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FRACTIONAL KELLER-SEGEL EQUATION:
GLOBAL WELL-POSEDNESS AND FINITE TIME BLOW-UP*

LAURENT LAFLECHE! AND SAMIR SALEM?

Abstract. This article studies the aggregation diffusion equation
dip=A% p+Adiv((K *p)p),

where A2 denotes the fractional Laplacian and K = ﬁ is an attractive kernel. This equation is a

generalization of the classical Keller-Segel equation, which arises in the modelling of the motion of cells.
In the diffusion dominated case B < a, we prove global well-posedness for an Lllc initial condition, and in
the fair competition case f =« for an L,lc N LInL initial condition with small mass. In the aggregation
dominated case 8> a, we prove global or local well-posedness for an LP initial condition, depending
on some smallness condition on the LP norm of the initial condition. We also prove that finite time
blow-up of even solutions occurs under some initial mass concentration criteria.

Keywords. fractional diffusion with drift; fractional Laplacian; aggregation diffusion; mean field
equation.
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1. Introduction

The models arising in the context of the chemotaxis of cells have been thoroughly
studied in recent years. Among those, the (parabolic-elliptic) Keller-Segel equation mod-
els the competition between the aggregation and diffusion of cells (see [9] and references
therein for a proper biological and mathematical introduction on the topic). In this
paper we consider a variant of this classical model where the diffusion is modelled with
a fractional Laplacian. Such a choice is biologically motivated (see for instance [10,19]
and references therein). From a mathematical point of view, it is then interesting to
study how such a diffusion competes with an aggregation field whose singularity is up
to the Newtonian one.

More precisely for some (a,3) € Rﬁ_, we consider the fractional Keller-Segel equation

dip=A% p+Adiv((K #p)p), (FKS)

where A >0 is a parameter encoding the chemosensitivity, or the intensity of the aggre-
gation. The interaction kernel is given by
x

K(x)::W,

and I:=A?% denotes the fractional Laplacian defined by

I(u):A%u::cd’a/R Mdy. (1.1)

a |z —yldte

*Received: October 13, 2018; Accepted (in revised form): July 1, 2019. Communicated by Lorenzo
Pareschi.

TCentre de Mathématiques Laurent Schwartz (CMLS), Ecole polytechnique, Centre National de la
Recherche Scientifique (CNRS), Université Paris-Saclay, 91128 Palaiseau Cedex, France and CERE-
MADE, Université Paris-Dauphine, 75775 Paris Cedex 16, France (lafleche@ceremade.dauphine.fr).
https://laurent-lafleche.perso.math.cnrs.fr.

fCentre de Recherche en Mathématiques de la Décision (CEREMADE), UMR CNRS 7534, Uni-
versité Paris-Dauphine, PSL Research University, 75775 Paris Cedex 16, France (salem@ceremade.
dauphine.fr).

2055


mailto: lafleche@ceremade.dauphine.fr
mailto: https://laurent-lafleche.perso.math.cnrs.fr
mailto: salem@ceremade.dauphine.fr
mailto: salem@ceremade.dauphine.fr

2056 FRACTIONAL KELLER-SEGEL EQUATION

W_q _ ogd/2 . .
T 0 where wg= (d/2) 18 the size of

The constant ¢4 can be written ¢g o =—(2m)"

the unit sphere in R? when d € N*.

Particular cases of Equation (FKS) have been studied by numerous authors recently.
The classical case corresponds to the choice « = =d =2 and has been thoroughly stud-
ied in the past years. In [9], the authors show the global well-posedness when the initial
mass My is smaller than the critical one M, = %. Above this mass, a finite time blow-up
is shown to appear. This blowup phenomenon was already proved in [22] (see also [33]).
In [16] is also established the well posedness for an L initial condition. This assump-
tion is sufficient to enjoy the log-Lipschitz regularity of the nonlinear drift K *p, as in
this case K is the Newtonian kernel (see for instance [32]). It is possible to relax this
assumption to LlnL initial data [18] or even measure initial data [1]. Large-time be-
haviour is also studied in [9,12,18]. In higher dimension, the variant case a =2, f=d=3
is studied in [17], where a finite time blow-up is obtained under a concentration of initial
mass condition.

tB

d+1
Global existence
E Local existence or global existence
for small initial data or blow-up
2
HHH Local existence
Global existence if local existence
/
1
a
0 >

1 2

FIGURE 1.1. Ezisting results for the (FKS) equation.

The literature on the fractional case o <2, is also large and growing and previously
known results are summarized in Figure 1.1. In a significant part of it, the kernel K is
the Newtonian one (8=d). In the one dimensional case, [10] provides a well posedness
result for an LP initial condition with p>§ when a€(0,1) and p>1 when € (0,1),
as well as a finite time blow-up of even solutions under some concentration of initial
mass criteria. The critical case a =1 was then treated in [11]. In the case d > 2, [6] also
provides some concentration of initial mass criteria leading to a blow-up of solutions
when a €(0,2). See also the recent paper [7] for sharper results. Still in the Newtonian
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case, [28] provides similar results in the range a€(0,2). In the limiting case a=0,
see [2] for B€10,1), [3] for =1, and [29] for B€(1,2). For «=2 and S €(0,2), see [23]
and [20], and for =1 and « € (0,1), see [5,26,27]. For a wider class of parameters, see
also [34] of the second author and [5,8].

2. Main results
We summarize our results in the following Figure 2.1.

B

Global existence and smoothing

Global existence and convergence to
0 for small initial data or blow-up

””” Local existence

See Remark 2.1

/ Global existence and convergence
to 0 for small initial data

1 2

FIGURE 2.1. Range of application of Theorems 2.1 and 2.3. We emphasize that for d>2 the
results extend to the segment (o, 3) € {2} x (0,d).

