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Abstract. The connection between forward backward doubly stochastic differential equations and the
optimal filtering problem is established without using the Zakai equation. The solutions of forward backward
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1. Introduction
The purpose of this paper is to study nonlinear filtering problems with systems of forward

backward doubly stochastic differential equations. The aim of a nonlinear filtering problem is to
determine the optimal estimate of the state of a noise-perturbed dynamical system given noisy
observations on the dynamics. Some of the pioneering work on optimal filtering problems is due
to Kallianpur and Striebel [22] and Zakai [34]. In particular, the Kallianpur-Striebel formula,
which characterizes the conditional probability density function (PDF) of the state as the
solution of a nonlinear stochastic partial differential equation (SPDE), provides a continuous
time framework of the optimal filtering, while the approach proposed by Zakai leads to a
linear stochastic integro-differential parabolic equation, referred to as Zakai’s equation. Under
strong regularity conditions it can be shown that the solution of Zakai’s equation represents
an unnormalized conditional density of the state process, which is also called the “filtering
density”. Fundamental theoretical research on optimal filtering problems can also be found in
Kalman and Bucy [10,23], Kushner and Pardoux [25,29], Shiryaev [32] and Stratonovich [33],
and studies on discrete nonlinear filter solvers can be found in [1–3, 7–9, 11, 14, 15, 17, 18, 20,
24, 26, 27]). The advantage of solving optimal filtering problems by SPDEs, such as Zakai’s
equation, lies in that it provides an “exact” solution for the filtering density . However, such
methods have not been widely used by the science and engineering community due to their
high complexity [5, 12,13,19].

An alternative for deriving the unnormalized conditional density function is through the
solution of a system of stochastic (ordinary) differential equations (SDEs) which consists
of two SDEs, one standard SDE and one backward doubly stochastic differential equation

∗Received: May 11, 2017; Accepted (in revised form): November 18, 2019. Communicated by Arnulf
Jentzen.
The first author acknowledges the support by the Scientific Discovery through Advanced Computing (SciDAC)
program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research
through FASTMath Institute and CompFUSE project. The first author is also partially supported by National
Science Foundation under grant number DMS1720222. The second author is partially supported by National
Science Foundation under grant number DMS1620150.
†Department of Mathematics, Florida State University, Tallahassee, Florida 32306, USA (bao@math.

fsu.edu).
‡Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, USA (yzc0009@

auburn.edu).
§Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, USA (xzh0003@

auburn.edu).

635

mailto:bao@math.fsu.edu
mailto:bao@math.fsu.edu
mailto:yzc0009@auburn.edu
mailto:yzc0009@auburn.edu
mailto:xzh0003@auburn.edu
mailto:xzh0003@auburn.edu


636 OPTIMAL FILTERING OF DIFFUSION PROCESSES

(BDSDE). We refer to such a system as forward backward doubly stochastic differential equa-
tion (FBDSDE) system.

FBDSDE systems were first studied by Pardoux and Peng in [31], where the connection
between FBDSDEs and certain parabolic-type backward SPDEs was established. Our recent
work [4, 8] indicates that solving optimal filtering problems by FBDSDE systems may be
computationally more efficient than doing that by SPDEs. The theoretical foundation of the
FBDSDE approach is the fact that the solution of the BDSDE in an FBDSDE system is
equivalent to the solution of its corresponding backward SPDE [8,31]. However, since Zakai’s
equation is a forward SPDE, we need to invert the time index in the FBDSDE system to change
the propagation direction of the BDSDE from backward to forward so that it is consistent with
Zakai’s equation. In this way, we obtain a time-inverse FBDSDE system that is equivalent to
Zakai’s equation.

The primary goal of this work is to establish a direct link between the optimal filtering
problem and the FBDSDE system without using SPDEs. The procedure consists of two steps.
In the first step, we establish the FBDSDE version of the Feynman-Kac formula for the optimal
filtering problem. In this FBDSDE system, the forward SDE is simply the SDE for the state
of the optimal filtering problem, and the BDSDE contains two noise terms (thus the name
“doubly”): one counting for the backward nature of the equation while the other counting for
the observation process which is a Brownian motion under an appropriate Girsanov transform.
It is worthy noting that without the observation noise, the BDSDE is reduced to a BSDE
(backward stochastic differential equation), whose solution is simply the BSDE version of the
Feynman-Kac formula. On the other hand, the coefficient of observation noise resembles the
coefficient of the multiplicative noise in the Zakai equation [34].

In the second step, we derive the adjoint BDSDE for the BDSDE corresponding to the
Feynman-Kac formula and show that its solution solves the nonlinear filtering problem. This
is done using the fact that the inner production between the BDSDE of the Feynman-Kac
formula and its adjoint is a constant. Such a connection is similar to the relationship between
the PDE of Feynman-Kac formula for a SDE and its adjoint, which is the Fokker Planck
equation.

To the best of our knowledge, similar results have not been obtained before. The main
difficulty of the direct derivation of the BDSDE filter is the lack of knowledge of the BDSDE
form of the Feynman-Kac formula for the nonlinear filtering problem and the corresponding
adjoint BDSDE. In this sense, our work contributes to the understanding of BDSDE theory
in its own right.

The rest of this paper is organized as follows. In Section 2 we present mathematical
formulations of the optimal filtering problem and provide a brief introduction to FBDSDEs.
In Section 3 we establish the connection between FBDSDEs and the unnormalized conditional
density function. Some closing remarks are given in Section 4.

2. Preliminaries
In this section, we introduce the mathematical formulation of the main topics of this paper

– the optimal filtering problem and FBDSDEs.

2.1. The optimal filtering problem. Let (Ω,F ,P) be a probability space and
{Wt}t>0 and {Bt}t>0 be two mutually independent standard Brownian motions defined on
(Ω,F ,P), with values in Rd and Rl, respectively. Denote by N the class of P-null sets of F .
For each t∈ [0,T ], where T >0, and any process ηt, let

Fηs,t :=σ{ηr−ηs :s≤ r≤ t}∨N

be the σ-field generated by {ηr−ηs}s≤r≤t. When s= 0, we write Fηt =Fη0,t in short.
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For an optimal filtering problem, we are given the stochastic differential system on (Ω,F ,P)

{
dUt=µt(Ut)dt+ρtdWt+ ρ̃tdBt,

dVt=h(Ut)dt+dBt,
(2.1)

where {Ut∈Rd : t≥0} is the “state process” that describes the state of a dynamical system,
and {Vt∈Rl : t≥0} is the “measurement process” which is the noise perturbed observations of
the state Ut. Given an initial state U0 with probability distribution p0(u) independent of Wt

and Bt, the goal of the optimal filtering problem is to obtain the best estimate of φ(Ut) as the
conditional expectation with respect to the measurement {Vr}0≤r≤t, where φ is a given test
function.

Denote by FVt :=σ{Vr : 0≤ r≤ t} the σ-field generated by the measurement process from
time 0 to t and denote by Mt the space of all FVt -measurable and square integrable random
variables at time t. The optimal filtering problem can be formulated mathematically as to find
the conditional expectation

E
[
φ(Ut)

∣∣FVt ]= inf
{
E[|φ(Ut)−ψt|2] :ψt∈Mt

}
.

According to [21,22], the optimal filter is given by the well known Kallianpur–Striebel formula

E
[
φ(Ut)

∣∣FVt ]=

∫
Rd

φ(u)ptdu∫
Rd

ptdu

, (2.2)

where pt is the unnormalized filtering density. In [34], Zakai showed that pt satisfies the
following SPDE (Zakai equation).

dp(t,x) =L∗p(t,x)dt+g(x)p(t,x)dVt, t>0,x∈Rd, (2.3)

where

L=
1

2

d∑
i,j=1

(σσ>)ij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
.

We can see from (2.2) that finding the unnormalized filtering density pt is equivalent to
obtaining the optimal filter E

[
φ(Ut)

∣∣FVt ]. In our BDSDE filter, we aim to derive a FBDSDE
system to solve for pt.

Define

Qst := exp

{∫ t

s

h(Ur)dUr−
1

2

∫ t

s

|h(Ur)|2dr

}
.

When s= 0, we denote Q0
t as Qt in short. Let P̃ be the probability measure induced on the

space (Ω,F) such that

dP
dP̃

∣∣∣∣
FV

t

=Qt. (2.4)
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Then according to the Cameron-Martin theorem the probability measures P and P̃ are equiv-
alent when the Novikov condition is satisfied and the measurement process V is a standard
Brownian motion under the induced probability P̃ [16]. Moreover,

E
[
φ(Ut)

∣∣FVt ]=
Ẽ
[
φ(Ut)Qt

∣∣FVt ]
Ẽ
[
Qt
∣∣FVt ] , (2.5)

where Ẽ denotes the expectation with respect to P̃ (see [28], Lemma 8.6.2).

2.2. FBDSDE systems. For each t∈ [0,T ], define

Ft :=FWt ∨FBt,T .

Note that the collection {Ft : t∈ [0,T ]} is neither increasing nor decreasing, and thus does not
constitute a filtration [31]. For any positive integer n∈N, denote by M2(0,T ;Rn) the set of
Rn-valued jointly measurable random processes {ψt : t∈ [0,T ]} such that ψt is Ft measurable
for a.e. t∈ [0,T ] and satisfies

E
∫ T

0

|ψt|2dt<∞.

Similarly, denote by S2([0,T ];Rn) the set of continuous Rn-valued random processes {ψt : t∈
[0,T ]} such that ψt is Ft measurable for any t∈ [0,T ] and satisfies

E sup
0≤t≤T

|ψt|2<∞.

Next we provide a brief introduction to FBDSDE systems (see [31] for details). Given
τ ≥0, x∈Rd and ϕ∈L2(Ω,FT ,P), a FBDSDE system can be formulated as

dXt=µ(Xt)dt+σ(Xt)dWt, τ ≤ t≤T,

−dYt=f(t,Xt,Yt,Zt)dt+g(t,Xt,Yt,Zt)d
←−
B t−ZtdWt, τ ≤ t≤T,

Xτ =x, YT =ϕ(XT ),

(2.6)

or, in the integral equation form, for any t∈ [τ,T ],

Xt=x+

∫ t

τ

µ(Xs)ds+

∫ t

τ

σ(Xs)dWs, (2.7)

Yt=ϕ(XT )+

∫ T

t

f(s,Xs,Ys,Zs)ds+

∫ T

t

g(s,Xs,Ys,Zs)d
←−
B s−

∫ T

t

ZsdWs. (2.8)

Notice that Equation (2.7) is a standard forward SDE with a standard forward Itô integral

and Equation (2.8) is a BDSDE involving the backward Itô integral
∫
·d
←−
B s (see [30] for details

on the two types of integrals).

