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Abstract. We are interested in the numerical approximation of discontinuous solutions in non-
conservative hyperbolic systems. We introduce the basics of a new strategy based on in-cell discon-
tinuous reconstructions to deal with this challenging topic, and apply it to a 2x2 non-conservative toy
model, and a 3x3 gas dynamics system in Lagrangian coordinates. The strategy allows in particular to
compute exactly isolated shocks. Numerical evidences are proposed.
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1. Introduction

In this paper, we are interested in the numerical approximation of non-conservative
hyperbolic systems of the form

{

∂tu+A(u)∂xu=0, x∈R, t∈R
+,⋆,

u(x,0)=u0(x),
(1.1)

where u(x,t) ∈ R
p is the unknown and u0 the initial data, supplemented with an initial

condition

u(x,0)=u0(x), x ∈ R, (1.2)

and the validity of an entropy inequality

∂tU(u)+∂xF(u)≤ 0. (1.3)

Here (U ,F) is an entropy-entropy flux pair, that is to say T∇UA= T∇F with U strictly
convex. By non-conservative, we mean that A is not a Jacobian matrix. This does not
prevent some of the equations of (1.1) from being in conservation form, but we assume
that they are not all conservation laws. It turns out that the theoretical and numerical
study of such systems is a very difficult task as briefly recalled now.

Theoretical aspects. Let us first review the main theoretical aspects of non-
conservative hyperbolic systems. Generally speaking, hyperbolic systems develop dis-
continuous solutions for large times (see [28]), so that solutions in a weak sense are
considered. When the model is made of conservation laws, solutions are usually defined
in the sense of distributions and, under the validity of an entropy inequality, existence
and uniqueness results are proved for initial data close to a constant state (see for in-
stance Liu [32,33], Glimm [22], Lax [27,28], or LeFloch [31] for a review and extensions).
In the case of a non-conservative system made of one or several non-conservation laws,
the distribution theory does not apply anymore. Dal Maso, LeFloch and Murat pro-
posed in [19] a definition of the non-conservative product A(u)∂xu which extends the
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notion of weak solution of conservation laws. More precisely, they introduce the paths
theory to define A(u)∂xu thanks to a family of paths φ : [0,1]×Ω×Ω→Ω satisfying the
consistency property

φ(0,u,u)=u, φ(1,u,u)=u, for all (u,u)∈Ω×Ω.

Under specific assumptions given in [19], the non-conservative product A(u)∂xu at a
given point x0 separating two constant states u0=(u0,v0) and u1=(u1,v1) is defined
by

[A(u)∂xu]φ=

∫ 1

0

A(φ(s,u0,u1))
∂φ

∂s
(s,u0,u1)ds δx0

. (1.4)

Said differently, the shock is admissible provided that the generalized Rankine-Hugoniot
relation

−σ(u1−u0)+

∫ 1

0

A(φ(s,u0,u1))
∂φ

∂s
(s,u0,u1)ds=0 (1.5)

holds true, where σ denotes the speed of propagation of the shock. Similarly to the
conservative setting, this definition leads to existence and uniqueness results of weak
solutions to (1)-(2) but a first difficutly is clearly to define the relevant path according
to the physics of the model under consideration.

Numerical aspects (in brief). The numerical approximation of discontinuous solu-
tions in non-conservative systems is a very difficult task. The main reasons are the deep
sensitiveness of the standard methods with respect to the choice of the path and the
usual discretisation parameters, see for instance [9,12,24,29] and the references therein,
as well as the lack of a Lax-Wendroff-type convergence result. In particular, it is not
guaranteed that the converged solution satisfies the path theoretical requirement (1.5).
The literature is large on the topic but the proposed schemes are often not satisfying in
the sense that either they work only for some very particular systems or small amplitude
shocks, or they involve some random sampling techniques which are difficult to extend in
several space dimensions. Without any attempt to be exhaustive, we refer, for instance,
the reader to [4, 5, 7, 11, 13, 15, 21, 35] and the references therein where different mod-
els and numerical approaches have been considered. Among these methods, the most
recent and complete theory is probably the so-called path-conservative schemes theory,
developed by C. Pares [35] and collaborators. However, it was proved in [1,12] that the
consistency definition provided by the path-conservative formalism is not always enough
to ensure the convergence to the expected solution. This is especially true in the case of
small-scale dependent solutions of interest in the present paper, again because of a lack
of control of the numerical diffusion. Nevertheless, we will see that when combined with
a suitable in-cell discontinuous reconstruction strategy, the path-conservative formalism
allows to control the numerical diffusion in numerical shocks.

General context. The present contribution follows a series of recent works on this
topic, and more precisely the two comments on the computation of non-conservative
products recently given in [1] and [15]. In a few words, the authors consider in [1]
the gas dynamics equations in Lagrangian coordinates and show numerically that path-
conservative schemes are not convergent to the correct solution when applied to a non-
conservative version of these equations. This fact was explained theoretically in [12].
In [15], the authors consider the same set of equations and show how to slightly modify
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the usual path-conservative schemes to compute correctly the solutions of this non-
conservative formulation. The proposed modification is based on a new averaging pro-
cedure of the path-conservative schemes and relies on both the introduction of modified
averaging cells and a random sampling at each time step. The numerical results are
really convincing and a convergence result is proved for isolated shocks. This shows that
if the averaging procedure is dealt with care, then the path-conservative approximate
Riemann solvers can be a powerful tool for the purpose of computing non-conservative
shocks. This was actually the main message of [15]. However and as already stated
above, the averaging procedure proposed in [15] relies on a random sampling and it is
well-known from the work by Collela [18] that the computation of shocks with Glimm’s
random choice type methods is difficult to extend in several space dimensions. Therefore
it could be a strong limitation for future works.

Objective of the paper. The aim of the present contribution is to propose a new aver-
aging strategy based on in-cell discontinuous reconstruction in order to get rid of random
sampling and modified cells. As we will see, it allows to follow isolated shocks exactly,
and provides convergent results to the correct solution for more general initial data. In-
cell discontinuous reconstruction techniques used in the present paper were developed
by F. Lagoutière and B. Després to reduce the numerical diffusion in the transport of
discontinuous solutions of linear and nonlinear equations, see for instance [20, 25, 26],
before being extended to different settings. In particular, in [10] and [3], the authors
define a conservative scheme which is based on in-cell discontinuous reconstructions of
nonclassical shocks for approximating the solutions of nonconvex scalar conservation
laws and non-genuinely nonlinear systems of conservation laws. Again, the striking fea-
ture of the strategy is to allow for a perfect control of the numerical diffusion associated
with the nonclassical discontinuities. More precisely, it allows for the exact computation
of such isolated simple waves. In [16, 17] and [39], the authors succeeded in extending
this approach based on in-cell reconstructions to constrained (scalar or systems of) con-
servation laws in traffic modeling. In the present contribution, we aim at considering
a first step towards the extension of in-cell discontinuous reconstructions towards non-
conservative systems. Despite the present contribution being only the very beginning in
the development of this strategy applied to non-conservative systems, we believe that it
might be considered as a relevant alternative to numerical methods involving random
sampling, which are so far the only ones for which convergence results can be proved.

Outline of the paper. The outline of the paper is as follows. In Section 2, we
consider a non-conservative toy model and show how the in-cell discontinuous recon-
struction strategy can be used to define a relevant projection onto the set of piecewise
constant solutions at each time step and therefore to properly compute the shock dis-
continuities. Note that for this toy model, the exact Riemann solver will be used to
define the in-cell reconstructions. At last, Section 3 considers the non-conservative gas
dynamics equations in Lagrangian coordinates and shows how the discontinuous recon-
struction strategy can be combined with the use of an approximate Riemann solver
while keeping the same accuracy in the shock computations. The last section gives the
main conclusions and perspectives of this work.