We will work on weighted spaces defined by
My:={peM.(z)" pe M}
LY :={pe LP ()" pe L'},

where (z) =+/1+ |2, LP = LP(R%) and M = M(R?) denote the space of bounded mea-
sures. We also define the space of functions with finite entropy by

LinL:={pe L' pln(p)e L'}. (2.1)
For s €(0,1), we will denote by Cs’s the best Sobolev’s constant such that for any fe H?®
Casllf1? g <Iflss,

and for B € (0,d) and p,qg>1 satisfying 2— 5 = 1—1) + %, we will denote by CJ5® the best

Hardy-Littlewood-Sobolev’s constant such that for any fe LP, ge L9,

‘//R o —y| 77 f(2)g(y) dwdy| <CGF5 I f o lg] a- (2.2)
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Finally for s € [0,d) and r = =22, we denote CGNS the best Gagliardo-Nirenberg-Sobolev’s
constant such that it holds

Can I <11 Fllz2|f 1

For a given given couple (5,«) we define the following exponents for the LP spaces
which will characterize the integrability of the density

_d
Db = a—p

d
=ppo=—1—r. 2.4
P8i=PO= 53 (2.4)

(2.3)

Taking K = ﬁ causes two main difficulties. The first one is the singularity at x=0
and the second is the behaviour when x — co. We will therefore write

K=Ko+Kc=xK+(1-x)K,

where y € Cg° verifies 15, <x <1p,. Several parts of our analysis could be easily gen-
eralized to more general kernels with similar behaviour.
DEFINITION 2.1.  For any T >0, we say that p is a weak solution to the (FKS) equation
on (0,T) with initial condition p™ € M if it satisfies
peC®([0,T),M_g).) if B€(0,2]
peC?((0,T), M)NLi ((0,T), LP2) if BE(2,d+2),

and for any ¢ € C?

[ oto=se= [ [ oo #(6(5)V9))

/ RMKO@ W) (Vo) — Vo()o(s.dz)p(s,dy)ds.  (2.5)

We say that this solution is global if we can take T =+o0.

The definition makes sense since it is easy to notice that

Ko (pVgp)eCONL=((2)" )
Ko(z—y)(Ve(r) = Vo(y)) € CONLZ(R*) if 5€(0,2).
Moreover, if 8 € (2,d+2), the last term in Definition 2.1 is bounded thanks to Hardy-

Littlewood-Sobolev inequality. Remark that at least formally, this equation conserves
the total mass which we will denote by

M, ::/ P
Rd

First we obtain a global or local well-posedness result, depending on the regime,
given in the following theorem.

THEOREM 2.1. Let (a,8) €[0,2) x [0,d) be such that B+a>1 and ke [(1—8)4,a).

e When B<a and p™ € L}C, there exists a unique and global weak solution to the (FKS)
equation.



LAURENT LAFLECHE AND SAMIR SALEM 2059

e When B=aq, if p™ € LLNLInL satisfies

AMO<CM:4(2”)B (‘%) Wisp o (@m0 “asrz (2.6)
’ (d—ﬁ) wq ) wad—p wd+5’w§+ﬁ/2 ’

then there exists a unique and global weak solution to the (FKS) equation.

e When B>a and p™ € L:NLP with p& (pp,a,pg), there exists a time T >0 such that
there is a unique solution to the (FKS) equation on (0,T). Moreover there is a constant
Chxp(My) such that if

1™ e < Cxp(Mo), (2.7)

then the solution is global.

REMARK 2.1. The constraint S+« >1 comes from the necessity to propagate mo-
ments, which is necessary for our notion of solution and gives us compactness. Remark
that it is only due to the behaviour at infinity of the interaction kernel, which we de-
noted by K., and not due to the singularity. Therefore, our theorem would hold also
for example for the following kernel

T (1—x()),

K(x)= @x(mﬂw

for any 7>1—a and which relaxes the condition S+« >1. It is interesting also to
notice that formula (3.10) could also provide an alternative definition of solution which
does not need moments. However, it is not clear whether it is sufficient to provide
compactness.

FIGURE 2.2. Lower bound of the threshold of condition (2.6) for d=2,3,4 and B€(0,2). For the
case BS% see Remark 2.1.

REMARK 2.2.  The explicit value of C}ffé)sp for p€(0,d) and p=¢q in (2.2) and Cis
for s€(0,1) are known, see for instance [30,31]. Remarking that the HLS conjugate as
defined in (2.2) of pg/, is itself, it holds
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where we recall that wy= lgngd//;).

In the case 8 <, this theorem enlarges the existing result by Biler et al. [8], where
global existence is proved for d=2,3 in the case a< %, and is a novelty in higher di-
mension. Also it is provided with a larger class of initial conditions, and a uniqueness
result. Note that the case =/ is only the object of some remark in [8, Remark 3.2].
As for the case a < < 2, it seems it has not been treated yet to the best of the authors’
knowledge. See also [6] and [28] for the case §=2.

Let us briefly sketch the proof of this theorem in the case of an Lln L initial condi-
tion. Formally differentiating the Boltzmann’s entropy along (FKS) (see for instance [9,
Section 2.2]) provides a control of the L*([0,T),L?) for p € [1,p,] by fractional Sobolev’s
embedding, for any initial mass in the diffusion dominated case and for small initial mass
in the fair competition case. Then a slight modification of standard coupling argument
enables to obtain stability in this space when p€[l,p,) and uniqueness when p=p,.
The other assumptions on the initial condition are meant to control the L!([0,7"),LP#)
norm of the solution in the different regimes.

When global existence holds, we also retrieve some additional properties as a quan-
titative rate of convergence to 0 in the aggregation dominated case and a gain of local
integrability in the diffusion dominated case.

