
COMMUN. MATH. SCI. c© 2020 International Press

Vol. 18, No. 3, pp. 613–634

PERIODIC TRAVELING-WAVE SOLUTIONS FOR REGULARIZED
DISPERSIVE EQUATIONS: SUFFICIENT CONDITIONS FOR

ORBITAL STABILITY WITH APPLICATIONS∗

FABRÍCIO CRISTÓFANI† , FÁBIO NATALI‡ , AND ADEMIR PASTOR§

Abstract. In this paper, we establish a new criterion for the orbital stability of periodic waves
related to a general class of regularized dispersive equations. More specifically, we present sufficient
conditions for the stability without knowing the positiveness of the associated Hessian matrix. As
application of our method, we show the orbital stability for the fifth-order model. The orbital stability
of periodic waves resulting from a minimization of a convenient functional is also proved.
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1. Introduction
We present sufficient conditions for the orbital stability of periodic traveling-wave

solutions associated to the regularized dispersive model

ut+ux+uux+(Mu)t= 0, (1.1)

where u :R×R→R is a real spatially L-periodic function. Here M is a differential
or pseudo-differential operator in the periodic setting and it is defined as a Fourier
multiplier by

M̂g(κ) =θ(κ)ĝ(κ), κ∈Z.

The symbol θ is assumed to be even and continuous on R satisfying

υ1|κ|m1 ≤θ(κ)≤υ2|κ|m1 , m1>1/3, (1.2)

for all κ∈Z and for some υi>0, i= 1,2.
Regularized equations appear as alternative models to describe the propagation

of nonlinear waves in several physical contexts. Indeed, if M=−∂2x, Equation (1.1)
reduces to the so-called BBM equation,

ut+ux+uux−uxxt= 0, (1.3)

which was originally derived by Benjamin-Bona-Mahony [8] as an alternative model to
the well known Korteweg-de Vries equation for small-amplitude, long-wavelength surface
water waves. Also, ifM=H∂x, Equation (1.1) reduces to the regularized Benjamin-Ono
equation

ut+ux+uux+H∂xut= 0, (1.4)
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614 PERIODIC WAVES FOR A DISPERSIVE EQUATION

where H indicates the Hilbert transform defined via its Fourier transform as

Ĥf(κ) =−isgn(κ)f̂(κ), κ∈Z.

Equation (1.4) models the evolution of long-crested waves at the interface between two
immiscible fluids. It also appears in the two-layer system created by the inflow of fresh
water from a river into the sea (see [18] and references therein). For the orbital stability
of periodic traveling waves for (1.4) we refer the reader to [5].

Formally, Equation (1.1) admits the conserved quantities

P (u) =
1

2

∫ L

0

(
uMu− 1

3
u3
)
dx, (1.5)

F (u) =
1

2

∫ L

0

(
uMu+u2

)
dx, (1.6)

and

M(u) =

∫ L

0

udx. (1.7)

A traveling wave solution for (1.1) is a solution of the form u(x,t) =φ(x−ωt), where
ω is a real constant representing the wave speed and φ :R→R is a periodic function.
Substituting this form into (1.1), we obtain

ωMφ+(ω−1)φ− 1

2
φ2 +A= 0, (1.8)

where A is a constant of integration.
In view of the conserved quantities (1.5)-(1.7) we may define the augmented Lya-

punov functional,

G(u) =P (u)+(ω−1)F (u)+AM(u), (1.9)

and the linearized operator around the wave φ(ω,A),

L :=G′′(φ) =ωM+(ω−1)−φ. (1.10)

Note in particular that G′(φ) = 0. Thus, it is expected that the functional G defined in
(1.9) plays a crucial role in order to guarantee the orbital stability.

Let us connect our work with the current literature. First of all, since the operator
M satisfies the general relation (1.2), we are able to address in a unified way a large
number of dispersive models. However, our main motivation comes from the results
for the generalized BBM equation. Indeed, based on the work [17], the author in [16]
established sufficient conditions for the modulational/orbital stability of periodic waves
related to the generalized BBM equation

ut+ux+upux−uxxt= 0,

where p≥1 is an integer. In particular, if 1≤p<4, it was showed that the periodic
waves in the solitary wave limit are stable (modulationally and nonlinearly). On the
other hand, if p>4, the instability was established provided the corresponding wave
speed ω is greater than a critical speed ω(p)>1. To this end, the author has constructed
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smooth periodic waves φ(·,A,B,ω), where the period L depends smoothly on the triple
(A,B,ω)∈Ω⊂R3. Here B is the integration constant which appears in the quadrature
form associated with the second-order differential Equation (1.8) withM=−∂2x. So, by
assuming that the signal of the Jacobian matrices LB , {L,M}A,B and {L,M,F}A,B,ω
are positive at the point (A0,B0,ω0)∈Ω⊂R3, one has the orbital stability of the waves
φ(·,A0,B0,ω0). Here,

{f1,. ..,fn}x1,...,xn = det

(
∂(f1,. ..,fn)

∂(x1,. ..,xn)

)
.

In the case p= 1,2,4, the reader will also find some results in [5, 6], where the authors
studied the orbital stability of some explicit solutions.

If M is the fractional derivative operator M= (
√
−∂2x)α, 1/3<α≤2, in Fourier

sense (the cases M=−∂2x and M=H∂x are included in that approach), in [14], the
authors established the existence of minimizers for the energy functional. In addition,
it has been proved that the local minimizers are orbitally stable provided that the
determinant {F,M}A,ω is assumed to be non-zero.

Our main goal in this paper is to establish a new criterion for the orbital stability
where it is not necessary to know either the positiveness of the associated Hessian matrix
or the Jacobians as determined in [7,14] and [16]. To do so, instead of considering G as
a Lyapunov function, based on the works [2,26] and [29], we consider the new functional
given by

V (u) =G(u)−G(φ)+N(Q(u)−Q(φ))2,

where N is a positive constant to be determined later and Q(u) :=x0F (u)+y0M(u) with
x0,y0 6= 0 real constants also to be determined properly. This new functional removes
the assumption of the mentioned positiveness in the stability theorem.

Next, we present a brief outline of our work. We will assume the following assump-
tion:

(H) Assume m1>1/3. Let (ω0,A0)∈R\{0}×R be fixed. Suppose that φ :=

φ(ω0,A0)∈X :=H
m1
2

per ([0,L0]) is an even periodic solution of (1.8) in the sense
of distributions with fixed period L0>0. Moreover, assume the self-adjoint
operator

L0 :=L(ω0,A0) =ω0M+(ω0−1)−φ(ω0,A0) (1.11)

has only one negative eigenvalue which is simple and zero is a simple eigenvalue
whose eigenfunction is φ′.

Here and throughout the paper, Hs
per([0,L0]) stands for the periodic Sobolev space

of order s∈R. When s≥0, Hs
per,e([0,L0]) indicates the subspace of Hs

per([0,L0]) consti-
tuted by the even periodic functions.