2. Application to a non-conservative toy model

In this section, we are interested in the numerical approximation of the weak so-
lutions of the following non-conservative system of two partial differential equations:



4 PATH-CONSERVATIVE IN-CELL DISCONTINUOUS RECONSTRUCTION SCHEMES











∂tu+∂x
u2

2
+u∂xv = 0,

∂tv+∂x
v2

2
+v∂xu = 0,

(x,t)∈R×R
+, (2.1)

where u=(u,v)t belongs to the state space Ω= {u∈R
2,u+v> 0}. This system can be

given the condensed form (1.1) where the non-Jacobian matrix A is defined by

A(u)=

(

u u
v v

)

. (2.2)

Such a model, which consists of two coupled Burgers equations, is probably the simplest
example of a non-conservative model. It has already been studied for instance in [5] and
can be understood as a simplified two-fluid model where u and v denote the velocity of
each fluid.
Let us state useful properties of the model (see again [5], or [23] for the basic definitions),
the proof of which is left to the reader.

Lemma 2.1. System (1.1) is strictly hyperbolic over Ω with eigenvalues

λ1(u)=0<λ2(u)=u+v,

and eigenvectors

r1(u)= (1,−1)t, r2(u)= (u,v)t.

The first characteristic field is linearly degenerate and the second characteristic field is
genuinely nonlinear. Moreover, the Riemann invariants are respectively given by

I1(u)=u+v, I2(u)=u/v.

Remark 2.1. We have implicitly assumed v 6=0 in the definition of I2. In the case
v=0 and for u∈Ω, the Riemann invariant is given by I2(u)= v/u.

Lemma 2.2. Smooth solutions of (1.1) obey the following additional conservation laws

∂t(u+v)+∂x
(u+v)2

2
=0, ∂t

( v

u+v

)

=0. (2.3)

More generally, for any convex function f from R to R, smooth solutions of (1.1) satisfy

∂tf(u+v)+∂x
(

∫ u+v

sf ′(s)ds
)

=0. (2.4)

In other words, the mapping (u,v)→f(u+v) is an entropy of (1.1).

In the forthcoming developments, the initial-value problem (1.1)-(1.2) is supple-
mented with the validity of the entropy inequality

∂tf(u+v)+∂x
(

∫ u+v

sf ′(s)ds
)

≤ 0 (2.5)

in the usual distributional sense and for any convex function f from R to R. As dis-
cussed in the introduction, such an entropy inequality is sufficient to prove existence and
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uniqueness of solutions close to a constant state when the system is conservative. Here,
we are clearly in a non-conservative setting and according to the path theory of [19], an
additional information encompassed in the so-called paths is needed for the problem to
be well-posed.

A first example of family of paths. Following Volpert [40], one can choose for φ the
straight lines family given by

φ(s,u,u)=u+s(u−u), ∀u,v∈Ω, ∀ s∈ [0,1].

In this case, (1.5) writes











−σ(u1−u0)+
(u1+u0)

2

(

(u1+v1)−(u0+v0)
)

=0,

−σ(v1−v0)+
(v1+v0)

2

(

(u1+v1)−(u0+v0)
)

=0.
(2.6)

Let us assume that u0 6=u1. Then, if u0+v0 6=u1+v1, it is easy to check that (2.6) can
be equivalently written

{

v1u0= v0u1,
σ= 1

2

(

(u0+v0)+(u1+v1)
)

,
(2.7)

while in the case u0+v0=u1+v1, meaning that the value of the first Riemann invariant
I1 is the same, we get σ=0 and the discontinuity is a contact discontinuity associated
with the first characteristic field.

Note that the condition u0+v0> 0 implies existence and uniqueness of u1=(u1,v1)
satisfying (2.7) for any given u0=(u0,v0) and σ. Conversely, condition u1+v1> 0 im-
plies existence and uniqueness of u0=(u0,v0) satisfying (2.7) for any given u1=(u1,v1)
and σ. In the following, we will use the notation

{

u0=ϕ(u1,σ),
σ= 1

2

(

(u0+v0)+(u1+v1)
)

,

where ϕ will be called a kinetic function.

A second example of family of paths. Following LeFloch [30] and Sainsaulieu [37],
φ can also be implicitly defined by adding a second-order diffusion tensor to (2.1):











∂tu+∂x
u2

2
+u∂xv = ε1∂xx(u+v), ε1> 0,

∂tv+∂x
v2

2
+v∂xu = ε2∂xx(u+v), ε2> 0.

(2.8)

In this case, a shock discontinuity (σ,u0,u1) is said to be admissible if there exists a
travelling wave solution of (2.8) such that:

u(x,t)=u(ξ), ξ=x−σt,

lim
ξ→−∞

u(ξ)=u0, lim
ξ→+∞

u(ξ)=u1.
(2.9)

It is shown in LeFloch [30] how to derive a family of paths consistent with this def-
inition. Berthon [5] used this definition and showed for system (2.1) that for any u0

in Ω and σ in ](u0+v0)/2,(u0+v0)[, there exists a unique state u1 6=u0 in Ω and a
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unique travelling wave solution (up to a translation) satisfying (2.9) and such that the
generalized Rankine-Hugoniot conditions (1.5) write











v1=
ε2

ε1+ε2

(

2σ−(u0+v0)
)

+
ε1v0−ε2u0

ε1+ε2
e

(

2−2(u0+v0)/σ
)

,

σ=
1

2

(

(u0+v0)+(u1+v1)
)

,
(2.10)

or equivalently











v0=
ε2

ε1+ε2

(

2σ−(u1+v1)
)

+
ε1v1−ε2u1

ε1+ε2
e

(

2−2(u1+v1)/σ
)

,

σ=
1

2

(

(u0+v0)+(u1+v1)
)

.
(2.11)

We note in particular that the exit state u1 actually depends on the shape of the
diffusion tensor, and more precisely on the ratio ε2/ε1. This is a characteristic of
non-conservative systems as illustrated in various contributions on this subject, see
for instance Raviart and Sainsaulieu [36], Sainsaulieu [37], Berthon and Coquel [6, 8],
Chalons and Coquel [13, 14]. We also refer to Berthon, Coquel and LeFloch [9]. Here
again, we will use the notation

{

u0=ϕ(u1,σ),
σ= 1

2

(

(u0+v0)+(u1+v1)
)

.

2.1. A path-conservative in-cell discontinuous numerical scheme. Let
us now turn to the numerical approximation of the solutions of our toy model. We first
introduce some notations and briefly recall the usual Godunov scheme. As we will see,
this scheme fails in approximating the correct shock solutions defined by a family of
paths φ, but it will be useful for approximating the smooth parts of the solutions, in
particular the rarefaction waves. We thus motivate and describe the proposed in-cell
discontinuous reconstruction strategy which allows in particular to compute exactly any
isolated admissible shock. This property is the key property to explain the success of
the approach for general initial data.

We introduce a constant space step ∆x and constant time step ∆t and we set ν=
∆t/∆x. The mesh interfaces are defined by xj+1/2= j∆x for j ∈Z and the intermediate
times by tn=n∆t for n∈N. As usual in the finite volume framework, we seek at each
time tn for an approximation un

j of the solution in the interval [xj−1/2,xj+1/2), j ∈Z.
Therefore, a piecewise constant approximate solution x→uν(x,t

n) of the solution u is
given by

uν(x,t
n)=un

j for all x∈Cj =[xj−1/2;xj+1/2), j ∈Z, n∈N.

When n=0, we set

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, for all j∈Z.

2.1.1. Failure of the classical Godunov scheme. The classical Godunov
scheme is composed of two steps: a first step in which the solution evolves in time
according to the PDE model under consideration, and a second step of projection onto
piecewise constant functions.
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Step 1: Evolution in time. In this first step, one solves the following Cauchy problem
{

∂tu(x,t)+A(u(x,t))∂xu(x,t)=0, x∈R,
u(x,0)=uν(x,t

n),
(2.12)

with the given family of paths for times t∈ [0,∆t]. Recall that x→uν(x,t
n) is piecewise

constant. Then, under the usual CFL restriction

∆t

∆x
max{|λi(u)|, i=1,2}≤

1

2
, (2.13)

for all the u under consideration, the solution of (2.12) is known by gluing together the
solutions of the Riemann problems set at each interface :

u(x,t)=ur(
x−xj+1/2

t
;un

j ,u
n
j+1) for all (x,t) ∈ [xj ,xj+1]× [0,∆t], (2.14)

where (x,t)→ur(
x
t ;uL,uR) denotes the self-similar solution of the Riemann problem






∂tu(x,t)+A(u(x,t))∂xu(x,t)=0, x∈R, t∈R
+,⋆

u(x,0)=

{

uL if x< 0,
uR if x> 0,

given in the Appendix, whatever uL and uR are in the phase space Ω. Recall that this
solution actually depends on the family of paths under consideration.