THEOREM 2.2. Let (o, 3) €[0,2) x[0,d) and p be a solution of the (FKS) equation as
given by Theorem 2.1.

o When B <a, the gain of integrability is given for any p€ (1,pg) by
_d
||pHLP S CM()t «q +C,\(M())

o When a< 3 and for a given p€ (pg,a,pp), |p™ |l Lr < Cxp(Mo) defined by (2.7), then
there exists a constant C'=Clg o, (p™) >0 such that

lollr < CMot ™.
e When B=a, the condition becomes

4Casl 1 1 1 1
B8/2 p
AJHQ<O AP = T o AATS —t= ,

frdp p(d—ﬁ)Cg%i r p+lp p+1lp,

which gives both a gain of integrability and an asymptotic behaviour for any p € (1,pg)
AMo < Cpap = |lpllLr <CMot ™51, (2.8)

where C' depends only on My, d, p, B and a.
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REMARK 2.3. If p is a weak solution to the (FKS) equation as given by Definition 2.1
with =« and AMy < Cy g, for a given p>1, we are not able to assert the uniqueness
unless we assume that p'™ € Lln L.

Finally we obtain a finite time blow-up for even solutions to (FKS) under some
concentration of mass condition stated in the following theorem.

THEOREM 2.3. Let (a,8)€1[0,2) x[1,d) be such that a<f, ke€(0,a) and p€
C%(R4,Li) be an even nonnegative weak solution to the (FKS) equation with initial
condition p™ € L} verifying

. 28—k
/,#WxﬂxﬁdeCVAwiwkﬁw*” if a>1 (2.9)
Rd
/ p™ (z)|z* de < C5 Mo and AMo > Cj ifa<l1 (2.10)
Rd

for given constants C*, C5, C5 depending only on d, B, a and k. Then the solution
ceases to exist in finite time.

The proof of this theorem relies on the time differentiation of an adequate moment,
which is adapted to the fractional diffusion and not the Newtonian aggregation case,
and which leads to a contradiction.

One of the strengths of the result of Theorem 2.3, even if it deals only with even
solutions, is that it applies to weakly singular interactions, i.e. < 2. Indeed it seems
that so far most of finite time blow-up results for aggregation fractional diffusion equa-
tion dealt with the case of a Newtonian interaction at the exception of [5, Theorem 2.2],
which deals with interactions of the from ﬁ near the origin. Considering a less singular
kernel than the Newtonian one erases some algebraic facilities and requires a thinner
estimation of the competing terms. We emphasize that it also covers the purely ag-
gregative case a=0, giving stronger results than [3,29] for the case 8>2. For 5<2,
the blow-up was already proved in [2] using a Lagrangian point of view.

Finally, let us comment about the disjunction of the different global existence and
finite time blow-up conditions. Condition (2.7) in Theorem 2.1 is heuristically in con-
tradiction with the assumption of Theorem 2.3. First remark that if we require that p™
is concentrated around zero, for instance with a condition of the type || p™|| r: <CMj for
a given constant C' which does not depend on p'*, then the condition of blow-up (2.9)
is equivalent to

AMy>C’,

where C’ is a positive constant that depends only on 3, a, k and d. Moreover, in a
more general setting, for k>0, g=p’ € (1,00) and p€ L}c N LP, the following inequality

d
<C T
p< p(x) lollLs™
R4 R4

holds with C' depending only on d, k and ¢q. With fixed My, this inequality is enough
to exclude a priori (2.7) from (2.9) or (2.10), at least in the range of arbitrarily large
(or small) [|p™|z» or [r.p™(x)*. When this is not the case, we expect that no other
behaviour appears in the remaining cases.

We restrict ourselves to check that in the simple case a==2<d, the global well-
posedness condition (2.6) is coherent with the classical large mass blow-up criteria.
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Indeed take a solution to (FKS) in that case, it is possible to consider initial condition
p™ € L} and then classically

G Lol = [ oatal)=r [ K@=y @-polanip(d)

dt Jpa
=2dMy — \M¢E
AMy
=2dMy (1—
d 0( 2d )

so that the condition AMy > 2d yields to final time blow-up. And since wq10= %’rwa, it
holds

2 2
4(2m)* wag wa—2 (wd_z wd—l)
max

02 d— )
5 2
(d—2) wqg wag—2 Wat2 Wiy

4(2m)? d—2 d(d—2) (d—1)?
(d—2) 2d—2max< 2m?2 * (2r)2 )
—=2(d—1)<2d,

so that the two conditions cannot be realized simultaneously.
3. Proof of Theorem 2.1 and Theorem 2.2

3.1. A Priori estimates. We begin this section with an a priori moment
estimate given as follows.

PROPOSITION 3.1 (Propagation of weight). Assume 1—f8<a« and 8<2 if a<1 and
let ke[(1-0)+,a) and p be a solution of the (FKS) equation with initial condition
p™eLL. Then

peL?c?c(]R-‘rlel@)'
Proof. Let m=(z)* and M; = [pllzr. When k>1, the convexity of m leads to

e / pI(m) A / [ mlea)pldn)oldn) < / pI(m), (3.1)

where ho,(2,y) = <Vm<f>gljj”;fg>'<m*y> >0. From [4, Remark 4.2] and [24, Proposition

2.2], we know that for any k € (0,a),
I(m) <Cypm(z){z)” . (3.2)
Since m(x) (z)~* <1, the following inequality holds

dM;
? < Ca,kMO-
When k € [1—3,aA1), we decompose the second term in (3.1) as the sum of the integral
over the domain |z —y| < R and its complement for a given R> 0. Since Vm is Lipschitz,
we obtain

—// han (2, ) p(dz) p(dy) < C |z —y[> P p(dz)p(dy) < CR* P MG,
e—y|<R le—y|<R
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where C'=||V?m||~. The other part can be controlled as follows

(@-y)((2) "+ )"
- hon (z,y)p(dx)p(dy) <k da) o(d
/~/|zfy‘>R (@,y)p(dz)p(dy) //lz—y\>R p(dz)p(dy)

z—yl?

(z-y) (&) 2 -
§2k//|m_y‘>R7p(d )p(dy)

|z —yl?
k—2

<ak [ BT o ayp(ay) < ab(h + 1),
le—yl>Rlzl>ly] €Yl

where

n-| /| W ey piay)

o—y|>R2lz|<|y| |T—yl?

