COMMUN. MATH. SCI. (© 2019 Chugi Cao
Vol. 17, No. 8, pp. 2281-2308

THE KINETIC FOKKER-PLANCK EQUATION WITH WEAK
CONFINEMENT FORCE*

CHUQI CAOf

Abstract. We consider the kinetic Fokker-Planck equation with weak confinement force. We prove
some (polynomial and sub-exponential) rate of convergence to the equilibrium (depending on the space
to which the initial datum belongs). Our results generalize some results known for strong confinement
to the weak confinement case.
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1. Introduction
In this paper, we consider the weak hypocoercivity issue for a solution f to the
kinetic Fokker-Planck (KFP for short) equation

Of=Lfi=—v-Vof+V,V(2) - Vof+A,f+div,(vf), (1.1)

on a function f= f(t,z,v), with t >0, z€R? veR? The evolution Equation (1.1) is
complemented with an initial datum

£(0,-)= fo on R*4.
Throughout the paper, we make the assumption on the confinement potential V'
V(z)=(z)", ~v€(0,1),

where (r)2:=1+|z|?. Let us make some elementary but fundamental observations.
First, the equation is mass conservative, that is

where we define the mass of f by

G=Z"1te W, W=

is a positive normalized steady state of the KFP model, precisely
LG=0, G>0, M(G)=1,
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2282 THE KFP EQUATION WITH WEAK CONFINEMENT

by choosing the normalizing constant Z >0 appropriately. Finally we observe that,
contrary to the case v>1, a Poincaré inequality of the type

3650, / \¢(x)|2exp(—V(x))dxgc/ V() Pexp(—V (z))da,
R4 R4
for any smooth function ¢:R?— R such that
Sl)exp(—V (x))dr =0,
R4

does not hold. Only a weaker version of this inequality remains true (see [11, 18], or
Section 2 below). In particular, there is no spectral gap for the associated operator £,
nor is there an exponential trend to the equilibrium for the associated semigroup.

For a given weight function m, we will denote LP(m)={f|fm e L?} the associ-
ated Lebesgue space and || f||1e(m) = || fm|/z» the associated norm. The notation A S B
means A <CB for some constant C' > 0.

The main result of this paper writes as follows.
THEOREM 1.1.

(1) For any initial datum fOGLP(G_(%+E)), p€[l,00), €>0 small, the associated
solution f(t,-) to the kinetic Fokker-Planck Equation (1.1) satisfies

b
p—1 56 or HfOfM(fO) =10

£ =MU)GI e <

for any be (0,52) and some constant C>0.

(2) For any initial datum fo€ L*(m), m=H*, H=|z|>+|v|>+1, k> 1, the associated
solution f(t,-) to the kinetic Fokker-Planck Equation (1.1) satisfies

k
1f(t,-) = M(fo)Gllr S(A+1) 2 [ fo— M(fo)GllL1 (m)-
The constants in the estimates only depend on ~,d,e,p,k.

REMARK 1.1. Let us emphasize the loss of tail control in both estimates in Theorem
1.1, which is reminiscent of decay estimates in sub-geometric contexts.

REMARK 1.2. In the results above the constants can be explicitly estimated in terms
of the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they are
nevertheless completely constructive.

REMARK 1.3. Theorem 1.1 is also true when V(x) behaves like (x)7, that is for any
V() satistying

C1(x)Y <V (z) < Cofz)?, VaxeRY,
Cslz[{z)" !t <x-V,V(2) <Cylz|{x) ™!, Voe BE,

with Br denoting the ball centered at origin with radius R and B =R?\ Bp, and
D2V ()] < Cs(a) 772, VaeR?,

for some constants C; >0, R>0.
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REMARK 1.4. There are many classical results about the strong confinement frame-
work corresponding to v>1. In this case there is a spectral gap on the operator £ and
exponential decay estimates on the associated semigroup Sp, we refer the interested
readers to [2—4,7-10,15,22].

REMARK 1.5. For the Fokker-Planck equation with weak confinement force, a sub-
geometric convergence to equilibrium is established in [11, 18, 20]

REMARK 1.6. There are already some convergence results for the KFP equation with
weak confinement case considered in the present paper proved by probability method. In
[1], a polynomial rate of convergence to the equilibrium is established, in total variation
distance with some weight norm, and in [5], a sub-geometric rate of convergence in
total variation distance with some weight norm is established. Both papers use Harris’
theorem, which is first introduced in [21] and pushed forward in [19] to show exponential
convergence to equilibrium. This paper extends the result to LP spaces and larger
spaces.

One advantage of the method in this paper is that it can yield convergence on a
wider range of initial conditions and L? spaces, while previous proofs of convergence to
equilibrium mainly using some strong L' norms (probability method) or L? norms (PDE
methods). Also the method provides a quantitative rate of convergence to the steady
state, which is better than non-quantitative-type argument such as the consequence of
Krein-Rutman theorem. While our method also has some disadvantages, it requires
that the equation has an explicit steady state.

Let us briefly explain the main ideas behind our method of proof.

We introduce four spaces Fy=L*(G~Y?), Ey=L*(G2eV(®) E3=
L*(G~(+€)/2) and Ey=L*(G~'/?(z)"~1), with ¢, >0 and e >0 small such that
EsCEy,CE{CEyCL? Thus E; is an “interpolation” space between Ey and Es.
We first use a hypocoercivity argument as in [3,4] to prove that, for any fy € F3, the
solution f to the KFP Equation (1.1) satisfies

d
21Ol < =AlfO)llz,,

for some constant A >0, where the norm of E; is equivalent to the norm of E;. We use
this and the Duhamel formula to prove

IF @Oz, S foll&s-

Combining the two inequalities and using an interpolation argument as in [11], we get

1F @)l S e[l foll zs. (1.3)

for some a>0,b€ (0,1).