The spectral properties of operator L0 in assumption (H) are crucial to obtain our
results. In general, such properties are not easily obtained and one needs to work with
the structure of the equation in hand to obtain them. However, there are some theories
in the literature where we may get (H). Indeed, in many situations whenM is a second-
order differential operator and φ is given in terms of the Jacobian elliptic functions, L0

turns out to be a Hill’s operator with a Lamé-type potential (see [23]). In particular,
studying the spectrum of L0 is equivalent to studying the eigenvalue problem{

h′′(x)+
[
λ−n(n+1) ·k2 sn2 (x,k)

]
h(x) = 0,

h(0) =h(2K(k)), h′(0) =h′(2K(k)),
(1.12)
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where λ is a real parameter and n is a non-negative integer. Depending on n, the
first eigenvalues of (1.12) are well known (see e.g., [15]). Many applications using this
approach have appeared in the literature (see e.g., [3] and references therein). Another
approach to obtain (H) was given in [27]. Assume thatM is a second-order differential
operator. Recall from Floquet’s theorem (see e.g., [23] page 4) that if y is any solution
of L0y= 0, linearly independent of φ′, then there exists a constant θ satisfying

y(x+L) =y(x)+θφ′(x). (1.13)

In particular, if y satisfies the initial condition y′(0) = 0 then by taking the derivative
with respect to x in both sides of (1.13) and evaluating the result at x= 0, we see that

θ=
y′(L)

φ′′(0)
. (1.14)

Under these conditions Theorem 3.1 in [27] (see also [25]) states that the second eigen-
value of L0 is simple if and only if θ 6= 0; in addition, it is zero if and only if θ<0.
Finally, let us recall the approach given in [4], which is based on the total positivity
theory (see [20]) and can be applied to local or nonlocal operators. To give the precise
statement of the result, we recall that a sequence {αn}n∈Z of real numbers is said to be
in the class PF (2) discrete if

(i) αn>0, for all n∈Z;

(ii) αn1−m1
αn2−m2

−αn1−m2
αn2−m1

>0, for n1<n2 and m1<m2.

Theorem 4.1 in [4] states if φ is positive, even, and φ̂>0 and φ̂2 belong to the class

PF (2) discrete, then L0 satisfies (H) (see also Section 4 below). Here f̂ stands for the
Fourier transform of f .

With hypothesis (H) in hand, we are enabled to construct a smooth surface

(ω,A)∈O 7→φ(ω,A)∈Hn
per,e([0,L0]), n∈N,

of periodic solutions for (1.8), with a fixed period L0. This means that for any (ω,A)
in the open neighborhood O of (ω0,A0), φ(ω,A) is a solution of (1.8) with period L0.
In addition, assumption (H) is also suitable to obtain the non-positive spectrum of the
linearized operator L(ω,A) in (1.10), since one has the convergence L(ω,A)→L(ω0,A0) in
the sense of Kato (see detailed arguments in [21]). As a consequence, we may prove the
orbital stability of periodic waves without knowing the behavior of the Hessian matrix
associated to the function (ω,A) 7→G(φ(ω,A)), as required in [4, 5, 13, 14, 16, 25], and
related references. Instead, assuming that assumption (H) occurs and ω0−1−2A0 6= 0,
our orbital stability criterion is based on proving that the quantity s(φ) defined as

s(φ) = (2ω0(ω0−1)+2A0 +1)M(φ)+ω0

∫ L0

0

φMφdx

+(2A0(ω0 +1)−ω0 +1)L0. (1.15)

is strictly positive. In fact, we have the following result

Theorem 1.1. Assume that assumption (H) holds and let s(φ) be defined as in (1.15).
If ω0−1−2A0 6= 0 and s(φ)>0, then the periodic wave φ is orbitally stable in X.

In order to prove Theorem 1.1, we employ the recent developments in [11] and [26],
which are extensions of the approaches in [9,13], and [17] adapted to the periodic case.



FABRÍCIO CRISTÓFANI, ADEMIR PASTOR, AND FÁBIO NATALI 617

Our paper is organized as follows. In next section we present the existence of
periodic waves related to Equation (1.8), the behaviour of the non-positive spectrum of
L, and the orbital stability theory of periodic waves. The sufficient condition for the
orbital stability of periodic waves is presented in Section 3. Finally, Section 4 is devoted
to some applications of our theory.

2. Orbital stability of periodic waves
In this section, we present our stability result. The main result of the section is

Theorem 2.1 which gives a criterion for the orbital stability. Before stating the result

itself, we need some preliminary tools. For functions u and v in X :=H
m1
2

per ([0,L0]) we
let ρ be the “distance” between u and v defined by

ρ(u,v) = inf
y∈R
||u−v(·+y)||X .

Roughly speaking the distance between u and v is measured through the distance be-
tween u and the orbit of v, generated by translations.

Throughout this section we let φ :=φ(ω0,A0)∈X be the periodic wave given in (H).
Our precise definition of orbital stability is given below.

Definition 2.1. We say that an L0-periodic solution φ is orbitally stable in X, by
the periodic flow of (1.1), if for any ε>0 there exists δ>0 such that for any u0∈X
satisfying ‖u0−φ‖X <δ, the solution u(t) of (1.1) with initial data u0 exists globally
and satisfies

ρ(u(t),φ)<ε,

for all t≥0.

Remark 2.1. The notion of orbital stability prescribes the existence of global solu-
tions. Since questions of (local and) global well-posedness is out of the scope of this
paper, we will assume the periodic Cauchy problem associated with (1.1), namely,{

ut+ux+uux+(Mu)t= 0,
u(x,0) =u0(x), x∈ [0,L].

is globally well-posed in X.

For a given ε>0, we define the ε-neighborhood of the orbit Oφ={φ(·+y),y∈R} as

Uε :={u∈X; ρ(u,φ)<ε}.

In what follows, we set

Υ0 ={u∈X; 〈Q′(φ),u〉= 0},

where 〈·,·〉 denotes the scalar product in L2
per([0,L0]). Note that Υ0 is nothing but the

tangent space to {u∈X;Q(u) =Q(φ)} at φ. With these notations, our main theorem
reads as follows.

Theorem 2.1. Suppose that assumption (H) holds. Moreover, for L0 defined in
(1.11), assume the existence of Φ∈X such that 〈L0Φ,ϕ〉= 0, for all ϕ∈Υ0, and I=
〈L0Φ,Φ〉<0, then φ is orbitally stable in X by the periodic flow of (1.1).

In order to prove Theorem 2.1 we follow the strategy put forward in [11, 26], and
[29]. Let us start by showing that L0 is strictly positive when restricted to the space
Υ0∩{φ′}⊥.
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Lemma 2.1. Under assumptions of Theorem 2.1, there exists a constant c>0 such
that

〈L0v,v〉≥ c||v||2X ,

for all v∈Υ0∩{φ′}⊥, where {φ′}⊥ :={u∈X;〈φ′,u〉= 0}.