Ig:// Mp(dx)p(dy).
lo—y|>R,Jzl<|yl<2la| 1T —Yl?

Since [z —y| > ||y — ||| > [y||L = [=[/|y[| > y|/2 when [y| >2|x], we get
11§2ﬂ// |2 (@) p(dz) p(dy) < 2° My _ 5 M.
|2 —y|>R,2]z|<|y|
For I, we use the fact that |y|<2(x) to obtain
p<s [ ()" p(da)plcly) < s My My,
RP JJjo—yi> R Jol<lyl<2lal R

Combining these three inequalities with (3.1) and (3.2), we obtain

dM, 2
Fk <CoxMi—o+AMy (21_ﬁM1—ﬁ+RﬁMk+C'R2_ﬁMO) )

In particular, since 1 — <k and k—a <0, we get

dM, 2
b < MO (Ca,k,MO +A <21_’6 + B:ﬂ) Mk) .

dt

By Gronwall’s Lemma, this leads to
Mk < (Mllcn+ Ca,k,Mo ) eACB,RM0t7

which proves the result. 0

The second type of estimates are a priori bounds of integrability. Let us first briefly
emphasize that the quantities we estimate will take the form

[ put@)as,

where ©>0 and ®:R; — R, is a nondecreasing convex mapping such that ®(0) =0 and
u—u®”(u) € Ll .. Then we can define

\Il(u)::/()uvfb”(v)dv (3.3)
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w(u)::;/ou\/a. (3.4)

For p=¢' >1 and u >0, we recover Lebesgue norms and Boltzmann’s entropy as follow

D, (u):= p%lup =, (u)=uP

Vp(u)= %upﬂ
O (u):=uln(u) = T(u)=u
Yy (u) =2u'/2,

LEMMA 3.1 (General estimate). Assume that (o, 8) € (0,2] x (0,d) (with a#2 if d=2)
and let p be a smooth solution to the (FKS) equation, ® be a nondecreasing convex
mapping, ¥ and v be defined respectively by (3.3) and (3.4) and be (1,pg). Then there
holds

d
. ( / ¢><m) <A(d=B)CHE ol 1 ()10~ [¥(0) (3.5)
Rd
<Xd=B)CLE ol - 12 ()| Lo —CF o ol (0) 135 (3.6)
where
1 g1 2 a
STd Ty 3

Proof. We define the “Carré du Champs” and the ®-dissipation by
ca [ (u(y)—u(@))(v(y) —v(z))
T =
(o)== /]Rd |z —yldte
Do (u) :=T(u,® (u)), (3.8)

dydz (3.7

where ¢g o is defined in (1.1). With these definitions, we have

/WI(“)”:/WM(U)=—/Rdr(u,v).

In particular, since ® is convex,
/ [ (u)=— | Do(u)<0.
Rd Rd
We remark that

2

()~ (v)]*=

I

which by Definition (3.7) leads to

L(gp(u), ¥ (u) <T(u, @' (u)).
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Therefore

plys = [ T < [ Tadw)= [ ouw.

Rd ]Rd
Let p be a nonnegative solution to the (FKS) equation. Then formally

3 (L20) = [ #0100 -39

[ Dulp) [ AV(H()- (K )
Rd Rd

—— [ Dulp) 2 [ Wpaiv()p)
Rd R4

—/Rd©q>(p)+k(d—ﬁ)/w (;@*p> T(p).

We remark that by Hardy-Littlewood-Sobolev inequality, we have

@5 [ (o) v < - peilo

and by (3.9) and Sobolev embeddings, we have

(p)llre,

Ls

f/Rd@p(p)gprn g S—Clapllt0I3s,

which ends the proof.

2065

(3.9)

(3.10)

d

PROPOSITION 3.2 (LlnL estimate). Let =« and p be a smooth function satisfying

the (FKS) equation with initial condition p™ € LInL. Then it holds

t
[ tnto)+4C5 kO~ o) [ VAR y < [ pm(o™)
R4 0 H=2 R4

with p=p(t,-) and

(CGNS )
o d,B/2
B.d = HLS
(d_ﬁ)cdyﬁmﬁm
Moreover if A\My < Cg.q and for some T,k>0, pe L>°((0,T),L4), then

peL'((0,T),L77).

(3.11)

REMARK 3.1. The explicit value for Cg’g/sz does not seem to be known, however the

following lower bound holds

CFNS > max (€5, (C5.)'7?)

(3.12)

Indeed, one way to get the Gagliardo-Nirenberg-Sobolev inequality is to first use

Sobolev’s inequality and then interpolation between H?® spaces

Caopll FIE <1155 <N llezlf e
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Another way is to first interpolate between Lebesgue spaces and then to use Sobolev’s
inequality

(€32 < €3 2SNz lre < Uzl fllae s

2d
d—2s"

where 79 :=

Proof. We use inequality (3.5) for ® =®;, 11 (u) =2u'/? and b=s=pg/2 to obtain

d
— [ pln(p) <A(d—B)CEES o130 — 1 (p)]

2
B .
dt Rd H?2

Then, by Gagliardo-Nirenberg-Sobolev’s inequality, we have

2 9 2
(CE8%) ollze = (CE55%) 102

<llp"|1Z2 1022 5 = Mol 2 .