Step 2: Projection. In order to get a piecewise constant approximate solution on each
cell Cj at time tn+1, the solution x→u(x,∆t) given by (2.14) is simply averaged on Cj ,
as expressed by the following update formula:

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x,∆t)dt, j ∈Z. (2.15)

In the following, it will be useful to write (2.15) equivalently as

un+1
j =

1

2

(

un+1
j,L +un+1

j,R

)

, j∈Z, (2.16)

with

un+1
j,L =

2

∆x

∫ xj

xj−1/2

ur(
x−xj−1/2

∆t
;un

j−1,u
n
j )dx (2.17)

and

un+1
j,R =

2

∆x

∫ xj+1/2

xj

ur(
x−xj+1/2

∆t
;un

j ,u
n
j+1)dx. (2.18)

As illustrated on Figure 2.1 obtained with initial data

u0(x)= (u,v)0(x)=

{

(6,5) if x< 0.5,
(0.7,0.3) if x> 0.5,

(2.19)

and the second family of path with ǫ2= ǫ1, the numerical results provided by this scheme
are not satisfactory when a shock is present in the solution in the sense that the in-
termediate state is different from the exact one. On the contrary, if we consider for
instance ǫ2=10ǫ1 and

u0(x)= (u,v)0(x)=

{

(1,2) if x< 0.5,
(5,1) if x> 0.5,

(2.20)
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Fig. 2.1. u (left) and v (right) - Contact discontinuity followed by a shock wave - Final time
t=0.05 - 1000-point mesh
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Fig. 2.2. u (left) and v (right) - Contact discontinuity followed by a rarefaction wave - Final time
t=0.05 - 1000-point mesh

leading to a rarefaction wave, it works correctly in the sense that the intermediate state
is now correct, see Figure 2.2.

As clearly explained, for instance, in [5, 6, 8, 13, 14], the main reason of this failure
is the excessive numerical diffusion of the Godunov scheme across the shocks, which
disagrees with the underlying regularization operator at the discrete level. In other
words, the numerical diffusion plays a crucial role and must be controlled to make the
approximate and exact solutions coincide. If the numerical diffusion does not exactly
mimic the action of the regularization operator, the numerical solutions disagree with
the exact solutions. This is observed with the usual Godunov scheme but also with any
standard finite volume scheme.

The sensitiveness with respect to the numerical diffusion is typical of non-
conservative systems, but also appear in conservative systems (when the matrix A is
the Jacobian matrix of a flux function), when the system is hyperbolic but has at least
one characteristic field that is neither genuinely nonlinear, nor linearly degenerate, or
when it is not hyperbolic but mixed hyperbolic-elliptic. Such systems need also to be
closed by a kinetic relation, which is similar to the previous notion of path, and can give
rise to the so-called nonclassical shock waves, see for instance [31]. From a numerical
point of view, similar issues to those already discussed come out and approximating
nonclassical shocks is challenging because of the dependence on the underlying diffusion
mechanisms. Again, standard techniques are useless and a deeper analysis shows that
the failure can be related to the (un)control of the numerical diffusion.
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In order to overcome this difficulty, a new numerical approach was first proposed
in [10] (see also [3]) to compute nonclassical solutions to scalar conservation laws. The
proposed scheme is fully conservative on fixed meshes and has the property of exactly
capturing isolated nonclassical shocks. For such isolated discontinuities, the underlying
numerical diffusion thus reduces to the minimum, namely at one point, unlike standard
finite difference schemes. The method is based on an in-cell discontinuous reconstruc-
tion technique performed in each computational cell that may contain a nonclassical
shock. The next section proposes to extend this approach to the present setting of a
non-conservative system in order to properly compute the underlying (in some sense
nonclassical) shocks on a fixed mesh and satisfy at the same time the family of paths.

2.1.2. In-cell discontinuous reconstruction. Overview of the strategy. In the
previous sections, it was shown that the Godunov scheme is not a good candidate when
shocks are present in the solution, but it works correctly when the solution is smooth.
Therefore, we will first propose to keep on using the Godunov scheme “far away” from
shock discontinuities. On the contrary, in the vicinity of shock discontinuities, we will
follow the same approach as in [10] which consists in adding details in the piecewise
constant representation of the approximate solution on each cell Cj . More precisely,
we will reconstruct discontinuities in the relevant cells Cj and use them to define un+1

j

instead of simply using the constant values un
j−1, u

n
j and un

j+1 like in the Godunov
scheme. As we will see hereafter, such an approach will allow to exactly compute isolated
shock discontinuities in the sense that for such solutions un

j will equal the average of
the exact solution on the cell Cj . The corresponding numerical discontinuity will then
be diffused on one cell at most. Such a sharp control of the numerical diffusion is at the
core of the success of the strategy.

The reconstruction procedure. It is now a matter of defining which cells are to be
concerned with the reconstruction procedure as well as the reconstructed discontinuities
themselves, but also the strategy to evaluate un+1

j using the new details provided by
the discontinuous reconstructions. Let us consider the cell Cj and proceed as follows.
Assume that at time tn,

(u+v)nj−1> (u+v)nj+1. (2.21)

According to the Riemann solver, we consider that a shock discontinuity is expected
to appear locally around the cell Cj and to develop at the next times t> tn. Indeed,
such a shock is present in the Riemann solution associated with the inital states un

j−1

and un
j+1. Hence and with clear notations, we are tempted to introduce in the cell

Cj the left and right states uj,l=u∗(u
n
j−1,u

n
j+1) and un

j,r=un
j+1 of the shock which is

expected to be present in the Riemann solution associated with un
j−1 and un

j+1. Since
we are considering the cell Cj , we require that the reconstructed discontinuity between
uj,l and uj,r is located inside Cj at a position

x̄u
j =xj−1/2+dn,uj ∆x, (2.22)

for the u component, and

x̄v
j =xj−1/2+dn,vj ∆x, (2.23)

for the v component, for some dn,uj and dn,vj in [0,1]. Note indeed that in general, we will
consider that the positions of the discontinuities may be different for both components
u and v, see Figure 2.3. Regarding the position of the discontinuities in the cell, it
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xn
j−1 xn

j+1xn
j

dn,u

un
j−1

un
j+1

un
j

u∗(u
n
j−1,u

n
j+1)

Fig. 2.3. Reconstruction of a shock in cell Cj . Example of the u component, assuming that the
cell j starts at 0 and has length 1; otherwise, just replace dn,u by xj−1/2+dn,u∆x. A similar drawing
could be done for the v component.

is natural to impose that the reconstruction procedure has to be conservative, which
writes

dn,uj un
j,l+(1−dn,uj )un

j,r=un
j , (2.24)

or equivalently,

dn,uj =
un
j,r−un

j

un
j,r−un

j,l

, (2.25)

for the u component, and

dn,vj vnj,l+(1−dn,vj )vnj,r = vnj , (2.26)

or equivalently,

dn,vj =
vnj,r−vnj
vnj,r−vnj,l

, (2.27)

for the v component. Clearly, it is possible to reconstruct such discontinuities inside the
cell Cj provided that

0≤dn,uj =
un
j,r−un

j

un
j,r−un

j,l

≤ 1, (2.28)

and

0≤dn,vj =
vnj,r−vnj
vnj,r−vnj,l

≤ 1, (2.29)

which gives two additional conditions for the in-cell reconstruction procedure to make
sense.
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To conclude the definition of the reconstruction strategy, let us mention that still
according to the Riemann solver, it is natural to consider that the speed of propagation
σj,l,r of the reconstructed discontinuity equals σ(un

j−1,u
n
j+1) for both components u and

v, where of course σ(un
j−1,u

n
j+1) denotes the exact value of the speed of propagation of

the shock in the Riemann solution associated with un
j−1 and un

j+1.

