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EXISTENCE OF MILD SOLUTIONS AND REGULARITY CRITERIA
OF WEAK SOLUTIONS TO THE VISCOELASTIC NAVIER-STOKES
EQUATION WITH DAMPING*

ZHONG TANT, WENPEI WU?#, AND JIANFENG ZHOU$

Abstract. In this paper, we consider the viscoelastic Navier-Stokes equation (VNS) with damping
in the whole space. We first show that there exist global mild solutions with small initial data in the
scaling invariant space. The main technique we have used is implicit function theorem which yields
necessarily continuous dependence of solutions on the initial data. Moreover, we derive the asymptotic
stability of solutions as the time goes to infinity. As a byproduct of our construction of solutions in
the weak LP-spaces, the existence of self-similar solutions was established provided the initial data are
small homogeneous functions. Next, we deduce the regularity criteria of weak solutions to VNS with
damping. Sufficient conditions for the regularity of weak solutions are presented by imposing Serrin’s-
type growth conditions on the velocity field and deformation tensor in Lorentz spaces, multiplier spaces,
bounded mean oscillation spaces and Besov spaces, respectively.
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1. Introduction
In this paper, we mainly consider the following VNS with damping;:

Gt —ulut (u-V)ut Vp=V-ff* in RV x(0,00),
S —VAf+(u-V)f=Vuf in RV x (0,00), (L1)
div u=0 in RN x(0,00),

with initial data w(z,0)=ug(x), f(x,0)= fo(x), where u=wu(z,t)= (ui(z,t),uz(x,t),--
wun(z,t), f=Ff(z,t)=(fij(z,t))(i,j=1,2...,N), p=p(z,t) denote the velocity, the lo-
cal deformation tensor and the pressure, respectively. The i-th component of V- f f*
equals to 9;(firfik), Vuf=0iu;fri=f" Vu, 1>0,0>0 denote the viscosity constant
and the damping constant (cf. [14]), respectively. Here, for simplicity, let p=v=1.
Note that (1.1)s is simply the consequence of the chain law. It can also be regarded
as the consistency condition of the flow trajectories obtained from the velocity field
u and also of those obtained from the deformation tensor f, for more details one can
refer [5,13-15,22,24] and the references therein.

The aim of the paper is to show the global existence of mild solutions to (1.1) in
RY (N >2) and the regularity criteria of weak solutions to (1.1) under the assumption
that divf=0 in R3. Here, we introduce some results about the existence and regularity
of weak solutions to the viscoelastic equations with damping. For the incompressible
system (1.1), Liu et al. in [14] constructed a local-in-time smooth solution in two or
three dimensional bounded domains with smooth boundary as well as the whole space
or periodic boxes. The authors proved global-in-time existence of solutions with small

*Received: September 27, 2018; Accepted (in revised form): September 15, 2019. Communicated
by Feimin Huang.

TSchool of Mathematical Sciences, Xiamen University, Xiamen, 361005, China (ztan85@163.com).

¥School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China (wenpeiwul6@
163.com).

§School of Mathematical Sciences, Peking University, Beijing 100871, China (jianfengzhou_xmu@
163.com).

205


mailto:ztan85@163.com
mailto:wenpeiwu16@163.com
mailto:wenpeiwu16@163.com
mailto:jianfengzhou\protect _xmu@163.com
mailto:jianfengzhou\protect _xmu@163.com

206 THE VISCOELASTIC NAVIER-STOKES EQUATION WITH DAMPING

initial data in a two dimensional periodic box by introducing an auxiliary vector field to
replace the transport variable f, or the whole plane which also indicates some stability of
the trivial steady motion. Using the method in [7] for the damped wave equation, they
also obtained the global existence of classical small solutions for the three dimensional
case. For the strong solution, Zhang et al. [23] proved the global well posedness of the
incompressible version of system (1.1) in the critical LP framework which allows one to
construct the unique global solution for highly oscillating initial velocity. Soon after, R.
Hynd [4] obtained the partial regularity of suitable weak solutions under the case with
space dimensions N =3. By the Stokes estimates and the energy estimates, J. Kim [8]
gave a weak-LP Serrin-type regularity criteria of weak solutions to the three-dimension
viscoelastic Navier-Stokes equations with damping.

The second results of this paper are Theorem 1.2, and Corollary 1.1 about the global
stability of mild solution to (1.1) under the small initial disturbance, and the existence
of forward self-similar solution. Recently, Wang et al. [11] proved that there exists a
global forward self-similar solution to (1.1) in R?, that is smooth for ¢ >0, and for any
initial data that is homogeneous of degree —1 by applying the Leray-Schauder fixed
point theorem. For the forward self-similar solutions, one can also refer to [6,12,19]
and the references therein. Here, we show the existence of self-similar solutions in IN-
dimensions with N >3 provided the initial data are small homogeneous functions. We
shall note that the method we used in the proof of Theorem 1.1-1.2 was provided by
Tan et al. [17], and H. Kozono et al. [9]. There are several new difficulties that arise
when we try to establish the existence of mild solutions in Theorem 1.1 extending the
main theorem of [17] and [9] to (1.1):

(I) The local deformation tensor f does not satisfy divf =0 (cf. [17]), which makes
it difficult to establish the continuous map G(-,-,-,-) in Lemma 2.4;

(IT) the existence and uniqueness of mild solutions of (1.2) are more delicate to
establish than the case of MHD system in [17] or double-type Keller-Segel system in [9],
since it is a complicated thing to analyze the relationship of parameters p,q,m,r in
Theorem 1.1.

Now, we shall give the definition of mild solutions to (1.1):

DEFINITION 1.1. Let N>2, and let the initial data {ug,fo} satisfy ug€
N N

LYRN),Vuge Lz (RN), foe LY (RN), Vfoe Li (RY). We call measurable functions

{u, f} on RN x (0,00) a mild solution of (1.1) on (0,00) if u, f € L (0,00;L"(RYN)) for

some 1 <q,r <oo and satisfy the following identities

u(t)=eug— o e VAP[(u- V)u(r) ~ V- £']dr, 12)
Ft)=e"fo— [y e [(w-V) f = Vufldr, '
for t € (0,00), where et denotes the heat semi-group defined by
(29)w)= [ Le=ptawidy (1.3
with L(z,y) = Wexp(—%) and P={Pjx}; k=1,....n denotes the projection operator
onto the solenoidal vector fields with the expression (cf. [18])
7] 1.
Pjr=0;x+R;jR; (Rj=—-—(—A)"2:Riesz operator), (1.4)

al‘j



ZHONG TAN, WENPEI WU, AND JIANFENG ZHOU 207

where j,k=1,2,--- N.