Proof. See Proposition 4.12 in [11].

Lemma 2.1 is useful to establish the following result.

Lemma 2.2. Under assumptions of Theorem 2.1, there exist N >0 and τ >0 such
that

〈L0v,v〉+2N〈Q′(φ),v〉2≥ τ ||v||2X ,

for all v∈{φ′}⊥.

Proof. Given v∈{φ′}⊥, define

z=v−ζw.

where w= Q′(φ)
||Q′(φ)||L2

per

and ζ= 〈v,w〉. Because 〈Q′(φ),φ′〉= 0, it is easily seen that z∈

Υ0∩{φ′}⊥. Thus, Lemma 2.1 implies

〈L0v,v〉≥ ζ2〈L0w,w〉+2ζ〈L0w,z〉+c||z||2X . (2.1)

Using Cauchy-Schwartz and Young’s inequalities, we have

2ζ〈L0w,z〉≤
c

2
||z||2X +

2ζ2

c
||L0w||2X . (2.2)

Furthermore, we may choose N >0 such that

〈L0w,w〉−
2

c
||L0w||2X +2N ||Q′(φ)||2L2

per
≥ c

2
‖w‖2X . (2.3)

We point out that N depends only on φ. Therefore, using (2.1), (2.2) and (2.3), we
conclude

〈L0v,v〉+2N〈Q′(φ),v〉2 = 〈L0v,v〉+2Nζ2||Q′(φ)||2L2
per

≥ c

2
(ζ2‖w‖2X + ||z||2X)

≥ τ ||v||2X .

The proof is thus completed.

Let N >0 be the constant obtained in the previous lemma. We define the functional
V :X→R as

V (u) =G(u)−G(φ)+N(Q(u)−Q(φ))2, (2.4)

where G is the augmented functional defined in (1.9) with (ω,A) = (ω0,A0). It is easy
to see from (2.4) and (1.8) that V (φ) = 0 and V ′(φ) = 0.
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Lemma 2.3. There exist α>0 and D>0 such that

V (u)≥Dρ(u,φ)2

for all u∈Uα.

Proof. First, note that from the definition of V it follows that

〈V ′′(u)v,v〉= 〈G′′(u)v,v〉+2N(Q(u)−Q(φ))〈Q′′(u)v,v〉+2N〈Q′(u),v〉2,

for all u,v∈X. In particular,

〈V ′′(φ)v,v〉= 〈L0v,v〉+2N〈Q′(φ),v〉2.

Consequently, from Lemma 2.2 we get

〈V ′′(φ)v,v〉≥ τ ||v||2X , (2.5)

for all v∈{φ′}⊥.
On the other hand, a Taylor expansion of V around φ reveals that

V (u) =V (φ)+〈V ′(φ),u−φ〉+ 1

2
〈V ′′(φ)(u−φ),u−φ〉+h(u), (2.6)

where lim
u→φ

h(u)
||u−φ||2X

= 0. Thus, we can choose α1>0 such that

|h(u)|≤ τ
4
||u−φ||2X , for all u∈Bα1

(φ), (2.7)

where Bα1(φ) ={u∈X;||u−φ||X <α1}.
Since V (φ) = 0 and V ′(φ) = 0, we have from (2.5), (2.6) and (2.7) that

V (u)≥ τ
4
ρ(u,φ)2, (2.8)

for all u∈Bα1(φ) such that (u−φ)∈{φ′}⊥ .
Now, let us define the smooth map S :X×R→R given by S(u,r) = 〈u(·−r),φ′〉.

Since S(φ,0) = 0 and ∂S
∂r (φ,0) =−〈φ′,φ′〉 6= 0, we guarantee, from the implicit function

theorem, the existence of α2>0, δ0>0 and a unique C1−map r :Bα2
(φ)→ (−δ0,δ0) such

that r(φ) = 0 and S(u,r(u)) = 0, for all u∈Bα2(φ). Consequently, (u(·−r(u))−φ)∈
{φ′}⊥, for all u∈Bα2

(φ).
To complete the proof, let u∈Uα with α>0 arbitrarily fixed. Thus, there exists

r1∈R such that ‖u1−φ‖X <α, where u1 :=u(·−r1). Hence,

(u1(·−r(u1))−φ)∈{φ′}⊥ if α<α2. (2.9)

On the other hand, using the fact that r is continuous and r(φ) = 0, one has that
there exists α3>0 such that

||u1(·−r(u1))−u1||X <
α1

2
if α<α3. (2.10)

Let us consider α= min{α1/2,α2,α3}. Therefore, we conclude, by (2.9) and (2.10),

‖u1(·−r(u1))−φ‖X ≤‖u1(·−r(u1))−u1‖X +‖u1−φ‖X
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<
α1

2
+
α1

2
=α1

and (u1(·−r(u1))−φ)∈{φ′}⊥. Since V (u) =V (u1(·−r1)), we obtain, by (2.8), the
existence of D>0 such that V (u)≥Dρ(u,φ)2.

The above lemma is the key point to prove our main result. Roughly speaking, it
says that V is a suitable Lyapunov function to handle with our problem. Finally, we
present the proof of our stability result.

Proof. (Proof of Theorem 2.1.) Let α>0 be the constant such that Lemma 2.3
holds. Since V is continuous at φ, for a given ε>0, there exists δ∈ (0,α) such that if
||u0−φ||X <δ one has

V (u0) =V (u0)−V (φ)<Dε2,

where D>0 is the constant in Lemma 2.3.
The continuity in time of the function ρ(u(t),φ) allows to choose T >0 such that

ρ(u(t),φ)<α, for all t∈ [0,T ). (2.11)

Thus, one obtains u(t)∈Uα, for all t∈ [0,T ). Combining Lemma 2.3 and the fact that
V (u(t)) =V (u0) for all t≥0, we have

ρ(u(t),φ)<ε, for all t∈ [0,T ). (2.12)

Next, we prove that ρ(u(t),φ)<α, for all t∈ [0,+∞), from which one concludes the
orbital stability. Indeed, let T1>0 be the supremum of the values of T >0 for which
(2.11) holds. To obtain a contradiction, suppose that T1<+∞. By choosing ε< α

2 we
obtain, from (2.12),

ρ(u(t),φ)<
α

2
, for all t∈ [0,T1).

Since t∈ (0,+∞) 7→ρ(u(t),φ) is continuous, there is T0>0 such that ρ(u(t),φ)< 3
4α<α,

for t∈ [0,T1 +T0), contradicting the maximality of T1. Therefore, T1 = +∞ and the
theorem is established.

3. Sufficient condition for orbital stability
In this section we will give a sufficient condition for the existence of the element

Φ as assumed in Theorem 2.1. In particular, the main result of the section states that
under assumption (H), the periodic wave φ is orbitally stable provided that the quantity
s(φ), defined in Corollary 3.1, is positive. We point out that such a quantity does not
depend on any derivative with respect to parameters.

