
COMMUN. MATH. SCI. c© 2020 International Press

Vol. 18, No. 3, pp. 707–724

THE WASSERSTEIN DISTANCES BETWEEN PUSHED-FORWARD
MEASURES WITH APPLICATIONS TO UNCERTAINTY

QUANTIFICATION∗

AMIR SAGIV†

Abstract. In the study of dynamical and physical systems, the input parameters are often uncer-
tain or randomly distributed according to a measure %. The system’s response f pushes forward % to
a new measure f∗% which we would like to study. However, we might not have access to f , but to its
approximation g. This problem is common in the use of surrogate models for numerical uncertainty
quantification (UQ). We thus arrive at a fundamental question – if f and g are close in an Lq space,
does the measure g∗% approximate f∗% well, and in what sense? Previously, it was demonstrated that
the answer to this question might be negative when posed in terms of the Lp distance between proba-
bility density functions (PDF). Instead, we show in this paper that the Wasserstein metric is the proper
framework for this question. For domains in Rd, we bound the Wasserstein distance Wp(f∗%,g∗%) from
above by ‖f−g‖q . Furthermore, we prove lower bounds for the cases where p= 1 and p= 2 (for d= 1) in
terms of moments approximation. From a numerical analysis standpoint, since the Wasserstein distance
is related to the cumulative distribution function (CDF), we show that the latter is well approximated
by methods such as spline interpolation and generalized polynomial chaos (gPC).

Keywords. Wasserstein; Uncertainty-Quantification; Density-Estimation; Optimal Transport;
Approximation.
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1. Introduction

1.1. Problem formulation. Suppose a domain Ω⊆Rd is equipped with a Borel
probability measure % and that a function f : Ω→R pushes forward % to a new measure
µ :=f∗%, i.e., f∗µ(B) = %(f−1(B)) for every Borel set B⊆R. We wish to characterize µ,
but only have access to a function g which approximates f . If ‖f−g‖Lq(Ω,%) is small,
does ν :=g∗% approximate µ well, and if so in what sense?

original f
measure of interest,
inaccessible µ :=f∗%

surrogate g accessible ν :=g∗%

pushforward of %

pushforward of %

approximation approximation?

Fig. 1.1. The schematic structure of the problem. If ‖f−g‖p is small, how close are µ and ν?
In other words, is the dashed arrow “justified”?
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1.2. Motivation. To motivate this rather abstract question, consider the fol-
lowing toy example: a harmonic oscillator is described by the ordinary differential
equation (ODE) y′′(t)+y= 0 with y(0) = 0 and y′(0) =v. Suppose we are interested
in f(v) = y2(π/2;v). By solving this ODE, we know that f(v) = [v sin(π/2)]2 =v2. In
many other cases, however, we do not have direct access to f , but only to its approxima-
tion g. This could happen for various reasons – it may be that we can only compute f(α)
numerically, or that we approximate f using an asymptotic method. Following on the
harmonic oscillator example, suppose we know f(v) only at four given points v1, v2,
v3, and v4. For any other value of v, we approximate f(v) by g(v), which linearly
interpolates the adjacent values of f , see Figure 1.2(a).

The parameters and inputs of physical systems are often noisy or uncertain. We thus
assume in the harmonic oscillator example that the initial speed v is drawn uniformly
at random from [1,2]. In these settings, f(v) is random, and we are interested in the
distribution of f(v) over many experiments. Even though f and g look similar in Figure
1.2(a), the probability density functions (PDF) of µ=f∗% and ν=g∗%, denoted by pµ
and pν respectively, are quite different, see Figure 1.2(b). We would therefore like to
have guarantees that ν approximates the original measure of interest µ well.
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Fig. 1.2. Solutions of y′′(t)+y= 0 with y′(0) =v and y(0) =0. (a) f(v) =y2(t=π/2;v) (solid)
and g(v), its piecewise linear interpolant based on four exact samples (dash-dots). (b) The PDFs of
µ=f∗% (solid) and ν=g∗% (dash-dots), where % is the uniform distribution on [1,2].

It might seem obvious that the distance between f and g controls the distance
between µ and ν. This hypothesis fails, however, when one estimates this distance
using the PDFs pµ and pν . For example, let f(α) =α and g(α) =α+δ sin((10δ)−1α),
where 1� δ>0. Since ‖f−g‖∞= δ, the two functions are seemingly indistinguishable
from each other, see Figure 1.3(a). Consider the case where % is the Lebesgue measure
on [0,1]. Then, since both functions are monotonic, pµ(y) = 1/f ′(f−1(y)) = 1 and
pν(y) = 1/g′(g−1(y)), see [13] for details. Hence, pν is onto [1.1−1,0.9−1]≈ [0.91,1.11]
and so ‖pµ−pν‖∞>0.1, irrespective of δ, see Figure 1.3(b). The lack of apparent
correspondence between ‖f−g‖q and ‖pµ−pν‖p for any pair of integers p and q suggests
that the PDFs are not a well-suited metric for the problem depicted in Figure 1.1.
Instead, in this paper we propose the Wasserstein distance as the proper framework to
measure the distance between µ and ν.