To begin with, we shall give the first result about unique global existence of mild

solutions to (1.1). For simplicity, here and in what follows, we shall denote -4, %5,

p—1’ q
Np Ngq 1 1 1 b / / .
L =L respectively.
p—N’» q—N? %_;'_%_ ) L+%_%7 %+%_% Y D5 G5 Pxs Gxs 11,5 T]2, 13, P Y

THEOREM 1.1. For N > 2, suppose that the exponents p,m,r satisfy the following either
(1), (2) or (3) for the case N <q<2N,

(1) 25 <p<q, max{p/,§} <m<q., max {5 n,p'} <r<min{g.,m};

(2) ¢<p<2N, max{q,n3}<m<p., maX{%,nhq’}<7“<min{p*,772}'
(3) 2N <p<2q, max{q,n3} <m<px, max{g, T ,q }<r<m1n{p*,%};

m m p

and for the other case 2N < g < oo, p,m,r satisfy the following either (4), (5) or (6),
(4) 28 <p<2N max{p, 2 }<m<Q*, max{ 2 1, P }<7"<m1n{f1*7772}
(5) 2N<p<q7 max{p ,5} <m < gy, max{%,ﬁ,p }<r<m1n{q*,r};

(6) g<p<2q, max{q’,n3} <m<px, maX{JQV, T 1,q}<r<min{p*,ﬁ};

P

3 -

and there exists a constant 6 =§(N,p,q,m,r) such that the initial data {ug, fo} satisfy
the following conditions

12 oy Tl VA 5 <8 for N230 (1)

luoll 2 r2) + | Vuo |l 12y + 1 foll 2 (r2) + IV foll L1 (r2) <6 for N=2, (1.6)

lluoll Ly ) + Vo

then there exists a mild solution u, f of (1.1) such that

2 (V=2 e BO,([0,00); LI(RN)), (1.7)
t2 (=9 Vue BC,([0,00): L" (RN)), (1.8)
t2 (%) f € BC,([0,00); LP(RN)), (1.9)
t2 (R =2V f € BC,([0,00); L™ (RN)), (1.10)

where BCy,([0,00);Y) denotes the set of bounded weakly-star continuous functions.
Meanwhile, if the norms corresponding to the spaces (1.7)-(1.10) are sufficiently small,
the mild solution {u,f} to (1.1) is unique. Furthermore, as t— oo, the mild solution
{u, f} has the following asymptotic behavior

lr(®) 2 ugll agar) =0 (¢~ FF ). (L.11)
IVu(t) = Ve ug| - vy = ( t=FE ), (1.12)
1F@) = foll ey =0 (£ 3 73)), (1.13)
IV£(8) = Ve follmany =0 (£ F F ). (1.14)

Next, we proceed to study the global stability of our mild solution under the initial
disturbance in the scaling invariant class and establish the existence of forward self-
similar solutions to (1.1).



208 THE VISCOELASTIC NAVIER-STOKES EQUATION WITH DAMPING

THEOREM 1.2. Let the exponents p,q,m,r be as in Theorem 1.1. Suppose that 6=
0(N,p,q,m,r) is the same constant as in (1.5). For any >0, there is a constant
0=0(N,p,q,m,r,e) >0 with the following property: The initial data {ug, fo} and {io, fo}
satisfy that

lluoll L mvy + ||VU0||LW% ) +follzy @y + ||Vfo|\ng(RN) <4, (1.15)
ol Ly vy + HV&O”L% ') + I folley @y + ||Vfo|\L§(RN) <4, (1.16)

N
for N >3, and that (1.15)-(1.16) with L replaced by L'(R?) for N =2. Assume that
{u, f} and {a,f} are mild solutions to (1.1) on [0,00) given by Theorem 1.1 with the
initial data {uo, fo} and {ag, fo} in the class (1.7) and (1.10), respectively. If it holds
that
||u0—ﬁ0||L5(RN)+||Vu0—V710Hng(RN)
+||fo*fo|\Lg(RN)+||Vf0*vf0||Lw%(RN) <0, (1.17)

for N >3, and that (1.17) with L% (RN) replaced by L'(R?) for N =2. Then we have

2

Nl _ 1 -~ N2 _ 1 ~
sup 1+ fu(t) —a(t)lzaqam + sup 12D Vu(t) = V(1)
o0
%(1 2 1

VIO = F Ol + swp 3 FTRNTIO) = VOl vy <
(1.18)

From the construction of solutions in the weak LP spaces, we have the following
corollary of the forward self-similar solution.

COROLLARY 1.1. Let N>3 and assume the initial data {ug,fo} satisfies ug€
LY(RN), foe LY (RY) and {uo,fo} are homogeneous functions with degree —1, i.e.
up(rz) =r"tug(z), folrz)=r—tfo(x), for all x €RN and all r>0. Moreover, the ini-
tial data {ug, fo} satisfy the condition (1.5), then the solution {u, f} given by Theorem
1.1 is a forward self-similar one, i.e. it holds that

u(re,r?t)=rtu(z,t) f(re,r?t)=r1f(z,1), (1.19)

for all >0 and for all €R™ t>0. When we assume further that divf=0, and
pw=v=1, then (1.1) can be rewritten as

9 Au+(u-V)u+Vp=V-ff
Y —Af+(u-V)f=Vuf (1.20)
div 4=0,div f=0, t>0, x €R3,

with initial data u(x,0) =wug(z), f(x,0) = fo(z). Before we start to introduce the regu-
larity criteria, we would like to recall the definition of weak solutions to (1.20) (cf. [11]).

DEFINITION 1.2. Let T>0, (ug, fo) € L*(R3?) and div ug=0,div fo=0. Then we call
(u,f) a weak solution to (1.20) on (0,T) if and only if (u,f) satisfies the following
properties:

o (u,f)eL>(0,T;L*(R3))NL2(0,T; H (R?));
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o (u,f) satisfies (1.20) in the sense of distributions.