2
H?2
Hence, since 9 (u) = 2u'/2, we have
ans \2 2 2
4(CE8%) Iolids < Mol (o) .-

This yields

d

0t e pIn(p) <Cj 4y (AMo—Cp.4) |1/)1(P)|2§ ;

which proves the first assertion. Formula (3.11) comes from the fact for k>0, defin-

ing m(z):= (a:)k and A >0 such that [p, e~ M@ dz =1, with h(u)=ulnu—u+1>0 it
holds

p P P apm —Arm P —Akm P
—In—= [ h{-——e k —1 R > )\ —
ra Mo nMo /]Rd (Moe )e * ra Mo n(e )2 k/]Rd Mom’
and then
/ plnp > M, lnMOf)\k/ pm.
Rd Rd
Combined with the following Sobolev inequality

4C3 g pollpll s =C3 g pall 1 (P 7205 < 1 ()2

B
H?Z

it yields
t
0= [ (plnlp)+ Mnla)p) ~ Mol Mo +465 5,C 4(Coa= M) [ v
R 0
S/deinln(foin)+)\k||ﬂ||Loo(0,T;L;)—MUIHMOa

and the conclusion follows. 0
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PROPOSITION 3.3 (LP estimates). Let («,() €10,2) X [0,d). Then, when <« and p=
q € (1,pg), we get a gain of integrability from L' to LP and a global-in-time propagation
of the LP morm

d
o) |lLr < CMymax (t_;?l,MO‘Z(aB)) , (3.13)

where C' >0 is a constant depending on d, B, a, p and \. When 3> «, then for any
P € (pg,a,p8), there exist two constants C=Cg o p>0 and C™=Cgaq p(||p™]|Lr) such
that

. ___d in -4

"l < CMo(AMo) ™ ®=1 = ||p|L» < C™ Mot~ = (3.14)
1™ | Lo > CMo(AMo) ™ 75 => pe L((0,T), L?) (3.15)
1™ Lo = CMo(AMp) ™ T = pe L (R, LP), (3.16)

where T < Cg o (A, M) ||pi“||z,f’b with

= e A1)

When B=«, then there exists a constant

4C5
Chap= T giomrs
(d=B)Cqgr
such that for any p € (1,pg),
AMo < Cpap = ||pllLr < Mo(C™b) ¥t 24 (3.17)
AMy>Cgap = p L>((0,T),LP), (3.18)

where C'™™ is a nonnegative constant depending on the initial data and

1 ( My )
> in in '
bC o™ (| e

REMARK 3.2. The critical mass is clearly not optimal since we could use optimal con-
stants in the Gagliardo-Nirenberg-type embeddings, as it is done in the Lln L estimate,
instead of using Sobolev’s embeddings and interpolation between Lebesgue spaces.

Proof. We will separate the proof into several steps.
Step 1. D:ifferential inequality for the L? norm.  We recall that

1 p 1 1 1

= -
r p+lp p+1lp,
Since p <pg, it implies that € (p,p,) and in particular r/p>1. Therefore, by taking
®=7,, r=s and b=r/p in inequality (3.6) and defining 7= %b, we obtain

d p+1 Co p
G ([ m0)) <acs ol =t (3.19)
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where Cg,, = (d—ﬁ)C}i{,IE,Sr? Ca :463704/2 and

p+1

(3.20)
(3.21)

We also remark that

rgf@%(l—%)gﬁ@—%)
& (1+1)(d—a) < (2d-B)
d—a
TP ta—p

Since p>pg,qo > d+ B’ we deduce that r <7.
We will now use interpolation between Lebesgue spaces to express the left-hand side
of (3.19) in terms of My and the LP norm only. Let € €(0,1) to be chosen later and

_B-a(l-g) « b8—a
= Tde-1) dp-D ' edp-1) (322
0, = p+1(1+b0) (3.23)
 (I—e)p
= (3.24)
90::1791702. (325)

Since p>1 and £€(0,1), we deduce that 6 €[0,1). Moreover, using the respective
definitions (3.20) and (3.21) of r and 7, we have

0 0 1+b 1 1- 1
1+~2+90€(+0)p<1>+( €)p<~1>+1
p T p+1 P p+1 T

(5(1—p)(1+b0)+(1—6) (1—%—;9) +p+1)

:ﬁ (5(1—]3)—W+2—3—5(1—p)+63)

1 By _1
_p+1(2_d>_r'

Therefore, if we can choose € € (0,1) such that (6y,6;) €[0,1]%, we obtain by interpolation

:p+1

|p+1 <M6° p+1)

] Ip]l%, I =acple.

Then, by using the standard Young inequality a bl_E <ea+(1—¢)b, for any g9 >0, we

have
1 i € B l1—¢
AcBl-c— <(_E> A) (50> <C.oyA+e0B,
€0 1—¢

1—¢

;05> ° . Coming back to (3.19), it yields

with C. ., = (2

d € 6 b
a </ ‘DW’)) < (A€o Ceicg MO T 4 (0= % ) ol (3:26)
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where we take ¢ smaller than C,/p. Since 1 <p <7, again by interpolation, we get

1 b
ol < Mg |p)12 .,

with

Thus, inequality (3.26) becomes

d 6 b b
&HPH;ZPSC M o(P-H)/EH HP(H— 0) —Cy My Pb1|| ||P(1+ 1) (3.27)

where Cy = (p— 1)()\06,7')1/606780 and Gy =(p—1) (7 _80)

Iz
Step 2. Conditions on .  We still have to verify that we can choose € so that
(60,01) €[0,1]2. By Definition (3.23) of 0y, we get
01>0& by >—1
& f—at+ac>—ed(p—1)
a—p

SE>D————— =€,
°= a+d(p—1) Em

Moreover, by Definition (3.25) of 6

9020@91+92<1

=4 ? (1+€b0)

1
& ebg < —

Since p<pg, ep < 1. Let us check that it is nonnegative. We have

d
em>0epf——<as - >M
q q— d
Since ¢=p’ > 1, this is always verified when 5 <a. When § > «, it is verified by hypoth-
esis since we can also read the previous formula as

d
eM>05p>—— =pg,.
M p7d+ e bg,

When 8 < «, we also have to verify that ¢, <ep;. We have, indeed

en _ (pla=p)+d(p—1))(a+d(p—1))
Em pa(a—B)
_pala=p)+d(p(p—1)(a=B)+alp—1)+d(p—-1)?)