1.3. Relevant literature. The harmonic oscillator example in Section 1.2
serves as a toy example for a broad class of problems. While the ODE y′′(t)+y= 0
can be solved explicitly, many other differential equations do not admit such closed-
form solutions. Instead, we only have an approximation for the quantities of interest
at our disposal. Indeed, the general settings presented above have spurred numerous
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Fig. 1.3. (a) f(α) =α (solid) and g(α) =α+10−3 sin(100α) (dash-dots). The two lines are indis-
tinguishable. (b) The PDFs of µ=f∗% and ν=g∗%, where % is the Lebesgue measure on Ω =[0,1]. (c)
The CDFs of the same measures. The two lines are indistinguishable.

papers in a field of computational science known as Uncertainty-Quantification (UQ),
see e.g., [13, 19, 38, 48–50]. Perhaps surprisingly, the full approximation of µ (rather
than its moments alone) in these particular settings received little theoretical attention
in the literature, even though it is of practical importance in diverse fields such as
ocean waves [1], computational fluid dynamics [8, 43], hydrology [9], aeronautics [15],
biochemistry [21], and nonlinear optics [26, 32]. Even though ‖f−g‖q does not control
‖pµ−pν‖p in general (see e.g., Figure 1.3), a previous result by Ditkowski, Fibich, and
the author gives sufficient conditions for PDF approximation:

Theorem 1.1 (Ditkowski, Fibich, and Sagiv [13]). Let f ∈C2([0,1]d) and let
gh∈ C2([0,1]d) be an interpolant of f on a tensor grid of maximal spacing h>0 such that

‖f−gh‖∞,‖∇f− ∇gh‖∞≤Khτ ,

where K=K(f,d) and τ >0 is fixed. Then

‖pµ−pν‖Lp ≤ K̃hτ ,

for every 1≤p<∞, with a constant K̃= K̃(f,d,q).

The conditions on g are motivated by spline interpolation method, see Section 4
for further details. Theorem 1.1 is, to the best of our knowledge, a first result in the
direction of this paper’s main question. Even so, Theorem 1.1 is limited in several ways:

(1) The demand |∇f |≥ τf >0 is an arbitrary condition from an application standpoint.

(2) The differentability and the pointwise derivative-approximation conditions ‖∇f−
∇g‖∞. hτ are strong demands which many other approximation methods do not
fulfill.

(3) It is essential that the domain Ω is compact for the proof to hold.

(4) Even when d= 1, it is required that d%(α) = c(α)dα with c∈C1(Ω̄). For comparison,
absolute continuity is a weaker condition, as it requires that c∈C(Ω)∩L1(Ω).

The Wasserstein distance (see Section 1.4) is thus proposed to measure the distance
between µ and ν since it does not suffer from the drawbacks of the norms ‖pµ−pν‖p.
Admittedly, the Lp distances between the PDFs are both natural in practice and are
associated with rich statistical theory; for p= 1, then ‖pµ−pν‖1 is twice the total vari-
ation [12], and ‖pµ−pν‖22 is the integrated square error, which is a building block in
non-parametric statistics [42]. Nevertheless, the analysis of the norms ‖pµ−pν‖p in
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terms of the functions f and g can be technically cumbersome; if e.g., % is the Lebesgue
measure, then pµ(y) is proportional to

∫
f−1(y)

1/|∇f |dσ, where dσ is the (d−1) dimen-

sional surface measure [13]. Moreover, the distance ‖pµ−pν‖p is difficult to work with
since it assumes that µ and ν have distributions. This is not always the case. For
example, let % be the Lebesgue measure on [0,1] and let

fk(α) =

{
0 x∈ [0, 1

2 ],
(x− 1

2 )k x∈ [ 1
2 ,1],

k≥1.

Although fk is in Ck([0,1]), the measure µk = (fk)∗% is not an absolutely-continuous
measure and does not have a PDF since µ({0}) = 1/2. It is therefore natural to look for
other ways to measure the distance between µ and ν. There are many ways to define
distances between probabilities and measures, such as total variation, mutual infor-
mation, and Kullback-Leibler divergence. The equivalencies and relationships between
these norms, metrics, and semi-metrics are the topics of many studies, see e.g., [16].

1.4. The Wasserstein distance. In order for us to choose the proper metric
between µ and ν, we revisit Figure 1.3. While the two PDFs seem very different on
a local scale, they are quite similar on a coarser scale. For example, µ([0.3,0.4])≈
ν([0.3,0.4]) and so, if we were to ask what is the probability that the results of many
experiments are between 0.3 and 0.4, then both µ and ν would have provided similar
answers. More loosely speaking, since pν is oscillatory, the regions where pν >pµ and
the regions where pν <pµ are adjacent, and therefore cancel-out each other. The PDF,
on the other hand, is the derivative of the measure, and it is therefore heavily affected by
local differences. Another disadvantage of the norm ‖pµ−pν‖q is that it does not take
geometry into account. Consider for example a family of standard Gaussian measures
with mean t∈R, i.e., pµ,t(y) = exp(−(y− t)2)/

√
2π (see Figure 1.4). Then for every

t>2, ‖pµ,t−pµ,0‖1≈2, regardless of whether t= 3 or t= 10 or t= 1,000.

0 3 10

Fig. 1.4. Gaussian distributions centered at t= 0 (solid), t= 3 (dash-dots), and t= 10 (dots).
Which of the latter two Gaussians is closer to the t= 0 Gaussian in Wasserstein distance, and which
in the Lq sense?

A widely-popular metric that overcomes some of the above issues is the Wasserstein
metric. Given two probability measures µ and ν on R with p≥1 finite moments, the
Wasserstein distance of order p is defined as

Wp(µ,ν) :=

[
inf
γ∈Γ

∫
|x−y|pdγ(x,y)

] 1
p

, (1.1a)
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where Γ is the set of all measures γ on R2 for which µ and ν are marginals, i.e.,

µ(x) =

∫
R

γ(x,y)dy, ν(y) =

∫
R

γ(x,y)dx. (1.1b)

If the p-th moments of µ and ν are finite, then a minimizer exists, Wp(µ,ν) is finite,
and it is a metric [34, 45]. Intuitively, the Wasserstein distance with p= 1 computes
the minimal work (distance times force) by which one can transfer a mound of earth
that “looks” like µ to a one that “looks” like ν, and it is therefore referred to as the
earth-mover’s distance.

As noted, some of the difficulties in approximating the PDFs arise from the inverse
proportion between pµ and pν and the gradients of f and g, respectively. It is therefore
natural to avoid these issues by considering the integral of the PDF, the cumulative
distribution function (CDF)

Fσ(y) :=σ([y,∞)) =

∞∫
y

pσ(t)dt,

for any Borel measure σ. Indeed, the Wasserstein distance of order p= 1 is related to
the CDF by the following theorem.

