utdac:—ﬁ/b-Vu-bdw—l—/bt~Vu-bdx+/b-Vu-btdx
d
v
< *%/b'vu'bdfﬂrTllbtll%z +Cbl[2[[Vb]| L2 [Vul| 2]V 7
d v ! 2 2 112 a
From Cauchy-Schwarz inequality and (3.4), we have
1 2 1 2
p9|ut\dx< plug|? da:—l— po dx§§ plug|*dx+C. (3.26)
Thus, inserting (3.24)—(3.26) into (3.23) gives

d

B0+ ||fut||Lz<€||VQUHLz+ Hth\L2+C¢“ (3.27)
where
B(t) 2 || Vul|2. +/b-Vu-bdm
satisfies
gIIVuII%z—Cl\IVbH%zSB(t)SCHVuII%ﬁCIIVbII%z, (3.28)

owing to Holder’s inequality, the Gagliardo-Nirenberg inequality, and (3.4).
(3) It follows from (1.1)3 that
d
V@HVbH%z +by[[Z2 +v° || Abl|7
< C|b[Vul||22 +Cl|[ul| Vb]|Z
< C|bl|2(|V?bl| 2| VulZ2 +Cllz~ Ful7s]|75 Vb] 12| Vb]| .1
2
< S lIAb|F.+Cy° +Cl|zE Vb (3.29)
due to (2.7), (3.21), and the Gagliardo-Nirenberg inequality. Multiplying (3.29) by
~1(Cy+1) and adding the resulting inequality to (3.27) imply

d
- (BO+(C1+1)[IVb]72) + 5 a3+ ||bt||L2+ HAb||2L2

SC@“—&—CHE%VbHQLz+5\|V2u||L2. (3.30)
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Since (p,u, P,b,0) satisfies the following Stokes system

—pAu+VP=—-pu,—pu-Vu+b-Vb—1V|b[*+pbe;, z€Bpg,
diva=0, x € Bp, (3.31)
u(z)=0, x € 0B,

applying regularity theory of Stokes system to (3.31) yields that for any p €[2,00),

IV2ull e + VP L < Cllpuel| o +Cllpu- V| Lo +C|[b][Vb|[ o +C||pf]| s
(3.32)

Hence, we infer from (3.32), (3.4), (3.21), and the Gagliardo-Nirenberg inequality
that

IV2ullZ + |V PIIZ
< Cllpul|72+Cllpu-Vull7: +C[bl[Vb][Z: +Cllpb]|7-
< Clpllz=llvpuelz: +CllpulLsl[VulLs + Cllbl7a I Vbl[7s +Cllpl [l /oo 7-
<Cllvpudlliz+Clloulz:Vul L2 [Vl 2+ Clb| L2 [ Vb2 [ Vb g2 +C

1 1
<Cllvpwliz+7IVblZ: + 511V ul7 +C (14 V|12 + | Vul72)
1 1
<Clly/pults + 197l + 5 197l + Oy (3.33)
Substituting (3.33) into (3.30) and choosing e suitably small, one gets

d 1 vl v
@B+ (A D)IVDIE) + 1lvEu 3+ 7 b3+ 7 | AbE

<COY*+C||Z2VDb|2..

Integrating the above inequality over (0,t), then we infer from (2.7), (3.28), (3.10),
and (3.33) that

t
sup (19l + Vb1 + [ (IvFu V2l + bl +197bI) ds

SC’—FC’/Otwa(s)ds. (3.34)

Multiplying (1.1)4 by 6; and integrating by parts, we obtain from (3.21), the
Gagliardo-Nirenberg inequality, and (3.4) that for any § >0,

d
R IVOIZ2 + (VP01 72

< [ olullv8)6uidz + [ pluerldz

< VBull 2 V0] s | /P8ell 2 + [l /pul 2 |50 | 2

<CU+Vullz2) V61122 V0] 3 |56 22+ 1Pl 2 | /56 2
<IV20l30+ 1/l + v (3.35)
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It follows from (1.1),, (1.1);, (3.4), Hélder’s inequality, the Gagliardo-Nirenberg
inequality, and (3.21) that

IV20172 < Cllpbi 7 +Cliplul| VOl 72 + CllpullZ:
<CIVPOl 2+ ClloullZslI VO]l 2 [ VO] 12 +C
1
<CllvVebhl72 + 5 IV201I7: +Coe, (3.36)

which, combined with (3.35) and choosing ¢ suitably small, yields
d 2 1 2 «@
H@IIWIILz + §||\/59t||L2 <Cy“.