Update formulas. At this stage, the reconstructed discontinuity is completely de-
fined, as well as the reconstruction criteria (2.21), (2.28) and (2.29) for this reconstruc-
tion to take place. It thus remains to define the update formula for un+1

j , as well as

the influence of the reconstruction on the update formulas of un+1
j−1 and un+1

j+1 . Since
σ(un

j−1,u
n
j+1)> 0, note from now on that for the sake of simplicity and in order to avoid

dealing with the interaction of two reconstructed discontinuities in adjacent cells, no
reconstruction will be considered in the cell Cj+1.

The cell Cj. In this cell, we consider that the system under consideration is com-
pletely solved by the reconstructed discontinuity, and thus writes

∂tu=−[A(u)∂xu]
u
φδx−x̄u

j =σ(un
j−1

,un
j+1

)t

for the u component, and

∂tv=−[A(u)∂xu]
v
φδx−x̄v

j=σ(un
j−1

,un
j+1

)t

for the v component, where, with clear notations, [A(u)∂xu]
u,v
φ is given by

−[A(u)∂xu]
u
φ=−σ(un

j−1,u
n
j+1)(u

n
j,r−un

j,l)

for the u component, and

−[A(u)∂xu]
v
φ=−σ(un

j−1,u
n
j+1)(v

n
j,r−vnj,l)

for the v component. Integrating in space and time, we get for the u component

un+1
j =un

j −
1

∆x

∫ xj+1/2

xj−1/2

∫ tn+∆t

tn
[A(u)∂xu]

u
φδx−x̄u

j =σ(un
j−1

,un
j+1

)t,

namely

un+1
j =un

j −
σ(un

j−1,u
n
j+1)(u

n
j,r−un

j,l)

∆x
×min(∆t,∆tu) (2.30)

where ∆tu is the time needed by the reconstructed discontinuity in u to reach the
interface xj+1/2, that is to say

∆tu=
1−dn,uj

σ(un
j−1,u

n
j+1)

∆x.

For the v component

vn+1
j = vnj −

1

∆x

∫ xj+1/2

xj−1/2

∫ tn+∆t

tn
[A(u)∂xu]

v
φδx−x̄v

j=σ(un
j−1

,un
j+1

)t,

namely

vn+1
j = vnj −

σ(un
j−1,u

n
j+1)(v

n
j,r−vnj,l)

∆x
×min(∆t,∆tv) (2.31)
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where ∆tv is the time needed by the reconstructed discontinuity in v to reach the
interface xj+1/2,

∆tv =
1−dn,vj

σ(un
j−1,u

n
j+1)

∆x.

Formulas (2.30) and (2.31) are equivalent to setting un+1
j =un

j,l if ∆t is greater than
the times needed by the reconstructed discontinuities on u and v to reach the interface
xj+1/2. If not, they are equivalent to averaging the reconstructed discontinuities at their
new position in the cell Cj after moving at velocity σj,l,r for a time of length ∆t.

The cell Cj+1. If ∆t is greater than the times needed by the reconstructed dis-
continuities on u and v to reach the interface xj+1/2, it is clear that the reconstructed
discontinuities are expected to influence the update formulas on the cell Cj+1. However,
under the CFL condition (2.13), the reconstructed discontinuities in u and v in the cell
Cj cannot reach the middle point xj+1 of the cell Cj+1 and may thus influence the half
interval [xj+1/2,xj+1) only. Since no reconstruction is considered in the cell Cj+1, we
consider the usual update formula

un+1
j+1 =

1

2

(

un+1
j+1,L+un+1

j+1,R

)

but with (component by component)

un+1
j+1,L=un

j+1−
2σ(un

j−1,u
n
j+1)(u

n
j,r−un

j,l)

∆x
×
(

∆t−min(∆t,∆tu)
)

in order to take into account the propagation of the reconstructed discontinuities inside
the half interval [xj+1/2,xj+1). Note that compared to the usual Godunov scheme, the

value of un+1
j+1,R is unchanged.

To conclude the proposed numerical scheme, let us underline that when no recon-
struction takes place in the cells Cj−1 and Cj , we use the classical Godunov scheme,
namely

un+1
j =

1

2

(

un+1
j,L +un+1

j,R

)

with the definitions (2.17) and (2.18).

Summary. To sum up, the update value of a given cell Cj is kept unchanged with
respect to the Godunov scheme if no reconstruction takes place in the cells Cj−1 and
Cj , the update value of a given cell Cj is completely changed if a reconstruction takes
place in the cell Cj , and the update value of a given cell Cj is partially changed if no
reconstruction takes place in the cell Cj but a reconstruction takes place in the cell
Cj−1. In this case, un+1

j,L is changed but not un+1
j,R .

At last, recall that a reconstruction is considered in the cell Cj if and only if the
criteria (2.21), (2.28) and (2.29) are satisfied and the criteria (2.21), (2.28) and (2.29)
adapted to the cell Cj−1 are not satisfied. Following [10], let us prove an important
property of the proposed scheme, which explains the very good results obtained in the
next section. The result states that isolated shock discontinuities are exactly captured
by the scheme and contain no spurious numerical diffusion.

Theorem 2.1. Assume that u0
j =uL if j≤ 0, u0

j =uR if j≥ 1 and that uL and uR are
two constant states in the phase space Ω such that they can be joined by an admissible
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shock discontinuity. In other words, the Riemann solution associated with these left and
right states is given by u(x,t)=uL if x<σt and u(x,t)=uR if x>σt where σ is the
speed of propagation given by

σ=
1

2

(

(uL+vL)+(uR+vR)
)

according to the exact Riemann solver. Then the proposed scheme provides an exact
numerical solution on each cell Cj in the sense that

un
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x,tn)dx, j ∈ Z, n ∈ N. (2.32)

In particular, the numerical discontinuity is diffused on one cell at most.

Proof. Let us first notice that there is no relevant reconstruction in the first time
iteration since the only cells which could be affected are j=0 and j=1 but by conserva-
tion we necessarily have d0,u0 =d0,v0 =1 and d0,u1 =d0,v1 =0. In other words, considering
a reconstructed discontinuity in these cells gives back the original averaged value. The
Godunov scheme is then used during the first step and as an immediate consequence,
equality (3.13) is proved for the first iterate by definition of the Godunov scheme. Note
that we have in particular

u1
1=uR−σ

∆t

∆x
(uR−uL)

component by component.

Let us now see what happens in the next time iteration. It is first clear from
above that only C1 is to be concerned with a reconstructed discontinuity between uL

and uR. Interestingly, by conservativity the reconstructed discontinuities in u and v
are necessarily located at the exact position of the solution, namely at the position
x=xj−1/2+σ∆t. In other words, we reconstruct the exact solution at time t=∆t. To
get the required identity (2.32) for the second iterate, it is sufficient to focus on the two
cells C1 and C2 (the other ones are trivial) and for instance on the u variable (the v
variable can be dealt with in a similar way). Let us first assume that ∆tu≤∆t. The
numerical scheme gives

u2
1=u1

1−
σ(uR−uL)

∆x
×∆t,

that is to say

u2
1=uR−σ

∆t

∆x
(uR−uL)−

σ(uR−uL)

∆x
×∆t=uR−σ

2∆t

∆x
(uR−uL)

and

u2
2=u1

2=uR,

which clearly coincides with the average of the exact solution after two time steps ∆t
on the cells C1 and C2. Let us now assume that ∆tu≥∆t so that the exact shock will
pass through the interface x1+1/2 and be located at position

x=x1+1/2+σ(∆t−∆tu)



14 PATH-CONSERVATIVE IN-CELL DISCONTINUOUS RECONSTRUCTION SCHEMES

in the cell C2. On the other hand, the numerical scheme gives

u2
1=u1

1−
σ(uR−uL)

∆x
×∆tu,

that is to say

u2
1=uR−σ

∆t

∆x
(uR−uL)−

σ(uR−uL)

∆x
×

∆x−σ∆t

σ
=uL

and

u2
2=

1

2

(

uR−
2σ(uR−uL)

∆x
×(∆t−∆tu)+uR

)

,

or equivalently

u2
2=uR−σ

(∆t−∆tu)

∆x
(uR−uL)

which again clearly coincides with the average of the exact solution on the cells C1 and
C2 after two time steps. And the process is going on in a similar way for the next time
iterations, which proves the result.