Theorem 1.2 (Salvemini [33], Vallender [44]). For any two probability Borel measures µ
and ν on R,

W1(µ,ν) =

∫
R

|Fµ(x)−Fν(x)|dx.

This theorem reinforces the notion that W1 is not as sensitive to local effects
as ‖pµ−pν‖p. Indeed, Figure 1.3(c) shows that the two CDFs of µ and ν are almost
indistinguishable. Furthermore, in the previous Gaussians example (see Figure 1.4),
W1(pµ,t,pµ,0) = t by direct computation of the CDFs, then, and the same can be proven
for p= 2 as well [17, 24]. Hence, the geometric distance between the Gaussians matters
under the Wasserstein metric. Generally, Wasserstein distances are a central object in
optimal transport theory [34, 45], and have also become increasingly popular in such
diverse fields as image processing [25, 31], optimization and neural networks [3], well-
posedness proofs for partial differential equations with an associated gradient-flow [7],
and numerical methods for conservation laws [36,40].

1.5. Structure of the paper. The rest of the paper is organized as follows:
Section 2 presents the main theoretical results of this paper. The upper bounds on
Wp (Theorems 2.1 and 2.2) are presented in Section 2.1, and the lower bounds on W1

(Corollary 2.1) and W2 (Theorem 2.4) are presented in Section 2.2. The proofs and
some technical details of these results are presented in Section 3. Finally, in Section 4
the theoretical results are applied to the numerical analysis of uncertainty quantification
methods, and a numerical example is presented.

2. Main results

2.1. Upper bounds. In what follows, Ω⊆Rd is a Borel set, % is a Borel proba-
bility measure on Ω, f,g : Ω→R are measurable, µ=f∗%, ν=g∗%, and Lp=Lp(Ω,%) for
any 1≤p≤∞ unless stated otherwise.
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Theorem 2.1. Let f and g be continuous on Ω̄.
(i) If f,g∈L∞(Ω,%), then for every p≥ 1

Wp(µ,ν)≤‖f−g‖∞.

(ii) If Ω is bounded and f,g∈Lp(Ω,%) then

Wp(µ,ν)≤‖f−g‖p.

This result is sharp. Let % be any probability measure on [0,1] and let f(α)≡x0

and g(α)≡y0, for some x0,y0∈R. Then µ and ν, are the Dirac delta distributions
centered at x0 and y0, respectively, and the only distribution γ∈Γ is γ= δ(x0,y0). Hence,
W p
p (µ,ν) = |x0−y0|p=‖f−g‖p∞. Furthermore, as opposed to Theorem 1.1, this theorem

does not even demand that f and g be differentiable, and puts no restrictions on the
Borel measure %. Though this theorem is only valid for domains in Rd, a generalization
of part (i) to (infinite-dimensional) Polish spaces has been achieved by Boussaid [6].

Part (ii) of Theorem 2.1 uses Lp information to bound Wp(µ,ν). In many cases,
however, upper bounds on f−g are known only in a specific Lq space. The next theorem
shows how Lq error estimates can provide nontrivial upper bounds on Wp(µ,ν) for any p,
even if p 6= q.

Theorem 2.2. Under the assumptions (i)+(ii) of Theorem 2.1, then for every p,q≥1,

Wp(µ,ν).‖f−g‖
p

q+p
∞ ‖f−g‖

q
q+p
q ,

where . denotes inequality up to a constant which depends only on p and q.

This limit agrees with Theorem 2.1 in the limit q→∞ and when q=p (up to a
constant). Furthermore, for any q 6=p, the bound in Theorem 2.2 may improve the
L∞ bound in Theorem 2.1, since % is a probability measure, (f−g)∈L∞∩Lq, and so
‖f−g‖q≤ ‖f− g‖∞.

2.2. Lower bounds. The W1 lower bound is the direct result of the Monge-
Kantorovich duality, see Section 3.3 for details and proof.

Corollary 2.1. If f,g∈C(Ω̄) and Ω is bounded, then

|E%f−E%g|≤W1(µ,ν)≤‖f−g‖L1(Ω,%).

Moreover, if f ≥g almost everywhere with respect to %, then

W1(µ,ν) =‖f−g‖L1(Ω,%).

We note that since the upper bound is sharp (see discussion on Theorem 2.1) and since
equality might hold, the lower bound is sharp too. We further note that in the case
where Ω is the unit circle, lower bounds on W1 in terms of the Fourier coefficients of f
were proved by Steinerberger [37].

Next, to bound W2(µ,ν) from below, we introduce two concepts: the Sobolev
space Ḣ−1 and the symmetric decreasing rearrangement. For any Borel measure σ
on R, define the semi-norm

‖σ‖Ḣ−1(R) := sup
‖q‖Ḣ1(R)≤1

|〈q,σ〉|,
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where ‖q‖2
Ḣ1 =

∫
|q′(x)|2dx [2]. Note that ‖σ‖Ḣ−1 <∞ only if σ(R) = 0. Another way

to understand the Sobolev semi-norm Ḣ−1 and to compare it to the more frequently
used L2 norm is through Fourier analysis. By Plancharel Theorem

‖σ‖2L2 =

∫
R
|σ̂(ξ)|2 dξ, ‖σ‖2

Ḣ−1 =

∫
R

∣∣∣∣ σ̂(ξ)

|ξ|

∣∣∣∣2 dξ ,
where σ̂ is the Fourier transform of σ [2]. Thus, if µ and ν are different only in high
frequencies, then their L2 difference might be much higher than their Ḣ−1 difference
(due to the 1/|ξ| term in the integral). Intuitively, it means that highly local effects
in σ=µ−ν are “subdued” in the negative Sobolev semi-norm. This is analogous to
the way local effects in the PDFs are subdued in the W1 distance, i.e., in the CDFs
(see Figure 1.3). As noted, this property also characterizes the Wasserstein distance,
and indeed Loeper [23] and Peyre [27] related W2(µ,ν) to ‖µ−ν‖Ḣ−1 in the following
theorem:

Theorem 2.3 (Loeper [23], Peyre [27]). Let µ and ν be probability measures on R
with densities pµ,pν ∈L∞(R), respectively. Then,

‖µ−ν‖Ḣ−1 ≤max{‖pµ‖∞,‖pν‖∞}
1
2 W2(µ,ν),

0 1
0

3

8

0 1
0

3

8

Fig. 2.1. (a) f(α) =5(1+αsin(10α)e−α
2
). (b) f∗(α), the symmetric decreasing rearrangement

of f , with respect to the Lebesgue measure on [0,1].