We then generalize the decay estimate to a wider class of Banach spaces by adapting
the extension theory introduced in [16] and developed in [6,13]. For any operator L,
denote S, (t) the associated semigroup. We introduce a splitting £L=.A+ B, where A is
an appropriately defined bounded operator so that B becomes a dissipative operator.
Moreover we prove that Sp satisfies some regularization estimate

1S5E) || Lo (m1)—L2(ms) ST, VEE[0,7],
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for any p € [1,2), some weight function m;, ms and some «,n >0, and using the iterated
Duhamel’s formula

n—1

Sre= SB+Z (Sg) * (ASE) "V + S, * (ASE) ™™, (1.4)

=1

we deduce the LP convergence on S, as stated in Theorem 1.1. Here and below U )V
denotes the convolution of two operator-valued functions i/, V defined by

UxV)( /U

and we set Y0 =T UV =1 and for any k>2, YR =y=k=1) w1y

Let us end the introduction by describing the plan of the paper. In Section 2, we will
develop a hypocoercivity argument to prove a weighted L? estimate for the KFP model.
In Section 3, we introduce a splitting £=.4+B and using the L? estimate, we prove a
L? convergence. In Section 4, we present the proof of a regularization estimate on Sz
from LP to L?. In Section 5, we prove some L! estimate on the semigroup Sz. Finally
in Section 6 we use the above regularization estimate to conclude the LP convergence
for the KFP equation.

2. L? framework: Dirichlet form and rate of convergence estimate
For later discussion, we introduce some notations for the whole paper.

We split the KFP operator as
L=T+S,
where T stands for the transport part
Tf==v-Vaf +VaV(2)-Vof,
and S stands for the collision part
Sf=A,f+div,(vf).

We will denote the cut-off function x such that x(z,v)€0,1], x(z,v) € C*, x(z,v)=1
when |22+ v|2< 1, x(2,v) =0 when |z|>+ |v|? > 2, and then denote xr = x(x/R,v/R).
We may also define another splitting of the KFP operator £ by

L=A+B, A=Kxg(z,v). (2.1)

with K, R>0 to be chosen later.

For f=f(x), we use [ f to replace [,, fdx, and for f= f(x,v), we use[ f in place
of [paypa fdxdv for short, for f= f(x,v), [ fdr means [,, fdz , [ fdv means [, fdv.
By<, is used to denote the ball such that {z € R?||z| < p}, similarly B, means the ball
such that {z,v € RY||z|>+|v|? < p}.

For V(z)=(z)7,0<v< 1, we also denote (VV) for (z)?~!, and (VV)~! for (z)!=7.

With these notations we introduce the Dirichlet form adapted to our problem. We
define the 0 order and first order moments

py=olf)= [ fdv. sy=ilfl= [vrv
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then we define a projection operator m by
wf=Mpy, M=Cei|”‘2/2, /Mdvzl,

and the complement of 7 by
at=I—m, fr=ntlf
We define an elliptic operator Ay and its dual Aj, by
Ay u:=div, (Vyu+V, V), vu=Apu—V,V-Vyu,
let u=(A},)71€ be the solution to the above elliptic equation
Abu=¢ on RY,

and satisfies
/ue_V(VV)_2 =0.

We will prove the existence and uniqueness to this elliptic equation in Lemma 2.3 below,
we then define H =L?(G~/?), #H, =L*(G~'/?(VV)) and

Ho:{he?’-l,/fdxdvzo}

where we recall that G has been introduced in (1.2). Using these notations, define a
scalar product by

((f.9)):= (£.9)n + (A Vaiip, (pge” (VV)?)) 12 +e((pre” (VV)?), Ay Vajg) 12
= (£ 9)u+e(ir. Va(AT) g (VV)?))r2 +e(Va(AT) " Hpse  (VV)?) . dg) 12,

for some € >0 to be specified later.
Finally we define the Dirichlet form

D[f]:=((-Lf,f))
= (—Lf, n+e(Ay Vai[=LFf], (pre” (VV)*)) 2 +e((p[—LfleV (VV)?), AV Vajs) 2.

With these notations we can come to our first theorem.

THEOREM 2.1. There exists >0 small enough, such that on Ho the norm ((f,f))2
defined above is equivalent to the norm of H, moreover there exists A >0, such that

DIf]1=AIfl3,, VY €Ho.

As a consequence, for any fo € Ho, the associated solution f(t,-) of the kinetic Fokker-
Planck Equation (1.1) satisfies

Gm=-c [£e i@, 22)
for some constant C >0. In particular for any fo € Ho, we have

1 a3, SCloll o3 (23)
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for some constant C > 0.

REMARK 2.1. In Hg we have
/pfev<vv>2efv<vv>*2dx:/pfdx:/fdxdvzo,

so the term (A%)~(pge¥ (VV)?) is well defined in Ho.
REMARK 2.2. Our statement is a generalization of [3,4].

Before proving the theorem, we need some lemmas.
We say that W satisfies a local Poincaré inequality on a bounded open set 2 if there
exists some constant kg >0 such that:

1 2
hPW <k /Vh2w+</hw> ,
A @ Jo VI ey

for any nice function h:R?—R and where we denote W (Q) := (W1lg).

LEMMA 2.1.  Under the assumption W, W=t € L2 (RY), the function W satisfies the
local Poincaré inequality for any ball Q C RY.

For the proof of Lemma 2.1 we refer to [17, Lemma 2.3].

LEMMA 2.2 (weak Poincaré inequality). There exists a constant A >0 such that
lull 2 ((wvye-vrzy S AVl g2 e-vre2)

for any u€ D(R?) such that
/ue_V<VV>_2 =0

Proof. We prove for any h € D(R?) such that
/ he™V(VV)~2=0, (2.4)
we have
/|Vh|26*V > %/h2e’v<x>2(7*1),
for some A>0. Taking g:he’%v7 we have Vg:Vhe*%V — %VVhe*%V, so that
OS/lVg|2=/|Vh|2e_v+/h2%|VV|Qe_V—/%V(hz)-VVe_v

:/|Vh|Qe*V+/h2 (;Avbvw?) e V.