2.2. Numerical experiments. In this section, we illustrate the behavior of
the proposed scheme based on in-cell discontinuous reconstructions.

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0  0.2  0.4  0.6  0.8  1

u exact
u reconstruction

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

v exact
v reconstruction

Fig. 2.4. u (left) and v (right) - Isolated shock - Final time t=0.2 - 100-point mesh

Test 1. In this first test case, we consider an isolated shock associated with the
second family of path with ǫ1= ǫ2 and associated with the left and right states of the
following initial data,

u0(x)= (u,v)0(x)=

{

(uL,vL) if x< 0.5,
(uR,vR) if x> 0.5,

=

{

(0,1) if x< 0.5,
(−0.00670855951629595,0.50670855951629590) if x> 0.5.

(2.33)

The speed of propagation is σ=3/4. As we can see on Figure 2.4, and in agreement with
our theorem, the numerical solution is exact and contains only one point of numerical
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Fig. 2.5. Dn - Isolated shock - 100-point mesh
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Fig. 2.6. u (left) and v (right) - Contact discontinuity followed by a shock - Final time t=0.05 -
100-point mesh

diffusion. On Figure 2.5, we plot the numerical entropy dissipation Dn with respect to
the time tn and defined by

Dn=
1

2

(

∑

j

∆x(un+1
j +vn+1

j )
)2

−
∑

j

∆x
(un

j +vnj )
2

2
+∆t

( (uR+vR)
3

3
−
(uL+vL)

3

3

)

where the sum is taken over the mesh cells. We observe that it is nonpositive as expected.

Test 2. The second test case is the same as the one considered on Figure 2.1, and
we now clearly see that the proposed strategy allows to properly compute the non-
conservative shock and the intermediate state, even with a coarse mesh made of 100
points. The results are given on Figure 2.6.

Test 3. The last test case considers a periodic simulation associated with the initial
data given by

u0(x)= (u,v)0(x)=

{

(uL,vL) if x< 0.4 or x> 0.6,
(uR,vR) otherwise,

(2.34)

with (uL,vL)= (0,1) and (uR,vR)= (5,2), and again the second family of paths with
ǫ1= ǫ2. On Figure 2.7 we compare the numerical quantities u+v obtained with our
scheme and the classical Godunov scheme. Recall that this quantity is conserved so
that both methods are expected to give the same solution. Again, we clearly see that
the new scheme is less diffusive than the Godunov one at the point of discontinuity of
the N -wave profile.



16 PATH-CONSERVATIVE IN-CELL DISCONTINUOUS RECONSTRUCTION SCHEMES

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  0.2  0.4  0.6  0.8  1

u+v Godunov
u+v reconstruction

Fig. 2.7. u+v - Periodic simulation - Final time t=1 - 600-point mesh

3. Application to the gas dynamics equations in Lagrangian coordinates

In this section, we apply the in-cell reconstruction technique to the following gas
dynamics equations in Lagrangian coordinates:







∂tτ−∂xu=0,
∂tu+∂xp=0,
∂tE+∂xpu=0,

(3.1)

where τ > 0 represents the inverse of a density, u is the velocity and p=p(τ,e)> 0 is
the pressure. Here e> 0 denotes the internal energy and satisfies E= e+u2/2. For the
sake of simplicity, we consider a perfect gas equation of state p(τ,e)= (γ−1)e/τ where
γ> 1. Recall that (3.1) is strictly hyperbolic with eigenvalues λ0=0 and λ±=±c,
c=

√

γp/τ , and that the characteristic field associated with λ0 is linearly degenerate
and the ones associated with λ± are genuinely nonlinear [23]. On the other hand, the
admissible solutions of (3.1) are selected by the Lax entropy inequalities, which here
are equivalent to σ(τ+−τ−)> 0 where τ+ and τ− are the left and right states of the
underlying discontinuity, and σ its speed of propagation.

At this stage, (3.1) is written in a classical conservative form which does not raise
any difficulty from a numerical point of view since usual Godunov-type schemes can be
used, see [23] again. However, the following non-conservative formulation of (3.1) can
be easily obtained







∂tτ−∂xu=0,
∂tu+∂xp=0,
∂te+p∂xu=0,

(3.2)

where only the last equation on the total energy has been replaced with an equation on
the internal energy. Setting u=(τ,u,e), the matrix A(u) is given by

A(u)=





0 −1 0
∂τp(τ,e) 0 ∂ep(τ,e)

0 p(τ,e) 0



.

In order to define the admissible solutions of (3.2), we consider again the path theory
of Dal Maso, LeFloch and Murat. Here, a very simple choice of path is defined for all
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u0 and u1 such that σ(τ1−τ0)> 0 in a linear way with respect to τ , u and p, namely






τ(s)= τ0+s(τ1−τ0),
u(s)=u0+s(u1−u0),
p(s)=p0+s(p1−p0),

for all s∈ [0,1]. Actually, it turns out that easy calculations show that the generalized
jump relations (1.5) of the path theory boil down to the classic Rankine-Hugoniot
relations applied to (3.1), namely







σ(τ1−τ0)+(u1−u0)=0,
−σ(u1−u0)+(p1−p0)=0,
−σ(E1−E0)+(p1u1−p0u0)=0,

(3.3)

or equivalently










σ(τ1−τ0)+(u1−u0)=0,
−σ(u1−u0)+(p1−p0)=0,

−σ(e1−e0)+
1

2
(p1+p0)(u1−u0)=0.

(3.4)

In other words and with such a choice of path, both conservative and non-conservative
formulations (3.1) and (3.2) select the same solutions.

3.1. A Roe-type path-conservative approximate Riemann solver. We
begin with the definition of a Roe-type path-conservative approximate Riemann solver
associated with (3.2) and a given path φ. According to [38] and [35], it is based on a
Roe linearization Aφ such that

(1) for all uL and uR, Aφ(uL,uR) has 3 distinct eigenvalues,

(2) for all u, Aφ(u,u)=A(u),

(3) for all uL and uR,

Aφ(uL,uR)(uR−uL)=

∫ 1

0

A(φ(s,uL,uR))∂sφ(s,uL,uR)ds.

The three properties are satisfied if we set

Aφ(uL,uR)=A(u), u=u(uL,uR)= (τ,u,e)

with

τ =
τL+τR

2
, u=

uL+uR

2
, e=

p τ

γ−1
and p=

pL+pR
2

,

see [34]. The approximate Riemann solution constructed from the Roe linearization is
the solution of







∂tu(x,t)+Aφ(uL,uR)∂xu(x,t)=0,

u(x,t=0)=

{

uL if x< 0,
uR if x> 0,

given by

u(x/t;uL,uR)=















uL if x/t<−σ(uL,uR),
u∗
L if −σ(uL,uR)<x/t< 0,

u∗
R if 0<x/t<σ(uL,uR),

uR if x/t>σ(uL,uR),

(3.5)
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where the left and right intermediate states are easily obtained from the left and right
eigenvectors lk and rk, k=1,2,3 of Aφ(uL,uR), respectively, namely

u∗
L=(uR,l1)r1+

3
∑

k=2

(uL,lk)rk, u∗
R=

2
∑

k=1

(uR,lk)rk+(uL,l3)r3,

and σ(uL,uR)= c(u(uL,uR))=
√

γp/τ(uL,uR). For the sake of clarity, it will be useful
to have in mind the wave pattern of this solution, which is recalled on the next figure.