Let the mappings f : [0,T ]×Rd×Rk×Rk×d→Rk and g : [0,T ]×Rd×Rk×Rk×d→Rk×l be
jointly measurable and for any (y,z)∈Rk×Rk×d,

f(·,·,y,z)∈M2(0,T ;Rk), g(·,·,y,z)∈M2(0,T ;Rk×l).

Denote by | · | the Euclidean norm of a vector and by ‖A‖ :=
√

Tr(AA∗) the norm of a matrix
A. The existence and uniqueness of solutions, moment estimates for the solutions, and the
regularity of solutions to Equation (2.8) rely on the following assumptions.
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Assumption 2.1. f and g satisfy the Lipschitz condition: there exist constants c>0 and
0<c̄<1 such that for any (t,x)∈ [0,T ]×Rd, y1,y2∈Rk and z1,z2∈Rk×d,

|f(t,x,y1,z1)−f(t,x,y2,z2)|2≤ c(|y1−y2|2 +‖z1−z2‖2),

‖g(t,x,y1,z1)−g(t,x,y2,z2)‖2≤ c|y1−y2|2 + c̄‖z1−z2‖2.

Assumption 2.2. There exists c>0 such that for all (t,x,y,z)∈ [0,T ]×Rd×Rk×Rk×d,

gg∗(t,x,y,z)≤zz∗+c(‖g(t,x,0,0)‖2 + |y|2)I.

Assumption 2.3. For any (t,x,y,z)∈ [0,T ]×Rd×Rk×Rk×d and θ∈Rk×d

∂g

∂z
(t,x,y,z)θθ∗

(
∂g

∂z
(t,x,y,z)

)∗
≤θθ∗.

The following results are due to Pardoux and Peng [31].

Proposition 2.1. Under Assumption 2.1, the BDSDE (2.8) admits a unique solution

(Y,Z)∈S2([0,T ];Rk)×M2(0,T ;Rk×d).

For any positive integer k, denote by Ckb (Rm;Rn) the collection of Ck functions from Rm
into Rn with bounded partial derivatives of all orders less than or equal to k, and denote
by Ckp (Rm;Rn) the collection of Ck functions from Rm into Rn with partial derivatives of all
orders less than or equal to k which grow at most like a polynomial function of x as x→∞. It
is well known that given µ∈C3

b (Rd;Rd) and σ∈C3
b (Rd;Rd×d), for each (τ,x)∈ [0,T ]×Rd, the

SDE (2.7) has a unique strong solution, denoted as Xτ,x
t . Consequently we also denote by

(Y τ,xt ,Zτ,xt ) the unique solution to the BDSDE

Yt=ϕ(Xτ,x
T )+

∫ T

t

f(s,Xτ,x
s ,Ys,Zs)ds+

∫ T

t

g(s,Xτ,x
s ,Ys,Zs)d

←−
B s−

∫ T

t

ZsdWs. (2.9)

Proposition 2.2. Let ϕ∈C3
p(Rd;Rk). Under Assumptions 2.1–2.3, the random field{

Y τ,xτ : τ ∈ [0,T ],x∈Rd
}

admits a continuous version such that for any τ ∈ [0,T ], x 7→Y τ,xτ is
of class C2 a.s..

In addition to the existence and uniqueness result in Proposition 2.1, it is also worthy to
notice that the Assumptions 2.1–2.3 allow a proof of the existence of Lp solutions for p>2.

The following regularity result can be obtained with techniques (see Proposition 1 in [6]).

Lemma 2.1. In addition to Assumption 2.1, assume that f,g∈C1
b . Then the solution

(Y τ,xt ,Zτ,xt ) to the BDSDE (2.9) satisfies

E
[
(Y τ,xt −Y τ,xτ )

2
]
≤C(t−τ), E

[
(Zτ,xt −Zτ,xτ )

2
]
≤C(t−τ), 0≤ τ ≤ t≤T,

where C is a positive constant independent of τ and t.

Note that with the convention above, the unique solution to the FBDSDE system (2.7) –
(2.8) can be written as (Xτ,x

t ,Y τ,xt ,Zτ,xt ). Denote

∇Xτ,x
t :=

∂Xτ,x
t

∂x
, ∇Y τ,xt :=

∂Y τ,xt

∂x
, ∇Zτ,xt :=

∂Zτ,xt
∂x

.



640 OPTIMAL FILTERING OF DIFFUSION PROCESSES

Then (∇Y τ,xt ,∇Zτ,xt ) is the unique solution to variational form of the BDSDE (2.8) (see [31])

∇Y τ,xt =ϕ′(Xτ,x
T )∇Xτ,x

T +

∫ T

t

(
∂f

∂x
∇Xτ,x

s +
∂f

∂Y
∇Y τ,xs +

∂f

∂Z
∇Zτ,xs

)
ds

+

∫ T

t

(
∂g

∂x
∇Xτ,x

s +
∂g

∂Y
∇Y τ,xs +

∂g

∂Z
∇Zτ,xs

)
d
←−
B s−

∫ T

t

∇Zτ,xs dWs.

In addition, the random field
{
Zτ,xt : t∈ [τ,T ],x∈Rd

}
has an a.s. continuous version

Zτ,xt =∇Y τ,xt (∇Xτ,x
t )−1σ(Xτ,x

t ), Zτ,xτ =∇Y τ,xτ σ(x). (2.10)

The following Lemma follows directly from Proposition 2.1 and Lemma 2.1.

Lemma 2.2. Assume that µ∈C2
b , f ∈C2

b , g∈C2
b and ϕ∈C2

b . Then there exists C>0 such
that

E[(∇Y τ,xt −∇Y τ,xt )2]≤C(t−τ), E[(∇Zτ,xt −∇Zτ,xτ )2]≤C(t−τ), 0≤ τ ≤ t≤T.

Moreover,

E sup
0≤t≤T

|∇Y τ,xt |2<∞.

3. FBDSDEs and optimal filtering
In this section, we show that the solution of an optimal filtering problem can be obtained

by solving a FBDSDE system. To this end, we first prove a Feynman-Kac type formula
in the form of the first FBDSDE system defined in (2.6) without the deterministic integral
f(t,Xt,Yt,Zt)dt. Then we derive a FBDSDE system which is the adjoint of the FBDSDE
system in the Feynman Kac formula and prove that its solution provides an unnormalized
filtering density sought in the optimal filtering problem defined in Section 3.3. For simplicity
of exposition, we only discuss the one dimensional case with d= 1 and l= 1. The methodology
developed can be easily applied to multi-dimensional cases.

3.1. Feynman-Kac type formula for optimal filtering. For τ ∈ [0,T ] and x∈Rd,
consider the following FBDSDE system on the probability space (Ω,F ,P̃)

dXt=µt(Xt)dt+σtdWt, τ ≤ t≤T (SDE)

−dYt=−ZtdWt+

(
h(Xt)Yt+

ρ̃t
σt
Zt

)
d
←−
V t, τ ≤ t≤T (BDSDE)

Xτ =x, YT =φ(XT ),

(3.1)

where σ2
t =ρ2

t + ρ̃2
t , and µ, ρ, ρ̃, h are the functions appearing in the optimal filtering problem

(2.1). Here Wt is the same Brownian motion as in the nonlinear filtering problem (2.1), while
Vt is the measurement process which becomes a standard Brownian motion independent of Wt

under the induced probability measure P̃ defined by (2.4). Then Xt is a FW adapted stochastic
process and the pair (Yt,Zt) is adapted to FWt ∨FVt,T . For any single-variable function f =f(x),

we denote f ′ := df
dx and f ′′= d2f

dx2 .

Next, we show that the FBDSDE system (3.1) provides the Feynman-Kac formula in the
optimal filtering context. But first we state a couple of remarks.

Remark 3.1. Without the observation Vt, the BDSDE in (3.1) is reduced to a simple BSDE,
whose exact solution is given by

Y (t) =E[φ(XT )|FW (t),X(τ) =x], t≥ τ.
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Thus

Y (τ) =E[φ(XT )|X(τ) =x]

which is the standard Feynman-Kac formula.

Remark 3.2. On the other hand, when the observation Vt does exist, the coefficient of dVt
in (3.1) resembles the coefficient of multiplicative noise term in the Zakai equation [34] with
Zt

σt
in the BSDEs being replaced by ∇ut in the Zakai equation.

Theorem 3.1. Assume that φ is bounded, µt,ρt, ρ̃t∈Cb(R;R) and h∈C2
b (R;R). Then,

∀τ ∈ [0,T ] and x∈Rd the following equality holds a.s.

Y τ,xτ =Exτ [φ(UT )QτT ], with Exτ [·] := Ẽ[·|FVτ,T ,Uτ =x]. (3.2)

In order to prove Theorem 3.1 , we first introduce a regularity lemma as follows.

Lemma 3.1. Assume that µt and σt are bounded and h∈C2
b (R;R). Then for any 0≤s≤ t≤T ,

there exists a positive constant C independent of s and t such that

Ẽ[(h(Xt)−h(Xs))
2|FVt,T ]≤C(t−s). (3.3)

Proof. The application of Itô’s formula to h(Xt) results in

h(Xt) =h(Xs)+

∫ t

s

(
µr(Xr)h

′(Xr)+
σ2
r

2
h′′(Xr)

)
dr+

∫ t

s

σrh
′(Xr)dWr,

and hence

(h(Xt)−h(Xs))
2

=

(∫ t

s

(
µr(Xr)h

′(Xr)+
σ2
r

2
h′′(Xr)

)
dr+

∫ t

s

σrh
′(Xr)dWr

)2

. (3.4)

Taking expectation Ẽ of (3.4) gives

Ẽ
[
(h(Xt)−h(Xs))

2
]
= Ẽ

[(∫ t

s

(
µr(Xr)h

′(Xr)+
σ2
r

2
h′′(Xr)

)
dr
)2
]

+ Ẽ
[∫ t

s

(σrh
′(Xr)

)2
dr

]
.