1 1
$IVVIE AV (VV)? = Kl g, (VV)

Since
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for some K, Rg>0. We deduce for some K,Ry>0

1
/|Vh|Qe_V2/§h2<VV>26_V—K hreV(VV) 72

BR[)

Defining

€RZ=/

B
and using (2.4), we get

2
(/ heV(VV>2) = (/
Br B
<,
By

< ER/ h2e YV (VV)2.
B

c
R

e (VV)~F, ZR::/ eV (VV) 72,
Br

c
R

2
heV(VV>2>

c
R

th*V<vv>2/ e V(VV)~©

Br

Using the local Poincaré inequality in Lemma 2.1, we deduce
2
1
/ h2eV (VV)~2 gcR/ VhZeV (VV) 24 — ( he—V<vv>—2>
Br Br ZR Br
gcg/ |Vh|2e—V+6—R/ h2eV(VV)2.
Br ZR JBs,
Putting all the inequalities together and taking R > Ry, we finally get

/th_V<VV>2SS/\VM%_V—!—SK h2eV(VV)~2
Bg,

!’ 8K
§8(1+KCR)/|Vh|2e*V+ﬁ/ Re=V(VV)2,
Zr JB

c
R

8Ker <

and we conclude by taking R large such that: Tt < % ]

LemMMA 2.3 (Elliptic Estimate).  For any & € L2((VV)"'e™V/2) and & € L2 (e~ V/?),
there exists a unique solution u to the elliptic equation

—Aju=§+V-£&, /ue_V<VV>_2:0, (2.5)
and satisfies

lull L2 (wvye-vrzy VUl L2e-vrzy S €l L2 wvy-1e-vrey + 12l L2 (e~ vr2y- (2.6)

In addition for any &€ L*((VV)~te=V/2), the solution u to the elliptic problem
—ALu=¢, /ue7V<VV>72:0,
and satisfies

lull 2(rvvyze-viey + [ Vull 2 ((wvye-vizy + [1D?ull g2 e-viey S €l L2 e-vrz (wvy-1y-  (2.7)
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Proof. Multiply (2.5) by ue™" and observe that
eV div, [eiVqu] =Au—V,V-Vyu=ALu

we have after integration

—/eVdivz[e_Vqu]ue_V=/(§1 +V-Eo)ue™"

Performing one integration by parts, we deduce

/e_V|qu|2:/(glu—&-Vu—i-fz-VVu)e_v,

(2.8)

using Lemma 2.2 and Lax-Milgram theorem we obtain (2.6), the existence and thus the
uniqueness follows. In inequality (2.7), the first two terms are easily bounded by (2.6)
and (VV) <1, we then only need to prove the bound for the third term. By integration

by parts, we have

-3 fine

4,j=1

_Z/aua ud;V =0 u)e”
1,7=1

= Z /8 Ua aue )—%/(@-u)Qaj(ajVe_v)
4,j=1

1
:/(Au)(—A*Vu)e—V+5/\Vu|2(\VV|2—AV)e—V
SID%ull 2 e-viz) €l L2 e-vrey IV V)Vl 2 (e-vr2),

where in the third equality we have used
/8izju8iu8jVe*V:—/aiuaj(&-ué‘j‘/e*v)
7/8fju8iuajVe*Vf/(aiu)Qaj(ajVe*V),
which implies
/3fju8,'u8jV67Vz—%/(aiufaj(aj‘/efv),

and in the fourth equality we have used (2.8). That concludes the proof.

Now we turn to the proof of Theorem 2.1.

Proof. (Proof of Theorem 2.1.) First we prove the equivalence of the norms
associated to ((,)) and (,)3. By Cauchy-Schwarz inequality and Lemma 2.3, we have

(1 Vo (DY) g (VV)?)) L2 < Ntz (evizyloge (VV)2 | 2 povy-1e-vr2y,

and obviously

”pgev<vv>2HLZ((VV)*le*Vﬂ) = ||PgHL2(<vv>eV/2) < Hpg||L2(eV/2) Slglla-
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Using the elementary observations

sl S HfHLg(e\'v\?/Ar) s ||fHLg(e|v\2/4)a

we deduce

(Vo (AV) T g (VV)?)) L2 S faellgllae,

The third term in the definition of ((,)) can be estimated in the same way and that ends
the proof of equivalence of norms.

Now we prove the main estimate of the theorem. We split the Dirichlet term D[f]
into 3 parts

D[f] :T1 —|—€T2 +6T3,
with

(—=Lf.f)u
(A Vai[=Lf,pf) 2 (evizivvy)
(Av) "' Vaip, p[= L) p2evrziovy)

and compute them separately.

T2

For the T term, using the classical Poincaré inequality, we have

Ty (<TF =S, flu= (=S, Fu
- / Ay f +divy ()| MY = / 1V, (f/M)[2MeY

> by [ 1£/0=py PMY =Rl = ps M =Rl
for some kj, >0. We split the 15 term as

Iy:= (A;/lvmj[_ﬁf]7Pf)L2(eV/2<vv))
= (A Vi [=Trfl.pf) 2(evieiovy)

HAV Vi [=T o) 2evie wvy) + (AV Vai[=Sfl. o) 2(evie (wvy)
=T 1+T22+ 15 3.

First observe
Trf=—v-VopsM—V,V vpM=—e""Mv-V,(ps/e”"),

so that we have

d
[—Trf]=) (vueM)e Y 0y, (ps /e )=V Vulps/e™").
k=1

Next by (2.8), we have

Doy =(j[=Trfl.V(AY) " (pre (VV)?)) 12
=(ps.1e¥ diva (e V)[(AV) " (pre” (VV)*)]) 12
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=llpre”>(VV)I72 = lIm f I3, -
Using the notation n; = (v@uvf*) and 12,05 = (va0y, f), and observing that

ml < ||fL||Lg(e\v\2/4)a 2l S ||leLg(e|v\2/4)7

we compute

Too=(j[-Tf ), V(A)  (pre” (VV)?)) L2
Dy +mVV,V(A) (pre¥ (VV)?)) L2
1, D2 (AY) " pre” (VV)?) 2+ (02, VVV(AY) " (pre¥ (VV)?)) 12
Il p2evrey I D*(AV) " (pre” (VV))| 12 (e-viay
(