We now introduce the symmetric decreasing rearrangement by an absolutely-
continuous Borel probability measure on Ω⊆Rd [22]. The symmetric decreasing re-
arrangement of a measurable set A is

A?={α∈Ω | %(B(0,1)) · |α|d≤%(A)},

where B(0,1)⊂Rd is the unit ball around the origin. Next, for a measurable non-
negative function f :Rd→R+, define the symmetric decreasing rearrangement as

f?(α) =

∞∫
0

1{α′∈Ω | f(α′)>t}?(r)dt, r := |α|,

where 1B is the identifier of a set B⊆Rd. For a numerical example of the symmetric
decreasing rearrangement, see Figure 2.1. In more intuitive terms, f∗ is the unique
monotonic decreasing function such that %(A(f,t)) =%(A(f∗,t)) for all t∈R, where
A(f,t) := {α s.t. f(α)≥ t} are the super-level sets of f . Moreover, since f∗ is mono-
tonic decreasing, one also has that A(f∗,t) is the interval [0,%(A(f,t))]. The symmetric
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decreasing rearrangement is an important object in real analysis [22], with notable
properties such as the Pólya-Szego inequality [28]

‖f‖p=‖f∗‖p, ‖∇f∗‖p≤‖∇f‖p,

for all p≥1. Hence, the symmetric decreasing rearrangement f∗ minimizes all
Sobolev W 1,p norms among the class of functions with the same super-level sets, it
can be said to be the “canonical” representative of this class.

Theorem 2.4. Let I be a closed and bounded interval equipped with an absolutely-
continuous probability measure % with a bounded and continuous weight function r(α),
i.e., d%(α) = r(α)dα, and let f,g∈C1 with |(f∗)′|,|(g∗)′|>τ >0. Then, for every k∈N

W2(µ,ν)≥Ak
∣∣E%fk−E%gk

∣∣,
where Ak is a positive coefficient given by

Ak =Ak(f,g,r) =

√
2k−1

k

(
max(f,g)2k−1−min(f,g)2k−1

)− 1
2 τ

1
2 ‖r‖−

1
2∞ ,

and the max and min are taken over all x∈ I.

We remark that even though Ak =Ak(f,g,r) depends on f and g, it does not depend
directly on f−g. Hence, for a sequence (gn(α))∞n=1 which converges uniformly to f , for
each k∈N, then Ak(f,gn,r) would converge to a positive constant as n→∞. A specific
example of the computation of the coefficients Ak can be found in Section 3.4.

3. Proofs of main results and technical discussion

3.1. Proof of Theorem 2.1. We begin with the case where f and g are uniformly
continuous in Ω. Let ε> 0, then by uniform continuity there exists η=η(ε)>0 such
that |f(α)−f(β)|<ε and |g(α)−g(β)|<ε for every α,β∈Ω such that |α−β|<η. Let
L∈N and partition [−L,L]d to M equal-size boxes {Ĩj}Mj=1 such that diam(Ĩj)<η. Let

Ij = Ĩj ∩Ω for every 1≤ j≤M and let IM+1 := Ω\ [−L,L]d. Next, let

µj :=f∗%
∣∣
Ij
, νj :=g∗%

∣∣
Ij
,

i.e., the measures induced by f(Ij) and g(Ij) for every 1≤ j≤M+1. Since∫
Rµj =

∫
Rνj =%(Ij), we can transport µ to ν by transporting each µj to νj . Even

though this might not be the optimal transport between µ and ν, since Wp is defined
as an infimum over all transports, then

W p
p (µ,ν)≤

M∑
j=1

W p
p (µj ,νj)+W p

p (µM+1,νM+1), (3.1a)

for any 1≤ j≤M+1, where

W p
p (µj ,νj) : = inf

γ∈Γj

∫
f(Ij)×g(Ij)

|x−y|pdγ(x,y)

≤

(
sup

(x,y)∈f(Ij)×g(Ij)

|x−y|p
)
%(Ij), (3.1b)
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where Γj is the set of all measures whose marginals are µj and νj . For 1≤ j≤M , since
diam(Ij)<η, then by uniform continuity for any t∈ Ij

sup
(x,y)∈f(Ij)×g(Ij)

|x−y|p≤ (|f(t)−g(t)|+2ε)
p
.

Here the proofs of the Lp and L∞ bounds slightly diverge and we begin with proving
that Wp(µ,ν)≤‖f−g‖∞. For any 1≤ j≤M then

(|f(t)−g(t)|+2ε)p≤ (‖f−g‖∞+2ε)
p
.

Similarly, for j=M+1, the supremum in (3.1) is bounded from above by
(‖f‖∞+ ‖g‖∞)p. Combining these bounds together, we have that

W p
p (µ,ν)≤‖f−g‖p∞

M∑
j=1

%(Ij)+o(ε)
M∑
j=1

%(Ij)+(‖f‖∞+‖g‖∞)
p
%(IM+1).

Since % is a probability measure
∑M
j=1%(Ij) =%(Ω) = 1 and as L→∞ the third term

on the right-hand-side vanishes. Hence W p
p (µ,ν)≤‖f−g‖p∞+2o(ε) for every ε>0, and

so Wp≤‖f−g‖∞.
Next, consider the case where f,g are continuous on Ω, but not uniformly contin-

uous. Then for any two sequences εn→0 and Ln→∞, choose ηn=η(εn,Ln) which
satisfies the uniform continuity condition on the compact domain Ω̄∩ [−Ln,Ln]. Then,
by partitioning this domain into sufficiently many boxes Mn=M(ηn) =M(εn,Ln) such
that diam(Ij,n)≤ηn, the proof holds as n→∞.