Integrating the above inequality over (0,t) together with (3.36), we have

t t
sup [0+ [ (ool +IV2013) ds<0+C [ wo(as. (337

0<s<t

Thus, we derive the desired (3.19) from (3.34) and (3.37). The proof of Lemma 3.3
is finished.
0

LEMMA 3.4. Let (p,u,P,b,0) and Ty be as in Lemma 3.2. Then there exists a positive
constant o> 1 such that for all t € (0,11],

t
sup (sl s+l VA 51l + | (slV 590+ Vb ) ds

t
<Cexp{C/ w“ds}. (3.38)
0

Proof.
(1) Differentiating (1.1), with respect to t gives

puy + pu-Vu, — pAw,

1
=—p(uy+u-Vu)—pu,-Vu—-V <P+2|b2> +(b-Vb), + (ph)e2. (3.39)

t

Multiplying (3.39) by u; and integrating by parts the resulting equality over Bp,
we obtain after using (1.1); and (1.1), that

1d 9 9
5%/P|ut\ da:+u/|Vut| dx

<C [ plulu] (V| +[Vaf + ful|Vul) do-+-C [ ol Vul|Vui|da
+C’/p|ut|2\Vu|dx+/bfVbutdx+/betutdx+/(p9)te2utdx

6
= I (3.40)

It follows from (3.20), (3.21), and the Gagliardo-Nirenberg inequality that

. 1 1
L<Cllvpullzsllvpuel 22 vouel 2o (IVuel 2 + [ Vul|74)



XIN ZHONG 737

1 1 1
+CllprulZeellvpuel 22 vouel 26Vl 2

1 1
<CA+|VulZ)llVeuelz: (lveuelze + [Vl 2)
< (IVuel|zz +[[VallZ: + [Vl 22| V2ul| 2 +[|Vul| 2)

< BVl + O llpwllfa +Cv +C (14| Vul3a) [V2ulF.. (3.41)
Holder’s inequality combined with (3.20) and (3.21) leads to
A 3 1
Iy + 13 <C|ly/pullis || Vul| 4 [ Vae| 2 + OVl 2| pue | 2 [l Voue| 72
[ @ a
< SIVuellZe + o llVpuelz +C (6% + [ V2ulz2) (3.42)

Integration by parts together with (1.1)5, Holder’s and the Gagliardo-Nirenberg
inequalities indicates that

f4+f5=—/bt~Vut-bdx—/b~Vut-btdx
n
< gIIVutIIQLz +CIIbH2L4||bt||2L4

SElIVUtIIinr Vb7 +Cy[[be][7-. (3.43)
8

(c +1)

By virtue of (1.1)4 and integration by parts, we obtain from (3.21), (3.22), and (3.4)
that

fG:/(pu-eg—div(pGu)+/¢A9)e2-utdm
S/p|u||ut\da:+/p0|u||Vut|d:c+/i/\V0|Vut|d:c

< llvaulcellvaul e +C (Iv/pul e v/poll s + [ V6| 2) [V
< B3+ ol +Co. (3.44)

Substituting (3.41)—(3.44) into (3.40), we obtain after using (3.33) that

d (03
Vel +ul V. <Cv (1+ IvpuelZ: +[[bel72)

IVbe]|Z2 +C (14| VulZ2) [IV*b] 7.

(C +1)
(3.45)
(2) Differentiating (1.1), with respect to t shows
btt*bt‘VU*b’VUt‘Fut‘Vb+U‘Vbt:VAbt. (346)

Multiplying (3.46) by b, and integrating the resulting equality over Bg yield that

2dt/|bt| dx+u/\Vbt| dx

:/b'vut'btdl'—/ut'Vb'btdl’—F/bt'VU'btdI—/U'Vbt'btdl'

4
23S (3.47)
i=1
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On the one hand, we deduce from (3.14) and (3.18) that

2
> S <Ol Vugl|z2|byl Lo [bll s + ClI Vb 2 || ][] 2

=1

v
<Clb|La+ClV|fa + 2 [Vbe[72 +Cll [ [bl|[7:

2o bz % |2 ]bl| s

14 __a
< VB[ + Clbe[[7z + Cl Ve[ 12 + Clluyz %

v
< 7IVbIZ + Clbi72 +ClI Ve 72+ Cllv/pu |2, (3.48)
where one has used the following estimate
t
sup |||b|2||%2+/ IIVb][bl||Z2ds < C. (3.49)
0<s<t 0
Indeed, multiplying (1.1), by b|b|? and integrating by parts lead to

L (IBEIZ:), 9Bl I3 + 2 Vbl
< C|IVul 2 ||[bl*Z: < C[[Vull 2 [[[b]| 22V ][ 2
< %\|V|b\2||%2+C||Vu||%2|||b|2||%2, (3.50)
which together with Gronwall’s inequality and (3.4) gives (3.49).