Hn2ll L2 vz IVVV(AL) T ore  (V V) | L2 (- vz,

(
(
(

IN

By Lemma 2.3, we estimate

Too Slmllpzevreylore” (VVY |l p2e-vizgovy-1)
Hlim2l 2 vy lore” (Y V)2 L emvrz oy -1y
S el fllag -

Using
JI-8f=il-Sf*)=~ / o[ Ay f 4 divy (vf ) dv=d / Srodo [ FH e oz o)

and Lemma 2.3, we have

Ty 3=([-Sf1,V(AV) (pre” (VV)?)) L2
<N1=S Al 2eviey IV (AV) " preV (VV)) | L2 (e-vs2)
S lloreY (VV) 2l 2wvy-1e-vray
=1/ acllpsll e wvyevre)

= |/ sl flle -

Finally we come to the T3 term. Using

pl=S1)= [V-(Tuf +ef)do=0,
and
pl=Tfl=plv-Vof =V, V() -V, f]
- / V-V f =V, V(2)-V, fdv
~V.4lf),
because V((VV)2) <(VV)2 and (VV)2 < (VV), we get

Ts=((Av) " Vaip, pl=Lf) 2 (evrzvvy)
=((AV) T Vaoilf =T )2 (evre (ovy
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=Gl VAY) T (VailfleV (VV)?)) L2
<Nl M p2eviey IV(AT) T Ve (ire” (VV)?)
—VV eV (VV)2=V((VV)?)ire Il L2(e-vrz),

—

using Lemma 2.3 again, we have

Ts Sl pzeviey (ldre (Y V)21 2 e-vrzqovy -1y F e VUV 2 (vvy-1e-vr2))
< 1
SNl £l -

Putting all the terms together and choosing € >0 small enough, we can deduce

DIf) = kol fH 3, +ellm 1Ry, — 2K I+ ladll Fllre, — 2K N llellm I,
>kl [ 13+ elmf 15, — (2e+det ) K| fH113 — 24K |In f I3,

k
> U et ellm F13) 2 All Flla

for some A >0. 0

3. L? sub-exponential decay for the kinetic Fokker-Planck equation based
on a splitting trick

In this section we establish a first decay estimate on S which is a particular case
in the result of Theorem 1.1.

THEOREM 3.1. Using the notation and results in Theorem 2.1, we have
_op/ 2=
I1Se0)foll -5, S Mol pag-choon

for any fOELz(G_(%"’E))ﬂHO, e>0 small enough.

REMARK 3.1. It’s worth emphasizing that we deduce immediately part (1) of
Theorem 1.1 for the case p=2 by considering the initial datum fo— M(fy)G for any

foe LA(G72%e),

Recall the splitting £ = A+ B introduced in (2.1), we first prove some decay estimate
on the semigroup Sp.

LEMMA 3.1. Let us fir p€[1,00).

(1) For any given smooth weight function m, we have

Jurtsigsiencemss [0, (3.1)
p
with
m=A,m—V,m-v—V,V(z)-V,m+v-V,m.

(2) Takmgm:eEHé, €>01if0<6< 3, e small enough if §=7, H=3v[*+ 2z -v+|z|?+
1, we have

/ fIP Vsign f(Bf)G~ P Ve < —C / fIPG= Ve (51710 (3.2)

for some K and R large.
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(8) With the same notation as above, there holds

pr et (3.3)

2¢HS -l eHS
(e G P )—>LP(e G P)

ISs ()l

for some a>0. In particular, this implies

IS5, st o

— —_p=1
Lr(G~ " SLP(GT P )

Proof.
Step 1. Recalling (1.2), we write

1P isignsep-m
= 1P tsign f (TG Dme [ sign s (SHG P Vm,
We first compute the contribution of the term with operator 7
J1srtsien TG0 Dm= [ 776
—— [18r7( )
= 15760 T =TV (2) )
For the term with operator S , we use one integration by parts, and we get
1P tsign 060
= (1P sign F(Af + v )G
- / V. (sign f(|FIG1)7m) Vo (FGE
= [ =01V (G PGP Gm = (116G (Vum)G.
Performing another integration by parts on the latter term, we have
[ tsigpsne# m
= [~ DIVLGE PG Gm GV m) (716
= [ o= DIVLGERUAIG G (A=) PG,

Inequality (3.1) follows by putting together the two identities.

Step 2. We particular use m = eH * and we easily compute

Vom _5 V.H Vym 5 V.H

m “H1- m “Hi-5
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and

2
A _ o AH , Vo H|

m H1—6+(6) H2(1-46)"

We deduce that ¢ = % satisfies

1-6
W AL l

—v-V,yH+v-V,H-V,V(x) -V, H.
From the very definition of H, we have
VoH=6v+2x, V,H=2v+2x, A,H=6.

Choosing € >0 arbitrarily if 0 < 2§ <+, € small enough if 20 =+, we deduce

AH+2§|V ‘+ -VoH—-v-V,H-V,V(x)-V,H
2 2
—6+65%+2| |*4-2x-v—6[v]* —22-v—6v-V,V(z)—22-V,V(z)

< (2\v|2+01\v|+02|v|25 —6|v| )—|—(C’365|$|25 —2x-V,V(z))+C
< —C‘4|’U|2 —C5£L‘VIV(.”L')+CG
<—C7H? + Kxr,

for some constants C;, K,R>0. As a consequence, we have proved

-C
QS KXR<]{175<0

which is nothing but (3.2).