B pa(a—p)




2070 FRACTIONAL KELLER-SEGEL EQUATION

pla—B)+a+d(p—1)

pa(a—p3)
Therefore, since 0, >0 and 6y+6;+602=1, we proved that for any ec€
[max(gm,0), min(eps,1)],

=1+d(p—1) >1.

(60,61,602) € [0,1]°.
By looking at (3.27), we want to take £ which minimizes by. Hence, we take

=&, when g<a,

e=¢ep when 8> a.

Step 3. Case f<a. In this case, we have € =¢,,, which yields by=—1.
Moreover, since

bo(p+1)=p+1—(1—¢c)p=1+ep,
by (3.27), we obtain
d 1 —pb 1+b
gl < CLME e = Co ™ |
Then, either
Co My ™ |25 <20, METVE, (3.28)
or
d —pb 1+b
il < =3CoMg ™ ] . (3.2)

Inequality (3.28) is equivalent to

1
201 T+b1 p+%
ol < (%) 0y <),

and by Gronwall’s inequality, (3.29) leads to
- ~1/b ~1/b
ol < (3Cangg™bnt) " =M (oat) "

Step 4. Case $>«. In this case, we have

e _ble=pf)t+dp-1) 1
M ap pb’

which by Definition (3.22) leads to
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and by inequality (3.27), to

d 00 (p+1 1+b b 14b1)
qillels < CLM VY — Co Mg ol .

As remarked previously, e =e); > 0. Therefore, since 8> «,

b=b, + >by. (3.30)

d(p —1)

The estimate on the LP norm is then obtained by analysing the corresponding ODE
which is of the form

y' () =Ay()"" = By(t)' ",

with A and B nonnegative. It has a fixed point at y=0 and at

1
B\ =51
f_ (= >
Y (A) >0.

Therefore, when y(0) € [0,y%), it yields y(¢) € [0,y*) for any ¢ >0, and since y’ <0 in this
interval, it implies the existence of a constant C'=C(y(0)") <1 such that

Alerb < OBy1+b1 )
It implies that
~(1-C)By'*™,

which, by Grénwall’s inequality, leads to

1 ) M

VtGR—HyS 1 — L
(y(0)" 0 +b1(1=C)Bt)"r  (bi(1-C)Cat)

When y(0) >y, we can still write that
y < Ay'tr.
It implies that the solution is bounded in [0,7] for some T >0 and

1
(y(0)=0 —bAL)¥
1
T< .
bAy(0)®
We deduce the corresponding results for the LP norm of p by Gronwall’s inequality.

When y=y*, all we get is that y is constant and therefore that oI, <y* for any t>0.
We can compute more precisely

- [ 1
Y= _GaMy™ N <02> o (Mo—eo(pu)/s—pbl)ﬁ.
ClMgO(P+1)/€ C,

vte[0,T],y(t) <
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Now by the definitions of Cy and Cs in step 1, by (3.30) and the Definition (3.25) of 6,
we have

Oo(p+1)=1—epb=0

This leads to

C = L
f_ a —&op - Mp(b—bl)—l/s b=by
Y <(>‘CB 7’)1/506 60p> ( 0 )

d(p—1) p—
P— B—a )\d%pial)

—_ (P
Cﬁap 0

Step 5. Case f=a. When 8=a, by Definition (3.22), by does not depend on
€ and
o
d(p—1)
Oo(p+1)=1—¢epb.

b=by=b =

Moreover, we can take any € € (m,,e0] = (0,d/(aq)]. Thus, by inequality (3.27), we get
1—epb) 1+b —pb 1+b
ol < oM ol — gl
14b) 3 r—pb 1
<ol (Cade =€)

The left-hand side will be negative when

My < (g) - (Caifj;‘))g (15_()5)1_65€:u5(60). (3.31)

Taking ¢y maximizing the right-hand side, we get

eo=(1—¢)Cq/p
Ca _ Ca.dp
PACs.r A

uc(€0) =

When this is the case, then C'":= |ClM3/E — (3] >0 and by Gronwall’s inequality

_ 1 ME
T (o E +bMy PP Cing)E T (Ot

VteRJra ”p”Zl),p

IN

)

which proves (3.17). When My > M we only get the existence of 7> 0 such that

1
in||—Pb —pb ing\ 1
(I ze” —bMg P Cint)

Vi€ [0,7]; [IplL» <
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Moreover, T verifies

1 My \"
T>.<.0) ,
b(C'in ||p1n || r

which proves (3.18). o
COROLLARY 3.1.  When B<a and p™ € L', then for any p < pa
pPe Llloc(R+7Lp)v (332)

which holds in particular if p=ps. When >« and p™ € LP for a given p€ (pg.a\Pa),
then there exists T >0 such that

pe€LP((0,T),L7), (3.33)
where 7 =ppo >pg. Moreover, if (3.14) is verified,

peLp (R-HLF)'

loc

Proof.  Equation (3.32) comes from inequality (3.13) by remarking that p<p,
implies d/(aq) <1 and integrating in time. Equation (3.33) is a consequence of (3.26),
which by integrating in time leads to

t t
in 6 1 1+b
pll%, () +Cs / ()12 ds < [|p™|7, +Cy Mg P+ / p(s)l[55 ") ds.

If pe L>°(]0,T],LP), then we deduce that
t
in 7 b
Ca [ Ips)eds < 0™, +CoM TSR )

and we conclude by using (3.14) or (3.15). |

3.2. Tightness and coupling. For the rest of the section we consider some
given stochastic basis (Q,F,(F)i>0,P). The expectation with respect to P will be
denoted E. We first provide a generalization of [15, Proposition 3.1] in the following
lemma.