The inequality (3.3) then follows immediately from the assumptions of the lemma.

With Proposition 2.1, Lemma 2.1 and Lemma 3.1, we are ready to prove Theorem 3.1.

Proof. (Proof of Theorem 3.1.) We prove the statement (3.2) for τ = 0 only, the general
case follows from the τ = 0 case trivially. It is straightforward to verify that under assumptions
in Theorem 3.1, all the assumptions of Proposition 2.1, and Lemmas 2.1 and 3.1 are fulfilled.
Since Y τ,xτ and Zτ,xτ are functions of x, we write Y τ,xτ =Yτ (x) and Zτ,xτ =Zτ (x) in the sequel.

Let 0 = t0<t1<t2 ·· ·<tN =T be a uniform partition of [0,T ] with tn+1− tn=T/N := ∆t
and define

∆n=Ex0 [Qtn+1
Ytn+1

(Utn+1
)−QtnYtn(Utn)].

It follows immediately that

Ex0 [φ(UT )QT −Y0(x)] =

N−1∑
n=0

∆n.
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Denote P̃x := P̃(·|U0 =x). To prove (3.2) it suffices to verify that

N−1∑
n=0

∆n
N→∞−→ 0 in L1(Ω,P̃x). (3.5)

For each n≥0, let Utn be the state in (2.1) at time step tn and consider the FBDSDE
system (3.1) on [tn,tn+1] with initial condition Utn :

dX̂t=µt(X̂t)dt+σtdWt,

−dYt=−ZtdWt+

(
h(X̂t)Yt+

ρ̃t
σt
Zt

)
d
←−
V t,

X̂tn =Utn , Ytn+1 =Ytn+1(X̂tn+1),

(3.6)

where the notation X̂t is introduced to emphasize the initial condition X̂tn =Utn , which in-
corporates the state process Ut into the FBDSDE system and gives us the identity Ytn(Utn) =
Ytn(X̂tn). However, despite the equality of Utn and X̂tn , from the definition of Ut in (2.1)
and X̂t in (3.6), we still observe that there’s a difference between Utn+1

and X̂tn+1
, which is

described as the following

Utn+1
= X̂tn+1

+

∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs+

∫ tn+1

tn

ρ̃s (dVs−h(Us)ds)+Rn+1
X ,

where Rn+1
X =

∫ tn+1

tn
µs(Us)ds−

∫ tn+1

tn
µs(X̂s)ds. To simplify presentation, for any process ψt

we write ψ̂t :=ψt(X̂t) throughout the rest of this proof and let ηn+1 :=Utn+1
−X̂tn+1

be the

difference of Utn+1
and X̂tn+1

. Then the above equation becomes

ηn+1 =

∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs+

∫ tn+1

tn

ρ̃s (dVs−h(Us)ds)+Rn+1
X . (3.7)

Applying the Taylor expansion to Ytn+1
we have that

Ytn+1
(Utn+1

) = Ŷtn+1
+ Ŷ

′

tn+1
·ηn+1 +

1

2
Ŷ

′′

tn+1
·(ηn+1)2 +ξn+1, (3.8)

where ξn+1 is the Taylor remainder such that Ex0 [(ξn+1)2]≤C(∆t)3. To deal with the expansion
terms in (3.8) caused by the difference between Utn+1

and X̂tn+1
, we rewrite the expression for

∆n as

∆n=Ex0
[
Qtn+1Ytn+1(Utn+1)−Qtn Ŷtn+1 +Qtn Ŷtn+1−QtnYtn(Utn)

]
=Ex0

[(
Qtn+1

−Qtn
)
Ŷtn+1

]
︸ ︷︷ ︸

(i)

+Ex0
[
Qtn

(
Ŷtn+1

−Ytn(Utn)
)]

︸ ︷︷ ︸
(ii)

+Ex0
[
Qtn+1

(
Ŷ

′

tn+1
ηn+1 +

1

2
Ŷ

′′

tn+1
·(ηn+1)2 +ξn+1

)]
︸ ︷︷ ︸

(iii)

. (3.9)

The rest of this proof can be divided into two parts. The first part is to estimate terms (i),
(ii) and (iii) in (3.9) one by one and try to split ∆n into several terms without Ŷ derivatives.



BAO, CAO, AND HAN 643

Then, in the second part, we prove that the derived terms in ∆n from the first part will
converge to 0 in L1 after the summation from 0 to N−1.

Part I.

(i) Write ht=h(Ut) and ĥt=h(X̂t), and applying Ito’s formula to Qtn we obtain

Ex0
[
(Qtn+1

−Qtn)Ŷtn+1

]
=Ex0

[∫ tn+1

tn

hsQsdVsŶtn+1

]
=Ex0

[∫ tn+1

tn

ĥsQsdVsŶtn+1

]
+Ex0

[∫ tn+1

tn

(hs− ĥs)QsdVsŶtn+1

]
.

(3.10)
Applying Itô’s formula to function h yields

hs− ĥs=h
′
(Utn)

(∫ s

tn

ρrdWr+

∫ s

tn

ρ̃rdVr−
∫ s

tn

σrdWr

)
+O(∆t),

and consequently with h
′

tn :=h
′
(Utn) we have

Ex0
[∫ tn+1

tn

(hs− ĥs)QsdVsŶtn+1

]
=Ex0

[
h

′

tnQtnYtn(Utn)

∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−
∫ s

tn

σrdWr

)]
+Ex0

[
h

′

tn (Qs−Qtn)
(
Ŷtn+1−Ytn(Utn)

)∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−
∫ s

tn

σrdWr

)]
+Ex0

[
h

′

tnQtn Ŷtn+1

∫ tn+1

tn

∫ s

tn

ρ̃rdVrdVs

]
+O

(
(∆t)

3
2

)
. (3.11)

First noting that h
′

tnQtnYtn(Utn)
∫ tn+1

tn
dVs is independent of

∫ s
tn
ρrdWr−

∫ s
tn
σrdWr, we

have

Ex0
[
h

′

tnQtnYtn(Utn)

∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−
∫ s

tn

σrdWr

)]
= 0. (3.12)

Second, it’s straightforward to verify that

Ex0
[
h

′

tn (Qs−Qtn)
(
Ŷtn+1

−Ytn(Utn)
)∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−
∫ s

tn

σrdWr

)]
∼O

(
(∆t)

3
2

)
.

(3.13)
Putting (3.12) and (3.13) in (3.11), it follows from the regularity condition of ρ̃r that

Ex0
[∫ tn+1

tn

(hs− ĥs)QsdVsŶtn+1

]
=Ex0

[
h

′

tnQtn Ŷtn+1
ρ̃tn

∫ tn+1

tn

∫ s

tn

dVrdVs

]
+O

(
(∆t)

3
2

)
.

(3.14)

Define

νn :=h
′

tnQtn Ŷtn+1
ρ̃tn

∫ tn+1

tn

∫ s

tn

dVrdVs. (3.15)

Then by using the facts
∫ tn+1

tn

∫ s
tn

dVrdVs= 1
2

(
(Vtn+1

−Vtn)2−∆t
)

and h
′

tnQtn Ŷtn+1
ρ̃tn is inde-

pendent of 1
2

(
(Vtn+1

−Vtn)2−∆t
)

we have

N−1∑
n=0

νn=
N−1∑
n=0

h
′

tnQtn Ŷtn+1
ρ̃tn ·

1

2

(
(Vtn+1

−Vtn)2−∆t
)N→∞−→ 0 in L1(Ω,P̃x). (3.16)
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In summary (3.10) and (3.14)–(3.16) together give the estimate of the term (i) in (3.9) as

(i) =Ex0
[∫ tn+1

tn

ĥsQsdVsŶtn+1

]
+Ex0 [νn]+O

(
(∆)

3
2

)
, (3.17)

with
∑N−1
n=0 Ex0 [νn]→0 in L1(Ω,P̃x) as N→∞.

(ii) It follows directly from the FBDSDE system (3.6) that term (ii) in (3.9) satisfies

(ii) =Ex0
[
Qtn

∫ tn+1

tn

ẐsdWs−Qtn
∫ tn+1

tn

(
ĥsŶs+

ρ̃s
σs
Ẑs

)
d
←−
V s

]
=−Ex0

[
Qtn

∫ tn+1

tn

(
ĥsŶs+

ρ̃s
σs
Ẑs

)
d
←−
V s

]
. (3.18)

(iii) Now, we are going to estimate the Taylor expansion terms in (3.9). By splitting term (iii)
in (3.9) and using the definition of ηn+1 in (3.7) we obtain

(iii) =Ex0
[
Qtn+1

Ŷ
′

tn+1
ηn+1

]
+

1

2
Ex0
[
Qtn+1

Ŷ
′′

tn+1
·(ηn+1)2

]
+Ex0

[
Qtn+1

ξn+1

]
=Ex0

[
Qtn+1 Ŷ

′

tn+1

(∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs

)]
︸ ︷︷ ︸

(iii−1)

+Ex0
[
Qtn Ŷ

′

tn+1

∫ tn+1

tn

ρ̃sdVs

]
︸ ︷︷ ︸

(iii−2)

+Ex0
[
(Qtn+1

−Qtn)Ŷ
′

tn+1

∫ tn+1

tn

ρ̃sdVs

]
−Ex0

[
Qtn+1

Ŷ
′

tn+1

∫ tn+1

tn

ρ̃shsds

]
︸ ︷︷ ︸

(iii−3)

+Ex0
[
Qtn+1 Ŷ

′

tn+1
Rn+1
X

]
︸ ︷︷ ︸

(iii−4)

+
1

2
Ex0
[
Qtn+1

Ŷ
′′

tn+1
·(ηn+1)2

]
︸ ︷︷ ︸

(iii−5)

+Ex0
[
Qtn+1

ξn+1

]
. (3.19)

We next estimate terms (iii-1) – (iii-5).

Denote

∇X̂t :=
∂X̂tn,x

t

∂x

∣∣∣∣∣
x=Utn

, ∇Ŷt :=
∂Y tn,xt

∂x

∣∣∣∣∣
x=Utn

, ∇Ẑt :=
∂Ztn,xt

∂x

∣∣∣∣∣
x=Utn

.