On the other hand, integration by parts combined with (1.1), and the Gagliardo-
Nirenberg inequality yields

4

1%
> 8i= [ b Vusbuds O]V [Vl 2 < F19b 2+ C0 bl
=3

(3.51)
Inserting (3.48) and (3.51) into (3.47), one has
d (e
S IPell e+ IVb[Ze <C¥ (bel72 + [lVpue|72) +Cal Vue | 7. (3.52)
Differentiating (1.1), with respect to ¢ shows
p@tt —|—,011 VGt — K/Aat = —pt(ﬁt +u- VG) —pug- Vo -+ (pll)t c€9. (353)

Multiplying (3.53) by 6; and integrating the resulting equality over Bp yield that

1d
3% p9§dw+ﬁ/|v9t|2dx:—/pt(9t+u~V9)9tdx—/p9tut-Vde
+/9t(pu)t-e2dxé11 +12+I3. (354)

It follows from (1.1);, integration by parts, Holder’s inequality, (3.20), (3.21), and
the Gagliardo-Nirenberg inequality that

nj<c / plual (16:]76:] + 16|Vl [ V6] + 164 [l V28] + | V6, |[u] | V6]) da
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<ClVpulls [Ve0ell 22 1VP0: | Lo (1VO:| L2 + [Vl 4 [V O] 1)
+CllprullRaz Vo872 Vo041 76 V26l 12 + Clly/pul s | V6|4l V62 | 2

<O+ V3 VA0l 52 (P02 + 96l 22)* x (1198 2
IVl + [Vl V2] 2+ V8] 7+ (V8] 22920 22 + V6] 12)
+ O+ Vul32) IVl 2 V8] V6] 2
< ZIVil1F2+ Cv™[[y/p0h][32 +Co” +C (1+]|Vul2a) [ Va2
+C (1+(|VO||72) [|V?0]]7-. (3.55)

By Holder’s inequality and (3.20), we have

|| <CIVOlz Vil 2ol Vowl -
<CIVOlL2 (VPO 2 + 11V 0:ll2)* 1P 2
K «
< G IVOIZe +Cv® (10l ze + [l vpuZ2) - (3.56)

From (1.1)1, integration by parts, Holder’s inequality, (3.20), and (3.21), we get

|I3|—'/Put'ezatd$+/ptu-e20tda:

< [ (plullee +plul[Va6s]+ plaf* V6, do

< Vo0l L2 llvpael| 2 + [lv/pull Lo /0| 72 1v/00: £ s [Vl 12
+[Iv/pull7: V6| 2

K (o3
< G IVOIZe + O (L [1V/A0ilIZe + (| oulIZ2) (3.57)
Hence, substituting (3.55)—(3.57) into (3.54), we obtain that
d
VPOl + RV O T2 < Co® (L+[1/p0: |72 + Ve 72)
+C(1+[VulZ2) V2l +C (14[IVO]Z:) V20172,

which together with (3.36) gives that

d a
allx/ﬁﬂl\iz + 5[V T2 <CY* (14 ]1v/pb: |72 + IVpuelZ2) +C (1+ [ VulZ2) |V 72
(3.58)

(4) From (3.45) multiplied by p=1(Ce+1), (3.52), and (3.58), we get

d , _ v
T (W1 (Cot+DlIVpusl| 72 + el 72 +11VP0e ) 72) + Vel 72 + 3 IVbe||72 + k[ V| 72
<OY* (14 |bel|Z2 + VP22 + [vVP0elIZ2) +C (14 Vul[2) | Vb 22 (3.59)

Multiplying (3.59) by t, we obtain (3.38) after using Gronwall’s inequality and
(3.19). The proof of Lemma 3.4 is finished.
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|

LEMMA 3.5. Let (p,u,P,b,0) and Ty be as in Lemma 3.2. Then there exists a positive
constant o> 1 such that for all t € (0,T1],

t
sup. ([l + 5 V203 +5V7bl3e + 5| Vba? [£2) + [ s V7bat [Fads
0<s<t 0

SCeXp{CeXp{C/Otwads}}. (3.60)