Step 3. In the following, we use the “interpolation” argument from [11], denote
ft=55(t)fo the solution to the evolution equation O;f =Bf,f(0)=fo. On the one
hand, by (3.2) we have

& [1npetmnes g ptsig s e <o
which implies
/|ft|pG—(p—1)e2eH“ §/|f0‘pg—(p—1)e2eH“ =Y, Vt>0
On the other hand, defining
v(0)= [15pG 0D,
using (3.2) again, we have
GY=p [1P sign fu(Bf)G- 0 Vet

<-a / | fo[P G~V e H o3 -
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8
<—a / |F[PG @D (25492

<eaf O IRPGTE e @,
B

le|<p

for any p>0 and for some a>0. As 26+~ <2, 0< |z| < p implies (z)2°+772 > (p)20+71=2
we deduce

iyg_a<p>26+'y—2/ ‘ft|pG_(p_1)€€H5
dt Biej<p

< —a{p)PHI72Y 4 a(p) 202 / |filP G~ Ve’

Bizi>p

Using that <@ > e(r)* o |z| > p, we get

LY <—alp 172 afp)? 120 / PG D et e

Bizi>p
< —a<p>25+’7_2Y—|—a<p>26+7—26—6<p>25/|ft|PG—(p—1)eeH‘;ee(a;)25
< —a(p)?PT72Y ya(p) P20 Oy,

Thanks to Gronwall’s Lemma

d b b
£X(t) <—aX(t)+b=X(t)<e X (0)+ E(l —e ) <e X (0)+ o
we obtain
Y(t) <em a0 Ty (0) 4 Cem )y,
< (efa<p>25+”‘2t +676<p>25)y17

Finally, choosing p such that a{p)?*7=2t=¢(p)?’, that is (p)?>~7 = Ct, we deduce

25
Y(t)<Cre 1,
for some C; >0, and we deduce the proof of (3.3). 0

Now we come to prove Theorem 3.1.

Proof. (Proof of Theorem 3.1.) We recall that from (2.3), we have

ISeO 24y p2o-4) ST V20,

From the very definition of A we have

1A

: <
L2(G™ 3 ) L2(e2HS G=3) ~ 1.

From Lemma 3.1 case p=2, we have

25

11Ss()|l <e T V>0,

1 1
L2(e2¢H° QT 2) L2 (esH GT2)
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Gathering the three estimates and using Duhamel’s formula
Sr=8+SpA*S.,
we deduce

Isc®)] <1, >0,

5 1 1
L2(e2¢HY G2 )_>L2(65H5 G 2)"™

In the following, we denote f;=S,(t)fo the solution to the evolution equation 0;f =
Lf,f(0,)= fo. Taking 26 =+, € small enough, we have in particular

/|ft|2Gil€6H7 SC/|f0|2G7162€Hi =:Ys.
We define

Ya(t):=((f,.1));
with ((,)) defined in Theorem 2.1. Thanks to the result in (2.2), we have

for any p>0, using the same argument as Lemma 3.1, we deduce

Ya(t) < Cem 0" Vv, (0) + Ceme2 ) yy
< (efa<p>2<"*”t ey,

~

Choosing p such that a(p)2(=Dt=e;(p)7 , that is (p)>~7 = Ct, we conclude

—Cat/ (2=

Ys5(t) <Che Y3,

2
for some constants C; >0. As H? 50(% +V(z)), we have
BEH% < G—Ce

Taking e small, the proof of Theorem 3.1 is done. 0

4. Regularization property of Sp
In this section we will denote L£*=Lg, ,, =S8 —7T be the dual operator of £ on

L2(G~%). In other words, £* is defined by the identity

[wense = [wose.

for any smooth function f,g. We also denote B* =L* — Kxr. The aim of this section
is to establish the following regularization property. The proof closely follows the proof
of similar results in [7,13,22].

THEOREM 4.1. For any 0<0 <1, denote my :G*%(H‘s), there exists 1>0 such that

1
HSB(t)f||L2(m1) Sﬁ?”f”[/l(ml)? Vte (0,77}-
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Similarly, for any 0<0 <1, there exists n>0 such that
Ie 1) 120m) S 1 s om0 € 02l
As a consequence, there exists n>0 such that
e (X}

We start with some elementary lemmas.

LEMMA 4.1. For any 0<§< 1, we have
e +ateme e
—2 [ VLG Vg6 NG+ [(Gd-s-a)P)feG O @)
in particular, this implies
[repeire
- [wasepa=+ 5 [ipeoe 2020 flupipete0, (0
similarly, for any 0<§ <1, we have
[rene o
== [19uspa e 2020 oy ppgta BEOE [0, a3

All the equalities remain true when L is replaced by L*.

Proof. Recalling T(G~(1+9))=0, we have

/ F(Tg)G (40 = / T(FG-+)g= / (T1)gG=+9),

which implies

[#Ta6 s [(7 96000

for the term with operator S we have
[ #8960 = [9,(£6-049). (Vg vg)
~ (Vo144 0)00): (Tug+ o961+

/ V,(fG1)-V, (4G )G /<6|v| Fg+6f0-Vug)G0+9),

using integration by parts

/6fv V,gG~ 1+ = /5gv (vfG=(1+9))
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—/5gv~vaG*<1+5>—/(5d+5(1+5)|v|2)ng*<1+5>,

so we deduce
/ (f(Sg) +9(Sf)G 1+
—2 [ V.G Vg6 G+ [ (G510 oG,

o (4.1) and (4.2) are thus proved by combining the two terms above. Finally, we
compute

[1srcoe

_—/(Vyf—l—(l—kd)vf) (Vof+vf)G=0FD
—/|va|2G_(1+5)—/(1+5)|v|2\f|2G_(1+5)—/(2+6)fv-vvfG—(1+5)
- / [V, f2G 040 — / (140 ppe-0+9 4 220 / V- (0G0 12
_/|va|2G—(1+6)+w/|v|2|f|2G—(l+5)_~_(2+T‘5)d/|f|2g—(1+5),

o (4.3) follows by putting together the above equality with

/ TG =0

Since the term associated with 7 is 0, by L=S8+7T,L*=8—7T, we know the same
equalities will remain true when L is replaced by L£*. |

LEMMA 4.2.  When f;=Sg(t)fo, denote my :G_%(H‘s), define an energy functional
]:(t7ft) ::A”ft”%?(ml) +at||vvft||%2(7n1)
+2¢t* (Vo £, Vo fo) 12 (my) 0 Vo fill B2 (o (4.4)
when fy=Sg-(t)fo, define another energy functional
F*(t,ft) = A||ft||%2(m1) +U,t||vvft||i2(ml)
_ZCtZ(vvftavwft)Lz(ml)+bt3||vwft||2L2(m1)7 (4-5)

with some constant a,b,c>0,c<+vab and A large enough. Then for both cases, there
exists >0 such that

d
%F(tmft)S_L(vaftH%Q(ml)+t2||vxft||2L2(m1)>+0Hft||2L2(m1)7
for all t€(0,n], for some L>0, C>0 and F=F or F*.