The last results of this paper are Theorems 1.3-1.5 about the regularity criteria of
weak solution to (1.20) in R3. Such results were inspired by [8] and [3]. The motivation
for the study we undertake in the fourth part of this paper is two fold:

(a) We aim to extend the previous theorems by J.M. Kim [8] to more general function
spaces, e.g., Lorentz spaces, multiplier spaces, bounded mean oscillation spaces
and Besov spaces, respectively;

(b) We propose to remove the precondition about divf=0 in the proof of Theorems
1.3-1.4 under the Assumption (1.21), (1.23)-(1.24), and we state it in Remark
4.1.

More precisely, we have

THEOREM 1.3.  Let T>0, (u,f) be a weak solution to (1.20) with the initial data
(ug, fo) € HY(R®). Then the weak solution (u,f) is regular on [0,T] if any one of the
following conditions

2
u, f € LP(0,T; LY (R3)), 7+§:17 3<g<oo, (1.21)
P q
3 2 3 3
Vue LP(0,T;LY°(R%)), —+-=2, §<q§oo, (1.22)
P q
u, f € L¥A=70,T; H " (R?)), re(0,1], (1.23)

18 satisfied.

For the limit case ¢ =00, we also have the following regularity criteria in BMO and
Besov spaces.

THEOREM 1.4.  Let T>0, (u,f) be a weak solution to (1.20) with the initial data
(uo, fo) € HY(R3). Then the weak solution (u, f) is reqular on [0,T] if the following con-
dition

u, f € L*(0,T; BMO(R?)) (1.24)

holds true.

THEOREM 1.5.  Let T>0, (u,f) be a weak solution to (1.20) with the initial data
(ug, fo) € HY(R®). Then the weak solution (u, f) is reqular on [0,T] if the following con-
dition

Vue L*(0,T; B9, (R?)) (1.25)

holds true.

The rest of this paper is organized as follows. In Section 2, we present some auxiliary
lemmas and the definition of some function spaces. In Section 3, we prove the existence
and uniqueness of mild solutions to (1.1), and we also show the existence of forward
self-similar solutions to (1.1). Lastly, in Section 4, we prove the regularity criteria of
weak solutions to (1.20) in various spaces.

2. Preliminaries and auxiliary lemmas

In this section, we shall present some notations and some auxiliary results which
will be used in the following parts of the paper. At first, we may like to introduce several
usual function spaces.
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1. Notation. Throughout this paper, we use LP(R"), 1 <p< oo, to denote the
usual LP(RY) spaces with norm |[|-||z». LP9(RY) denotes the Lorentz space associated
with norm

£ llra = esssuptzotw{xeRN:\f<x>|>t}>% p<g=oo,
| fllzee p=q=00,

where 1(+) denotes the Lebesgue measure of RY. BMO(RY) denotes the homogeneous
space of bounded mean oscillations associated with the norm

1
_ Bir(y) /Br(y)f(z)dz

H~" denotes the homogeneous Banach space of bounded linear multipliers f: HT (RN)
L?(RY) associated with the norm

1
I fllBmo@~y=sup dy.

IGRN,T>O‘B ( )| B, (z)

Fl-iay= s ([ 1ralas)
gl gr <1 NJRN

We then introduce the homogeneous Besov space, let ¢ € CSO(]RZI) be a cut-off function
such that ¢(&)=1 with |¢] <1, and ¢(§)=0 when |{] >2. Let (&) =p(§) —¢(2£) and
Vi (&)= (277¢) for j€Z. Then, by the construction Zjeij (&)=11if £#0, we define

Littlewood-Paley projection operator Ajf:=F 1 (1h;) ¢ f, then, for s€R, we define the
homogeneous Besov spaces B; (RY) with norm [|- || 5. by
’ P:q

1
(X aocieo AU any) | 1P <00, 1< <00,

Hf||3;q(RN): s
’ esssup; ez 27| A; fll o ) 1<p<oo,g=00,

Actually, Aj can be regarded as a frequency projection to the annulus ||~ 27, which
implies the following homogeneous Littlewood-Paley decomposition

oo
f=2> Af
Jj=—00
in the sense of distributions.

2.2. Auxiliary Lemmas. In this subsection, we collect some helpful results,
some of which have been proven elsewhere. Firstly, we shall need the Holder inequality
in Lorentz spaces.

LEMMA 2.1. Let f€ LP»%(R3), g€ LP»% (R3) with
1<p2,p3 <00, 1<¢2,q3 <oo.

Then, fge LPr91(R3) with
1 1 1 1 1 1

P11 P2 p37Q1 q2 g3
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and the Holder inequality of Lorentz spaces

£ gllzeyar <cl[fllLrziaz llg]l Lrs.as

1s valid for a constant c.

A proof can be retrieved e.g. from [16]. The following Lemma is a well known
result, ensuring |- ||~ bound in terms of || || paro (cf. [10]).

LEMMA 2.2. Let 1 <r <oo. Then, we have

<c(lIf]

for all f,ge L"NBMO with ¢=c(r).

gllBrmo +19l fllBmo) (2.1)

Lr Lr

In addition, we shall use the following Bernstein inequality (cf. [1]).

LEMMA 2.3. Let a« €N. Then, for all 1 <p<qg<oo,

sup [[0%A; fllLs < eF IV A f| Lo (2.2)

la|=k
with ¢ as a positive constant independent of f,j.

Next, we shall introduce two function spaces W and Z defined by

N N N N
W ={{uo, fohiuo € LY, Vuo € L, fo € LY,V fo € L }

with the norm

{0, fo}llw = ley +1¥foll x
and
Z= {{u Frt? R =Du() € BC([0,00); LURN)), % (R =2 vu(-)

t
Cu([0,00); L7 (R™)),
t%(%*% f(-) € BCy((0,00); LP(RN)), £ 7 (X =m0V f() € BC,, ([O’OO);LWRN))}

with the norm

N1l _ 1
{u. fHlz= sup £2 %D |lu(t)|[pa+ sup ¢3 &= Vu(t)],
0<t<o0o 0<t<oo
N

(L_1y Ne2_ 1
+ sup ¢2 5D ()| + sup £FF TV F(E)]| 1,
0<t<oo 0<t<oo

respectively. Here, LF denotes the weak-L? space with the norm ||| .» defined by

/]

1
L :supau{:z?ERN;|f(z)| >a}‘°
a>0

Clearly, W and Z equipped with the norm ||-||w and ||-||z are Banach spaces. For
{ug, fo} €W and {u,f} € Z, we define

G(ug, fo,u, f)={U,F}, (2.3)
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with

{U(t) =u(t) —emuo+fge(t’T)AIP’[(u~V)u(T) —V-ffidr, 0<t<oo; (2.4)

F(t)=f(t)— e fo+ [T et D2 [(u- V) f — Vufldr, 0<t<oo.