Proof.
(1) Multiplying (1.1)3 by AbZ® and integrating by parts lead to

Ld
2dt
gc/|Vb|\b\|vu||v:za|dx+c/\Vb|2|u\|vgza|dx+c/|Vb|\Ab||vgfa\dx

/|Vb\2:f“dx+u/|Ab\2:f“dx

5
+C/|b||Vu|\Ab|:f“dx+C/\VuHVbFE“dxéZJZ-. (3.61)

i=1

Applying (3.10), (3.14), Holder’s inequality, and the Gagliardo-Nirenberg inequality,
one gets by some direct calculations that

J1 <C|bZ || 14|Vl 14| VbZE || 12
a, L a a 1 1 1 _a
<C|Ibz? |7, (||Vbz |12+ bzt | 12) * |Vl 2, | Vul 2. Vb | 12
<Cy“© +C\|V2u||2LQ +C¢“||bec% ||i2,
Jo <C|||VbP 32975 au|luz™ 5| zee ||| V|5 | oo

L[Ga—2
—2

P = a
<CY°|[VbzE | ||V f5 < Oy |[Vba? |7 +C| Vb,
<C° | Vbt |72+ 7[1Abz? |3,

Js+J4 S%llAbj;% [72+C||Vbz2|7.+C|[bz2 |34 Vul3s
<2 Aba# |3, +C|[ Vbt |3

+Cbz? |2 (| Vba? |12 +[|bZ || 2) [ Vul| 2 | Vul| s
<el| Abz |7, + 97 |[Vbi |72 + Cv® + O V2l 2,

J5 <C|[Vul [ Vb 2. sc(wunv%ni? ) |Vba% 2.
Substituting the above estimates into (3.61) and noting the following fact
/\V2b|2£‘“d:v:/|Ab\25c“dx—/8¢8;€b-akbaifc“dm—f—/@i@ib-6kb8k3’c“dx
§/|Ab\2§3“dx+%/|V2b|23’:“dx+(]/\Vb|2£“dx,
we derive that

d 2-a v 2120
dt/\Vb| wdm+2/\Vb|xdm
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ﬂ a
<c(¢a+||v2u||Lz )nvw|%2+C<||v2u%2+w“). (3.62)

(2) We now claim that

t gt1 gt1 t
/ (uv%nLZ Lvel +s||v2u||%q+s||vp||iq)dssoexp{c / wa<s>ds},

0 0
(3.63)

whose proof will be given at the end of this proof. Thus, multiplying (3.62) by ¢,
we infer from (3.10), (3.19), (3.63), and Gronwall’s inequality that

t t
sup (s||Vb§c%||%2)+/ S||V2b$ﬁ';|%QdSSCGXp{CGXp{C/ wads}}. (3.64)
0 0

0<s<t

(3) It deduces from (1.1),, (2.7), (3.4), (3.21), Holder’s inequality, and the Gagliardo-
Nirenberg inequality that

IV*bl1Z> < CllbellZ2 +Cllul[ VB[22 +C|[b]| V|7
<C|be|[Z2 +Clluz™ %75 [ Vbz? |12 | Vb]| s +C[b] 2 [ V?bl| 2 | Vu |2
<Cbil72+C[VbzE |72 +Clluz™ 5|75 Vb||Zs + O Vbl 12|Vl |7
a ].
<Ollbe|72 +ClIVbT? |72+ 1 V?blI7: +C (1+ [ Vullzz) (1+[Vb]2),
(3.65)
which together with (3.33) gives that
IV2ullZ2 + IV P72 + Vb 72 <C (IVpwllZ: + [be] 72 + [ Vbz|72)
+C(1+|VulZ) (1+IVblz2).  (3.66)
Then, multiplying (3.66) by s, one gets from (3.19), (3.38), and (3.64) that

sup (s|V2ul|32+s||VP|7.+5|V?Db|32)

0<s<t

< Cexp{C’eXp{C’/Otz/)o‘ds}}—l-C (1+/0t¢a(s)ds> :
SCeXp{Cexp{C/Otz/Jads}}. (3.67)

(4) Multiplying (3.36) by s, one gets from (3.19) and (3.38) that

t
sup s||V20|%. SCeXp{C/ wds}, (3.68)
0

0<s<t

which, combined with (3.64) and (3.67), implies (3.60).
(5) To finish the proof of Lemma 3.5, it suffices to show (3.63). Indeed, choosing p=g¢q
in (3.32), we deduce from (3.4), (3.20), and the Gagliardo-Nirenberg inequality that