LEMMA 3.2, Let be <d, k>1 and p>pg. There exists a constant C' depending only
on d,p,B such that for any p1,p2 € PrNLP and X,X two i.i.d. random variables of law
p1 (respectively Y)Y two i.i.d. of law p3), it holds when p>pg

E[|X -Y[" KX -X)-K(Y -Y)|]<CC,, p,&. (i)

and when p=pg,

_ _ In_
(X ¥ KO- X K -T))) 00, e (14255 i
where Cpy o, =1+ ||p1llLe +[lp2ll e and &, =E|[X —Y|*].

REMARK 3.3. The point (¢) of this Lemma has been extensively used in the literature
(See for instance [13,14,20,34]). So has the point (ii) in the Newtonian case 3 =d and
thus pg =00 (see for instance [15,21,32]). Since we did not find its generalization to a
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general Riesz interaction kernel 8 € (0,d), we provide more detail. A similar technique
can be found in [25].

Proof. We start with the classical inequality (see [21, (3.9)], [20, Lemma 2.5], [13,
(3.26)], [14, (3.5)]) which holds for any (z,y) € (R9)?

K (2) = K(y)| < (IVE(2)[ +[VK(y)]) |2 —y.

Then denote 7=L(X,Y)=L(X,Y) € P(R??).
Step 1. Proof of (i). We assume here that p>pg. Then we have

E[I X-Y"'K(X-X)-K({Y -Y)|]
<E[IX-Y|" ' (I X-Y|+|X-Y|) (IVK(X - X)|+|VK(Y -Y)])]
2221 +Ig

We first estimate Z;. Since X and X are independent we get
=E[|X -Y['E[(|VK(X - X)|+|VE(Y -Y)[)|X,Y]]

|-y ([ (VKX -0+ DR -t )
E[jx—vP ([ VEX =)@ det [ [VEY -p)loady)].
R4 Rd

But since VK| < Cglz|~# with Cs =max(1— 3,[3), we obtain
C5' [ VKX =lp@des [ 1X=al Pp(o)as
R R

< / X — 2|~y (2)dz+ P pa |
| X —z|<r

1/q
<llp1llze (/ |1’|Bqd$> +r7 % pall 1,
|z|<r

where ¢g=p’ and r>0. Since p>p,, we get ag<d so that |z|~*? is locally integrable
and we obtain

Ci' | IVK(X —x)|pr(x)da < Crr® | pyl| Lo+~ |l p1llz1,
R4

1/q
where C'xg = (ﬂ%q) .

Step 2. Proof of (ii). Note that for any (z,y) € (R%)? and r >0, it holds

N K ()| + K ()] it |2 ALy <
e K(yﬂg{(lw(m+w<<y>|>|x—y| clse.

So that

E[|IX-Y[F KX -X)-K(Y -Y)|]
E[IX-Y|" ' (|K(X-X)|+|K(Y -Y)|) Lix_ %Ay —¥|<r)
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+EX-Y|* (X -Y]+|X -Y])
(IVK(X =X)|+|VEY =Y)) 11 x_5A)y—v|>r)
::Il —|—IQ

To estimate 77, we write
Li=I{+I}+1}
=E[[X VP (IE (X =X+ K =Y) ) Lx_ gy y—v <]
FE[IX =Y (KX =)+ K (Y = V) L x_x(ssy—7)

FE[1X =Y (K (X =)+ K (Y D)) L Serey—7) -

Then, for the estimate of I}, we get by independence of X and X (respectively Y and
Y)

II=E [E {(|K(X—)_()| + |K(Y—57)|)]l‘X_yMy_Y‘SAX,Y} |X—Y|k_1}

p1(x) / p2(y) k-1
<E / = dx+ e dy | [ X =Y
[( | X —z|<r ‘X_xw_l Y —y|<r |Yv_y|ﬁ_1 | |

B
d
—(B—=1)2 —
§<||p1||Lpﬁ+||p2”Lpﬁ)(/ e Dﬂdz) E[IX -Y[*1].

Since

we get
L <Cqgr(lpnllzes +llpzllprs ) E[IX =Y |71,

For I?, we have

. _ylk—1
= Wﬂw—wyp{ Y| }

p2(y) k—1
—d X-Y
</Y—y|§r Y —y|A-1 y> | |

<205 g7 [l pall o E[IX = Y[*1].

We then estimate I3 similarly. Combining the above estimates, we obtain

Ty <3C) g (llprllzrs +llp2llpes ) E[|X =Y [F71]
(k—1)/k
<3Cy 57 (lprllpee +llp2llprs ) E[| X —Y|*] :

Next, we estimate Zy by writing

T,=C,(I; +13)
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1 1
- _vik — _
—CaE |:|X Y| <|XX|B+|Yy|ﬂ>]]-|x_Xl/\|Y—Y>7":|

1 1
|X—Y|6 + |Y—Yﬁ) ]1|XX/\|YY|>7‘:| .

+cau<:[|XY|klxy(

First we easily obtain, since Toap>r =Lo>rLp>r,

1 1
1_ k _
I, =E [|X -Y|"E {<|X—X|ﬁ + Y—Y|5> 1\X7X\A\Y7Y|>r|‘xv) H

p1() p2(y)
X -YI|* / dx—i—/ dy
| X —z|>r |X_$‘ﬂ Y —y|>r |Y_y‘ﬁ

<E

We then consider two cases: 7>1 and 0<r<1. For r<1, we get

p1(z) / p1(z) / p1(z)
————dr= ————dz+ ————dx
/|X—x2r | X — =P | X —z|>1 | X —x|? | X —z|€[r,1] | X —af?

) s
<lpallzs + lonll s / b w
g (X —alefr) [ X —2|?

8
<llprllzr +wallpal[prs In(r)
<Ca(llprllzrs +llprflr) (T+In_r).

For the case r > 1, it is clear to obtain

T
[ e
| X

—z|>r |X—£L'|
This yields
1y <Callprll s + ol o +DE[X ~Y1*] (1-+In_r).