Moreover, the Fréchet derivative of G in the direction of {u, f} is usually denoted
by G , and the Fréchet derivative of G(-,-,-,-) at point {ug,bo,u,f} € W x Z in the

dlrectlon of {u, f} whose value at point (@, f) is defined by (G{u f}(uo,bo7 u, f), (@, f)).

From above definition, it is clear that, in the following lemma, we mainly study
the property of the map G( ,5). The basu: techniques are the estimate of heat semi-
group and the property of Beta function. Furthermore, we derive the Fréchet derivative
of G(-,-,-,+) at point {ug,bg,u, f} €W x Z in the direction of {u, f}.

LEMMA 2.4. Suppose that the exponents p,m,r satisfy the following either (1), (2) or
(8) for the case N <q<2N,

(1) quf\I, <p<gq, maux{p’7 ];’}<m<q*7 max{g,m,p’} <r<min{q.,n2};

(2) q<p<2N max{q 773}<m<p*7 max{ 511,94 }<7"<m1n{]3*a772}

(3) 2N <p<2q, max{q,n3} <m<px, max{%,i+l,q }<r<m1n{p*,i};
mTTp m p

and p,m,r satisfy the following either (4), (5) or (6) for the other case 2N < q < oo,

(4) 2Ng L <p<2N, max{p', 3 }§m<q*,max{%,nhp’}<T<min{q*,n2};
(5) 2N<p<q7 max{p,3}§m<q*,max{%, ,p}<r<min{q*7 L };

L4
m T

(6) QSPSQ(], max{q/>773}<m<}?*v max{g7 1+1 ,q }<r<m1n{p* i}’
m - p

"d\»—‘

for N >2. Then we obtain
(i) The map G defined by (2.3) is a continuous map from W x Z into Z.

(ii) For each initial data {ug, fo} €W, the map G(uo, fo,-,") is of class C from Z into
itself.

Proof. (i). Firstly, we shall prove that
£ (370U (1) € BOL((0,00); L),
and
N2 _1
t2 (8 =P)VU(t) € BC,([0,00); L").

By using the LY — LY estimate of the heat semi-group, it holds that

_ﬂ(f_,

e ugll e < ct™ ¥ F D g, (2.5)

where c=¢(N,q). Similarly, we obtain

Vet ug|pr <ct= 2 (&%) || Vuo|| y
{ Vuoll )

N
||v€tA’LL()||Lr SCti(li;)”vuO”Ll N =

where ¢c=¢(N,r). From above, we can deduce that

2|~

t%( 7%)etAu0 EBCU;([O,OO);Lq)v
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and
N2 1
t= (¥ =7 VetPug € BC, ([0,00); L7).

Taking into account the conditions (1)-(6) on p,q,m,r, we obtain %— % >0, and since

the projection operator P is bounded in L, we have the following estimate

t
Sc/ ||V~e(t77)A(u®u)(7)HquT
0

t
/ e"IAP(y- V)u(r)dr
0

La

/ te@*ﬂﬁp(v (u®u))(r)dr

0

La

t
<c[(t-r) ¥E D Husu(r)|
0

2
<c< sup Tg(}v—é)HU(T)HLq) . (t_T)%_%_lT%_ldT
0<7<00

1 NN - 2 -
CB(22q,q < sup T];](N_‘I)HU(T)HLL;) AR (2.7)

0<T<00

for all ¢ >0 with ¢=¢(N,q), and B(-,-) denotes the Beta function.
i

Similarly, since £ <q,5 — %(% — %) >0, we have

2 et
Sc( sup 7'];](1{/_11))||f(7')“Lp) /(th)—%_g 2y Ny
0

0<T<00

1 N/2 1\ N N(1_1 2 Ne1_1
=cB({-—%=|-—"—-],— sup 72 (N7 f(r p) 2T, 2.8
(2 2 (p q) p) (o<7<oo 17l (28)

for all ¢ >0 with c=¢(N,p,q).

Moreover, by the conditions (1)-(6) on p,q,m,r, we may verify that —& (& — % -
)>0,5-26>0,242<1, L4 l<l o4 X250, L4 —1>0and - F(%+1-
) >0, which follows

/ te(t’T)AP(V- frH(r)dr

0

L4

/ BY-na(p ]| <e / A (£ e
0 La 0

S =3

Hv /O DAV Yu(r) - V- [

LT

t t
<c [ I9e 2w Va)(r)uedr+e [ [T ££() o
0 0

t
Sc/ (t—7) 2 F G u(r) | o | Valr) | ordr
0

G5 () 2o [V () |
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Nei2_1
V()| o

214
<c¢ sup T%(%ié)Hu(T)HLq- sup 72N
0<T<00 T<00
t
x [ =y b fr H G D
0
N(1_1 N(2 _ 1
+c sup 72 XD F()[pe- sup 72N TWV (7)o
0<T<00 T<00
t
x/ (t—r) 3 F G DY Ga- g,
0
N /1 1 1\ 1 N
_CB<()v ) sup 7% %70 Ju(r)| s
2\N q r)°2 29)o0<rzoo
X sup r3 & 1')\Vu(7')|L7-t77 N7
0<r<o0
N N 11 N/1 1 1 N1 _ 1
Bl—+——- ——— | —4—-——= PAS D) »
te (2m+2p 2'27 2 (erp r>)o<SBEOOT 17l
V)|t FFD) (2.9)

N(2Z2_1
X sup T2 NTm
0<7T<00
Now, combine (2.4); with (2.5)-(2.9), to obtain
t2 (¥ =DU(t) € BC,([0,00); L) and t* F~2)VU(t) € BC,([0,00): L"),

and with the estimate
sup tFETDNU()ra <cluollpy +e_sup ¢FF T u(t)] 1
<t<oo <t<oo
ﬂ(i,l) 2 ﬂ(i,l) 2
+e| sup 72T u(T)||pe ) +e| sup TN f(T)|Le | (2.10)
0<r<o0 0<T<00
where ¢c=¢(N,p,q), and
5w tFETDIVO @) e el Vuoll e sup ¢ ED[Tu()] -
o0 w o0
+c¢ sup T%(%_%)”U(T)”qu sup 72 (F~7) [Vu(r)| L
0<T<00 0<T<00
e s TH RV g sup PFED ) e (2.11)
T<00
y by [Vuol|p1.