Then term (iii-1) can be written as

(iii−1) =Ex0
[
Qtn+1

(
Ŷ

′

tn+1
∇X̂tn+1

)(∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs

)(
∇X̂tn+1

)−1
]
. (3.20)

By using the fact |(∇X̂tn+1
)−1|= 1+O(∆t) and the variational equation (see [31])

∇Ŷt= Ŷ
′

tn+1
∇X̂tn+1 +

∫ tn+1

t

(
ĥ

′

sŶs∇X̂s+ ĥs∇Ŷs+
ρ̃s
σs
∇Ẑs

)
d
←−
V s−

∫ tn+1

t

∇ẐsdWs,
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we deduce that (3.20) becomes

(iii−1) =Ex0
[
Qtn+1

(
Ŷ

′

tn+1
∇X̂tn+1

−∇Ŷtn
)(∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs

)]
+Ex0

[
Qtn+1∇Ŷtn

(∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs

)]
+O((∆t)

3
2 )

=Ex0
[(
Qtn

∫ tn+1

tn

∇ẐsdWs+λtn

)
·
(∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs

)]
+O((∆t)

3
2 ),

where λtn =−Qtn
∫ tn+1

tn

(
ĥ

′

sȲs∇X̂s+ ĥs∇Ŷs+ ρ̃s
σs
∇Ẑs

)
d
←−
V s+Qtn+1

∇Ŷtn is independent of∫ tn+1

tn
ρsdWs−

∫ tn+1

tn
σsdWs and hence gives

Ex0
[
λtn

(∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs

)]
= 0.

As a consequence

(iii−1) =Ex0
[
Qtn

∫ tn+1

tn

∇ẐsdWs ·
(∫ tn+1

tn

ρsdWs−
∫ tn+1

tn

σsdWs

)]
+O

(
(∆t)

3
2

)
=Ex0

[
Qtn∇Ẑtn+1

·
∫ tn+1

tn

(ρs−σs)ds
]

+O
(

(∆t)
3
2

)
. (3.21)

Let C represent a generic constant while the context is clear. By the definition of Rn+1
X ,

it is straightforward to verify that

(iii−4) =Ex0
[
Qtn+1

Ŷ
′

tn+1
Rn+1
X

]
≤C(∆t)

3
2 . (3.22)

Applying Itô’s formula to Qtn in term (iii-3) we obtain

(iii−3) =Ex0
[
(Qtn+1

−Qtn)Ŷ
′

tn+1

∫ tn+1

tn

ρ̃sdVs

]
−Ex0

[
Qtn+1

Ŷ
′

tn+1

∫ tn+1

tn

ρ̃shsds

]
=Ex0

[∫ tn+1

tn

hsQsdVs

∫ tn+1

tn

ρ̃sdVsŶ
′

tn+1

]
−Ex0

[
Qtn+1

Ŷ
′

tn+1

∫ tn+1

tn

ρ̃shsds

]
≤
∣∣∣∣Ex0 [∫ tn+1

tn

hs(Qs−Qtn+1)dVs

∫ tn+1

tn

ρ̃sdVsŶ
′

tn+1

]∣∣∣∣
+

∣∣∣∣Ex0 [Qtn+1
Ŷ

′

tn+1

(∫ tn+1

tn

hsdVs

∫ tn+1

tn

ρ̃sdVs−
∫ tn+1

tn

ρ̃shsds

)]∣∣∣∣
≤C(∆t)

3
2 . (3.23)

By using the definition of ηn+1 in (3.7), we deduce that

(iii−5) =
1

2
Ex0
[
Qtn Ŷ

′′

tn+1

∫ tn+1

tn

(
ρ2
s+ ρ̃2

s+σ2
s−2ρsσs

)
ds

]
+O

(
(∆t)

3
2

)
=Ex0

[
Qtn Ŷ

′′

tn+1

∫ tn+1

tn

(
σ2
s−ρsσs

)
ds

]
+O

(
(∆t)

3
2

)
.
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As a simple corollary of the assertion (2.10), we have Ŷ
′′

tn+1
σtn+1 =∇Ẑtn+1 +O(∆t) and thus

(iii−5) =Ex0
[
Qtn∇Ẑtn+1

∫ tn+1

tn

(σs−ρs)ds

]
+O

(
(∆t)

3
2

)
. (3.24)

It then remains to estimate term (iii-2). Notice that due to equations (2.10) and (3.1) we
have Ẑs/σs=∇Ŷs(∇X̂s)

−1. Hence for any s∈ [tn,tn+1] it holds

Ŷ
′

tn+1
− Ẑs
σs

= Ŷ
′

tn+1
−∇Ŷs(∇X̂s)

−1

=−
∫ tn+1

s

(
ĥ

′

rŶr∇X̂r+ ĥr∇Ŷr+
ρ̃r
σr
∇Ẑr

)
d
←−
V r−

∫ tn+1

s

∇ẐrdWr+O(∆t),

and therefore

−Qtn
∫ tn+1

tn

ρ̃s
σs
Ẑsd
←−
V s=−Qtn Ŷ

′

tn+1

∫ tn+1

tn

ρ̃sd
←−
V s

−Qtn
∫ tn+1

tn

ρ̃s

∫ tn+1

s

(
ĥ

′

rŶr∇X̂r+ ĥr∇Ŷr+
ρ̃r
σr
∇Ẑr

)
d
←−
V rd
←−
V s

−Qtn
∫ tn+1

tn

ρ̃s

∫ tn+1

s

∇ẐrdWrd
←−
V s+O

(
(∆t)

3
2

)
.

Since W and V are two independent Brownian motions,

Ex0
[
Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

∇ẐrdWrd
←−
V s

]
=Ex0

[
Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

(∇Ẑr−∇Ẑtn)dWrd
←−
V s

]
≤C(∆t)

3
2 . (3.25)

As a result,

(iii−2) =Ex0
[
Qtn

∫ tn+1

tn

ρ̃s
σs
Ẑsd
←−
V s

]
−Ex0

[
Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

(
ĥ

′

rŶr∇X̂r+ ĥr∇Ŷr+
ρ̃r
σr
∇Ẑr

)
d
←−
V rd
←−
V s

]
+O

(
(∆t)

3
2

)
=Ex0

[
Qtn

∫ tn+1

tn

ρ̃s
σs
Ẑsd
←−
V s

]
−Ex0

[
λ̃tn

∫ tn+1

tn

∫ tn+1

s

d
←−
V rd
←−
V s

]
+O

(
(∆t)

3
2

)
,

(3.26)

where λ̃tn =Qtn ρ̃tn+1

(
ĥ

′

tn Ŷtn+1∇X̂tn + ĥtn∇Ŷtn+1 +
ρ̃tn+1

σtn+1
∇Ẑtn+1

)
is independent of∫ tn+1

tn

∫ tn+1

s
d
←−
V rd
←−
V s= 1

2

(
(Vtn+1

−Vtn)2−∆t
)
. By an argument similar to (3.16), we ob-

tain

N−1∑
n=0

Ex0
[
λ̃tn

∫ tn+1

tn

∫ tn+1

s

d
←−
V rd
←−
V s

]
N→∞−→ 0 in L1(Ω,P̃x). (3.27)

Collecting estimates (3.21)–(3.24) and (3.26) into (3.19); then inserting (3.19), (3.17) and
(3.18) into (3.9) we finally obtain

∆n=Ex0
[∫ tn+1

tn

ĥsQsdVsŶtn+1
−Qtn

∫ tn+1

tn

ĥsŶsd
←−
V s+νn

]
+O

(
(∆t)

3
2

)
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:=Ex0 [αn]+Ex0 [βn]+Ex0 [γn]+Ex0 [νn]+O
(

(∆t)
3
2

)
, (3.28)

where {νn} is defined as in (3.15) and satisfies (3.16), and

αn :=

∫ tn+1

tn

(
Qsĥs−Qtn ĥtn

)
Ŷtn+1dVs,

βn :=

∫ tn+1

tn

Qtn

(
ĥtn+1

Ŷtn+1
− ĥsŶs

)
d
←−
V s,

γn :=Qtn Ŷtn+1

(
ĥtn− ĥtn+1

)
·(Vtn+1−Vtn).

Part II.

In the second part of the proof, we show that
∑N−1
n=0 Ex0 [αn]→0,

∑N−1
n=0 Ex0 [βn]→0, and∑N−1

n=0 Ex0 [γn]→0 in L1(Ω,P̃x) as N→∞.

First write αn=α
(1)
n +α

(2)
n +α

(3)
n with

α(1)
n :=

∫ tn+1

tn

(Qs−Qtn)ĥsdVs · Ŷtn+1
,

α(2)
n :=

∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs · Ŷtn ,

α(3)
n :=

∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs ·
(
Ŷtn+1

− Ŷtn
)
.

Denote by Ẽx the expectation with respect to P̃x, where P̃x := P̃(·|U0 =x) is the induced prob-
ability measure. Noticing that Ŷtn =Ytn(Utn) due to X̂tn =Utn given in (3.6), and that ht is a

bounded function, we apply Itô’s formula to (Qs−Qtn) in α
(1)
n to get

Ẽx

[∣∣∣∣∣Ex0[
N−1∑
n=0

α(1)
n

]∣∣∣∣∣
]

= Ẽx

[∣∣∣∣∣Ex0[
N−1∑
n=0

∫ tn+1

tn

∫ s

tn

ĥrQrdVrĥsdVs · Ŷtn+1

]∣∣∣∣∣
]

≤ Ẽx

[∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

∫ s

tn

ĥr(Qr−Qtn)dVrĥsdVs · Ŷtn+1

∣∣∣∣∣
]

+ Ẽx

[∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

∫ s

tn

ĥrQtndVrĥsdVs · Ŷtn+1

∣∣∣∣∣
]

≤ C
N−1∑
n=0

(∆t)
3
2 +CẼx

[∣∣∣∣∣
N−1∑
n=0

Qtn Ŷtn+1
· 1
2

(
(Vtn+1

−Vtn)2−∆t
)∣∣∣∣∣
]
.

and from the fact that

N−1∑
n=0

Qtn Ŷtn+1 ·
1

2

(
(Vtn+1−Vtn)2−∆t

)
→0 in L1(Ω,P̃x)

we have

N−1∑
n=0

Ex0
[
α(1)
n

]
=Ex0

[N−1∑
n=0

α(1)
n

]
→0 in L1(Ω,P̃x). (3.29)
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For α
(2)
n , we apply Itô’s formula to hs to get

Ex0 [α(2)
n ] =Ex0

[∫ tn+1

tn

Qtn ·
(∫ s

tn

[µ̂r · ĥ′r+
(σr)

2

2
· ĥ′′r ]dr+

∫ s

tn

σr · ĥ′rdWr

)
· ŶtndVs

]
=Ex0

[∫ tn+1

tn

Qtn Ŷtn ·
∫ s

tn

[µ̂r · ĥ′r+
(σr)

2

2
ĥ′′r ]drdVs

]
.