Proof. 'We only prove the case F'=F, the proof for F'=F" is the same. We split
the computation into several parts and then put them together. First using (4.2) and
(4.3) we have

d
%Hft”%ﬁ(ml) =(ft.(L—KxR) ft)L2(m1)
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1-6 1—|—5
= T(fuﬁft)m(ml) ——(f,Lf0) L2my) — (fe KXRSt) 12 (1)
1-6 1+5
§TvaftH%2(m1) ——IIf:G™ HL2(m1G1/2)+0Hft||%2(m1)
1-6
< THvatH%Q(ml) +C||ft||L2(m1)'
By
d
0u, Lf=L0y, [+ 02, VO, ], (4.6)
j=1

and (4.2) we have
d
%HaaciftH%?(ml)
:(aaslft78$1 (E_KXR)ft)L2(m1

=)
< I 0n FiO ™) oy + o 00, ) —

10: Fell 22 (s oy
awift,z 2 2 VOu, £) 12 (my) — (0w, 1, KO X RS L2 (ma)-

Using Cauchy-Schwarz inequality and summing up over i, we get

d 51 1)
%||vxftumm>_2||v O e a iy~

+C|IV o fell 22 () +C||szt|\2m(m1) +ClIfell 72 (my)

”vxft”L?(mlh)\)

for some C > 0. Similarly using
Do L.f = LDy, f — O, f 1o, f, (4.7)
and (4.2), we have
AR,
= (Ou, f1t, 0y, (ﬁ—KXR)ft)Lz(ml
<[V (0w, f1G™ )||L2(m1G)+ HavlftHL2 (my) ~ 10w 172 (o
_((%ci,ftaavift)L?(ml)+||6vift||L2(m1) _(8vift7KaviXth)L2(m1)-

Using Cauchy-Schwarz inequality and summing up over i we get

5(1 5)

o(1—46
4w, ftumml)_va (00 G gy~ 2

+C||Vuft||L2<m1) +C(IVafil I Vofil r2(my) + Cllfel L my)-

For the crossing term, we also split it into two parts

IV Fel172 (mn o)

d
7 20z, f, 00, ft) L2 1) = (O, fe: 00, Lfe) L2(ma) + (Ovs fe: O L) L2 0
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_(aﬂ% ft7av1: (KXth))LQ(TTH) - (avi,ft?aﬁ?qz (KXth))LQ(TTn)
= Wl +W2

Using (4.6) and (4.7) we have

W1 =(0s, f1,L (3v1 Je))p2(my) + (O, [, L(0n, f1)) L2(my)

avlfhz T, Ijvavjft L2(mq) — HaxiftH%?(ml)+(azift>avift)L2(m1)~

By (4.1), we deduce

W1S(vﬂ(aliftG_1)7vv(aviftG_l))LQ(mlG)+5d(av1ft78 ft)Lz(ml)
—0(1=6)(Du, f1,0n, f) L2y o)) + avlft,z 2 2, VO, f1)L2(my)

_Hall/’zft”%?(ml) +(65L’ift’avift)l/2(ml)‘

For the W5 term we have

Wo=—2(0x, ft, KXROu, ft) L2(m1) — (O, ft, KOu, X R St) L2(my1) — (O, [t: K Ow, X R St) L2 (m1)
SC(‘aziftL |ft|)L2(m1) +C(|ft|= |6vift|)L2(m1) +C(|azift|= |avift|)L2(m1)'

Combining the two parts, using Cauchy-Schwarz inequality, and summing up over ¢ we
get

d
—2 2
dt (vvftvvwft)L (m1)

d
< QZ(Vu(am ftG_l)avv(aviftG_l))Lz(m,lG) - 5(]— - 5)(vatvvxft)L2(m1\v|)

1
—§||szt||2L2(m1) +CIVo fill 22 (myy +Cll el T2 (-

From the very definition of F in (4.4), we easily compute

F(t, fi)= ||ft||L2 m1)+a’t ||V felli» m1)+2Ct2 (Voft:Vafi)r2my)

+bt3£”vmft”L2(m1) +al|vvft||L2(m1) +4Ct(VUft7v$ft)L2(m1)
+3b8|| V.. o7

(m1)*

Gathering all the inequalities above together, we have

a]—"(t ft)

A(1-9
§ <2€L ( 5 ) +Cat+20t2c+0bt3> HvyftH%z(ml)

C
+(3bt? — 51%2JrCbt3)||Vacfzt||2L2(ml) +(dct+ Cat)(IVo fel,[Va fil) L2 (ma)

d
- Z[at”vv(auiftG71) 1% 2(mr ) + 08IV (02, [:G™ )72 ()

i=1
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6(1=9
22 (V0 GV 00 G ) — S at Vs ol

03 Vo fell72 (o)) + 266 (Vo fe, Ve o) 2 o))+ ClF 172 ()
for some C' >0. We observe that
12¢t* (Vo 1, V) 12 (mn o)) | S @V Fill 22y o) T 0NV o Sl T2 (o)
and

|2ct2(vv(axiftG‘1)7Vv(8viftG—1))L2(m1G)|
<at|| Vo (B, 1G ) 72 (my ey + 08 Vo (O, G721y -

by our choice on a,b,c. So by taking A large, 120<¢, and 0<n small (¢€(0,7]), as a
consequence

d

ZF G f) = ~L(IVofellZ2(my) + 1V fell L2 (my)) + ClLFl L2 (o)

for some L,C' >0, and that ends the proof. O

REMARK 4.1. For the case F'=F*, the only difference in the proof is to change (4.6)
and (4.7) into

d
6931. E*f = £*aa:1f - Zailmj Va'“j f’
j=1
and

O L7 f =Ly, f+ O, f+0u, [

The following proofs of this section are true for both cases.