0<7<00
where ¢c=¢(N,p,q,m,r) and for N =2, we replace HVUOHL

Next, we propose to show
T2E(t) € BO,(0,00); L7 (RY)),

t%(

2|

2 (F=m)VF(t) € BCy([0,00); L™ (RM)).

and
Indeed, it holds that
e foll o <t foll v, (2.12)
and
Vet follpm <ct= 2 X =3 Vfol| x N>3,
| ollz | olng (2.13)
N=2.

Ve follpm < et~ =) fo £

{
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. 1,1 N_ N 1 Nl 1 _1 1.1 N N _1
Since E—FES1,?q+%—§>0,1—5(E+E—;})>O,5+;Sl,%+§—§>0and1—
% >0, appealing to (1)-(6) and Holder’s inequality, we arrive at

‘ Lp

t
<c / (t— 1)~ F G+ D () | |V ]| e
0

/ =I5 [(u-F) f — Vuf|(r)dr

0

t
te / (t—7)" 2 G D) F () | oo - | Vau(r) || prdr
0

0<T<00

N N 1 N/1 1 1 _N(1 1
XB| —+——=,1— +——— )t 2N
29 2m 2 2\q m p

<c¢ sup T F "D |u(r)|pa- sup 7T F V()] pm
0<T<00

te sup T2 VTR sup 7FF D Vu(r)] 1
0<r<o0o <T<00

N N 1 N\ _x_a
xBl=—4+——21-— )t =2x"3
2p  2r 2 2r
for all ¢ >0 with c=¢(N,p,q,m,r).
Similarly, since %+%§1,%+l§1 2ﬂ+%—%>0,%+%—%>0,%—%(%+%—
%) >0, % — % >0, we can obtain the following estimate

HV/ e(t_T)A[(u-V)f+Vuf](T)dT
0

t
SC/o (t—r)72 72w ) u(r) | Lo

t
~||Vf||L’”dT+C/ (t—7)" 2" 2 G |Vl oo | [ o dr
0

NL_ 1
<c sup TN d||u
0<T<00

N N 11 N\ _~yz_1,
XB| —+——c,-—— |t 2" m
29 2m 22 2q

Lm

VIllem

(T)||pa- sup 2 (&)
0<7T<00

te sup 7FF D Vu(r)|pe- sup TE ST F()]| e
0<T<00 0<T<00
N N 11 N, 1 1 1
xB( ot —55- 5 G- —) o E ), (2.15)
20 2r 2°2 2'p r m

for all ¢ >0 with c=¢(N,p,q,m,r).
Taking together (2.4)y with (2.12)-(2.15), we are in a position to find that

F -

#F(t) € BC,([0,00);LP) and t* (X~ =5)VF(t) € BC,([0,00);L™),
with the estimates

1

sup £z N_%)||F(t)||Lp
0<t<oco

Nl _ 1
<c| follzx +c sup 7N £(t) e
0<t<oo
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te sup 2N D u(t)|| e sup t2F V()] pm
0<t<oo 0<t<oo

+e sup tFXTD O] sup t2F 0| Vau(t)]
0<t<oo 0<t<oo

- (2.16)

for all ¢ >0, where c=¢(N,p,q,m,r), and
sup ¢ (& || VE(t)||
0<t<oo

Ne2 _ 1
<c| Vol 5 +c sup t2FTm)|Vf(@)|pm
L 0<t<oo

w

te sup tTETD ()| pa- sup tFETW V()] pm
0<t<oo

0<t<oo
te sup t2F D f(O) e sup 2 R Vu(t)| e (2.17)
0<t<oo 0<t<oo

N
for all t >0, where c=c(N,p,q,m,r). Here, for N =2, we substitute L by L'.
Taking into account (2.10)-(2.11) and (2.16)-(2.17), we obtain the conclusion that
G(ug, fo,u, f)={U,F} € Z, with the estimate

1G (o, fo,u, /)l z < el[{uo, fo} lw +cl{u, F}z(1+ [{u, f}2)

where c=¢(N,p,q,m,r).

(ii). In order to prove the conclusion of (ii), we define a linear map (Hy,, ¢y, (i1, f)) =
{U,F} on Z by

{U(t)— (0)+ o2 Bl(u- V)i (@ V)yu— V= V- £, 0<t<o0 )

U
E)=ft)+ [1e®DA(u-V) f+(a-V) f— Vaf —Vufldr, 0<t<oco
for {u, f} € Z. Moreover, we define {8,F} by

{8,8}= G uo, fo,u+1, f + f) = G(uo, fo, u, f) — (Hu, gy (@, ).

Hence, by the definitions of G and Hy, s}, we arrive at

_ /O AR V)iV - FFY(r)dr. (2.19)

Therefore, combining the estimates (2.7) with (2.8), we obtain

¥

2
Dl ) ¢ FED

1Ol <eB(L - NN )(

2 2 ¢
1 N2 1N . 2
rei(5-5C-0.2) (s rFE DI ) EED, )

0<T<00

sup T
0<T<00
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for any ¢ >0, and by the estimate (2.9), we further obtain
N, 1 1 1.1 N N1 _1
Ol <eB|—=(—=—=-= - 2(v=|a
e I R L O
sup 72 (X0 |Vau(r)| ot~ T (R )
0<T<00
N N 11 N,1 1 1 N1 _1
B — o (—4pZ_Z PAS )
sup T%(%*%)||vf(7-)||me%(%*%) (2.21)
0<T<00

for any ¢ > 0. By the same way, from the definition of §, (2.14) and (2.15), we have that

3(t)

/te(tT)A[(ﬁ-V)fVﬂf]dT (2.22)
0

with the estimate

N1l _ 1
1Tl e <c sup 7= 5D fu(r)] -

<T<00

N N 1 N 1 1 1 N(Lfl)
XB|l —+——-,1— +——= |t 2N P
29 2m 2 2\q m p

+e sup TE XD f()|e- sup 72 EF D |Va(r)| e
0<T<00 0

XB<N+N1 1N)t—]§(§z—;)

2.23
2p  2r 2’ 2r ’ ( )
for any ¢t >0, and
IVE®)em <c sup 72 F D a(r)||ga- sup 7FF |V F(r)||m
<< 0<r<o0o
wp(N N L1 NN G-
29 2m 22 2q
+e sup 7FFDVA() |- sup TF ST F(r)|[ 1o
0<T<00 T<00
N N 11 N1 1 1
XB(—d——c = (=4 ———) |t 7 Fw), (2.24)
20 2r 22 2°'p r m

for any ¢ > 0.