3.1. Regularity. Let us start by proving that any solution of (1.8) is in fact
smooth. This result will be used below and is the content of the next statement.

Proposition 3.1. Let m1>1/3. If ψ∈X :=H
m1
2

per ([0,L0]) is a solution of (1.8) in the
sense of distributions, then ψ∈Hn

per([0,L0]), for all n∈N.

Proof. In view of the embeddingHs2
per([0,L0]) ↪→Hs1

per([0,L0]), s2≥s1>0, it suffices
to assume 1/3<m1<1/2. First, we will prove that ψ∈L∞per([0,L0]). Indeed, applying
the Fourier transform in (1.8) yields

ψ̂(k) =
ĝ(ψ)(k)

ωθ(k)+(ω−1)
, k∈Z,



FABRÍCIO CRISTÓFANI, ADEMIR PASTOR, AND FÁBIO NATALI 621

where g(ψ) = ψ2

2 −A. Since ψ∈X, it follows that ψ∈Lpper([0,L0]) and g(ψ)∈
L
p
2
per([0,L0]), for all 2≤p≤2/(1−m1). Hence, by the Hausdorff-Young inequality, we

have ĝ(ψ)∈ `q for all 1/m1≤ q≤∞.

On the other hand, by (1.2), (ωθ(k)+(ω−1))
−1∈ `p for all p>1/m1. Let ε>0 be

a small number such that 1≤2/(1+m1 +ε). Thus

‖ψ̂‖2/(1+m1+ε)

`2/(1+m1+ε) =‖ψ̂2/(1+m1+ε)‖`1

≤‖ĝ(ψ)
2/(1+m1+ε)

‖`q‖(ωθ(k)+(ω−1))
−2/(1+m1+ε)‖`q′ ,

where q,q′>0 and 1/q+1/q′= 1. Now, we consider the smallest q such that the first
term on the right side is finite. That is, q= (1+m1 +ε)/2m1. Thus q′= (1+m1 +
ε)/(1−m1 +ε). In order to obtain that the second term on the right side is finite we
need the condition 1/m1<2q′/(1+m1 +ε) which gives the inequality 1+ε<3m1. Note
that ε>0 can always be chosen such that this holds since m1>1/3. Therefore, we get

ψ̂∈ `2/(1+m1+ε) which implies that there exists ξ∈L2/(1−m1−ε)
per ([0,L0]) such that ξ̂= ψ̂

(see [30, page 190]). Hence, using [30, Corollary 1.51] we obtain ξ=ψ and so g(ψ)∈
Lpper([0,L0]) for 1≤p≤1/(1−m1−ε) and ĝ(ψ)∈Lpper([0,L0]) for 1/(m1 +ε)≤p≤∞.
By iterating the procedure a finite number of times, we obtain

ψ̂∈ `1 (3.1)

and thus ψ∈L∞per([0,L0]).
Finally, Plancherel’s theorem leads to

‖Mψ‖L2
per

=
∥∥(ωM+(ω−1))−1Mg(ψ)

∥∥
L2
per

=

∥∥∥∥ θ(k)

ωθ(k)+(ω−1)
ĝ(ψ)

∥∥∥∥
`2

≤‖ĝ(ψ)‖`2 =‖g(ψ)‖L2
per
≤‖ψ‖L∞

per
‖ψ‖L2

per
+A

√
L0<∞,

which implies ψ∈Hm1
per([0,L0]). Furthermore, from (3.1), we have

‖M2ψ‖L2
per

=
∥∥(ωM+(ω−1))−1M2g(ψ)

∥∥
L2
per

=

∥∥∥∥ θ(k)2

ωθ(k)+(ω−1)
ĝ(ψ)

∥∥∥∥
`2

≤‖θ(k)ĝ(ψ)‖`2 =‖Mg(ψ)‖L2
per

≤‖g(ψ)‖Hm1
per
≤‖ψ2‖Hm1

per
+A

√
L0

=‖(1+ |k|2)
m1
2 (ψ̂∗ ψ̂)(k)‖`2 +A

√
L0

≤Km1

[
‖ψ̂‖`1‖ψ̂‖`2 +2‖(·)m1 ψ̂‖`2‖ψ̂‖`1

]
+A

√
L0<∞,

where Km1
>0 is a constant depending only on m1. After iterations, we conclude that

ψ∈Hn
per([0,L0]), for all n∈N.

3.2. Existence of a smooth surface of periodic waves. As an intermediate
step to obtain our main result, we will prove that (H) is sufficient to show the existence
of a smooth surface of periodic waves. This will be a consequence of the implicit function
theorem.

Theorem 3.1. Suppose that assumption (H) holds. Then, there exists an open
neighborhood O containing (ω0,A0) and a smooth surface

(ω,A)∈O 7→φ(ω,A)∈Hn
per,e([0,L0]), n∈N,
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of even L0-periodic solutions of (1.8).
In particular, φ(ω,A)→φ(ω0,A0), as (ω,A)→ (ω0,A0), in L∞per([0,L0]).

Proof. We first define Υ : (0,+∞)×R×Hm1
per,e([0,L0])→L2

per,e([0,L0]) by

Υ(ω,A,f) =ωMf+(ω−1)f− 1

2
f2 +A, (3.2)

where Hm1
per,e([0,L0]) indicates the periodic Sobolev space Hm1

per([0,L0]) constituted by
even L0-periodic functions. The case Υ : (−∞,0)×R×Hm1

per,e([0,L0])→L2
per,e([0,L0])

can be determined using similar arguments. Since θ is an even function we have that
Mf is also even, for any function f in Hm1

per,e([0,L0]). In addition, since m1>1/3 the
Sobolev embedding implies f2∈L2

per([0,L0]). This means that (3.2) makes sense in
L2
per,e([0,L0]).

From assumption (H) one has Υ(ω0,A0,φ) = 0. Moreover, note that Υ is smooth
and its Fréchet derivative with respect to φ evaluated at (ω0,A0,φ) is

G :=ω0M+(ω0−1)−φ.

From (1.8) it is easily seen that φ′ is an eigenfunction of the operator G (defined on
L2
per([0,L0]) with domain Hm1

per([0,L0])) whose eigenvalue is λ= 0. Since φ′ does not
belong to Hm1

per,e([0,L0]) (because it is odd), we conclude that G is one-to-one.
Next, let us prove that G is also surjective. Indeed, G is clearly a self-adjoint

operator. Thus, the spectrum of G, denoted by σ(G) is such that σ(G) =σdisc(G)∪
σess(G), where σdisc(G) and σess(G) stand, respectively, for the discrete and essential
spectra. Being Hm1

per,e([0,L0]) compactly embedded in L2
per,e([0,L0]), the operator G has

compact resolvent. Consequently, σess(G) =∅ and σ(G) =σdisc(G) consists of isolated
eigenvalues with finite algebraic multiplicities (see also Proposition 3.1 in [4]). Finally,
since G is one-to-one, it follows that 0 is not an eigenvalue of G, and so it does not
belong to σ(G). Therefore, 0∈ρ(G), where ρ(G) denotes the resolvent set of G, and
consequently, by definition, G is surjective.