LEMMA 4.3. Denote mq :G_%(H“S), then for any 0<d <1 we have
[19eatimo< [19euspui+c [ 2,
Proof. We have
[19tm)R= [ 19 -+ g
:/|Vf|2m%+/|Vm1\2f2+/2fmlvf'Vm1

= [wspmts [ (1vm- 50 ) £

Am
= [195Put = [ S
mi

Amq . (1+6)2
mq B 4

since

1+

(|v\2+|VmV(x)|2)+?

(AV(2)+d) > -C,
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for some C >0, we are done. ]

LEMMA 4.4.  Nash’s inequality: for any f € L*(RY)NHY(R?), there erists a constant
Cy such that:

143 ;
£z * < Call fIIE: Vo fllz2,
For the proof of Nash’s inequality, we refer to [12, Section 8.13], for instance.

LEMMA 4.5. Denote mi =G~ 2049 then for any 0<§ <1 we have

S omoy Sl Lo (148)
which implies
el my) < €Il foll Lt gma)
In particular we have
I felltmyy SCllfollLromyy, V€ (0], (4.9)

for some constant C > 0.

Proof. By Lemma 5.1 in the next section, letting p=1, we have

d
& [17ma= [151(8m =0 Fm,
+U'Va:m1 — VQ;V(J}) 'val —KXle)

< fin(52a- =D Y < [l

4

so (4.8) is proved. As Tmj =0, the result is still true when F'=F*. d
Now we come to the proof of Theorem 4.1.

Proof. (Proof of Theorem 4.1.) We define

g(taft) :B”ftH%l(ml) +tZ]:<t7ft)’

with B,Z >0 to be fixed and F is defined in Lemma 4.2. We choose ¢ € (0,7], n small
such that (a+b+c)Zn?T1 <L1Ln? (a,b,c,L are also defined Lemma 4.2), by (4.8) and
Lemma 4.2 we have

d _
591t <dBI| fell 71 () + 27 F (8, 1)
—Lt? (| Vo fill 32 (myy + IV fil 2 myy) + CE N Fell 22 (o
<dB||fell 71 gy + C el T2

L
—th(Hvat”iz(ml) F (Ve fell 72 (my))-

Nash’s inequality and Lemma 4.2 implies

_2_ _d_
Ifemallz Ol fomall g7 (Ve (frma)ll 72"
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s _d_
<Ol femall i (Vo fima | 22 + Cl frma || p2) 72
Using Young’s inequality, we have
_3
el 22y < Cet ™2 FIT 1 () + €8 (Va0 fell L2 gy FCIFelI R 2 ) -

Taking € small such that C’en3 < %, we deduce

_3
1fell 22 myy < 2Cet™ 2| 121 () + 2663 (Vo fill 22 -
Taking € small we have

d _1_3
%g(tvft)SdBHftH%l(ml)‘f‘CltZ "2 full gy

for some C; >0. Choosing Z =1+ %d, and using (4.9), we deduce

Vte (077]]: g(taft) Sg(oafo)_FOQHfO”%/l(ml) S C3||f0||i1(m1)7

which ends the proof. 0

5. S decay in larger spaces

The aim of this section is to prove the following decay estimate for the semigroup
Sp which will be useful in the last section where we will prove Theorem 1.1 in full
generality.

THEOREM 5.1.  Let H=1+|z|>+2v-2+3v|?, for any 0 € (0,1) and for any 1 >0, we
have

1S5t (mty— L1y S (1+1)7%,

where

We start with an elementary identity.

LEMMA 5.1.  For the kinetic Fokker Planck operator L , let m be a weight function,
for any pe[1,00] we have

/ FP~ sign f(Lf)mP = —(p—1) / IV (mf)ml f)P 2 + / FPme,
with

¢

2 |V,m|? (2 )Aq,m d Vom  Tm
=— 5 + —+ v-
m

In particular when p=1, we have
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Proof. We split the integral as
[siensepisirtme = [sig it (s pym + [ sign 71T pyme
First compute the contribution of the term with operator T

[safise i = [T == [ 1m0

Concerning the term with operator S, we split it also into two parts
/(Sf)signf|f|p_1mp = /signf|f|p_1mp(Avf—l—divv(vf)) =C1+4Cs.
We first compute the Cs term, to get
Ca= [[sign 1P P (df +0-9.f)
= [alsirmr > [ifraiv, (om?)

firl-Syee

Then turning to the C; term, we have
Ci= [sign |7 tme A, f == [ Vu(sign 1P ) 9, f
= [~ 01T Pl = [T,
Using V,(mf)=mV,f+ fV,m, we deduce

01:—(p—1)/Ivv<mf>|2|flp‘2mp‘2+<p—1)/|vvm|2|f|f’mp—2

2(2?*1) p m;D _ P
+22220 [.qs) > [9u0517)- V)
-1 [ 19 mNPUP 2+ (=) [ 1V e

Using that A,mP =pA,m mP~t +p(p—1)|V,m|>mP~2, we obtain

Cr=—tp=1) [ 9utmp )Pl [1ger [ (2) B2 g (1 1) (D],

We conclude by combining the above equalities. 0

Proof. (Proof of Theorem 5.1.) From Lemma 5.1, we have

/ sign f(B)|fP~tmP = / sign f((L— Kxg)f)|f|P~ m?
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— (1) / 9, (m )P (ml f)P~2 + / fPmPs, (5.0)

with

2 |V,m/|? 2
o210 2

m P m P m m

When p=1, we have

Let m= H*. We have

and

Aym k;AvH+ k(k—1)|V,H|?
m  H H?2 '

Summing up, we have for ¢

%:Avﬂﬂkq)

V., H|?
| H| —v-V,H+v-V,H-V,V(z)-V,H—Kxr,

From the very definition of H, we have
VoH=6v+2z, V,H=2v+2x, A,H=6.