IVl s + VP Lo
<C(llpallze+lpa-VullLa +[[[bl[Vbl[[La + 0] £a)
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<C(llpaellze +lpull p2e [Vl 2o + (bl 26 [[ VD[ 20 + |\/p0l 2 + (| VO] 12)
2(!1 1) a%-2q

= 1-1 1-1
<Clow %2 llpue] e ® +Cy® <1+IIV2ulle +[IV2b]| 2 )

2(q 1) q272q
—2 —2
<C{Ivouell s 2 Va2 + vl 2

1—1 1—1
+CyY° <1+||V2u||L2 ‘ +||V2b|L2"), (3.69)

which together with (3.19) and (3.38) implies that

t 5 L at1
/ (nv wli VP )ds

t 92 2)(g+1)
<C / S (slly/pwl2:) 77T (s Vu|2.) TR D ds
0
t

a+1 ¢ i -1
C | Ivouel,d ds+C’/ P* <1+V2u||L2 +HV2b||L2 ) s
0 0

q®-1 b (a=2)(a+1)
<C sup (s]lypu|2,) 777 / s (5| Vuy2.) T D ds
0<s<t 0
t
e / (% +lv/Au2s +|V2ul 2 + [ V2b]12,) ds
0

¢ ¢ o
SCeXp{C/ ¢ad8} <1+/ (8 %“T‘Fé’nvuth?) )
0 0

SCexp{C/twads} (3.70)
0

and
K 2 2 2
/O (sIV2ull2, + |V P2, ) ds
) 42—241
<0/ s||fut||mds+c/ Sllv/Awl2s) F2 (s Vug]2.) 77 ds
v [ (1+||v2u||;q+v2b||mq) ds
0
t t t
gc/ s||\/ﬁut||2L2ds+C'/ sHVutHQLgds—i—C/ (1% + 5[ V20|22 + 5[ Vb 2.) ds
0 0 0

¢
§C’exp{C’/ wads}. (3.71)
0

One thus obtains (3.63) from (3.70)—(3.71) and finishes the proof of Lemma 3.5.
]

LEMMA 3.6. Let (p,u,P,b,0) and Ty be as in Lemma 3.2. Then there exists a positive
constant a>1 such that for all t € (0,T1],

t
sup ||pZ®||pinEiAw e Sexp{Cexp{C/ wo‘ds}}. (3.72)
0<s<t 0
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Proof.
(1) It follows from Sobolev’s inequality and (3.21) that for 0<d <1,

[0z <€) (I~ ¢ + 1V (a™?) | 1s)

<C(0) (uz="l 4 +[IVullzs +uz=2| 4 |77 Va1 )
<C(6) (4" + V0 2). (3.7
(2) One derives from (1.1); that pz® satisfies

O (pz®)+u-V(pz?) —apz®u-Viegz =0, (3.74)

which along with (3.73) and (3.15) gives that for any r €[2,¢],

G190 12 <O+l o + - Viog <) [V (7)1
+Cllpa | (Il [Vloga|l| - + [ ul[V*1og ] | )
<C (47 + 1920l 2na) [V (p7)
+Cllpz® = (IFullzr + 10z a2~ H ], 4 )
<C (67 + 920l 2na) 1+ [V ozl + V() 20).  (3.75)

Hence, we get the desired (3.72) from (3.19), (3.63), (3.10), (3.75), and Gronwall’s
inequality. This completes the proof of Lemma 3.6.

Lr

d
Now, Proposition 3.1 is a direct consequence of Lemmas 3.1-3.6.

Proof. (Proof of Proposition 3.1.) It follows from (3.4), (3.10), (3.19), and

(3.72) that
w(t)gexp{Cexp{C/otz/Jo‘ds}}.

Standard arguments yield that for M :=e®® and Ty :=min{T},(CM*)~1},

sup () <M,
0<t<Tp
which together with (3.10), (3.19), (3.38), (3.60), (3.63), and (3.67) gives the desired
(3.3). The proof of Proposition 3.1 is completed. d

4. Proof of Theorem 1.1
With the a priori estimates in Section 3 at hand, we are in a position to prove
Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Let (po,up,bg,00) be as in Theorem 1.1.
Without loss of generality, we assume that the initial density po satisfies

/ pOdm: 1,
R2

which implies that there exists a positive constant Ny such that

/ podxzé/ podx:i (4.1)
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We construct pft = pE+ R~te~ =" where 0< pf € C5°(R?) satisfies