Since µt, σt, h
′ and h′′ are all bounded, we have

Ẽx[|Ex0 [α(2)
n ]|]≤C∆t3/2,

and consequently

N−1∑
n=0

Ex0 [α(2)
n ]→0 in L1(Ω,P̃x). (3.30)

Moreover, it follows from Hölder’s inequality, Lemma 2.1 and Lemma 3.1 that

Ẽx[|Ex0 [α(3)
n ]|] =Ẽx

[∣∣Ex0[∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs ·
(
Ŷtn+1

− Ŷtn
)]∣∣]

≤
(
Ẽx
[(∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs
)2]) 1

2 ·
(
Ẽx
[(
Ŷtn+1

− Ŷtn
)2]) 1

2

≤C∆t3/2,

and hence

N−1∑
n=0

Ex0 [α(3)
n ]→0 in L1(Ω,P̃x). (3.31)

It follows immediately from (3.29), (3.30) and (3.31) that

N−1∑
n=0

Ex0 [αn]→0 in L1(Ω,P̃x). (3.32)

For the term βn in (3.28), we have

βn=

∫ tn+1

tn

Qtn

(
(ĥtn+1

− ĥs)Ŷtn+1
+ ĥs(Ŷtn+1

− Ŷs)
)

d
←−
V s

=

∫ tn+1

tn

Qtn(ĥtn+1
− ĥs)Ŷtnd

←−
V s+

∫ tn+1

tn

Qtn ĥs(Ŷtn+1
− Ŷs)d

←−
V s

+

∫ tn+1

tn

Qtn(ĥtn+1− ĥs)d
←−
V s ·

(
Ŷtn+1− Ŷtn

)
=β(1)

n +β(2)
n +β(3)

n

with

β(1)
n =

∫ tn+1

tn

Qtn(ĥtn+1
− ĥs)Ŷtnd

←−
V s,
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β(2)
n =

∫ tn+1

tn

Qtn ĥs(Ŷtn+1
− Ŷs)d

←−
V s,

β(3)
n =

∫ tn+1

tn

Qtn(ĥtn+1
− ĥs)d

←−
V s ·

(
Ŷtn+1

− Ŷtn
)
.

Following similar approaches to estimate α
(2)
n and α

(3)
n , we obtain

Ẽx[|Ex0 [β(1)
n ]|]≤C∆t3/2, Ẽx[|Ex0 [β(3)

n ]|]≤C∆t3/2,

and thus

N−1∑
n=0

Ex0 [β(1)
n ]→0 in L1(Ω,P̃x),

N−1∑
n=0

Ex0 [β(3)
n ]→0 in L1(Ω,P̃x). (3.33)

From the BDSDE in (3.1), Proposition 2.1, Lemma 2.1, and (3.25), we get

N−1∑
n=0

Ex0 [β(2)
n ] =

N−1∑
n=0

Ex0
[∫ tn+1

tn

Qtn ĥs

(∫ tn+1

s

ẐrdWr−
∫ tn+1

s

(
ĥrŶr+

ρ̃r
σr
Ẑr
)
d
←−
V r

)
d
←−
V s

]
=
N−1∑
n=0

Ex0
[∫ tn+1

tn

Qtn ĥs
(
−
∫ tn+1

s

(
ĥrŶtn+1

+
ρ̃r
σr
Ẑtn+1

)
d
←−
V r

)
d
←−
V s

]
+O((∆t)

3
2 )

+

N−1∑
n=0

Ex0
[∫ tn+1

tn

Qtn ĥs
(∫ tn+1

s

ĥr(Ŷtn+1− Ŷr)+
ρ̃r
σr

(Ẑtn+1− Ẑr)d
←−
V r

)
d
←−
V s

]
.

Taking conditional expectation Ẽx of the absolute value of the above equation and using the
facts

Ẽx
[
(Ŷtn+1− Ŷr)2

]
≤C(∆t)3, Ẽx

[
(Ẑtn+1− Ẑr)2

]
≤C(∆t)3,

Ẽx
[∣∣Ex0[N−1∑

n=0

∫ tn+1

tn

Qtn ĥs
(
−
∫ tn+1

s

ĥrŶtn+1d
←−
V r

)
d
←−
V s

]∣∣]
≤CẼx

[∣∣N−1∑
n=0

Qtn Ŷtn+1
· 1
2

(
(Vtn+1

−Vtn)2−∆t
)∣∣],

and

N−1∑
n=0

Qtn Ŷtn+1
· 1
2

(
(Vtn+1

−Vtn)2−∆t
)
→0 in L1(Ω,P̃x)

we obtain

N−1∑
n=0

Ex0 [β(2)
n ] =Ex0 [

N−1∑
n=0

β(2)
n ]→0 in L1(Ω,P̃x). (3.34)

The above relation (3.34), together with (3.33), gives

N−1∑
n=0

Ex0 [βn] =Ex0 [
N−1∑
n=0

βn]→0 in L1(Ω,P̃x). (3.35)
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It remains to estimate γn. Applying Itô’s formula to ht, it’s easy to verify that

|Ex0 [ĥtn+1
− ĥtn ]|≤C∆t. (3.36)

Since ĥtn+1
− ĥtn is independent of Qtn Ŷtn(Vtn+1

−Vtn),

Ex0 [γn] = Ex0
[
Qtn Ŷtn

(
ĥtn− ĥtn+1

)
·(Vtn+1−Vtn)

]
+Ex0

[
Qtn

(
Ŷtn+1

− Ŷtn
)
·
(
ĥtn− ĥtn+1

)
·(Vtn+1

−Vtn)
]

= Ex0
[
ĥtn− ĥtn+1

]
·Ex0
[
Qtn Ŷtn ·(Vtn+1

−Vtn)
]

+Ex0
[
Qtn

(
Ŷtn+1

− Ŷtn
)
·
(
ĥtn− ĥtn+1

)
·(Vtn+1

−Vtn)
]
.

Then, from estimate (3.36), Lemma 2.1, Lemma 3.1, we get

Ẽx
[
|Ex0 [γn]|

]
≤ C∆t · Ẽx

[∣∣Qtn Ŷtn ·(Vtn+1
−Vtn)

∣∣]
+ Ẽx

[
|Qtn

(
Ŷtn+1− Ŷtn

)
·
(
ĥtn− ĥtn+1

)
·(Vtn+1−Vtn)|

]
≤C(∆t)

3
2 (3.37)

and therefore

N−1∑
n=0

Ex0 [γn] =Ex0 [

N−1∑
n=0

γn]→ in L1(Ω,P̃x). (3.38)

Finally with convergence results in (3.32), (3.35) and (3.38), the expression of ∆n in (3.28)
gives us

N−1∑
n=0

∆n→0 in L1(Ω,P̃x)

as desired. The proof is complete.

3.2. Adjoint FBDSDEs. In this subsection, we provide a different perspective to
consider the FBDSDE system. Specifically, we introduce the following FBDSDE system, in
which the “forward SDE” (2.7) goes backward and the “backward SDE” (2.8) goes forward

d
←−
X t=µt(

←−
X t)dt−σtd

←−
W t, 0≤ t≤ τ (SDE)

d
−→
Y t=−µ′t(

←−
X t)
−→
Y tdt−

−→
Z td
←−
W t+

(
h(
←−
X t)
−→
Y t−

ρ̃t
σt

−→
Z t

)
dVt, 0≤ t≤ τ (BDSDE)

←−
X τ =x,

−→
Y 0 =p0(

←−
X 0),

(3.39)

where 0≤ τ ≤T ,
∫ T
t
·d
←−
W s is a backward Itô Integral and

∫ T
t
·dVs is a standard forward Itô

integral. Write the solution to (3.39) as (
←−
XT,x
t ,
−→
Y T,x
t ,
−→
Z T,x
t ). Then by inverting the time index

in the standard FBDSDE system,
←−
XT,x
t is a FWt,T adapted stochastic process and the solution(−→

Y T,x
t ,
−→
Z T,x
t

)
of the BDSDE in (3.39) is adapted to FWt,T ∨FVt .

In most literatures about FBDSDEs, the side condition of the solution “Y ” is given at the
terminal time T and the propagation direction is from T to 0, which is similar to the Feynman-
Kac-type FBDSDE system (3.1). Although the adjoint relations for SPDEs are well-known,
not many discussions have occurred in relating an FBDSDE system to its adjoint time-inverse
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FBDSDE system. In what follows, we show that the solution
−→
Y t, which is initialized at the

side condition t= 0, is the adjoint stochastic process of Yt defined in the FBDSDE system (3.1),
and we denote by 〈·,·〉 the standard inner product in L2(R), i.e. for any functions φ,ψ :R→R,
〈φ,ψ〉 :=

∫
Rφ(x)ψ(x)dx.

Before we present the adjoint theorem (Theorem 3.2) for FBDSDE systems, we first in-
troduce some regularity properties for µ and σ.

Assumption 3.1. For 0≤s≤ t≤T , functions µ and σ satisfy

|µt(x)−µs(x)|+ |µ′t(x)−µ′s(x)|≤C|t−s|, |σt−σs|≤C|t−s|,

where C is a given positive constant independent of µ, σ, s and t.

Lemma 3.2 can be proved by using repeatedly the variational form of BDSDEs [31].