Appealing to the estimates (2.20), (2.21), (2.23) and (2.24), we are in a position to
obtain that
w5
@ FYIz—-0 [[{@, fH 2

im (IG (0, fount @ f+ )~ Gluos fous ) = (He gy (0 F) 1 2) /1@ F 2
I{@,f}z—0

<c¢ lim [< sup 72 XD |a(r)]|pa)? +( sup 7FF | F(r)]|10)?
I{@,f}|z—0 L 0<r<oo 0<T<00

+ sup T2 FD|Va(r) |- sup 72 F D F(7)| s
0<T<00 <T<00
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+ sup 7EF W |VF(7)|pm- sup T2 FTD||a(r)| L
0<T<00 0<T<00
FG

~ 9 |a(r)| s

11

SN F e | /@ FHIz=0,  (2.25)
0<7<0 0<7<00

for each {uo,fo} €W and each {u,f}€Z. The argument of (2.25) implies that

(G{u 7y (wo,b0,u, f), (4, = (Hu, gy, (1, f)). This completes the proof of Lemma 2.4. 0O

3. Existence of mild solutions and forward self-similar solutions

Based on the conclusions of Lemma 2.4, we now proceed to prove Theorem 1.1-1.2
and Corollary 1.1. Firstly, we propose to prove the global existence of mild solution to
(1.1), and the key point is to prove the bijective Hyg oy.

Proof. (Proof of Theorem 1.1.) In order to proof this theorem, we shall first
show that the Fréchet derivative Hy, sy at {u,f}={0,0} is a bijection from Z onto

Z. On the one hand, we notice from Lemma 2.4, for each {&,f} € Z, we infer that
<H{0,0}7(a7f)> = {UOaFO} as

Uo(t)=a(t), Fo(t)=f(t).

Thus, Up(t) = Fy(t) =0 implies that @(t)= f(t)=0, which means Hyo 0y is a injection
from Z into Z. On the other hand, for each {Uy, Fy} € Z, we may take {@,f} € Z as

a(t)=Uo(t), f(t)=Fo(t),

then, it satisfies (H 0}, (ﬂ,f)) = {ﬁo,ﬁo}. Therefore, it follows that Hy oy is a surjection
from Z onto Z.

Now, using the Banach implicit function theorem, we can see that there exists a
C'-map h

h:Ws:={{uo, fo} eW;|{uo, fo}llw <8} = Zs :={{u, f} € Z;|{u, f}|| z <6},

for some §(N,p,q,m,r) >0, which satisfies h(0,0) ={0,0} and G(uo, fo,h(ug, fo)) ={0,0},
for all {uo, fo} € Ws. Thus, under the condition (1.5)-(1.6), one can see that the function
h(ug, fo) gives the unique solution of (1.2) with the properties (1.7)-(1.10).

From above, we obtain the uniqueness of solutions {u,f} of (1.2) with the small
norms corresponding to the class of (1.7)-(1.10), since the existence of the C'— map
h from Ws to Zs. We also obtain the asymptotic behavior (1.11)-(1.14), which follows
from the estimates (2.7)-(2.9) and (2.14)-(2.15), respectively. d

Proof. (Proof of Theorem 1.2.) Appealing to the continuity of the map h, we
are in a position to claim that the estimate of stability (1.18) holds, under (1.17). So
we have completed the proof of Theorem 1.2. 0

Proof. (Proof of Corollary 1.1.) Let {u,f} be the solution of (1.2) which is
given by Theorem 1.1. Then, we get

u(xat) :ul(x»t) —J(u,f)(x,t), f(xvt) :fl(xvt) —K(u,f)(x,t),

wet)= [ Le-ptiuo@dy, A= L nh)d,
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and we have the expressions that
¢ N
T et = | /RNL(w—y,t—T)Z;Sm(x—y,t—T)
{ZN: (5% Zafngm( ))}dydT
Oy, v ’

=1

K(u,f)(z.t) = / / (& =yt —7) (u- V) [ (9,7) — Vuf (y,7)) dydr,

for i1=1,2,---,N, with
2

Si' Y, T =L Y, T 6z+
J( ) ( ) J 8?/_]8?/1

(L(aT)*F)(y) (i,j:1,2,”',N),
and
1 _
F(y):mMQ NN =3).

By using the condition of homogeneity of uq, fo, we obtain

w (re,rt) = / L{re —y,rt)uo(y)dy
RN

1 —lra—y|?
:/RN (e T uoly)dy

—-N o—w|2
:/N(47:t)N/2€ T uo(rw)r dw=r"uy (z,t), (3.1)
R

where in the third equality, we have used the fact w:=%. Similarly, we havef; (rz, r’t) =

“Lfi(z,t) for all z € RV, ¢ > 0. Since the solution {u, f} of (1.2) in Theorem 1.1 is given
by the mapping h: Ws — Zs, in order to prove Corollary 1.1, we will use the following
proposition.

PROPOSITION 3.1. Let N >3 and {u, f} satisfy (1.19). Then we have

rd (u, f)(ra,r?t) = J(u, f)(@,t), 7K (u,f)(re,r?t) =K (u, f)(z,1)
for all z€RYN, t>0 and all v > 0.

We notice that the proof of the proposition is rather standard, we may just omit it.
Thus, we have proved Corollary 1.1. O

4. Regularity criteria of weak solutions
In this section, we shall show the regularity of (u,f) to (1.20). To begin with, we
deduce such results under the Assumptions (1.21)-(1.23).