−σ(uL,uR) σ(uL,uR)0

u∗
L u∗

RuL uR

x=0

Fig. 3.1. Approximate Riemann solution constructed from the Roe linearization

Note that once the solution is defined, one can denote by x→ ũ(x,t) the piecewise
constant approximate solution obtained by glueing together the Roe-type approximate
solutions at each interface, that is to say

ũ(x,t)=u((x−xj+1/2)/t;u
n
j ,u

n
j+1)

for all (x,t)∈ [xj ,xj+1)× [0,∆t), j∈Z, n∈N. One can also define a Roe-type path-
conservative scheme according to [35] as any Godunov-type scheme by averaging the
solution on each cell [xj−1/2,xj+1/2), namely

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ũ(x,∆t)dx=
1

2
(un+1

j,L +un+1
j,R ), (3.6)

with

un+1
j,L =

2

∆x

∫ xj

xj−1/2

ũ(x,∆t)dx

=
2

∆x

(

σ(un
j−1,u

n
j )∆tu∗

R(u
n
j−1,u

n
j )+(

∆x

2
−σ(un

j−1,u
n
j )∆t)un

j

)

and

un+1
j,R =

2

∆x

∫ xj+1/2

xj

ũ(x,∆t)dx

=
2

∆x

(

σ(un
j ,u

n
j+1)∆tu∗

L(u
n
j ,u

n
j+1)+(

∆x

2
−σ(un

j ,u
n
j+1)∆t)un

j

)

,

under the CFL restriction

∆tmax
j∈Z

|σ(un
j ,u

n
j+1)|≤

∆x

2
. (3.7)

In the sequel, we will also use the notation σn
j+1/2=σ(un

j ,u
n
j+1). However, such a Roe-

type path conservative scheme fails in computing correctly the discontinuous solutions of
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our system, see [1], and we now aim at applying the in-cell discontinuous reconstruction
method instead. As we will see, such a strategy allows to obtain a perfect agreement
between the exact and numerical solutions, and even the exact capturing of isolated
discontinuities.

3.2. A path-conservative in-cell discontinuous numerical scheme. The
design principle is the same as for the toy model in Section 2.1. The main differences
here are the following: First, the exact Riemann solver will be replaced with a Roe-type
approximate Riemann solver and second, the local Riemann solutions at each interface
may contain two discontinuities propagating with velocities having opposite signs, unlike
the toy model for which only one discontinuity propagating with a positive speed could
occur. Apart from this, the idea is actually the same, namely to keep on using the
classic Godunov-type scheme given above “far away” from shock discontinuities, and to
add details in the piecewise constant representation of the approximate solution in the
vicinity of shock discontinuities.

Reconstruction procedure. Let us first define which cells j are to be concerned with
the reconstruction procedure. We consider the cell Cj and proceed as follows. Assume
that at time tn,

un
j−1>un

j+1. (3.8)

According to the entropy condition σ(τ+−τ−)> 0 and the Rankine-Hugoniot relation
σ(τ+−τ−)=−(u+−u−) across a shock discontinuity, we consider that a shock discon-
tinuity is expected to appear locally around the cell Cj when (3.8) holds true. This is
quite natural since such a shock is actually present in the Riemann solution associated
with the inital states un

j−1 and un
j+1 and which will develop at the next times t> tn.

Hence, we are tempted to introduce in the cell Cj a discontinuity given by the Roe-
type path-conservative approximate Riemann solver proposed in the previous section.
More precisely and with clear notations the left and right states uj,l and uj,r of the
reconstructed solution are defined by

uj,l=un
j−1 and un

j,r=u∗
L(u

n
j−1,u

n
j+1) if (τnj+1−τnj−1)< 0,

and

uj,l=u∗
R(u

n
j−1,u

n
j+1) and un

j,r=un
j+1 if (τnj+1−τnj−1)> 0.

The speed of propagation σj,l,r of the reconstructed discontinuity on the cell j is natu-
rally defined by −σ(un

j−1,u
n
j+1) if (τ

n
j+1−τnj−1)< 0 and σ(un

j−1,u
n
j+1) if (τ

n
j+1−τnj−1)>

0, where of course ±σ(un
j−1,u

n
j+1) refer to the speeds of propagation of the disconti-

nuities in the Roe-type approximate Riemann solver associated with the initial states
un
j−1 and un

j+1.

Since we are considering the cell Cj , we also require that the reconstructed dis-
continuity associated with those left and right states is located inside Cj at a position

x̄α
j =xj−1/2+dn,αj ∆x, (3.9)

with α= τ,u,e and for some dn,αj in [0,1] which may vary with α. In order to define
dn,αj , it is natural to impose that the reconstruction procedure is conservative, namely

dn,αj αn
j,l+(1−dn,αj )αn

j,r=αn
j , (3.10)
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or equivalently,

dn,αj =
αn
j,r−αn

j

αn
j,r−αn

j,l

, (3.11)

for the α= τ,u,e component. Clearly, it is possible to reconstruct the discontinuities
provided that

0≤dn,αj ≤ 1, (3.12)

which gives three additional conditions for the in-cell reconstruction procedure to make
sense.

At last, for the sake of simplicity and in order to avoid dealing with the interaction of
two reconstructed discontinuities in adjacent cells, no reconstruction will be considered
in the cell Cj if (3.8) and (3.12) adapted to the cell Cj+1 hold true and σj+1,l,r < 0,
while no reconstruction will be considered in the cell Cj−1 if (3.8) and (3.12) adapted
to the cell Cj−1 hold true and σj−1,l,r > 0.

Remark 3.1. In practice, we also impose to the reconstructed states to be admissible
in the sense τ >0 and e> 0, which is not guaranteed by the Roe approximate solver.

Update formulas. Let us now give the update formulas for un+1
j , as well as the

influence of the in-cell reconstruction on the update formulas for un+1
j−1 and un+1

j+1 since
σj,l,r may be positive or negative. We follow exactly the same approach as for the toy
model, which leads to the reconstructed discontinuity propagating with a positive speed
in the cell Cj , and that no reconstruction will be considered in the cell Cj−1 if the
reconstructed discontinuity propagates with a negative speed in the cell Cj .

The case σj,l,r > 0 and the cell Cj. We set

αn+1
j =αn

j −
σj,l,r(α

n
j,r−αn

j,l)

∆x
×min(∆t,∆tα)

where ∆tα is the time needed by the reconstructed discontinuity in α= τ,u,e to reach
the interface xj+1/2, namely

∆tα=
1−dn,αj

σj,l,r
∆x.

The case σj,l,r > 0 and the cell Cj+1. Under the CFL condition (2.13), the recon-
structed discontinuities in the cell Cj cannot reach the middle point xj+1 of the cell Cj+1

and may thus influence only the half interval [xj+1/2,xj+1). Since no reconstruction is
considered in the cell Cj+1, we consider the usual update formula

un+1
j+1 =

1

2

(

un+1
j+1,L+un+1

j+1,R

)

but with (component by component)

αn+1
j+1,L=αn

j+1−
2σj,l,r(α

n
j,r−αn

j,l)

∆x
×
(

∆t−min(∆t,∆tα)
)

.

Note that compared to the usual Godunov scheme, the value of αn+1
j+1,R will be changed

if and only if an in-cell reconstruction takes place in cell Cj+2.



CHRISTOPHE CHALONS 21

The case σj,l,r > 0 and the cell Cj−1 (and no reconstruction in this cell). Under the
CFL condition (2.13), the reconstructed discontinuities in the cell Cj cannot influence
the cell Cj−1 farther than xj−1. Since we consider the case where no reconstruction is
considered in the cell Cj−1, we consider the usual update formula

un+1
j−1 =

1

2

(

un+1
j−1,L+un+1

j−1,R

)

but with (component by component)

αn+1
j−1,R=αn

j−1−
2σj,l,r(α

n
j−1−αn

j,l)

∆x
∆t.