~R 1
{IBNO podr > 5,

4.2
TpF — 7% in LY(R?)NHY(R2)NWH4(R?), as R— oo. (4.2)

Noting that bgz 3 € L?(R?) and Vb € L?(R?), we choose bf € {w € C§°(Bgr) |divw =0}
satisfying
bliz2 =boz?, Vbl —Vby inL*(R?), asR—oco. (4.3)
Since Vug € L2(R?), we select v € C5°(Bgr) (i=1,2) such that for i=1,2,
Jim[|viT = 0ol 2 z2) =0. (4.4)
We consider the unique smooth solution uf? of the following elliptic problem:

—Ault+ pfuli+ VP =\/pfh® —0;vl, inBpg,
divuff =0, in Bp, (4.5)
ul =0, on 0Bg,

where h® = ({/poug) *j 1 with js being the standard mollifying kernel of width .
Extending uf’ to R? by defining 0 outside By and denoting it by 0¥, we claim that

=0. (4.6)
L2(R2)

In fact, it is easy to find that @ is also a solution of (4.5) in R%. Multiplying (4.5) by
@l and integrating the resulting equation over R? lead to

/ Pl Pde + / IVl 2da
R2 R2

<l pEait 2B D 22 (8o + ClIVI L2 (B 10508 || 25

lim <||V(ﬁ§—uo)||Lz(R2)+H piag —+/potto

R—o0

1 . 1 -
< IV 3 [ AR+ CIN )+ OV
R
which implies
/p§|ﬁ§|2dx+/ |Val|2de<C (4.7)
R2 R2

for some C' independent of R. This together with (4.2) yields that there exists a subse-
quence R; — oo and a function g € {0g € H .(R?)|\/potto € L*(R?),Vug € L*(R?)} such
that

A ot ey n 126, )
Vi’ — Vi weakly inL?(R?).

Next, we will show

flo =Up. (49)
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Indeed, multiplying (4.5) by a test function 7 € C§°(R?) with divr =0, it holds that

/8(u0 —v 87rdac+/ \/p0 ( po hR)~7rdx=0. (4.10)
R2

Let Rj — o0, it follows from (4.2), (4.4), and (4.8) that

Bi(ﬁo—uo)-(“)mdx—i—/ p()(ﬁo—l.lo)-’7'('dCL':O7 (411)
R2 R2

which implies (4.9).
Furthermore, multiplying (4.5) by ﬁg 7 and integrating the resulting equation over
R?2, by the same arguments as (4.11), we have

Rj—o0

lim (\Vuo |2—|—p0 \uo |) /2(\Vu0|2+/)0\u0|2)dx
R

which combined with (4.8) leads to

lim / \Vﬁ§j|2dx:/ |Vitg|?dz, lim / pORj\ﬁgj|2dx:/ poltig|?dz.
Rj—o00 JR2 R2 Rj—o0 JR2 R2

This along with (4.9) and (4.8) gives (4.6).

Hence, by virtue of Lemma 2 1, the initial-boundary-value problem (1.1) and (2.2)
with the initial data (pf,ufl,b HR) has a classical solution (pf,uft, PE bf ) on
Bpg % [0,Tr]. Moreover, Proposmon 3.1 shows that there exists a Ty independent of R
such that (3.3) holds for (pf*,u®?, P b 6%).

For simplicity, in what follows, we denote

LP =IP(R?), WhrP=Wkr(R?).
Extending (p%,uf?, P, b% 01) by zero on R?\ Br and denoting it by
(p~R — (pRpR7ﬁR’]5R7BR79~R)
with g satisfying (3.11). First, (3.3) leads to

S (ll\/ B[ L2+ 9R||L2+||VﬁRHL2+||V9R||Lz+||VbR||L2+||bR$2||L2)
<t<Tp

< 3w (Ve e + Vo0 2 + V25
U140

VO | 2By + VDR 2 + D722 | L2(5,))
<C, (4.12)

and

sup 572 i < C.
0<t<Tp

Similarly, it follows from (3.3) that for ¢ > 2,

sup. \f(llv Raf| g2 +11V/R07 | 12 + 1V 0|2 + V207 12

0<t<
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V2B 2 + B2z )

T[) - -

[ (VTR VRO + 726" s+ V27 )
0
To - -

+/ (||V2bR||%2+||VbR§ﬁ||2L2)dt
0

To a+l - 5
-/ (||v2ﬁR|Lz +t||v2ﬁR%q+t||vlaf||%z+tve5||%2+t||v1of||iz)dt
0
<C. (4.13)
Next, for p € [2,q], we obtain from (3.3) and (3.72) that

sup [[V(p"z")|lr <C sup (IV(p"2")||Lr(Br)+ B 10 2 Lr(B1))
0<t<Ty 0<t<To

<C <supT ||pRJEa||H1(BR)mW1,p(BR) <C, (4.14)
0

which together with (3.73) and (3.3) yields
To To
/O |22, dt<C / EC "