Finally, we prove that Wp(µ,ν)≤‖f−g‖p. Here we require that Ω is bounded, and
so we can choose L such that Ω⊆ [−L,L]d. For 1≤ j≤M we have that, for some tj ∈ Ij ,

sup
(x,y)∈f(Ij)×g(Ij)

|x−y|p≤ (|f(tj)−g(tj)|+2ε)
p

= |f(tj)−g(tj)|p+o(ε).

Substituting this inequality in (3.1) yields

W p
p (µ,ν)≤

M∑
j=1

|f(tj)−g(tj)|p%(Ij)+o(ε)
M∑
j=1

%(Ij).

As the partition is refined (i.e., M→∞ and η→0), the first element on the right-hand-

side converges to ‖f−g‖Lp(%). Since % is a probability measure,
∑M
j=1%(Ij) = 1, and

so the second element on the right-hand-side is o(ε). Since this inequality is true for
any ε>0, the proof follows.

3.2. Proof of Theorem 2.2. Define Ωr :={α∈Ω | |f(α)−g(α)|≥ r} for any
r>0, and let µΩr , µΩ\Ωr

, νΩr , and νΩ\Ωr
be the measure induced by f(Ωr), f(Ω\Ωr),

g(Ωr), and g(Ω\Ωr), respectively. For any p≥1,

W p
p (µ,ν)≤W p

p (µΩr
,νΩr

)+W p
p (µΩ\Ωr

,νΩ\Ωr
). (3.2)

The fist term on the right-hand-side of (3.2) is bounded from above by ‖f−g‖p∞%(Ωr),
due to Theorem 2.1. To bound %(Ωr), note that

‖f−g‖qLq(Ω)≥‖f−g‖
q
Lq(Ωr)≥%(Ωr) ·rq,
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where the first inequality is due to monotonicity of %, and the last inequality is due to
the continuity of |f−g|q. Hence, %(Ωr)≤‖f−g‖qqr−q, and so the first term in the right-
hand-side of (3.2) is bounded from above by ‖f−g‖p∞‖f−g‖qqr−q. Since the L∞ upper
bound of Theorem 2.1 is applicable to f and g, and since %(Ω\Ωr)≤1, then the second
term on the right-hand-side of (3.2) is bounded from above by ‖f−g‖pL∞(Ω\Ωr)≤ r

p.

Having bounded from above both terms on the right-hand-side of (3.2), then

W p
p (µ,ν)≤‖f−g‖p∞‖f−g‖qqr−q+rp.

To minimize the right-hand-side of this inequality, we derive with respect to r and get
that the minimum is achieved at rmin = (qp−1‖f−g‖qq ·‖f−g‖p∞)1/(p+q), and so

Wp(µ,ν)≤
[
‖f−g‖p∞‖f−g‖qqr

−q
min +rpmin

] 1
p

.‖f−g‖
p

q+p
∞ ‖f−g‖

q
q+p
q .

3.3. Proof of Corollary 2.1. The Monge-Kantorovich duality states that [45]

W1(µ,ν) = sup


∣∣∣∣∣∣
∫
R

w(y)(dµ(y)−dν(y))

∣∣∣∣∣∣ :L(w)≤1

,
where L(w) is the Lipschitz constant of w. So, to prove a non-trivial lower bound for
µ=f∗% and ν=g∗%, it is sufficient to provide any function w for which the integral is
not zero. Let w(y) =y. Since L(w) = 1, then W1(µ,ν)≥|

∫
Rydµ(y)−

∫
Rydν(y)|, which,

by change of variables, means that W1(µ,ν)≥|
∫

Ω
(f(α)−g(α))d%(α)|. Combined with

Theorem 2.1 we arrive at the corollary.

3.4. Proof of Theorem 2.4.
Proof. By definition of the symmetric decreasing rearrangement, µ=f∗∗ % and

ν= g∗∗%. Moreover, since the theorem requires that |(f∗)′|,|(g∗)′|>τ :>0, we can assume
without loss of generality that f and g are strongly monotonically decreasing. Next, we
have the following standard lemma (for proof, see e.g., [13]):

Lemma 3.1. Let h∈C1(I) be piecewise monotonic, let d%(α) = r(α)dα where r is
continuous in Ω. Then the PDF of the measure σ=h∗% is given by

pσ(y) =
∑

α∈h−1(y)

r(h−1(y))

|h′(h−1(y))|
, y∈ range(h).

Hence, by definition and the above lemma

‖µ−ν‖Ḣ−1 = sup
‖q‖Ḣ1≤1

∫
R

q(y)(pµ(y)−pν(y))dy

= sup
‖q‖Ḣ1≤1

∣∣∣∣∣∣
∫
R

q(y)
r(f−1(y))

f ′(f−1(y))
dy−

∫
R

q(y)
r(g−1(y))

g′(g−1(y))
dy

∣∣∣∣∣∣.
Consider the first integral under the supremum. By change of variables y=f(x), we
have ∫

R

q(y)
r(f−1(y))

f ′(f−1(y))
dy=

∫
I

q◦f(x)
r(x)

f ′(x)
f ′(x)dx=

∫
I

q◦f d%(x).
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The respective change of variable for the second integral under the supremum yields

‖µ−ν‖Ḣ−1 = sup
‖q‖Ḣ1≤1

∣∣∣∣∣∣
∫
I

(q◦f(x)−q◦g(x)) d%(x)

∣∣∣∣∣∣. (3.3)

For ease of notations, denote M = maxx∈I {f(x),g(x)} and m= minx∈I {f(x),g(x)}.
Since f and g are continuous on a closed bounded interval, both m and M are
finite. Fix k∈N, and let qk(x) = ckx

k, where the normalization constant ck :=
(
√

2k−1/k)(M2k−1−m2k−1)−1/2 is chosen so that ‖qk‖Ḣ1[m,M ] = 1.1 Hence, substi-

tuting qk in (3.3) for every k∈N

‖µ−ν‖Ḣ−1 ≥

∣∣∣∣∣∣
∫
I

(qk ◦f(x)−qk ◦g(x))d%(x)

∣∣∣∣∣∣
= ck

∣∣∣∣∣∣
∫
I

fk(x)−gk(x)d%(x)

∣∣∣∣∣∣
= ck

∣∣E%fk−E%gk
∣∣.