Proof. (Proof of Theorem 1.3.) Taking the inner product of (1.20); with Au,
employing the divergence-free property and integration by parts, we have that

d
£||V’U/H%2 +2||Au||2L2=—2/ (f~Vf)-Audx+2/ (u-Vu)-Audz. (4.1)
R3 R3
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Similarly, taking the inner product of (1.20)s with Af, we have that
GIVIE A0 =2 [ (1w Afdos2 [ (@VH-Afde. (42
Combining (4.1) and (4.2), we have
%(IWUH% IV FII7) +2(Aulzz + [ Af]I2)
—2/R3(f-Vf)-Audx+2/RS(u-Vu)~Audx
—Q/RS(ﬁVu)~Afdx+2/Ra(u~Vf)-Afdx. (4.3)

Now, we shall estimate (4.3) by Assumptions (1.21)-(1.23), respectively. We start to
estimate (4.3) based on (1.21). By Young’s inequality, (4.3) implies

d
S (IVullZe + 1V FIIZ) + 20 AullZ +[IAfIIZ2)
1
<c(llf-VEIZ +11f-Vullga+ llu- Vulze + Ju- VA7) + 5 ([AulZz + [AFI7:)- - (4.4)

In order to estimate the right-hand side of (4.4), we may use the following Gagliardo-
Nirenberg inequality in the Lorentz space,

V9]l 2022 < Vol %21 Ag32, (4.5)

which, for g=o00, is the classical Gagliardo-Nirenberg inequality. For 3 < ¢< oo, the
inequality (4.5) can be derived from the interpolation

2q
L% 2(RP) = (L7 (R3), L2 (RP))g 5

with

=2 _(1-0)@-2) , o(ae-2)

2(] 2q1 2(]2 ) 1§¢11<Q<Q2§00a

and Sobolev imbedding inequality

41173

Vgl 2 :
(R

with ¢=1,2. Thus, applying Lemma 2.1, Young’s inequality and (4.5), we have

1V FI3a+ 1 f -Vl 2o + - Vul3e + u- VF2

SCHfHQLqm ||Vf||2qu/<q—2>,2 +C||f||%qm ||VU||i2q/(q—2),2
+C||U\|%woHvuuizq/m—?),z +cllullLe oo||vf||2qu/<q 2),2

<llF 13 0 IV AUV AN FNSEE 113 e [V 229 A7
+ellul3 e [Vl EE2V ) Al 57+ cllull 0o [V £ EET DV A £ 520

<l FIBS D VA + [ ValFe)+ g1 Auls +AF]32)
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20/(2=3) (| Tul|2s + 1V F1122) + - (| AullZs £ (A F]2 4.6

Hellullzas " (Vullz: +IVAIL:) + g (1Aulze +IAfIZ2). (4.6)
Inserting (4.6) into (4.4), we obtain

d 3
S (IVullZe + IV AIIZ) + 5 (1Aul 7 + [ AF]172)

<e(llull 74 + IS IVull g2 + [V £]17). (4.7)
From Gronwall’s inequality, it follows that
3 /T
sup (IIVU(t)|\2L2+||Vf(t)||2Lz)+§/ (1AulZ: +[IAf]Z2)dt
0<t<T 0
T
SC(|V7«L<)||2L2+Vfollzm)eﬂcp{/0 (ullZooc + £ 11700 )d } (4.8)
2
where p= —q3.

Next, we carry out the estimation of (4.3) based on the assumption described by
(1.22). Taking into account the divergence-free property of u, f, Lemma 2.1, (4.3), and
integration by parts, we have

d

Z (IVullZe + 1V FI172) +2(| AullZe + [AF]172)

—Q/RS(ﬂVf)-Audx+2/R3(u-Vu)~Audx
_2/ (f-Vu)-Afd:v+2/ (u-Vf)-Afda

—22/ (0:f -V ) Oyudx — 22/ (0su-Vu)-O;udx
oif -0 fdx — Oiu- -0
+2;/RB( f-Vu)-8; fdx 2;/]1@( w-Vf)-8;fdx

<Vl oo (2 Vull 2012 F 61V FIIZ 20/ca-1).2)- (4.9)

Likewise, the argument in (4.5) implies the following Gagliardo-Nirenberg inequality in
Lorentz space:

2q—3)/2 3/2
V9]l 2002 <l Vall 7| Ag]75™.
This, together with (4.9) and Young’s inequality, implies
d
@(Hvuﬂiz+\|Vf||%z)+2(||ﬁu||2y+HAf||%2)

SCHVUHLWXJ(HVUHim/(q—l),z + ||Vf||izq/<q—1> 2)
2g—3 3 2g—3 3
<[Vl pooe (|l S A 32+ |V G2 AL 207

1 _
<5 U1AullZa + A+l Val 2 EV (1Vulfe + VA7) (4.10)

Hence, from Gronwall’s inequality, we conclude that

T
sup (IIVU(t)Hiz+||Vf(t)||2Lz)+/0 (1AulZ + [ AfII72)dt

0<t<T
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T
<e([[Vuol|Z2 + IVfolliz)exp{/ IIVUIIIEq,mdt} (4.11)
0

with p=2q/(2q—3).
Finally, we proceed to estimate (4.3) based on the assumption described by (1.23).
Appealing to Holder’s inequality, then (4.3) yields

Il + 19512+ 20 Al + A7)

<l -9 fl 2|l 2+ - V] | Au
bellf-Vulall Al -+ ellu- ¥ Flal A

<l -1 e ISl el Vol 1
el - Vel 1P+l -9 £l 1A

<l fllg- IV A Al 52 el Vel 7 w7

+ellfllg-- IIVuIIiJHAfIIHT+c|\u||H_rI\Vinz’"llAfll“”
/(1—r 2/(1—r
<c(I £ 4l 2 )(IIVUIIL2+HVf||Lz)+§(IIAUIIL2+|\Af\liz), (4.12)

where in the third inequality, we have taken into account the fact that

£l gz < cllFllZz IV £11Z2,

Making use of Gronwall’s inequality, from (4.12), we obtain

3 T
sup ([|[Vu(t)|[Z2 + IV ()IIZ2) + 5/ (1Au]Z + [ AfII72)dt
0<t<T 0

T
sduwon%ﬁnwa%2>exp{ / (LI + flul % T)dt}. (4.13)

Taking into account (4.8), (4.11), (4.13), thus, we have completed the proof of Theorem
1.3. a

Next, we propose to prove the regularity criteria of weak solutions to (1.20) under
the Assumption (1.24).