The arguments above imply that G−1 exists and is a bounded linear operator. Thus,
since Υ and its derivative with respect to f are smooth maps on their domains, from
the implicit function theorem (see, for instance, Theorem 15.1 in [12]) and Proposition
3.1 we establish the desired results.

Next result shows that the spectral property in (H) is preserved by small pertur-
bations of the parameter (ω,A) in an open subset containing (ω0,A0).

Proposition 3.2. Suppose that assumption (H) holds and let φ(ω,A) be the periodic
traveling wave solution obtained in Theorem 3.1. Then, for all (ω,A)∈O, operator
L(ω,A) =ωM+(ω−1)−φ(ω,A) has only one negative eigenvalue which is simple and
zero is a simple eigenvalue whose eigenfunction is φ′(ω,A).

Proof. Assume (ω,A)∈O and define

L̃(ω,A) :=
1

ω
L(ω,A) =M+

ω−1

ω
−
φ(ω,A)

ω
.

It is clear that such an operator defined on L2
per([0,L0]) with domain D(L) =

Hm1
per([0,L0]) is also self-adjoint. Thus, since L(ω,A) =ωL̃(ω,A) and ω 6= 0, it suffices to

prove that the statements in the proposition hold for L̃(ω,A).
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Let us first show that L̃(ω,A) converges to L̃(ω0,A0), as (ω,A)→ (ω0,A0), in the metric

gap δ̂ (see Sections 2 and 3 of Chapter IV in [21]). Indeed, since the multiplication
operator Λ :L2

per([0,L0])→L2
per([0,L0]) defined by Λf = (φ(ω,A)/ω)f is bounded with

norm ‖Λ‖≤‖φ(ω,A)‖L∞
per
/ω, Theorem 2.17 in [21, Chapter IV] implies that

δ̂(L̃(ω0,A0),L̃(ω,A))≤2

(
1+
‖φ(ω,A)‖2L∞

per

ω2

)
δ̂

(
L̃(ω0,A0) +

φ(ω,A)

ω
,M+

ω−1

ω

)
. (3.3)

Now, by using the multiplication operator

f 7→
[
ω0−1

ω0
− ω−1

ω
+
φ(ω,A)

ω
−
φ(ω0,A0)

ω0

]
f

is also bounded in L2
per([0,L0]) with norm below∣∣∣∣ω0−1

ω0
− ω−1

ω

∣∣∣∣+∥∥∥∥φ(ω,A)

ω
−
φ(ω0,A0)

ω0

∥∥∥∥
L∞
per

,

an application of Theorem 2.14 in [21, Chapter IV] yields

δ̂

(
L̃(ω0,A0) +

φ(ω,A)

ω
,M+

ω−1

ω

)
≤

[∣∣∣∣ω0−1

ω0
− ω−1

ω

∣∣∣∣+∥∥∥∥φ(ω,A)

ω
−
φ(ω0,A0)

ω0

∥∥∥∥
L∞
per

]
.

(3.4)

By recalling that φ(ω,A)→φ(ω0,A0), as (ω,A)→ (ω0,A0), in L∞per([0,L0]), a combination

of (3.3) and (3.4) finally establish that δ̂(L̃(ω0,A0),L̃(ω,A))→0, as (ω,A)→ (ω0,A0).

Consequently, by taking into account that zero is an eigenvalue of L̃(ω,A) with
eigenfunction φ′(ω,A), from Theorem 3.16 in [21, Chapter IV], we conclude that for (ω,A)

in a neighborhood of (ω0,A0), L̃(ω,A) has the same spectral properties of L(ω0,A0), which
is to say that it has only one negative eigenvalue which is simple and zero is a simple
eigenvalue. At this point, it should be clear that if necessary we can take a neighborhood
smaller than O. However, for convenience we assume that such a set is the whole O.

Since we have obtained a smooth surface of periodic solutions with a fixed period
L0>0, we can define

η :=
∂

∂ω
φ(ω,A)

∣∣∣
(ω0,A0)

, β :=
∂

∂A
φ(ω,A)

∣∣∣
(ω0,A0)

,

Next we set

Mω(φ) =
∂

∂ω

∫ L0

0

φ(ω,A)(x)dx
∣∣∣
(ω0,A0)

, MA(φ) =
∂

∂A

∫ L0

0

φ(ω,A)(x)dx
∣∣∣
(ω0,A0)

,

Fω(φ) =
1

2

∂

∂ω

∫ L0

0

(
φ(ω,A)Mφ(ω,A) +φ2(ω,A)(x)

)
dx
∣∣∣
(ω0,A0)

,

and

FA(φ) =
1

2

∂

∂A

∫ L0

0

(
φ(ω,A)Mφ(ω,A) +φ2(ω,A)(x)

)
dx
∣∣∣
(ω0,A0)

.
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These quantities will be very useful in what follows.

Proposition 3.3. Let ∆ :R2→R be the function defined as

∆(x,y) =x2Fω(φ)+xy(Mω(φ)+FA(φ))+y2MA(φ).

Assume the existence of (x0,y0)∈R2 such that ∆(x0,y0)>0. Then, there exists Φ∈X
such that 〈L0Φ,ϕ〉= 0, for all ϕ∈Υ0, and

I= 〈L0Φ,Φ〉<0.

Proof. It suffices to define Φ :=x0η+y0β. Indeed, since L0β=−1 and L0η=
−(Mφ+φ), it is clear that 〈L0Φ,ϕ〉= 0, for all ϕ∈Υ0, and

〈L0Φ,Φ〉= 〈−x0φ−y0,x0η+y0β〉
=−(x20Fω(φ)+x0y0Mω(φ)+x0y0FA(φ)+y20MA(φ))

=−∆(x0,y0).

The proof is thus completed.

Next result gives a sufficient condition to obtain (x0,y0) satisfying ∆(x0,y0)>0.
Consequently, we are in a condition to prove Theorem 1.1.

Corollary 3.1. Suppose that assumption (H) holds. If ω0−1−2A0 6= 0 and s(φ)
defined in (1.15) is positive, there exists (x0,y0)∈R2 such that ∆(x0,y0)>0.