Lemma 3.2. Assume that µ∈C4
b , φ∈C3

b , h∈C3
b and every derivative of µ, φ and h has

bounded support in R. Then for each m1 = 0,1,2 and m2 = 0,1,2,3, Y
(m1)
t ,

−→
Y

(m2)
t have bounded

support and satisfy∫
R
Ẽ
[

sup
0≤t≤T

∣∣∣Y (m1)
t

∣∣∣2]dx<∞ and

∫
R
Ẽ
[

sup
0≤t≤T

∣∣∣−→Y (m2)
t

∣∣∣2]dx<∞. (3.40)

Theorem 3.2. Assume that, in addition to Assumption 3.1, σ is uniformly bounded, µ∈C4
b ,

φ∈C3
b , h∈C3

b and each derivative of µ, φ and h has bounded support in R. Then the process

Rt :=
〈
Yt,
−→
Y t

〉
, t∈ [0,T ] is a constant for almost all trajectories.

Similar to the notation used in Section 3.1, we denote
−→
Y t(x) :=

−→
Y t,x
t and

−→
Z t(x) :=

−→
Z t,x
t . In

addition, for any non-negative integer m and function f =f(x), we write f (m) := ∂mf
∂xm . It’s

worthy noting that a similar duality described in Theorem 3.2 also occurs in the FBSDE
(forward backward stochastic differential equation) systems. Actually, if we ignore the mea-
surement process Vt in the optimal filtering problem, i.e. let Vt≡0, the optimal filtering-type
Feynman-Kac formula would become the classic Feynman-Kac formula, and both FBDSDE
systems (3.1) and (3.39) become FBSDE systems. Therefore, the following proof will lead to

the adjoint relation between FBSDEs by simply eliminating all the Vt and
←−
V t terms. When

we put back the observation Vt in the optimal filtering problem, the coefficient of observation
noise resembles the coefficient of the multiplicative noise in the Zakai equation.

Proof. (Proof of Theorem 3.2.) First notice that according to [31], Rt has continuous
paths a.s.. Thus it suffices to show that Rs=Rt a.s. for all s,t∈ [0,T ]. For 0≤s≤ t≤T , let
s= t0<t1< ·· ·<tN = t be a temporal partition with uniform stepsize tn+1− tn= t−s

N = ∆t.

For simplification of notations, we denote

∆Vtn :=Vtn+1
−Vtn , Yn :=Ytn , Zn :=Ztn ,

−→
Y n :=

−→
Y tn ,

−→
Z n :=

−→
Z tn .

By Corollary 2.2 in [31], we have

Yn(x) =Y tn,xtn ,
−→
Y n(x) =

−→
Y tn,x
tn , Yn+1(Xtn,x

tn+1
) =Y tn,xtn+1

,
−→
Y n(
←−
X
tn+1,x
tn ) =

−→
Y
tn+1,x
tn ,

Zn(x) =Ztn,xtn ,
−→
Z n(x) =

−→
Z tn,x
tn , Zn+1(Xtn,x

tn+1
) =Ztn,xtn+1

,
−→
Z n(
←−
X
tn+1,x
tn ) =

−→
Z
tn+1,x
tn .

Denote conditional expectations

E[·] := Ẽ[·|FVT ], Enx [·] := Ẽ[·|FVT ,Xtn =x],
←−
E n
x [·] := Ẽ[·|FVT ,

←−
X tn =x].
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It follows from the definitions of Enx and
←−
E n
x that

Enx [Yn] =Yn(x),
←−
E n
x [
−→
Y n] =

−→
Y n(x).

Without loss of generality suppose that ∆t<s∧(T − t) and define

YN =
1

∆t

∫ t+∆t

t

Yrdr,
−→
Y 0 =

1

∆t

∫ s

s−∆t

−→
Y rdr.

For n= 0,1,. ..,N−1, taking the conditional expectations Enx and
←−
E n+1
x of temporal dis-

cretized approximations of the BDSDEs in (3.1) and (3.39). Specifically, we use the Euler
scheme to approximate both the deterministic and stochastic integrals under the above tem-
poral partition (see [6]) and derive

Enx [Yn] =Enx [Yn+1]+Enx [hn+1Yn+1]∆Vtn +Enx
[
ρ̃tn+1

σtn+1

Zn+1

]
∆Vtn +Rn, (3.41)

←−
E n+1
x [
−→
Y n+1] =

←−
E n+1
x [
−→
Y n]+

←−
E n
x

[
−←−µ ′n

−→
Y n

]
∆t

+
←−
E n+1
x

[←−
h n
−→
Y n

]
∆Vtn−

←−
E n+1
x

[
ρ̃tn
σtn

−→
Z n

]
∆Vtn +R̃n, (3.42)

where

hn+1 :=h(Xtn+1), ←−µ ′n := b′tn(
←−
X tn),

←−
h n :=h(

←−
X tn),

and we denote Rn to be the truncation error from the Euler scheme approximation to Equation
(3.1), where

Rn=

∫ tn+1

tn

(
h(Xs)Ys+

ρ̃s
σs
Zs

)
d
←−
V s−

(
Enx [hn+1Yn+1]∆Vtn +Enx

[
ρ̃tn+1

σtn+1

Zn+1

]
∆Vtn

)
.

Similarly, the truncation error R̃n in approximating (3.39) is defined by

R̃n=

∫ tn+1

tn

−µ′s(
←−
X s)
−→
Y sds+

∫ tn+1

tn

(
h(
←−
X s)
−→
Y s−

ρ̃s
σt

−→
Z s

)
dVs

+
←−
E n
x

[←−µ ′n−→Y n

]
∆t−

←−
E n+1
x

[←−
h n
−→
Y n

]
∆Vtn +

←−
E n+1
x

[
ρ̃tn
σtn

−→
Z n

]
∆Vtn .

The convergence results for the above scheme can be found in [6].

By the definition of expectations Enx and
←−
E n+1
x ,

Enx [hn+1] =E
[
h(Xtn,x

tn+1
)
]
,
←−
E n+1
x [←−µ ′n] =E

[
µ′n(
←−
X
tn+1,x
tn )

]
,
←−
E n+1
x

[←−
h n

]
=E

[
h(
←−
X
tn+1,x
tn )

]
.

Multiplying (3.41) by
←−
E n
x [
−→
Y n] and (3.42) by En+1

x [Yn+1], then taking integral with respect to
dx, we obtain〈

Enx [Yn],
←−
E n
x [
−→
Y n]

〉
=
〈
Enx [Yn+1],

←−
E n
x [
−→
Y n]

〉
+
〈
Enx [hn+1Yn+1],

←−
E n
x [
−→
Y n]

〉
∆Vtn

+

〈
Enx
[
ρ̃tn+1

σtn+1

Zn+1

]
,
←−
E n
x [
−→
Y n]

〉
∆Vtn (3.43)
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and 〈←−
E n+1
x [
−→
Y n+1],En+1

x [Yn+1]
〉

=
〈←−
E n+1
x [
−→
Y n],En+1

x [Yn+1]
〉

+
〈←−
E n+1
x

[
−←−µ ′n

−→
Y n

]
,En+1
x [Yn+1]

〉
∆t

+
〈←−
E n+1
x

[←−
h n
−→
Y n

]
,En+1
x [Yn+1]

〉
∆Vtn−

〈
←−
E n+1
x

[
ρ̃tn
σtn

−→
Z n

]
,En+1
x [Yn+1]

〉
∆Vtn . (3.44)

Subtraction of (3.44) from (3.43) results in〈
Enx [Yn],

←−
E n
x [
−→
Y n]

〉
−
〈←−
E n+1
x [
−→
Y n+1],En+1

x [Yn+1]
〉

=
〈
Enx [Yn+1],

←−
E n
x [
−→
Y n]−

←−
E n+1
x [
−→
Y n]

〉
+
〈←−
E n+1
x [
−→
Y n],Enx [Yn+1]−En+1

x [Yn+1]
〉

︸ ︷︷ ︸
(iv)

+
〈
Enx [hn+1Yn+1],

←−
E n
x [
−→
Y n]

〉
∆Vtn−

〈←−
E n+1
x

[←−
h n
−→
Y n

]
,En+1
x [Yn+1]

〉
∆Vtn︸ ︷︷ ︸

(v)

+

〈
Enx
[
ρ̃tn+1

σtn+1

Zn+1

]
,
←−
E n
x [
−→
Y n]

〉
∆Vtn +

〈
←−
E n+1
x

[
ρ̃tn
σtn

−→
Z n

]
,En+1
x [Yn+1]

〉
∆Vtn︸ ︷︷ ︸

(vi)

−
〈←−
E n+1
x

[
−←−µ ′n

−→
Y n

]
,En+1
x [Yn+1]

〉
∆t. (3.45)

In what follows, we prove that by taking the sum of Equation (3.45) from n= 0 to n=N−1,
the right-hand side of the resulting equation converges to 0 as ∆t→0, which will lead to the
desired result of this theorem. To this end we estimate terms (iv), (v) and (vi) one by one.

(iv) By the definitions
←−
E n
x and Enx , we have

←−
E n
x [
−→
Y n]−

←−
E n+1
x [
−→
Y n] =E

[−→
Y n(x)−

−→
Y n(
←−
X
tn+1,x

tn )
]
,

Enx [Yn+1]−En+1
x [Yn+1] =E

[
Yn+1(Xtn,x

tn+1
)−Yn+1(x)

]
.