Proof. (Proof of Theorem 1.4.) Taking the inner product of (1.20); with wu|u|?
and (1.20)y with f|f|?, respectively, we can see that

1d

33 e+ 1) + 30 Tl + 11719 152)
— [ -V aliPda— [ VpuPdos [ (750511

R3 R3 R3
:Ill+.[2+]3, (414)

where we have used the following identities due to the divergence-free property of w:

/ (u-Vu)-ulu*dz =0, / (u-Vf)- f|f)?dx=0.
R3 R3
For the term I, by using Holder’s inequality and Young’s inequality, we have

L<|\f -V Iz +elullps +clllul?[7s- (4.15)
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Next, appealing to integration by parts and the divergence-free condition of u, the term
I> can be estimated as

12:2/ pu-(u~Vu)dx§c/ Ipu|?dz +2||uVul%,. (4.16)
R3 R3

Lastly, for the term I3, by integration by parts, the Hélder and Young’s inequality, we
deduce that

h= [ (-0 flrPe
< cllullba+ellf218e+ 17 951 (2.17)

Where fk = {fkj ?:17 fz = {fij}?:l and Z,l{ = 1,273.
Now, plugging (4.15)-(4.17) into (4.14), we conclude that

d
s+ 171+ (Nl Vol + 1171V F12)
<c /R IpuPdzclul L+ el [ul s+ el 2L (4.18)

To estimate the right-hand side of (4.18), we apply the divergence operator V- to (1.20),
there holds

3 3
82 2
=(=A)"1 w4+ (AL R
p ( ) Z axi&vuzujJr( ) Z axial.‘fklfk‘] s
i,j=1 J i,j,k=1 J
which implies, by the Calderén-Zygmund inequality,
3 3
Ipllr <e > luwiugllor+c ||fkifkj||Lr—|—csu13||u||Lz, 1<r<oo. (4.19)
= < t>
i,j=1 i,5,k=1

We shall note that the pressure term p is uniquely determined by &. In fact, based
on the Theorem 2.6 in [21] (see also G.P. Galdi [2] (Th. III. 3.1, Th. IIL 5.2.)), there
exist unique functions py and p;, (App, =0) such that p=py+pp holds. In addition, the
following a priori estimates hold

Ipolley Ly < c(llwivslly oy + 11 fri frjlloyor),

Ipnllzser <e(llullpse Lz +[lwivg || Ly o + | fri frjllr e )-

Hence, by Holder’s inequality, (4.19) and Lemma 2.2, the first term on the right-hand
side of (4.18) can be estimated as

e [ ol <l ulfs

3 3

<c| D0 lwwglla+ D> W frifusllis +supllullis | ol
L 4 t>0
1,j=1 i,5,k=1

SC(IIUII%MoHuII‘£4+HfIIQBMo|IUIIi4HfII%4+§I;EIIUIIiz\IUII%4)~ (4.20)
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Inserting (4.20) into (4.18), from Lemma 2.2, we arrive at

d
S (lullze+ 1 F170) + (lulVelZz + [1F1V £1172)
<c(lulBarollullzs + 1 I Baco lull sl f1I7s +§1>1%)||UH%QHUH%4> +cful| 7

+ellullLsllulsaro +ellFILs I f o

<c(L+lullBao +lulsaro + I a0 + 1 IBao) (lullLs + 11 Ls) + llull 7 12

By Gronwall’s inequality, this implies the desired estimate
T
sup ([Ju(t)]7: + \If(t)l\‘i4)+/ (lulVullZz + 111V f1172)dt
0<t<T 0

T
§0(||U0||%4+Hf0||%4+|\U||igOL§T)€$P/O (1+llullBaro +lullBaro + 1 I Baro
+11fIBaso)dt.

The remaining proof is similar to the proof of Theorem 2.1 in [20]. Thus, we have
completed the proof of Theorem 1.4. 0

REMARK 4.1. From the proof of Theorem 1.3 and Theorem 1.4, one can verify that the
precondition div f =0 can be removed under the conditions (1.21), (1.23)-(1.24). Indeed,
in the estimation of (4.4), (4.12) we have not used integration by parts, which prevents us
from using the property divf=0. On the other hand, without the assumption div f =0,
then I; in (4.14)-(4.15) may be rewritten as

h= [ V(1) uluPdo

R3

= [ V11Vl
R3

<2|IFIVFIIZe +ellullzs +elllul®l 74,

and I3 in the estimation of (4.17), can be estimated as
Igz—As(uiakfk)'(fi|f|2)d$—43(uifk)'5k(fi|f\2)d$
<cllullza +elll f2Nza +1f -V flIZe,

with 7,k =1,2,3. Thus, we have the same conclusion as above. Finally, we aim to prove
the regularity criteria provided the Assumption (1.25) holds.

Proof. (Proof of Theorem 1.5.) By the divergence-free property of v and f, and
integration by parts, we have

d
— (IVullZe + IV A1)+ 20 AullZz + I AfIIZ2)
:—2/ (f~Vf)~Audw+2/ (u-Vu)-Audz
RS RS

—Q/RS(f-Vu)-Afd:v—i—Q/RS(wVf)-Afdx
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:2/ (8ifk3kf)~3iudx—2/ (O;u-Vu)-O;udx
R3

R3

R3 R3
32/ |Vu||Vu|2d:c+6/ |Vu||V f|2de, (4.21)
R3 R3

where i,k =1,2,3. Making use of the homogeneous Littlewood-Paley decomposition, the
right-hand side of (4.21) can be estimated as

2/ |Vu||Vu|2dx+6/ V|V f2da
R3 R3

=2 > /‘AjVu‘|Vu|2dx+6 > /‘AjVu“vf‘zd:c
—co<j<oo” R? —co<j<oo’ B3

<c > AVl (IVul 2l Vall s + 1V £l 221V £ o)

—o0<j<oo

<c||Vul g (IVullzz + [V fll2) ([ Aull L2 +[| A f]l2)- (4.22)

Collecting (4.21) and (4.22), by Young’s inequality, it holds that

d
S (IVullZe + IV AIIZ) + (1Aul e + [AFI72) el Vullgy (IVulZz+[VF72)-

Hence, appealing to Gronwall’s inequality, we conclude that

T
sup (“vu(t)H%Q+||Vf(t)||%2)+/ ([Aull7e +[IAfI72)dt
0<t<T 0

T
Semp{c / ||w||23g‘ldt}<||wo||%2+||wo||%z>.

Thus, we have completed the proof of Theorem 1.5. ]
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