To
<C / 170U 2 g [0V 02
<cC. (4.15)

By virtue of the same arguments as those of (3.60) and (3.63), one gets

5 To ~ ., ltg
sup ﬂ||VPR||L2+/ <||VPR||2L2+||VPR||L3 )dtgc. (4.16)
0

0<t<T,

With the estimates (4.12)-(4.16) at hand, we find that the sequence
(p%,aft, P bR 91) converges, up to the extraction of subsequences, to some limit
(p,u,P,b,0) in the obvious weak sense, that is, as R — 0o, we have

Pz — pz, in C(By x[0,Tp)), for any N >0, (4.17)
PRz — pz?, weakly * in L°°(0,Tp; H' nW 1), (4.18)
blz% ~bz?, weakly * inL>(0,Ty;L?), (4.19)
VpRuf — /pu, Vi? — Vu, Vb’ — Vb, weakly * in L>(0,Ty;L?), (4.20)
VpROE —~ /o, VO ~ V0, weakly * in L>(0,Ty; L?), (4.21)
V2l V24, VPR VP, weakly in L™+ (0,Tp; L) N L2(R? x (0,Tp)), (4.22)
bl ~b,, Vbz%: ~Vbz?, V*bf = V?b, weakly in L*(R?x (0,Tp)), (4.23)
VivEalt —/tV?u, weakly in L?(0,Tp; L), weakly * in L°°(0,Ty;L?), (4.24)
Vi pRal —/t\/pus, VIV PR ~\/tV P, weakly * in L°°(0,Ty;L?), (4.25)
VIbE = /tb,, VIV?bE = V1V?b, weakly * in L>®(0,Ty; L?), (4.26)
Vi pROE =/t /pb,, VIV —~/tV?6, weakly * in L°(0,Ty;L?),
t
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VIVall = VitVu,, ViVbll—/tVb,, weakly in L*(R?x (0,Tp)), (4.28)
VIVOE ~/tV8,, weakly in L*(R? x (0,Tp)), (4.29)
with
1
—a e’} .7l : > .
pz? € L*°(0,Ty; L), ogltnngo o, p(x,t)dx > 1 (4.30)

For any function ¢ € C§°(R? x [0,Tp)), we take ¢ppr as test function in the initial-
boundary-value problem (1.1) and (2.2) with the initial data (pf,uff,bf,0f). Then,
letting R— 0o, standard arguments together with (4.17)—(4.30) show that (p,u, P,b,6)
is a strong solution of (1.1)-(1.2) on R? x (0,Tp] satisfying (1.5) and (1.6). Indeed,
the existence of a pressure P follows immediately from (1.1)3 and (1.1)5 by a classical
consideration. The proof of the existence part of Theorem 1.1 is finished. ]

It remains only to prove the uniqueness of the strong solutions satisfying (1.5) and
(1.6). Let (p,u,P,b,d) and (p,u,P,b,0) be two strong solutions satisfying (1.5) and
(1.6) with the same initial data, and denote

02p—p, U2u-U,®=2b-b, U£0-4.
First, subtracting the mass equation satisfied by (p,u, P,b,f) and (p, @, P,b,0) gives
0:+1u-Vo+U -Vp=0. (4.31)

Multiplying (4.31) by 20z2" for r € (1,a) with a=min{2,a} and integrating by parts
yield
d —r
Loz,
SCllﬁéf_%lle||95f7"||%2+C||@f7"||L2IIUH’C_(&_”HL( 22V

q—2)(a-r)

<C(1+[IVallwa) 02772 + CllOz" | L2 (VU L2 + /AU 2)

2q
La—(a—2)(a—7)

due to Sobolev’s inequality, (1.6), (3.14), and (3.73). This combined with Gronwall’s
inequality shows that for all 0 <t <Tp,

t
|©27112 <C [ (IVUl 12+ VU 12)ds. (1.32)
0

Next, subtracting (1.1)2, (1.1)3, and (1.1)4 satisfied by (p,u, P,b,0) and (p,a, P,b,0)
leads to

pU;+pu-VU - pAU=—pU-Vii—O(i; +1u-Vi) — V(P - P)

1 _ _
—§V(\b|2—|b|2)+b-V<I>+<I>-Vb+@9e2+/3\IIe2, (4.33)