It follows from Itô’s formula that

−→
Y n(
←−
X
tn+1,x

tn ) =
−→
Y n(x)+

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y ′′n(
←−
X tn+1,x
s )

)
ds

+

∫ tn+1

tn

σs
−→
Y ′n(
←−
X tn+1,x
s )d

←−
W s, (3.46)

Yn+1(Xtn,x
tn+1

) = Yn+1(x)+

∫ tn+1

tn

(
µs(X

tn,x
s )Y ′n+1(Xtn,x

s )+
(σs)

2

2
Y ′′n+1(Xtn,x

s )
)
ds

+

∫ tn+1

tn

σsY
′
n+1(Xtn,x

s )dWs. (3.47)

Taking conditional expectation E to Equations (3.46) and (3.47), we obtain

←−
E n
x [
−→
Y n]−

←−
E n+1
x [
−→
Y n] =−E

[∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y ′′n(
←−
X tn+1,x
s )

)
ds

]
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=−E
[
−µn(

←−
X
tn+1,x

tn )
−→
Y ′n(
←−
X
tn+1,x

tn )+
(σtn)2

2

−→
Y ′′n(
←−
X
tn+1,x

tn )

]
·∆t+

−→
Rn,

Enx [Yn+1]−En+1
x [Yn+1] =E

[∫ tn+1

tn

(
µs(X

tn,x
s )Y ′n+1(Xtn,x

s )+
(σs)

2

2
Y ′′n+1(Xtn,x

s )
)
ds

]
= E

[
µn(Xtn,x

tn )Y ′n+1(Xtn,x
tn )+

(σtn)2

2
Y ′′n+1(Xtn,x

tn )

]
·∆t+Rn,

where

−→
Rn :=−E

[∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y ′′n(
←−
X tn+1,x
s )

)
ds

]
+E
[
−µn(

←−
X
tn+1,x

tn )
−→
Y ′n(
←−
X
tn+1,x

tn )+
(σtn)2

2

−→
Y ′′n(
←−
X
tn+1,x

tn )

]
·∆t,

Rn :=E
[∫ tn+1

tn

(
µs(X

tn,x
s )Y ′n+1(Xtn,x

s )+
(σs)

2

2
Y ′′n+1(Xtn,x

s )
)
ds

]
−E
[
bn(Xtn,x

tn )Y ′n+1(Xtn,x
tn )+

(σtn)2

2
Y ′′n+1(Xtn,x

tn )
]
·∆t.

As a consequence〈
Enx [Yn+1],

←−
E n
x [
−→
Y n]−

←−
E n+1
x [
−→
Y n]

〉
= −

∫
R
E
[
Yn+1(Xtn,x

tn+1
)
](

E
[
−µn(

←−
X
tn+1,x

tn )
−→
Y ′n(
←−
X
tn+1,x

tn )+
(σtn)2

2

−→
Y ′′n(
←−
X
tn+1,x

tn )
]
·∆t−

−→
Rn

)
dx.

(3.48)
Similarly〈←−

E n+1
x [
−→
Y n],Enx [Yn+1]−En+1

x [Yn+1]
〉

=

∫
R
E
[−→
Y n(
←−
X
tn+1,x

tn )
](

E
[
µn(Xtn,x

tn )Y ′n+1(Xtn,x
tn )+

(σtn)2

2
Y ′′n+1(Xtn,x

tn )
]
·∆t+Rn

)
dx. (3.49)

Adding (3.48) to (3.49) we have that

(iv) =
(
−
∫
R
E
[
Yn+1(Xtn,x

tn+1
)
]
E
[
−µn(

←−
X
tn+1,x

tn )
−→
Y ′n(
←−
X
tn+1,x

tn )
]
dx︸ ︷︷ ︸

(iv−1)

+

∫
R
E
[−→
Y n(
←−
X
tn+1,x

tn )
]
E
[
µn(Xtn,x

tn )Y ′n+1(Xtn,x
tn )

]
dx︸ ︷︷ ︸

(iv−2)

)
·∆t

+
(
−
∫
R
E
[
Yn+1(Xtn,x

tn+1
)
]
E
[ (σtn)2

2

−→
Y ′′n(
←−
X
tn+1,x

tn )
]
dx︸ ︷︷ ︸

(iv−3)

+

∫
R
E
[−→
Y n(
←−
X
tn+1,x

tn )
]
E
[ (σtn)2

2
Y ′′n+1(Xtn,x

tn )
]
dx︸ ︷︷ ︸

(iv−4)

)
·∆t+Rxn, (3.50)
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where Rxn=
∫
RE[Yn+1(Xtn,x

tn+1
)]
−→
Rndx+

∫
RE[
−→
Y n(
←−
X
tn+1,x

tn )]Rndx. Again by using the Itô’s for-
mula we obtain

−→
Y ′n(
←−
X
tn+1,x

tn ) =
−→
Y ′n(x)+

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y (3)
n (
←−
X tn+1,x
s )

)
ds

+

∫ tn+1

tn

σs
−→
Y ′′n(
←−
X tn+1,x
s )d

←−
W s,

−→
Y ′′n(
←−
X
tn+1,x
tn ) =

−→
Y ′′n(x)+

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y (3)
n (
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y (4)
n (
←−
X tn+1,x
s )

)
ds

+

∫ tn+1

tn

σs
−→
Y (3)
n (
←−
X tn+1,x
s )d

←−
W s,

µn(
←−
X
tn+1,x

tn ) =µn(x)+

∫ tn+1

tn

−µs(
←−
X tn+1,x
s )µ′n(

←−
X tn+1,x
s )+

(σs)
2

2
µ′′n(
←−
X tn+1,x
s )

)
ds

+

∫ tn+1

tn

σsµ
′
n(
←−
X tn+1,x
s )d

←−
W s.

Hence, the term E
[
µn(
←−
X
tn+1,x

tn )
−→
Y ′n(
←−
X
tn+1,x

tn )
]

on the right-hand side of (3.50) can be written

as E
[
µn(
←−
X
tn+1,x

tn )
−→
Y ′n(
←−
X
tn+1,x

tn )
]

=µn(x)
−→
Y ′n(x)+Γn(x) with

Γn(x) =E
[
µn(x) ·

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y (3)
n (
←−
X tn+1,x
s )

)
ds

+
−→
Y ′n(x) ·

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )µ′n(

←−
X tn+1,x
s )+

(σs)
2

2
µ′′n(
←−
X tn+1,x
s )

)
ds

+

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )µ′n(

←−
X tn+1,x
s )+

(σs)
2

2
µ′′n(
←−
X tn+1,x
s )

)
ds

·
∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y (3)
n (
←−
X tn+1,x
s )

)
ds

+

∫ tn+1

tn

(σs)
2µ′n(
←−
X tn+1,x
s )

−→
Y ′′n(
←−
X tn+1,x
s )ds

]
.

As a result, the terms on the right-hand side of (3.50) can be rewritten as

(iv−1) =

∫
R

(
Yn+1(x)µn(x)

−→
Y ′n(x)

)
dx+H1

n, (3.51)

(iv−2) =

∫
R

(−→
Y n(x)µn(x)Y ′n+1(x)

)
dx+H2

n, (3.52)

(iv−3) =−
∫
R

(σtn)2

2
Yn+1(x)

−→
Y ′′n(x)dx+H3

n, (3.53)

(iv−4) =

∫
R

(σtn)2

2

−→
Y n(x)Y ′′n+1(x)dx+H4

n, (3.54)

where

H1
n=

∫
R

{(
Yn+1(x)+E[

∫ tn+1

tn

(
µs(X

tn,x
s )Y ′n+1(Xtn,x

s )+
(σs)

2

2
Y ′′n+1(Xtn,x

s )
)
ds
)
]
)
·Γn(x)
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+E[

∫ tn+1

tn

(
µs(X

tn,x
s )Y ′n+1(Xtn,x

s )+
(σs)

2

2
Y ′′n+1(Xtn,x

s )
)
ds
)
] ·µn(x)

−→
Y ′n(x)

}
dx,

H2
n=

∫
R

{
E[

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y ′′n(
←−
X tn+1,x
s )

)
ds] ·µn(x)Y ′n+1(x)

}
dx,

H3
n=−

∫
R

{
Yn+1(x) · (σtn)2

2
E[

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y (3)
n (
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y (4)
n (
←−
X tn+1,x
s )

)
ds]

+E[

∫ tn+1

tn

(
µs(X

tn,x
s )Y ′n+1(Xtn,x

s )+
(σs)

2

2
Y ′′n+1(Xtn,x

s )
)
ds
)
] · (σtn)2

2

−→
Y ′′n(x)

+E[

∫ tn+1

tn

(
µs(X

tn,x
s )Y ′n+1(Xtn,x

s )+
(σs)

2

2
Y ′′n+1(Xtn,x

s )
)
ds
)
]

· (σtn)2

2
E[

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y (3)
n (
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y (4)
n (
←−
X tn+1,x
s )

)
ds]

}
dx,

H4
n=

∫
R

{
E[

∫ tn+1

tn

(
−µs(

←−
X tn+1,x
s )

−→
Y ′n(
←−
X tn+1,x
s )+

(σs)
2

2

−→
Y ′′n(
←−
X tn+1,x
s )

)
]ds · (σtn)2

2
Y ′′n+1(x)

}
dx.

Integrating (3.51), (3.53) and (3.54) by parts, we obtain

(iv−1) =−
∫
R
Y ′n+1(x)µn(x)

−→
Y n(x)dx−

∫
R
Yn+1(x)µ′n(x)

−→
Y n(x)dx, (3.55)

(iv−3) =

∫
R

(σtn)2

2
Y ′n+1(x)

−→
Y ′n(x)dx, (3.56)

(iv−4) =−
∫
R

(σtn)2

2

−→
Y ′n(x)Y ′n+1(x)dx. (3.57)

Adding (3.51) to (3.52) and applying (3.55), gives

(iv−1)+(iv−2) =−
∫
R
E[Yn+1(Xtn,x

tn+1
)]E
[
−µn(

←−
X
tn+1,x

tn )
−→
Y ′n(
←−
X
tn+1,x

tn )
]
dx

+

∫
R
E[
−→
Y n(
←−
X
tn+1,x

tn )]E
[
µn(Xtn,x

tn )Y ′n+1(Xtn,x
tn )

]
dx

=−
∫
R
Yn+1(x)µ′n(x)

−→
Y n(x)dx+H1

n+H2
n. (3.58)

Similarly, adding (3.53) to (3.54) and applying (3.56) and (3.57) yields

(iv−3)+(iv−4) =−
∫
R
E[Yn+1(X̃tn,x

tn+1
)]E
[ (σtn)2

2

−→
Y ′′n(
←−
X
tn+1,x

tn )
]
dx

+

∫
R
E[
−→
Y n(
←−
X
tn+1,x

tn )]E
[ (σtn)2

2
Y ′′n+1(X̃tn,x

tn )
]
dx

=H3
n+H4

n. (3.59)

In summary, inserting (3.58) and (3.59) into (3.50) gives

(iv) =
(
−
∫
R
Yn+1(x)µ′n(x)

−→
Y n(x)dx

)
∆t+(H1

n+H2
n+H3

n+H4
n)∆t+Rxn. (3.60)

We next estimate the term (v) in (3.45). From the definition of Enx and
←−
E n+1
x , one has