The case σj,l,r < 0 and the cell Cj . We follow along the same lines as above which leads
to the same update formulas for τ , u and e, namely

αn+1
j =αn

j −
σj,l,r(α

n
j,r−αn

j,l)

∆x
×min(∆t,∆tα)

component by component, where ∆tα is now the time needed by the reconstructed
discontinuity in α to reach the interface xj−1/2, namely

∆tα=
dn,αj

|σj,l,r|
∆x.

The case σj,l,r< 0 and the cell Cj−1. Under the CFL condition (2.13) and as before,
the reconstructed discontinuities in the cell Cj cannot reach the middle point xj−1 of
the cell Cj−1 and may thus influence the half interval [xj−1,xj−1/2) only. Since no
reconstruction is considered in the cell Cj−1, we consider the usual update formula

un+1
j−1 =

1

2

(

un+1
j−1,L+un+1

j−1,R

)

but with (component by component)

αn+1
j−1,R=αn

j−1−
2σj,l,r(α

n
j,r−αn

j,l)

∆x
×
(

∆t−min(∆t,∆tα)
)

.

Note that compared to the usual Godunov scheme, the value of αn+1
j−1,L will be changed

if and only if an in-cell reconstruction with positive speed of propagation takes place in
cell Cj−2.

The case σj,l,r < 0 and the cell Cj+1 (and no reconstruction in this cell). Under the
CFL condition (2.13), the reconstructed discontinuities in the cell Cj cannot influence
the cell Cj+1 farther than xj+1. Since we consider the case where no reconstruction is
considered in the cell Cj+1, we consider the usual update formula

un+1
j−1 =

1

2

(

un+1
j−1,L+un+1

j−1,R

)

but with (component by component)

αn+1
j+1,L=αn

j,r−
2σj,l,r(α

n
j+1−αn

j,r)

∆x
∆t.

The case with no reconstruction in the cells Cj and Cj±1.
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At last and to conclude the proposed numerical scheme, let us mention that when no
reconstruction takes place in the cells Cj−1, Cj and Cj+1, we use the classical Godunov-
type scheme, namely

un+1
j =

1

2

(

un+1
j,L +un+1

j,R

)

.

Similar to the toy model, one can easily prove that the scheme satisfies by construction
the following theorem.

Theorem 3.1. Assume that u0
j =uL if j≤ 0, u0

j =uR if j≥ 1 and that uL and uR are
two constant states in the phase space Ω such that they can be joined by an admissible
(entropic) shock discontinuity. In other words, the Riemann solution associated with
these left and right states is given by u(x,t)=uL if x<σt and u(x,t)=uR if x>σt
where σ is the speed of propagation given by

σ=±

√

−
pR−pL
τR−τL

.

Then the proposed scheme provides an exact numerical solution on each cell Cj in the
sense that

un
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x,tn)dx, j ∈ Z, n ∈ N. (3.13)

In particular, the numerical discontinuity is diffused on one cell at most.

3.3. Numerical experiments. We now propose several test cases to illustrate
the behavior of the scheme. The adiabatic coefficient is set to γ=1.4. We compare the
solutions with the ones given by the original path-conservative scheme applied to (3.1)
or by a classical conservative scheme applied to (3.2). The domain is [0,1] and the CFL
restriction is 0.45. The first two cases are such that exact solutions are either an isolated
discontinuity or two shock discontinuities starting from the same right state. The last
test case is inspired from the first test case of [2] and has a large pressure jump.

Test 1. The first test case is an isolated shock associated with the initial data

(τ,u,p)0(x)=
(2.09836065573770281,2.3046638387921279,1.0) if x< 0.5,
(8.0,0.0,0.1) otherwise.

The speed of propagation is 0.3905124837953326544238 and the final time of the simu-
lation is t=0.5. We clearly see on Figure 3.2 that the original path-conservative scheme
fails while Figure 3.3 shows a perfect agreement between our scheme and the exact solu-
tion. Recall that our scheme is exact in this case and therefore captures the discontinuity
with only one point of numerical diffusion.

Test 2. The second test case is a Riemann problem leading to three waves, namely
two shocks and one contact discontinuity, and corresponds to the following initial data,

(τ,u,p)0(x)=
(5.0,3.323013993227,0.481481481481) if x< 0.5,
(8.0,0.0,0.1) otherwise.

The 3-shock is the same as in the previous test case. The density of the first shock goes
from 5.0 to 3.0 and its speed of propagation is 0.509175077217. The final time is 0.5.
Again, we observe on Figures 3.4 and 3.5 that the original path-conservative scheme
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Fig. 3.2. τ - Test 1 - Classical path-conservative scheme - Final time t=0.5 - 300-point mesh
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Fig. 3.3. τ (top left), u (top right) and p (bottom) - Test 1 - Our scheme - Final time t=0.5 -
300-point mesh
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Fig. 3.4. τ - Test 2 - Classical path-conservative scheme - Final time t=0.5 - 300-point mesh
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Fig. 3.5. τ (top left), u (top right) and p (bottom) - Test 2 - Our scheme - Final time t=0.5 -
300-point mesh

fails and the new one succeeds and properly computes the shocks without numerical
diffusion.

On Figure 3.6, we plot the numerical energy dissipation with respect to time and
defined by

Dn=
∑

j

∆xEn+1
j −

∑

j

∆xEn
j +∆t(pRuR−pLuL)

where the sum is taken over the mesh cells. This quantity is clearly zero for a conserva-
tive scheme. It is also expected to converge to zero with the mesh size for a convergent
non-conservative scheme since our choice of path is equivalent to the classical Rankine-
Hugoniot relations applied to the conservative system. It is actually the case for our
scheme based on in-cell reconstructions. Interestingly, we observe that the energy dis-
sipation oscillates around zero for a given mesh (the amplitude goes to zero with the
mesh size).

Test 3. At last, we conclude this section with a more difficult test case taken from [2]
and with a large pressure jump in the initial data given by

(τ,u,p)0(x)=
(1/1185,0,2.0e11) if x< 0.5,
(1/1185,0,1.0e5) otherwise,

where the density, velocity and pressure units are respectively kg/m3, m/s, and Pa.
The final time of simulation is 2e−8 and the mesh is made of 1000 points. We compare
on Figure 3.7 the solution given by our scheme with the one given by the classical path-
conservative scheme but applied directly to the conservative variable τ , u and E, so
that it approximates correctly the solution in this case since both the system and the
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Fig. 3.6. Energy dissipation - Test 2 - Our scheme - Final time t=0.5 - 300-point mesh

scheme are conservative. Here again, we see that our (non-conservative) scheme gives
similar results and thus is also able to properly approximate the exact solution.
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Fig. 3.7. τ (top left), u (top right) and p (bottom) - Test 3 - Final time t=2e−8 - 1000-point mesh

4. Conclusion and perspectives

We have introduced the basics of the so-called path-conservative in-cell discon-
tinuous reconstruction schemes for the numerical approximation of shock solutions in
non-conservative systems. By basics, we mean that it has been applied to quite sim-
ple systems, namely a toy model and the non-conservative gas dynamics equations in
Lagrangian coordinates. The first (respectively second) system has one (resp. two)
characteristic fields leading to shocks, but in both cases the sign of the corresponding
characteristic speed is known a priori. The next steps are to consider systems for which
the sign of the characteristic speeds depends on the state value, like for instance the
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gas dynamics equations in Eulerian coordinates and also to consider non-conservative
systems which do not admit an equivalent conservative formulation like the one consid-
ered in the present paper. One can think for instance of systems arising in turbulence
modeling or geophysical flows.

It is also important to note that a key property to make the in-cell discontinuous
reconstruction approach successful, and in particular to have the validity of the theorem
stating that it gives the exact solution in the case of isolated shocks, lies in the fact
that the underlying Riemann solver (exact or of path-conservative Roe type) is able to
provide an exact solution in such a case of an isolated shock discontinuity. This there-
fore emphasizes the need for the development of approximate and entropy-satisfying
Riemann solvers which are able to exactly reproduce isolated shocks, which is to be
proposed in a forthcoming contribution too.