We then compute

IV H|?
AHA+(k—-1) +v-V,H—v-V,H-V,V(z)-V,H
6v +2z|?
:6+(k—1)%+2|v|2+2x-v—6|v|2

—2z-v—6v-V,V(z)—2z-V,V(x)
2lv* +Cv| - 6[v]?) =22 -V, V (z)+C
C1|v)* = Cox -V, V(z)+Cs

CyH? + KiXg,,

<
<
<

for some C;>0. Taking K and R large enough, we have ¢ <—CH?Zz ! using this
inequality in Equation (5.1), we deduce

Gvilt)i= 5 [l = [ sign(fu) (Bfa()

<—c / | Fp (O HE1E, (52)

for any k> 1. In particular for any [ >1, we can find K and R large enough such that

& [ 1o <o
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which readily implies
Jisstol'< [1na=vs.

Take k <I, denoting

-k

L —— (|

the Holder’s inequality

Jisatone<( [ |fB<t>|H’“+3>a (/ |fB<t>Hl)1_a,
(/ |fB<t>|H’“)i (/ |fB<t>|Hl>a“_l < [Irstolm=+3,

From this inequality and (5.2), we get

implies

d 1 a1
SVil) S -COL0)FY; T

Using Y;(0) <Y5, after an integration, we deduce

1

Yu(t <C(X7a
A< (1+t)™=

Ys,

which is nothing but the polynomial decay on Sp

1SB(t) | e rty— Lo ey S(1+1)77,

with
a= l_k, Vo<k<l, 1<I.
-3
We conclude Theorem 5.1 by writing k=10, 0< 6 < 1. 0

6. L? convergence for the KFP model
Before going to the proof of our main theorem, we need two last deduced results.

LEMMA 6.1.  For any € >0 small enough, we have

0
—at?—
||ASB(t)||L2(G_<%+€))—>L2(G_(%+E))Se at 77 VtzO,

and
.

—at2—~
||ASB(t)||L1(G7(%Jré))_,Ll(G*(%Jre))Se o ’Y7 Vt207

for some a>0. Similarly for any 0<b< # and for any € >0 small enough, we have

| AS5 ()| toemat’ >,

Ll(G*(%*’ﬁ))*}LZ(G*(%i’ﬁ)) S/
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and some a>0.

_ 3d+2
for a= ==

Proof.  The first two inequalities are obtained obviously by Lemma 3.1 and the
property A= Kxg. For the third inequality we split it into two parts t€(0,n] and
il

t>mn, where 7 is defined in Theorem 4.1. When t € (0,n] , we have e —at?=r > pman?TT
by Theorem 4.1, we have

||ASB(t)HL1(G' ( +F))—>L2(G (L +F))Nt a<t [0} 7at2 “(7 VtE(O,n],
for some a >0. When ¢t >n, by Theorem 4.1, we have
||SB(T])||Ll(G—(%+€))_>L2(G—(%+e))snas]‘?
and by Lemma 3.1
e ) e
—a(t—m)2— —at2—"
||SB(t—U)“LZ(G,(%JFE))*)LQ(G,%)56 (¢=m) 56 i y

gathering the two inequalities, we have

5
—at2=7 —a_—at®
LI(G*(%*’E))*}LQ(G*(%ﬁ’é))ge St e ) Vt>777

[ASB @)l
for any 0<b< 5 7 , the proof is ended by combining the two cases above. ]

LEMMA 6.2. Szmzlarly as Lemma 6.1, for any p € (2,00), we have

0
—atZ—
155(t )AHL2 (G~ 3)>L2(G™ 2)56 wET V0.

and

155 () Al

Lr( Gif)%LP(G 2)

for some a>0. And for any 0<b< ﬁ we have

ﬂ —at®
1S5 Al 2 o4y oty ST €™ VE20.

for some B>0 and some a>0.
The proof of Lemma 6.2 is similar to the proof of Lemma 6.1 and is thus skipped.

LEMMA 6.3. Let X,Y be two Banach spaces, S(t) a semigroup such that for all t>0
and some 0<a,0<b<1 we have

IS®)]lxx <Cxe™, [[SE)lly -y <Cye™

and for some 0 < «, we have

b
||S(t) ||X_>y < CX,ytiaeiat .

Then we can have that for all integers n >0

1SC™ ()] xx < CX’ntn—le—atb7
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similarly
ISE 1)y sy < Oyt temat’,
and
1O (#)[| x>y < Cxymt™ @ et

In particular for a+1<n, and for any b* <b

*

IS¢ (1) x>y < Cx.yme

The proof of Lemma 6.3 is the same as Lemma 2.5 in [14], plus the fact t* < s’ + (¢ —s)°
for any 0<s<t,0<b<1.

Then we come to the final proof.

Proof. (Proof of Theorem 1.1.) We only prove the case when m = G%(1+€)7 pE
[1,2], for the proof of the other cases, one need only replace the use of Lemma 6.1 in
the following proof by Lemma 6.2 and Theorem 4.1. We will prove p=1 first, this time
we need to prove

b
IS (I =TD)(t)ll 1 (G-)—rr S,

for any 0<b< ﬁ, where I is the identity operator and II is a projection operator
defined by

I(f) = M(f)G-

First, iterating the Duhamel’s formula, we split it into 3 terms

n—1
Se(I=T)=(I-T){Ss+ > _(S8A) " %(Sp)}+{(I—T1)S,}  (ASs(t))*",
1=1
and we will estimate them separately. By Lemma 3.1, we have

158() L1 (G-)— L1 Se ", (6.1)

the first term is thus estimated. For the second term, still using Lemma 3.1, we get

e BN
IS5 All L1 Sem® 7,

by Lemma 6.3, we have

(S5 A) D L1ops SHe T,

together with (6.1) the second term is estimated. For the last term by Lemma 3.1

IAS5(®)]| Se

Ll(G—e)*)Ll(G*(%+€))Ne
By Lemma 6.1 and 6.3, for any 0 <b< ﬁ, we have

n—a—2_—at®
Ll(G—(%+e))_)L2(G—(%+€))fst €

1(ASE) =D (1))

)

finally by Theorem 3.1, we have

~

—at2—"
<e .

||S£(t)(I7H)||L2(G*(%+€))_>L2(G*%)

Taking n > a+2 the third term is estimated, thus the proof of case p=1 is concluded

by gathering the inequalities above. As the case p=2 is already proved in Theorem 3.1,
the case p € (1,2) follows by interpolation. ]
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