(v) =

∫
R
E[h(Xtn,x

tn+1
)Yn+1(Xtn,x

tn+1
)
−→
Y n(x)]−E[h(

←−
X
tn+1,x
tn )

−→
Y n(
←−
X
tn+1,x
tn )Yn+1(x)]dx∆Vtn . (3.61)
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Applying Itô’s formula to h on time interval [tn,tn+1] gives

h(Xtn,x
tn+1

) =h(x)+

∫ tn+1

tn

µs(X
tn,x
s )h′(Xtn,x

s )+
(σs)

2

2
h′′(Xtn,x

s )
)
ds

+

∫ tn+1

tn

σsh
′(Xtn,x

s )dWs;

h(
←−
X
tn+1,x

tn ) =h(x)+

∫ tn+1

tn

−µs(
←−
X tn+1,x
s )h′(

←−
X tn+1,x
s )+

(σs)
2

2
h′′(
←−
X tn+1,x
s )

)
ds

+

∫ tn+1

tn

σsh
′(
←−
X tn+1,x
s )d

←−
W s,

and thus

E[h(Xtn,x
tn+1

)Yn+1(Xtn,x
tn+1

)
−→
Y n(x)]

= h(x)Yn+1(x)
−→
Y n(x)+

−→
Y n(x) ·E

[(
h(Xtn,x

tn+1
)−h(x)

)
Yn+1(x)

+h(x)
(
Yn+1(Xtn,x

tn+1
)−Yn+1(x)

)
+
(
h(Xtn,x

tn+1
)−h(x)

)(
Yn+1(Xtn,x

tn+1
)−Yn+1(x)

)]
,

and

E[h(
←−
X
tn+1,x
tn )

−→
Y n(
←−
X
tn+1,x
tn )Yn+1(x)]

= h(x)
−→
Y n(x)Yn+1(x)+Yn+1(x) ·E

[(
h(
←−
X
tn+1,x
tn )−h(x)

)−→
Y n(x)

+h(x)
(−→
Y n(
←−
X
tn+1,x
tn )−

−→
Y n(x)

)
+
(
h(
←−
X
tn+1,x
tn )−h(x)

)(−→
Y n(
←−
X
tn+1,x
tn )−

−→
Y n(x)

)]
.

Consequently (3.61) becomes

(v) =G1
n∆Vtn , (3.62)

where

G1
n=

∫
R

{−→
Y n(x) ·E

[(
h(Xtn,x

tn+1
)−h(x)

)
Yn+1(x)

+h(x)
(
Yn+1(Xtn,x

tn+1
)−Yn+1(x)

)
+
(
h(Xtn,x

tn+1
)−h(x)

)(
Yn+1(Xtn,x

tn+1
)−Yn+1(x)

)]
−Yn+1(x) ·E

[(
h(
←−
X
tn+1,x
tn )−h(x)

)−→
Y n(x)

+h(x)
(−→
Y n(
←−
X
tn+1,x
tn )−

−→
Y n(x)

)
+
(
h(
←−
X
tn+1,x
tn )−h(x)

)(−→
Y n(
←−
X
tn+1,x
tn )−

−→
Y n(x)

)]}
dx.

Finally, we consider the term (vi) in (3.45). From the relation between Zt and ∂Yt

∂x given
in (2.10), we know that

Zn+1(Xtn,x
tn+1

) =
∂Yn+1(Xtn,x

tn+1
)

∂x
(∇Xtn,x

tn+1
)−1σtn+1

;

−→
Z n(
←−
X
tn+1,x
tn ) =

∂
−→
Y n(
←−
X
tn+1,x
tn )

∂x
(∇
←−
X
tn+1,x
tn )−1σtn .

Therefore we have〈
Enx [

ρ̃tn+1

σtn+1

Zn+1],
←−
E n
x [
−→
Y n]

〉
= E

[∫
R

ρ̃tn+1

σtn+1

Zn+1(Xtn,x
tn+1

) ·
−→
Y n(x)dx

]
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= E
[∫

R
ρ̃tn+1

∂Yn+1(Xtn,x
tn+1

)

∂x
·
−→
Y n(x) ·(∇Xtn,x

tn+1
)−1dx

]
; (3.63)

〈
←−
E n+1
x [

ρ̃tn
σtn

−→
Z n],En+1

x [Yn+1]

〉
= E

[∫
R

ρ̃tn
σtn

−→
Z n(
←−
X
tn+1,x
tn ) ·Yn+1(x)dx

]
= E

[∫
R
ρ̃tn

∂
−→
Y n(
←−
X
tn+1,x
tn )

∂x
·Yn+1(x) ·(∇

←−
X
tn+1,x
tn )−1dx

]
, (3.64)

Adding (3.63) and (3.64) together, we obtain

(vi) =

(
E
[∫

R
ρ̃tn+1

∂Yn+1

∂x
(x) ·
−→
Y n(x)dx+

∫
R
ρ̃tn+1

∂
−→
Y n

∂x
(x) ·Yn+1(x)dx

]
+G2

n

)
∆Vtn , (3.65)

where

G2
n=E

[∫
R
ρ̃tn+1

∂Yn+1

∂x
(Xtn,x

tn+1
) ·
−→
Y n(x) ·(∇Xtn,x

tn+1
)−1dx−

∫
R
ρ̃tn+1

∂Yn+1

∂x
(x) ·
−→
Y tn(x)dx

]
+E
[∫

R
ρ̃tn

∂
−→
Y n

∂x
(
←−
X
tn+1,x
tn )) ·Yn+1(x) ·(∇

←−
X
tn+1,x
tn )−1dx−

∫
R
ρ̃tn+1

∂
−→
Y n

∂x
(x) ·Yn+1(x)dx

]
.

Integration by parts gives∫
R
ρ̃tn+1

∂Yn+1

∂x
(x) ·
−→
Y n(x)dx=−

∫
R
ρ̃tn+1

∂
−→
Y n

∂x
(x) ·Yn+1(x)dx,

and therefore

G2
n=

〈
Enx [

ρ̃tn+1

σtn+1

Zn+1],
←−
E n
x [
−→
Y n]

〉
+

〈
←−
E n+1
x [

ρ̃tn
σtn

−→
Z n],En+1

x [Yn+1]

〉
. (3.66)

Collecting (3.60), (3.62) and (3.66), and putting into Equation (3.45) results in〈
Enx [Yn],

←−
E n
x [
−→
Y n]

〉
−
〈
En+1
x [Yn+1],

←−
E n+1
x [
−→
Y n+1]

〉
=
(
−
∫
R
Yn+1(x)µ′n(x)

−→
Y n(x)dx

)
∆t+(H1

n+H2
n+H3

n+H4
n)∆t+Rxn

+

∫
R
E[µ′n(

←−
X
tn+1,x
tn )

−→
Y n(
←−
X
tn+1,x
tn )]Yn+1(x)dx∆t+Gn∆Vtn

=Hn∆t+Rxn+Gn∆Vtn +Fn∆t, (3.67)

where

Hn=H1
n+H2

n+H3
n+H4

n, Gn=G1
n+G2

n

and

Fn=

∫
R
Yn+1(x)

(
E
[
µ′n(
←−
X
tn+1,x
tn )

−→
Y n(
←−
X
tn+1,x
tn )

]
−µ′n(x)

−→
Y n(x)

)
dx.

Sum (3.67) from n= 0 to n=N−1 to get

〈
E0
x[Y0],

←−
E 0
x[
−→
Y 0]

〉
−
〈←−
EN
x [
−→
Y N ],ENx [YN ]

〉
=
N−1∑
n=0

(Hn∆t+Rxn+Gn∆Vtn +Fn∆t). (3.68)
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From definitions of Hn , Rxn, Gn and Fn, it’s straightforward to verify that E[(Hn)2]≤C(∆t)2,
E[(Rxn)2]≤C(∆t)4,E[(Gn)2]≤C(∆t)2 and E[(Fn)2]≤C(∆t). Therefore,

lim
∆t→0

N−1∑
n=0

(Hn∆t+Rxn+Gn∆Vtn +Fn∆t) = 0, a.s..

Also, since lim∆t→0Y0 =Ys and lim∆t→0YN =Yt, we have〈
Ys,
−→
Y s

〉
=
〈
Yt,
−→
Y t

〉
as required. The proof is complete.

3.3. FBDSDEs and the optimal filtering problem. Now we are ready to show

that the solution
−→
Y of (3.39) solves the optimal filter problem.

Theorem 3.3. Assume that the assumptions in Theorem 3.1 and Theorem 3.2 hold. Then〈−→
Y T ,φ

〉
= Ẽ

[
φ(UT )QT

∣∣FVT ] , ∀φ∈L∞(Rd).

Proof. By Theorem 3.2, one has〈−→
Y T ,YT

〉
=
〈−→
Y 0,Y0

〉
.

Since YT =φ as given in (3.1),
−→
Y 0 =p0 as given in (3.39) and Y0 = Ẽx

[
φ(UT )QT

∣∣FVT ] as proved
in Theorem 3.1, we have 〈−→

Y T ,φ
〉

=

∫
R
p0(x)Ẽx[φ(UT )QT

∣∣FVT ]dx.

Let ϕ be any bounded FVT measurable random variable,

Ẽx
[〈−→
Y T ,φ

〉
ϕ
]

=

∫
R
p0(x)Ẽx[φ(UT )QTϕ]dx.

It then follows from the fact that P̃x(·|FVT ) = P̃(·|FVT ), and definition of P̃

Ẽ
[〈−→
Y T ,φ

〉
ϕ
]

= Ẽ[φ(UT )QTϕ],

which completes the proof.

Remark 3.3. From (2.5), we can see that

E
[
φ(UT )

∣∣FVT ]=

〈−→
Y T ,YT

〉
Ẽ
[
Qt
∣∣FVt ]

Thus the solution
−→
Y T of the FBDSDE (3.39) indeed provides an unnormalized filtering density

for the optimal filtering problem.
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4. Closing remarks

In this paper, a Feynmann-Kac-type BDSDE formula for optimal filter problems and its
adjoint were derived. It was shown that the adjoint provides an unnormalized solution for the
optimal filter problem (BSDE filter). As our preliminary work has shown, the BSDE filter has
the potential to solve the optimal filter problem with more accuracy and less complexity than
traditional filter methods.
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