Proof. First, in order to simplify the notation we define ψ=φ(ω,A) as the solution
obtained in Theorem 3.1. Deriving Equation (1.8) with respect to ω and A, we obtain,
respectively

Mψ+ωMη+ψ+(ω−1)η−ψη= 0 (3.5)

and

ωMβ+(ω−1)β−ψβ+1 = 0. (3.6)

Next, if we integrate equations (3.5) and (3.6) over [0,L0] one has

1

2

∂

∂ω

∫ L0

0

ψ2dx=M(ψ)+(ω−1)Mω(ψ) (3.7)

and

1

2

∂

∂A

∫ L0

0

ψ2dx=L0 +(ω−1)MA(ψ), (3.8)

where we used, in view of (1.2), that∫ L0

0

Mfdx=M̂f(0) =θ(0)f̂(0) = 0.

On the other hand, multiplying (3.5) by ψ and (1.8) by η, adding the results and
using (3.7), we get

M(ψ)+

(
ω−1− A

2

)
Mω(ψ) =F (ψ)+ωFω(ψ)− 1

4

∂

∂ω

∫ L0

0

ψ3dx. (3.9)
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Similarly, multiplying (3.6) by ψ and (1.8) by β, adding the results and using (3.8), we
conclude

L0 +

(
ω−1− A

2

)
MA(ψ) =

1

2
M(ψ)+ωFA(ψ)− 1

4

∂

∂A

∫ L0

0

ψ3dx. (3.10)

Now, multiplying (3.5) by ψ, integrating over [0,L0] and using (1.8) one has

2F (ψ)− 1

6

∂

∂ω

∫ L0

0

ψ3dx−AMω(ψ) = 0. (3.11)

Similarly, multiplying (3.6) by ψ, integrating over [0,L0] and using (1.8), we get

M(ψ)− 1

6

∂

∂A

∫ L0

0

ψ3dx−AMA(ψ) = 0. (3.12)

Thus, deriving (3.11) with respect to A, (3.12) with respect to ω and adding the
results, we obtain the equality

FA(ψ) =Mω(ψ). (3.13)

So, comparing the results in (3.11), (3.12) and (3.13) with (3.9) and (3.10), we conclude
that

M(ψ)+2F (ψ)+(ω−1−2A)Mω(ψ) =ωFω(ψ). (3.14)

and

L0 +(ω−1−2A)MA(ψ)+M(ψ) =ωMω(ψ). (3.15)

Finally, collecting the results in (3.14) and (3.15), considering ω0−1−2A0 6= 0 and
evaluating the results at (ω0,A0), we have

∆(x0,y0) =

(
x20(ω0−1−2A0)

ω0
+2x0y0 +

y20ω0

ω0−1−2A0

)
Mω(φ)

+
x20
ω0

(M(φ)+2F (φ))− y20
ω0−1−2A0

(M(φ)+L0).

By choosing y0 6= 0, x0 = −ω0y0
ω0−1−2A0

and using the fact

(ω0−1)M(φ)+
1

2

∫ L0

0

φMφdx+A0L0 =F (φ),

we get

∆(x0,y0) =
y20

(ω0−1−2A0)2

[
(2ω0(ω0−1)+2A0 +1)M(φ)+ω0

∫ L0

0

φMφdx

+(2A0(ω0 +1)−ω0 +1)L0

]
=

y20
(ω0−1−2A0)2

s(φ).

The proof is thus completed.
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4. Applications
In this section, we apply the arguments developed in Section 2 in order to obtain

the orbital stability of periodic waves for some regularized dispersive models.

4.1. Orbital stability for a fifth-order model. Here, as an application of
Corollary 1.1, we present the orbital stability of a periodic traveling-wave solution re-
lated to the following fifth-order model

ut+ux+uux+uxxxxt= 0. (4.1)

Equation (4.1) can be seen as the regularized version of

ut+uux−uxxxxx= 0,

which models wave propagation on a nonlinear transmission line (see [19]).
To simplify the exposition, throughout this subsection we assume L0 = 2π. Note

that (4.1) is of the form (1.1) with M=∂4x. In particular, θ(κ) =κ4 and the energy
space is X=H2

per([0,2π]).
By looking for periodic traveling wave solutions having the form u(x,t) =φ(x−ω0t),

we get from (4.1) (after integration) that φ=φ(ω0,A0) solves the nonlinear ordinary
differential equation

ω0φ
′′′′+(ω0−1)φ− 1

2
φ2 +A0 = 0. (4.2)

Equation (4.2) admits an explicit 2π-periodic solution given by the ansatz (see [28])

φ(x) =a+b

[
dn2

(
K(k)

π
x,k

)
− E(k)

K(k)

]
+d

[
dn4

(
K(k)

π
x,k

)
−(2−k2)

2E(k)

3K(k)
+

1−k2

3

]
, (4.3)

where

k0 =

√
2

2
, a=

−28K(k0)4ω0 +π4(ω0−1)

π4
, b=

−1680ω0K(k0)4

π4

and

d=
1680ω0K(k0)4

π4
.

Also, dn represents the Jacobi elliptic function of dnoidal type, K=K(k) is the complete
elliptic integral of the first kind, E=E(k) is the complete elliptic integral of the second
kind and both of them depend on the elliptic modulus k∈ (0,1) (see [10] for additional
details). It is to be pointed out that ω0 is a free parameter and we shall assume
that ω0>0 for the sake of completeness. Moreover, constant A0 is a smooth function
depending on ω0 and is given by

A0 =
23184ω2

0K(k0)8−π8(ω0−1)2

π8
. (4.4)

Next, we will obtain the spectral properties related to the operator L0 =ω0∂
4
x+

(ω0−1)−φ as required in (H). To do so, we will utilize the following result of [4]:
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Theorem 4.1. Suppose that φ is a positive even solution of (4.2) such that φ̂>0 and
∂2

∂x2 (logg(x))<0, x 6= 0, where g is a real function such that g(n) = φ̂(n), n≥0. Then
the operator L0 has only one negative eigenvalue which is simple and zero is a simple
eigenvalue whose eigenfunction is φ′.

Proof. See Theorem 4.1 and Lemma 4.1 in [4]. See also [1] for the continuous case.

The application of Theorem 4.1 is not immediate. First of all note that φ is not
positive (see Figure 4.1 (Left)). The idea to overcome this is to use an auxiliary function
defined by % :=µ+φ, where µ∈R is a fixed arbitrary number such that %>0. Note that
% is a solution of the equation

ω0%
′′′′+(ω0−1+µ)%− 1

2
%2 +Ã0 = 0

where Ã0 =A0−µ(ω0−1)− µ2

2 . Moreover, we can rewrite L0 as

L0 =ω0∂
4
x+(ω0−1)−φ=ω0∂

4
x+(ω0−1+µ)−%.

Now, we are going to determine the nonpositive spectrum of L0 in accordance with the
equality above.