Finally, to bound W2 from below we need Theorem 2.3, and so we need to com-
pute ‖pµ‖∞ and ‖pν‖∞. As noted, since f =f∗ is strictly decreasing, it is also
continuously differentiable almost everywhere. Hence. by the result noted above,
pµ= r(f−1(y))/|f ′(f−1(y))| almost everywhere, and so ‖pµ‖∞≤ τ−1‖r‖∞. Since the
same holds for g and ν as well, we substitute in the bound from Theorem 2.3 and
get that

W2(µ,ν)≥ [max{‖pµ‖∞,‖pν‖∞}]−
1
2 ‖µ−ν‖Ḣ−1

≥ [τ‖r‖−1
∞ ]

1
2 ‖µ−ν‖Ḣ−1

≥ τ 1
2 ‖r‖−

1
2∞ ck
∣∣E%fk−E%gk

∣∣.
We complement the proof by an example of a direct computation of the coeffi-

cients Ak. Let f(α) = 3α−3, g(α) = 2α−2 and % is the Lebesgue measure on [0,1], then
by direct computation we have that M = 0, m=−3, ‖r‖∞= 1, τ = 2, and so

Ak =

√
2k+1

k
3−k+ 1

2 2
1
2 ·1 , k∈N.

4. Convergence of uncertainty-quantification methods and numerical ex-
amples

We apply the main theoretical results of this paper to the analysis of uncertainty
quantification (UQ) methods. In many applications, one can only compute the quantity
of interest f(α) for a finite subset of α values {αj}Nj=1. To compute µ=f∗%, we first

1It might seem that the choice of the interval [m,M ] is made ad-hoc. However, this proof can
be carried out in the space Ḣ−1(R) regardless, by the following construction: extend qk(y) to R
by setting qk(y) = qk(m) for y<m and qk(y) = qk(M) for y>M . Since outside [m,M ], q′k≡0, then
‖qk‖Ḣ1(R) =‖qk‖Ḣ1([m,M ]), and 〈qk,µ−ν〉 is unchanged too since µ−ν is supported only on [m,M ].

Our choice is also consistent with Theorem 2.3, since these also “take place” on the supports of µ and
σ.
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use these sampled values {f(αj)}Nj=1 to construct an approximate function g(α), and
then we approximate µ≈ν=g∗%, see Figure 1.1. This measure-approximation problem
is characterized by the following trade-off: The computational cost comes from direct
computation of the samples {f(αj)}Nj=1, 2 and so it increases linearly with N . On the
other hand, we expect the approximation error to decrease with the sample sizeN , i.e., as
we improve the sampling resolution. The question is, therefore, how to construct g such
that µ is accurately approximated with a small sample size N .

In terms of numerical analysis, the main result of this paper is that upper bounds
on ‖f−g‖q do guarantee an upper bound on the Wasserstein distances Wp(µ,ν). This
in turn immediately implies an upper bound on the L1 distance between the CDFs, due
to the previously-noted Salvemini-Vallender identity W1(µ,ν) =‖Fµ−Fν‖1, see Theo-
rem 1.2.

The upper bounds on the Wasserstein-error stand in sharp contrast to the Lq errors
between the PDFs, since in general an upper bound on ‖f−g‖q does not guarantee an
upper bound on ‖pµ−pν‖Lp , for any finite p and q [13]. We therefore see that the way
we define the approximation-error in this problem is not a mere technicality, but rather
determines the results of the convergence analysis. Furthermore, we see that CDFs are
“easier” to approximate than PDFs, in the sense that it is easier to guarantee their
efficient approximation.

We demonstrate the applicability of our theory for two approximation methods
(surrogate models), spline interpolation and generalized polynomial chaos (gPC).

4.1. Spline interpolation. Given an interval Ω = [αmin,αmax] and grid-points
αmin =α1<α2< ·· ·<αN =αmax, an interpolating m-th order spline g(α)∈Cm−1(Ω) is a
piecewise polynomial of order m that interpolates f(α) at the grid-points, endowed with
some additional boundary conditions so that it is unique. See [11,29] for comprehensive
expositions on splines, see [30, 35] for their extension to multidimensional domains via
tensor-products, and see [4, 19] for their applicability to UQ problems. Since Theo-
rem 4.1 is directly applicable to spline interpolation [13], if g is the spline interpolant
of f , then the PDFs of µ and ν are close, i.e., ‖pµ−pν‖Lp is bounded from above for
any 1≤p<∞. We show that in these settings, the Wasserstein distance between the
measures is also bounded from above.

Theorem 4.1. Let f ∈Cm+1([0,1]d), let g(α) be its (tensor-product) spline interpolant
of order m on a (tensor-product) grid of maximal grid size h, and let % be a probability
Borel measure. Then, for every p≥1,

Wp(µ,ν).hm+1≈N−
m+1

d , ‖Fµ−Fν‖1 .N−
m+1

d ,

where N is the total number of interpolation points, and where . and ≈ denote inequality
and equality up to constants independent of h and N , respectively.

Proof. The error of spline interpolation is controlled by the following theorem.