At last, the scheme is first-order accurate in its present form, although it is ∞-
accurate for isolated shocks. The extension to higher order of accuracy is also a current
investigation. In particular, using the general high-order path-conservative formalism
provides a nice opportunity to extend the present approach and design new high-order
finite volume solvers that do not introduce any numerical viscosity on the propagation
of isolated shocks, and to explore the extension to multidimensional problems.

Acknowledgments. The author is thankful to Frédéric Coquel and Pascal Jaisson
for useful discussions on this work. The author is also very grateful to Manuel J. Castro
Dı́az and Tomás Morales de Luna for pointing out strong connections between the
path-conservative methods and the numerical methods proposed here, and suggesting
extensions to high-order accuracy and multidimensional setting in that direction.

Appendix. Exact Riemann solver for the non-conservative toy model.

In this appendix, we briefly give the solution to the Riemann problem (2.1)-(2.5) with
initial condition given by

u(x,0)=u0(x)=

{

uL if x< 0,
uR if x> 0,

(5.1)

for two constant states uL and uR in Ω. By Lemma 2.1, this solution is expected to be
made of two simple waves, namely a stationary contact discontinuity associated with
λ1 from uL to an intermediate state u⋆ and a nonlinear wave associated with λ2 from
u⋆ to uR. The latter is either a shock discontinuity satisfying the generalized Rankine-
Hugoniot relations (1.5) and the entropy inequality (2.5) in the sense of distributions,
or a rarefaction wave. Let us go further into details.

Contact discontinuities. As is customary, the set C1(uL) of admissible states u⋆

that can be joined to uL on the right by a contact discontinuity associated with λ1 is
defined thanks to the Riemann invariants. Here we get

C1(uL)= {u⋆=(u⋆,v⋆)
t∈Ω,I1(u⋆)= I1(uL)}

or equivalently

C1(uL)= {u⋆=(u⋆,v⋆)
t∈Ω,u⋆+v⋆=uL+vL}.

Given u⋆ in C1(uL), the stationary contact discontinuity solution of (1.1) is then defined
by

u(x,t)=

{

uL if x< 0,
u⋆ if x> 0.
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Rarefaction waves. The set R1(uR) of admissible states u⋆ that can be joined to
uR on the left by a rarefaction wave associated with λ2 is also defined thanks to the
Riemann invariants, together with the compatibility condition λ2(u⋆)≤λ2(uR). More
precisely, we have

R1(uR)= {u⋆=(u⋆,v⋆)
t∈Ω,I2(u⋆)= I2(uR),λ2(u⋆)≤λ2(uR)}

or equivalently

R1(uR)= {u⋆=(u⋆,v⋆)
t∈Ω,vRu⋆=uRv⋆,u⋆+v⋆≤uR+vR}.

Given u⋆ in R1(uR), the rarefaction fan solution of (1.1) is then defined by

u(x,t)=







u⋆ if ξ≤λ2(u⋆)=u⋆+v⋆,
u⋆(ξ) if λ2(u⋆)≤ ξ≤λ2(uR),
uR if ξ≥λ2(uR)=uR+vR,

where we have set ξ=x/t for t> 0 and where u⋆(ξ) is defined by

{

ξ=λ2(u⋆(ξ))
I2(u⋆(ξ))= I2(uR)

or equivalently
{

ξ=u⋆(ξ)+v⋆(ξ)
vRu⋆(ξ)=uRv⋆(ξ).

We refer for instance to [23] for more details.

Shock discontinuities. As motivated above, the set S2(uR) of admissible states u⋆ in
Ω that can be joined to uR on the left by a shock discontinuity propagating at velocity
σ is admissible provided that both the generalized Rankine-Hugoniot relations (1.5) and
the entropy inequality (2.5) hold true in the distributional sense. More precisely, u⋆ has
to satisfy















−σ(uR−u⋆)+

∫ 1

0

A(φ(s,u⋆,uR))
∂φ

∂s
(s,u⋆,uR)ds=0,

−σ
(

f(uR+vR)−f(u⋆+v⋆)
)

+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds≤ 0,

(5.2)

where φ and f respectively denote a family of paths and any convex function. Adding
the two components of the generalized Rankine-Hugoniot relations in (5.2) gives

−σ
(

(uR+vR)−(u⋆+v⋆)
)

+
1

2

(

(uR+vR)
2−(u⋆+v⋆)

2
)

,

which in passing does not depend on the family of paths φ anymore, and then

σ=
(u⋆+v⋆)+(uR+vR)

2
.

Note that we have implicitly assumed that u⋆+v⋆ 6=uR+vR in order to deal with a true
shock discontinuity and not a contact discontinuity. Then, since

−σ
(

f(uR+vR)−f(u⋆+v⋆)
)

+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds
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=

∫ uR+vR

u⋆+v⋆

(s−σ)f ′(s)ds

=−

∫ uR+vR

u⋆+v⋆

(s−σ)2

2
f ′′(s)ds+

(uR+vR−σ)2

2
f ′(uR+vR)−

(u⋆+v⋆−σ)2

2
f ′(u⋆+v⋆),

the definition of σ above and the mean value theorem give

−σ
(

f(uR+vR)−f(u⋆+v⋆)
)

+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds

=−
(s̃−σ)2

2

(

f ′(uR+vR)−f ′(u⋆+v⋆)
)

+
1

8

(

(uR+vR)−(u⋆+v⋆)
)2(

f ′(uR+vR)−f ′(u⋆+v⋆)
)

for some s̃ in between (u⋆+v⋆) and (uR+vR), that is to say

−σ
(

f(uR+vR)−f(u⋆+v⋆)
)

+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds

=−
1

2

(

f ′(uR+vR)−f ′(u⋆+v⋆)
)

×
(

s̃−(u⋆+v⋆)
)

×
(

s̃−(uR+vR)
)

.

By convexity of f , it is thus clear that the entropy inequality in (5.2) is equivalent to

u⋆+v⋆≥uR+vR.

The set S2(uR) is then defined by

S2(uR)={u⋆=(u⋆,v⋆)
t∈Ω, u⋆+v⋆≥uR+vR,

−σ(uR−u⋆)+

∫ 1

0

A(φ(s,u⋆,uR))
∂φ

∂s
(s,u⋆,uR)ds=0}

for a given family of paths. Given u⋆ in S2(uR), the shock solution of (1.1) is then
defined by

u(x,t)=

{

u⋆ if x<σt,
uR if x>σt.

The Riemann solution. Glueing together the simple waves associated with λ1 and λ2

and for a given family of paths φ, we get that the Riemann solution to (2.1)-(2.5)-(5.1)
is given as follows:

• if (uL+vL)≤ (uR+vR)

u(x,t)=















uL if ξ < 0,
u⋆ if 0<ξ<λ2(u⋆)=u⋆+v⋆,

u⋆(ξ) if λ2(u⋆)≤ ξ≤λ2(uR),
uR if ξ≥λ2(uR)=uR+vR,

with ξ=x/t and where u⋆ and u⋆(ξ) are respectively defined by

{

uL+vL=u⋆+v⋆,
vRu⋆=uRv⋆,
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which gives in particular

u⋆=uR
uL+vL
uR+vR

, v⋆= vR
uL+vL
uR+vR

,

and
{

ξ=u⋆(ξ)+v⋆(ξ),
vRu⋆(ξ)=uRv⋆(ξ).

• if (uL+vL)≥ (uR+vR)

u(x,t)=







uL if ξ < 0,
u⋆ if 0<ξ<σ,
uR if ξ≥σ,

with ξ=x/t and where σ and u⋆ are defined by







uL+vL=u⋆+v⋆,

−σ(uR−u⋆)+

∫ 1

0

A(φ(s,u⋆,uR))
∂φ

∂s
(s,u⋆,uR)ds=0.

In particular, we still have σ= (u⋆+v⋆)+(uR+vR)
2 .
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