In fact, by [22] the solution φ in (4.3) has the Fourier expansion

φ(x) =a+

∞∑
n=1

γ(n)ncsch

(
nπK(k′0)

K(k0)

)
cos

(
2πn

L0
x

)
,

=a+
∞∑
n=1

γncsch(nπ)cos(nx),

where γ=γ(n) is defined by

γ=
bπ2

K(k0)2
+

dπ2

k20K(k0)2

(
4−2k20

3
+

n2π2

6K(k0)

)
= 560ω0K(k0)n2 +

1680ω0K(k0)2

π2

and we have used that k′0 =
√

1−k20 =k0. Therefore, the Fourier coefficients of φ are
given by

φ̂(n) =

{
a, n= 0

γ
2ncsch(nπ) , n 6= 0.

By considering g(x) := γ(x)
2 xcsch(xπ), x∈R and choosing µ large enough such that

%>0 and %̂(0) =a+µ>g(0), it is possible we redefine function g by a differentiable
function p :R→R such that p(0) =a+µ and p(x) =g(x) in (−∞,−1]∪ [1,+∞) with
∂2

∂x2 (logp(x))<0 for x 6= 0 (see [4, page 1145]). So, using Theorem 4.1, we obtain that
L0 has only one negative eigenvalue which is simple and zero is a simple eigenvalue
whose eigenfunction is φ′. Therefore, we have that assumptions in (H) hold.

Finally, by using (4.3) we obtain after some straightforward but tedious calculations,
that

s(φ) = (2ω0(ω0−1)+2A0 +1)aL0 +ω0

∫ L0

0

(φ′′)2dx+(2A0(ω0 +1)−ω0 +1)L0

≈5277.03ω3
0 ,
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Fig. 4.1. Left: Graph of φ for ω0 = 2. Right: Graph of ∂2

∂2
x

(logg(x)).

from which we conclude that s(φ)>0 for all ω0>0. It is also clear, from (4.4), that
ω0−1−2A0 6= 0 for all ω0∈ (0,c0)∪(c0,+∞), where c0≈0.0513569 is the unique positive
root of ω0−1−2A0. Therefore, from Theorem 1.1, we conclude that φ is orbitally stable
in H2

per([0,L0]) by the periodic flow of (4.1).

4.2. Minimizers and orbital stability of periodic waves. In this subsection,
we present a simple way to prove the orbital stability of periodic waves for Equation
(1.1) provided they minimize a convenient smooth functional with a constraint. In
other words, we show that, in this case, the hypothesis (H) and the fact s(φ)>0 can
be replaced by the simple assumption that φ is even and ker(L0) = [φ′].

Let L0>0 be fixed. For γ>0 define the set

Yγ =

{
u∈X;

∫ L0

0

u3 =γ

}
.

Our first goal is to find a minimizer of the constrained minimization problem

m= inf
u∈Yγ

B(u), (4.5)

where, for ω0>1 fixed,

B(u) =
1

2

∫ L0

0

(
uMu+(ω0−1)

(
u2 +uMu

))
dx

=
1

2

∫ L0

0

(
ω0uMu+(ω0−1)u2

)
dx.

Lemma 4.1. For any γ>0, the minimization problem (4.5) has at least one solution,
that is, there exists φ∈Yγ satisfying

B(φ) = inf
u∈Yγ

B(u).

Proof. First of all note that, from (1.2), B is an equivalent norm in X, yielding
m≥0. Let {un} be a minimizing sequence for (4.5), that is, a sequence in Yγ satisfying

B(un)→ inf
u∈Yγ

B(u), as n→∞.
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It is easy to check that

(ω0−1)

2
‖un‖X ≤B(un)≤ω0‖un‖X , for all n∈N,

implying that {un} is bounded in X. Consequently, there exists φ∈X such that, up to
a subsequence,

un⇀φ weakly in X, as n→∞.

On the other hand, using m1>1/3, we get that the energy space X is compactly
embedded in L3

per([0,L0]). Thus,

un→φ in L3
per([0,L0]), as n→∞.

Besides that, using the fact∣∣∣∣∣
∫ L0

0

(u3n−φ3)dx

∣∣∣∣∣≤
∫ L0

0

|u3n−φ3|dx

≤‖un−φ‖3L3
per

+3‖un−φ‖L3
per
‖φ‖L3

per
‖un‖L3

per
.

we can say that
∫ L0

0
φ3dx=γ.

Moreover, thanks to the weak lower semi-continuity of B, we have

B(φ)≤ liminf
n→∞

B(un) =m.

Therefore, φ satisfies (4.5).

From Lemma 4.1 and Lagrange’s multiplier theorem, there exists a constant C1

such that

ω0Mφ+(ω0−1)φ=C1φ
2.

We note that φ is nontrivial since γ >0. Furthermore, a simple scaling argument, gives
us that C1 can be chosen as C1 = 1

2 . Indeed, for s∈R,

B(sφ) =s2B(φ)

=s2 min
u∈X

{
B(u);

∫ L0

0

u3 =γ

}

= min
u∈X

{
B(su);

∫ L0

0

u3 =γ

}

= min
u∈X

{
B(u);

∫ L0

0

u3 =s3γ

}
.

Then, φ satisfies the equation

ω0Mφ+(ω0−1)φ− 1

2
φ2 = 0.

In addition, we obtain that φ is smooth (by Proposition 3.1) and satisfies Equation (1.8)
with A0 = 0.

As before, let L0 =ω0M+(ω0−1)−φ. Here, instead of assuming all assumptions
in (H), we suppose the following:
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(H1) φ is even and ker(L0) = [φ′].

We note that, in view of (4.5), we have

L0

∣∣
{R′(φ)}⊥ ≥0 (4.6)

where R(u) =
∫ L0

0
u3dx. So we have.

Proposition 4.1. Let φ∈X be the local minimizer satisfying (4.5). Then n(L0) = 1,
where n(L0) stands for the number of negative eigenvalues of L0 acting on L2

per([0,L0]).

Proof. Since

〈L0φ,φ〉=−
1

2

∫ L0

0

φ3dx=−
∫ L0

0

(
ω0φMφ+(ω0−1)φ2

)
dx<0.

It follows that L0 acting on L2
per([0,L0]) must have at least one negative eigenvalue.

Moreover, using (4.6) we have, by Courant’s mini-max principle, that L0 has at most
one negative eigenvalue. Therefore, n(L0) = 1.

Since φ′ is odd and the kernel of L0 is simple by (H1), we can apply Theorem 3.1 to
obtain the existence of an open set O⊂ (1,+∞)×(−δ0,δ0), δ0>0, and a smooth surface
of L0−periodic waves ψ :=φ(ω,A), (ω,A)∈O, which solves Equation (1.8). Proposition
3.2 can be used to conclude that the kernel of the linearized operator L=ωM+(ω−1)−
ψ is simple, generated by ψ′ and n(L) = 1, for all pair (ω,A)∈O⊂ (1,+∞)×(−δ0,δ0).