&, —vA®=b-VU+®-Va—u-V®—-U- Vb, (4.34)
and

p¥i+pu- VU — AV =—p¥-Va—-0O(u,+u-Vu)+0Ou-ex+pU-es. (4.35)
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Multiplying (4.33) by U, (4.34) by ®, and (4.35) by W, respectively, and adding the
resulting equations together, we obtain after integration by parts that

d
p (p|U|2+|<I>\2+p|\11\2)dx+/(u|VU|2+u|V<I>|2+/<;|V\IJ|2)dx

<CIVallie [ (VP8 +pl0) doC [ O]V (| +a Ve do
—/q)-VU-Bdm—/U-VB~<I>dx+/(p\II+@§)e2~UdJ;

+O/|@||\1/\(\ﬁt|+|ﬁ||Vﬁ\)dz+/(®ﬁ+pU)-e2\I/dx
6
::C’||Vﬁ\|Loc/(p|U|2+|<I>|2+p\\11|2)dx+ZKi. (4.36)
i=1
Holder’s inequality combined with (1.6), (2.6), (3.3), and (4.32) yields that for r € (1,a),
K1 <00z |2 Uz 5| pa (|[oez™ 2 || pa + |Vl =~ [0z 2 14)
<C(e) (IVpuel: + IV |z + VAl i) [|9z"]|7
+e([lveU2: +[VU][72)
t
<CE) (L Tal +VPal) [ (VUL -+ VAU ds
+e(IvPUl72 +1IVU[172). (4.37)
For the term K», we derive from the Gagliardo-Nirenberg inequality and (3.49) that
Ky <CO|b 4[| ®]| 14 ]|VU| 12 < VU|[L2 +¢]|[ V| 72 + C(e) ||| (4.38)
Owing to (1.6), (2.6), and (3.3), K3 can be estimated as follows
K3 <C|UZ"| 1| [VBI 22 4[| VD= | ]| @] s
_ .1
<C(IvpUll2 +IVU[[12) [VbZ2 | ;2 || ®]| L4

<e(lvpUllZ: +[VUI[Z2) +C(e)|Vba ? | 2| 74
<e(IlvpUllZ: +VUI[Z:) +ellVe[72 +C(e) VD E || 2. |7 (4.39)

We obtain from Holder’s inequality, (1.6), (2.6), (3.3), and (4.32) that for r € (1,a),

Ky <|/p¥]|z2]lv/pUll 2 + (107" | 12| Uz 2 || a |02 % | s
<llvp¥lz: +IVPUlZ: +Ce) (IVAlIZ + VO2) |02"||7
+e(lVeUllL: +[IVUIIZ2)

t
SH\/ﬁ‘lf\liz+IIWUH%2+C(€)(1+||V9||%2)/0 (IVUI[Z2 +IIvpU|1Z:) ds
+e(VeUllL: +[IVUIIZ). (4.40)

Similarly to (4.37), one has

t
K5 < C(e) (L4 Vae| 7. +tHV2ﬁ||2Lq)/0 (IVUIIZ: +11v/pUl[72) ds
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+e(IvePlli +V¥[72). (4.41)
The last term Kg can be bounded similarly as K4

Ko <[v/p¥|22]lv/pUl 2 + |02 || 2| W25 ]| 14 |02 | s
<llvp¥lz: +IVPUlZ: +Ce) (Ivpulz: + [ Vali.) [0z"||7
+e (IVePlZ +IIVEL:)

t
SH\/ﬁ‘I’H%z+||x/5UH%z+C(€)(1+||Vﬁ||%2)/0 (IVU|[Z2+vpU|22) ds
+e(IvVplZe +1VE|Z:)- (4.42)
Denoting
G(t):=lvpUl L +|1@[I72 + [Iv/PPl7

t
+/0 (IVUIIZ: + V@72 + VAUl L + IV EI[72 +[lvpPZ2) ds,

then substituting (4.37)—(4.42) into (4.36) and choosing ¢ suitably small lead to
G'(t) <C(1+[IVall = +[| VDT |[72 + ] Val|Z: + [VOIZ + [Vl L. +]VullZ.) G(),

which together with Gronwall’s inequality and (1.5) implies G(t)=0.  Hence,
(U,®,¥)(z,t)=(0,0,0) for almost everywhere (z,t) €R?x (0,7). Finally, one can de-
duce from (4.32) that ©=0 for almost everywhere (z,t) €R? x (0,T). The proof of
Theorem 1.1 is completed.
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