Theorem 4.2 (de Boor [11] and Hall and Meyer [20]). Let f ∈Cm+1 ([αmin,αmax]),
and let g(α) be its “not-a-knot”, clamped or natural m-th spline interpolant. Then∥∥(f(α)−g(α)

)(j)∥∥
L∞[αmin,αmax]

≤C(j)
spl

∥∥∥f (m+1)
∥∥∥
∞
hm+1−j , j= 0,1,. ..,m−1,

2Since g is given in closed form, e.g., by a polynomial, it is computationally cheap to estimate the
measure ν=g∗%. Computing f(αj), on the other hand, might involve a full numerical solution of a
PDE.
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where C
(j)
spl >0 is a universal constant that depends only on the type of boundary condi-

tion and j, m, and h= max1<j≤N |αj−αj−1|.

This result is extended for higher dimensions using the the construction of tensor-
product grid and tensor-product splines. The definitions here become more technical,
and we refer to Schultz [35] for further details. We note that even in the multidimen-
sional case, the error is still bounded by the spacing hm+1−j . However, the number of
grid points N is proportional to h−d (this is the so-called curse of dimensionality which
we previously mentioned). By the above error bounds, and by Theorem 2.1, we have
that Wp(µ,ν)≤‖f−g‖∞.hm+1.

Theorem 4.1 is stronger than Theorem 1.1 in three aspects. First, Theorem 4.1 holds
for a broader function class than the application of Theorem 1.1 to splines, since it
does not require that |∇f |>τf >0, or even that the underlying measure % should be
absolutely continuous. Second, Theorem 4.1 is non-trivial even for those functions for
which Theorem 1.1 does apply. To obtain a “trivial” upper bound, note that for any
two probability measures of µ and ν with PDFs pµ and pν , then

W1(µ,ν)≤ 1

2
diam(Ω) ·‖pµ−pν‖1,

where diam(Ω) is the diameter of Ω = supp(µ)∪supp(ν) [16]. Since f and g are contin-
uous on a compact set, they are bounded, and so the supports of µ and ν are bounded
as well. Hence, diam(Ω)<∞, and so by Theorem 1.1, W1(µ,ν)≤Khm. Theorem 4.1,
however, guarantees an additional order of accuracy and so non-trivially improves the
previous results.3 Finally, Theorem 4.1 applies not only for p= 1 but for all p≥1.
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Fig. 4.1. Approximation of µ=f∗% where f(α) =α/2+tanh(9α) and % is the uniform probability
measure on [−1,1]. (a) W1(µ,ν) where g is the spline interpolant of f on a uniformly spaced grid (rect-
angles) and a polynomial fit ∼ N−4.59 (solid), as predicted by Theorem 4.1. (b) Same, but where g is
the collocation gPC approximation of f (circles) and an exponential fit ∼ 10−0.7N (solid), as predicted
by Theorem 4.3. (c) L1 error of the PDFs using the collocation gPC method.

Numerical example. Let

f(α) =
α

2
+tanh(9α), Ω = [−1,1], d%(x) =

1

2
dx. (4.1)

We use a cubic spline interpolant on a grid of N uniformly-spaced points, with the not-a-
knot boundary condition [11]. Theorem 4.1 guarantees that in this case Wp(µ,ν).N−4.
Indeed, Figure 4.1(a) shows the W1 difference between the two measures as a function
of N , and that the convergence rate is N−4.59.

3Unfortunately, Theorem 4.1 cannot improve the L1 bound in Theorem 1.1 since, in general, ‖pµ−
pν‖1.W1(µ,ν) only for finite spaces [16].
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4.2. Generalized Polynomial Chaos (gPC). Next, we turn to study Wp

convergence of L2-spectral methods, for which PDF convergence is an open problem.
We focus on the widely popular gPC.

Review of the collocation gPC method. For a more detailed exposition, see
e.g., [18,49]. Let the Jacobi polyomials {pn(x)}∞n=0 be the orthogonal polynomials with

respect to %, i.e., pn is a polynomial of degree n, and
∫ 1

−1
pn(α)pm(α)d%(α) = δn,m,

see [39] for details. This family of orthogonal polynomials constitutes an orthonormal
basis of the space L2(Ω,%), i.e., for every f ∈L2 one can expand

f(α) =
∞∑
n=0

f̂(n)pn(α), f̂(n) :=

∫
Ω

f(α)pn(α)d%(α).

This expansion converges spectrally, i.e., if f is in Cr, then {f̂(n)}.n−r, and if f is

analytic in an ellipse E⊆C that contains [−1,1], then |f̂(n)|.e−γn, for some γ>0.
Thus, one has that for such analytic functions

‖f−πN (f)‖2 .e−γN , πN (f) :=

N∑
n=0

f̂(n)pn(α).

The expansion coefficients {f̂(n)} can be approximated using the Gauss quadrature

f̂(n)≈ f̂N (n) :=
N∑
j=1

f (αj)pn (αj)wj , n= 0,1,. ..,N−1,

where {αj}Nj=1 are the quadrature points, the distinct and real roots of pN (α), and
wj are the quadrature weights [10]. We define the gPC collocation approximation gN
to be the truncated expansion of f with the quadrature-based coefficients f̂N (n). We
remark that this approximation method has a much simpler form – the gPC collocation
approximation is also the unique interpolating polynomial of f of order N−1 at the
quadrature points [13]. We remark that our theory can also be applied to Galerkin-gPC
methods [48].

Density estimation in UQ: The main appeal of the gPC method is its spec-
tral L2 convergence. As noted above, it is an open question whether this can be used to
prove convergence of the PDFs, i.e., an upper bound on pµ−pν in some Lp. However,
Theorem 2.2 implies that spectral L2 convergence of gN to f can yield fast convergence
of Wp(µ,ν) for any 1≤p<∞.

Theorem 4.3. Let f be analytic in an ellipse in the complex plane that contains
[−1,1], and let d%(α) =k(1− α)β1(1+ α)β2dα, for any β1,β2∈R and a proper normal-
ization constant k=k(β1,β2). Let g(α) be the collocation gPC approximation of f , i.e.,
the N -th order polynomial interpolant of f at the respective Gauss quadrature points.
Then, for every p≥1,

Wp(µ,ν).e−γN , ‖Fµ−Fν‖1 .e−γN , n→∞,

where γ does not depend on N .