The next step is to calculate s(φ), where φ=φ(ω0,0), ω0>1. In fact, one has

s(φ) = (2ω0(ω0−1)+1)M(φ)+ω0

∫ L0

0

φMφdx+(1−ω0)L0. (4.7)

We shall give a convenient expression for M(φ). In fact, from (1.8) with (ω,A) = (ω0,0),
we get

M(φ) =
1

2(ω0−1)

∫ L0

0

φ2dx. (4.8)

On the other hand, multiplying Equation (1.8) by φ and integrating the result, one has

∫ L0

0

φ2dx=
1

2(ω0−1)

∫ L0

0

φ3dx− ω0

ω0−1

∫ L0

0

φMφdx. (4.9)

Thus, from (4.8), (4.9) and the fact that
∫ L0

0
φ3dx=γ, we obtain

M(φ) =
γ

4(ω0−1)2
− ω0

2(ω0−1)2

∫ L0

0

φMφdx. (4.10)

Now, substituting the value of M(φ) in (4.10) into (4.7), we deduce, after some calcu-
lations

s(φ) =
(2ω0(ω0−1)+1)γ

4(ω0−1)2
+
ω0(1−2ω0)

2(ω0−1)2

∫ L0

0

φMφdx+(1−ω0)L0. (4.11)
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To estimate the middle term on the right-hand side of (4.11), observe, from (4.9),
that

ω0

∫ L0

0

φMφdx<
γ

2
,

from which we deduce

ω0(1−2ω0)

2(ω0−1)2

∫ L0

0

φMφdx>
γ(1−2ω0)

4(ω0−1)2
. (4.12)

By replacing (4.12) into (4.11) we then infer

s(φ)>
(2ω0(ω0−1)+1)γ

4(ω0−1)2
+
γ(1−2ω0)

4(ω0−1)2
+(1−ω0)L0

=
γ

2
−(ω0−1)L0.

Hence, as an application of Theorem 1.1 we just have proved the following.

Theorem 4.2. Let L0>0 and ω0>1 be fixed. Choose γ>0 such that

γ >2(ω0−1)L0.

Let φ∈Yγ be a minimizer of problem (4.5) according to Lemma 4.1 and assume that
(H1) holds. Then φ is orbitally stable in X by the periodic flow of (1.1).

Remark 4.1. The arguments above, assumption (H1), Corollary 3.1 and the smooth-
ness of the involved functions are sufficient to deduce the orbital stability of the smooth
surface of periodic waves φ(ω,A), (ω,A)∈Õ⊂O⊂ (1,+∞)×(−δ0,δ0), obtained from φ.

As an application of the approach presented in this subsection, we are going to use
Theorem 4.2 to get the orbital stability of periodic waves of the model in (1.4). Our
intention is to give a considerable simplification of the arguments in [5]. In fact, to get
assumption (H), the authors have used the expansion, in Fourier series, of the explicit
periodic wave which solves the Equation (1.8) whenM=H∂x and A= 0. Moreover, an
explicit calculation of the derivative in terms of ω of the inner product 〈φ,φ+Hφ′〉 has
been required in [5] to conclude the orbital stability.

To simplify the notation, let us consider L0 = 4π. The minimizer φ obtained in
Lemma 4.1 solves the equation

ω0Hφ′+(ω0−1)φ− 1

2
φ2 = 0. (4.13)

Let ω0>2 be fixed. Using similar arguments as those in [7], we get an explicit solution
as

φ(x) =ω0

(
sinh(η)

cosh(η)−cos
(
x
2

)), (4.14)

where tanh(η) = ω0

(ω0−1)2 .

On the other hand, since ω0>2 is arbitrary, we deduce from (4.14) that φ can
be seen as a curve depending smoothly on ω∈ (2,+∞) and this fact is a cornestone



632 PERIODIC WAVES FOR A DISPERSIVE EQUATION

to conclude assumption (H1). In fact, clearly φ in (4.14) is even. Let us consider

L̃0 = 1
ω0
L0, thus

L̃0

(
1

ω0
+
φ

ω0
− ∂φ
∂ω

∣∣∣
ω=ω0

)
=

1

ω0

(
1− 1

ω0

)
6= 0. (4.15)

Now, since L̃0(φ) =− 1
2ω0

φ2 and L̃0

(
∂φ
∂ω

∣∣∣
ω=ω0

)
=− 1

ω2
0
φ− 1

2ω2
0
φ2, we have from

(4.15) that {1,φ,φ2}⊂Range(L0). Proposition 3.2 in [14] gives us that ker(L0) = [φ′] as
required in (H1).

The Poincaré-Wirtinger inequality applied to
∫ 2π

−2πφHφ
′dx combined with the Equa-

tion (4.13) give us∫ 2π

−2π
φ3dx≥2ω0(ω0−1)

∫ 2π

−2π
φdx+4(ω0−1)2

∫ 2π

−2π
φdx− ω0

4π

(∫ 2π

−2π
φdx

)2

. (4.16)

Last term in (4.16) can be handled by employing Hölder’s inequality to get, again from
Equation (1.8) in this particular case, that∫ 2π

−2π
φ3dx≥2ω0(ω0−1)

∫ 2π

−2π
φdx+4(ω0−1)2

∫ 2π

−2π
φdx−2ω0(ω0−1)

∫ 2π

−2π
φdx.

=4(ω0−1)2
∫ 2π

−2π
φdx. (4.17)

Since
∫ 2π

−2πφdx= 4πω0, we obtain by (4.17)∫ 2π

−2π
φ3dx≥16πω0(ω0−1)2. (4.18)

Finally, it is easy to see that ω0∈ (2,+∞) implies

γ≥16πω0(ω0−1)2>8π(ω0−1),

and, according to Theorem 4.2 one has the orbital stability of φ.

Remark 4.2. In the general fractional case, that is, M= Λα, α∈ (1/3,2] and Λ =√
−∂2x, assumption (H1) holds (see [14]) since the existence of a smooth surface of

periodic waves, (ω,A)∈Õ 7→φ(ω,A)∈Hn
per([0,L0]), n∈N, is assumed and which solves

Equation (1.8) having fixed period L0>0. The existence of such smooth surface prevents

the existence of “fold points”, that is, values of (ω,A)∈Õ such that L(ω,A)g= 0, for
some g∈D(L(ω,A)). In fact, the existence of a smooth surface of periodic waves solving
Equation (1.8) enables us to deduce the existence of β∈D(L(ω,A)) such that Lβ= 1,
and thus, after a straightforward calculation one has {1,φ(ω,A),φ

2
(ω,A)}⊂Range(L(ω,A)).

This property can be combined with Proposition 3.2 in [14] to get the non-degeneracy
of ker(L(ω,A)) (see [24] for details). By taking A small enough and ω>1, one sees

that φ(ω,A) is orbitally stable in H
α/2
per ([0,L0]) and, therefore, we can conclude that

Equation (1.1), in the fractional case, always admits stable periodic waves. However,
our approach diverges from, in some sense the arguments in [14], because, in this case,
it was not necessary to calculate the signal of the Hessian matrix associated to the
conserved quantities F and M in (1.6) and (1.7).
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