Proof. If f is analytic, the truncated expansion has the exponential accuracy

‖f(α)−
N−1∑
n=0

f̂(n)pn(α)‖2 .e−γN , N�1,



AMIR SAGIV 721

for some constant γ >0 [41, 46, 48]. Next, since the collocation gPC is a spectrally ac-
curate approximation of the polynomial projection in L2 [18], then ‖f−g‖2 .e−γN as
well for N�1. Finally, since ‖f−πN (f)‖∞ does not grow exponentially [18], Theo-
rem 2.2 applies.

Two particularly important cases of this theorem are when % is the Lebesgue mea-
sure, associated with the Legendre polynomials (β1,2 = 0) and the measure associated
with the Chebyshev polynomials (β1,2 =−1/2). By Theorem 4.3, the convergence of the
Wasserstein metric stands in sharp contrast to that of the PDFs, i.e., of ‖pµ−pν‖Lq .
As previously noted, the convergence of the PDFs for the gPC method has not been
proved, and might not be obtained at all for moderate values of N [13]. It remains an
open question whether Theorem 4.3 can be extended to measures with an unbounded
support, such as the normal and the exponential distributions. Such a generalization
might require a generalization of Theorem 2.2 to unbounded domains. We further note
that Theorem 4.3 can be extended to measures %′ that are bounded from above by %,
see [14] for details.

Numerical example. We approximate the same function f , as defined
in (4.1), and approximate it using polynomial interpolation at Gauss-Legendre quadra-
ture points. Since f is analytic, Theorem 4.3 guarantees that the gPC-based ν converges
exponentially in N to that of µ, see Figure 4.1(b). The convergence of the respective
PDFs, on the other hand, is polynomial at best (see Figure 4.1(c)). Quantitatively,
the W1 error decreases by 8 orders of magnitude between N = 4 and N = 120, whereas
the L1 distance between the PDFs decreases by only 4 orders of magnitude.

4.3. Comparison to the histogram method. This paper, as noted, is
motivated by the following class of algorithms: to approximately characterize µ=f∗%,
first approximate f by g, and then approximate µ by ν=g∗%. How does this approach
compare with more standard statistical methods?

We focus on one common nonparametric statistical density estimation method, the
histogram method; Given i.i.d. samples from µ, denoted by f(α1) =y1,. ..,f(αN ) = yN ,
and a partition of the range of f(ααα) into L disjoint intervals (bins) {B`}L`=1, the his-
togram estimator of the PDF is

phist(y) :=
1

N

L∑
`=1

(# of samples for which yj ∈B`) ·1B`
(y),

where 1B`
is the characteristic function of bin B` [47]. The histogram method is intu-

itive and easy to implement. What is then the advantage of approximation-based UQ
methods? In Sec. 4.4, using results by Bobkov and Ledoux [5], we prove the following
corollary

Corollary 4.1. Under the conditions of Theorem 4.1, the d-dimensional, m-th
order spline-based estimator of µ outperforms the histogram method on average in the
Wp sense when d<2(m+1).

The average in this corollary refers to all i.i.d. realizations of y1,. ..,yN from µ. This
corollary is an example of the so-called “curse of dimensionality”. To maintain a con-
stant resolution and accuracy, the amount of data points (and hence the computational
complexity) needs to increase exponentially with the dimension. Hence, above a certain
dimension, it is preferable to ignore the underlying structure (i.e., the approximation
of f by g) and to consider only the empirical distribution of the i.i.d. samples {f(αj)}Nj=1.
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4.4. Proof of Corollary 4.1. Given N i.i.d. from µ, denoted by y1,. ..,yN , define
the empirical distribution as

µemp :=
1

N

N∑
j=1

δyj ,

where δy is the Dirac delta distribution centered at the point y∈R. Under certain broad
assumptions (see [5] for details), EWp(µ,µemp).N−1/2, where the expectancy in these
bounds is over all realizations of y1,. ..,yN with respect to the measure µ [5].

By the triangle inequality and linearity of expectation,

EWp(µ,µhist)≤E[Wp(µ,µemp)+Wp(µemp,µhist)] =EWp(µ,µemp)+EWp(µemp,µhist),

where dµhist(y) =phist(y)dy is the measure defined by the histogram estimator. It is
therefore sufficient to show that EWp(µemp,µhist).N−(1+1/p) for any p≥1. We will
prove a slightly stronger claim – that Wp(µemp,µhist).N−(1+1/p) for every set of num-
bers y1,. ..,yN .

Let {B`}L`=1 be the bins of the histogram estimator and let µemp,` and µhist,` be the
restriction of the measures µemp and µhist to B`, respectively, for every 1≤ `≤L. By
definition, there are exactly N ·µhist(B`) samples that fall into B`, and so µhist,`(B`) =
µemp,`(B`). Hence, the two measures µemp,` and µhist,` are comparable in the Wasser-
stein metric and we can write that

W p
p (µemp,µhist)≤

L∑
`=1

W p
p (µemp,`,µhist,`).

Since µhist,` is uniform on B` for any `, the Wasserstein distance is the greatest if all of
the samples in B` are located on the extreme edge of the bin, i.e., if yj ∈B` then yj =a`,
where we denote B`= [a`,b`]. Hence, for every 1≤ `≤L,

W p
p (µemp,`,µhist,`)≤µemp,`(B`)

b`∫
a`

(y−a`)pdy

=
µemp,`(B`)

p+1
(b`−a`)p+1,

and so

W p
p (µemp,µhist)≤

L∑
`=1

µemp,`(B`)

p+1
(b`−a`)p+1

.N−(p+1)
L∑
`=1

µemp,`(B`)

=N−(p+1)
L∑
`=1

µemp(B`) =N−(p+1),

where the second inequality is due to the partition, in which (b`−a`)∼N−1, and the
last equality holds since µemp is a probability measure and since {B`}L`=1 is a partition
of its support.
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