On the other hand, by Holder’s inequality

) L 1/k
2 Y _vk
I; <E [|X—Y| <|X—X|B + Y—Y|ﬁ> ]lX—X/\Y—Y|>r:|

1 1
xE{X—Y’“(

1-1/k
|X—Y|B + |Y—Y|B> ]1|X77|/\|Y77\>r

The second term of the product is some power of the term I3 which has already been
dealt with, and so is the second term by symmetry of the roles of (X,Y) and (X,Y).
So that

Ty < Cap (o1l prs +p2llrs +2)E[IX Y] (1 +1n_7).
Putting all these estimates together yields for any r >0
E[X-Y[F KX -X)-K(Y -Y)|]

1-1/k
<ChsllprllLrs +llp2llLrs ) rTE[IX — Y|¥]
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+Ca,s(llprlles +llp2llLrs +2)E[[X =Y |*] (1+1n_r).

Choosing r =E [|X — Y|*] 1 yields the desired result. d

Proof. (Proof of Theorem 2.1.) Let p™ be such as the assumptions of Theo-
rem 2.1. For £ >0 define

K. (x)= K(x) if|z|>e
S e Pr else,

and consider the following nonlinear PDE with smooth coefficient
Ope=1(pe) + Adiv((Ke*pe)pe), (3.34)

with the initial condition pi" = p'". Since the kernel K. is (e7#)-Lipschitz, the difficulty
for the well posedness of (3.34) does not come from the quadratic nonlinear term.
Existence and uniqueness of solution for this nonlinear problem is straightforward in
the case 8 € (1,2). Indeed it is sufficient to apply a standard fixed point in C([0,7],Px)
technique using Wasserstein metric, since in this case the solution a priori enjoys some
ke (1,8) moment. In the case € (0,1], it is no more possible to use the completeness
of C([0,T],Ps),r>1, and we have to proceed by compactness (see [34, Appendix B]).

Then due to Proposition 3.2 (if =), Corollary 3.1 (if 8# «), and Proposition 3.1,
pe € LY([0,T],LP)NL>([0,T],L}) for some p>ps and T >0 depending or not on p'™,
uniformly with respect to € > 0.

Step 1. Tightness. Let Xy be a random variable on R? of law M()71,0in
and (Z§)t>0 be an a-stable Lévy process independent of Xo. We denote by (X7 ):i>o0
(respectively (X£');>0) the solution to the following SDE

t
Xf:XO—/\/ K.(XE —2)p.(dz)ds+ 20
0 JRd

Note that (pe(t))i>0:= (L(X]))i>0 solves the linear PDE

Oppre = I(p1e) + Ndiv((Ke # pe)puc),

with initial condition pui* = My ' p®. Therefore £(X§)=M; 'p-(t) by uniqueness of so-
lution to this linear PDE with smooth coefficient.
Assume first 0 <1— < a. It is direct to obtain in this case for any v>1

k2= [[ 1K)l pe(da)pt)
<o [ o=ulvey = petanp.(a)
SCg,y/ (‘x|(1fﬁ)v+€(lfﬁ)v) pe(dz).
R4

Then choose 7= ﬁ > 1 and use the symmetry between x and y to get

T T
sup / KX(t)dt< sup / // Cg,y <|x|(1_ﬁ)7+5(1_ﬁ)7)pg(dx)pe(dy)dt
0 0o JJrad

0<e<1 0<e<1

<Cg,1 (bli% ”pEHL‘X’((O,T),L}C) + 1) <0o0.
1>
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Assume now that 8> 1. First note that Hardy-Littlewood-Sobolev inequality yields for
any € >0 and y>1 to be fixed later

K7 < / / e —y[70 T p.(d2)p(dy) < Cllpc

Ld+v(1 B)/2

By interpolation between Lebesgue spaces, if v < w, then

1<l <llpellzollp=l1:°,

Ld+“r(1 B)/2

(ﬁ 1) with g=p’. Therefore

T
su KI(t)dt <su dt
o [ Kzarss [Nl

1)q
<sup / loel ™ dt < oo,
e>0

where 0 =y+—+~

provided that v &€ (1, ﬁ). Then in both cases, denote the stochastic process

t
Ti=A [ [ Raxs -t as
0 JRrd
and observe that for any 0 <s<t<T, it holds by Hélder’s inequality

|J; = J5I<

K (X;—x)p:(dr)du
Rd

// |KL(X; )| p- (da) du
<Jt— st / ([ 1o 7p5<dw>)wdu,

so that by the estimates carried out in the beginning of this step and Jensen’s inequality

|J5 s 1/~
sup IE[ sup ] / (/ |Ke (X, —x |A’p5(dx)> du
0<e<l |0<s<t<T |t—5|1/7
T 1/
<[ (B] [ Imci-ar))
0 R
, T 1/~
<77 (/ /cg(t)dt> < o0.
0

We then deduce that the family of law of the processes (Jf)ico,r] is tight in
P(C([0,T],RY)). Indeed let us denote

_ N () (5)]
ch.—{fecqo,T],R 1100, sup HO=L0) SR},

which is compact due to Ascoli-Arzel’s Theorem. By Markov’s inequality we get for any
e>0

P((JtE)OStST¢KR)P< sup Jt_JS[>R>§R1 sup E{ sup M}

o<s<t<T |[t—8[1/7 1550  Lo<s<i<r [t—s[1/7
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Hence the family of law of the processes LF=L((X;=Xo+J;+Z})o<i<r)E
P(D([0,T],R%)) is tight. Thus, we can find a sequence &, going to 0 such that L., goes
weakly to some 7€ P(D([0,T],R%)). For any t€[0,T], we define e;: g€ D([0,T],R?)
g(t)€R? and p(t):=(e;)#m € P the push-forward of p by e;. Since for any t€[0,7],
(er)#LE =pc(t), pe, (t) goes weakly to p(t) in P,

Step 2. A priori properties of the limit point. By lower semicontinuity of
[[llz» and ||-[|z1 with respect to the weak convergence of measures and Fatou’s Lemma,

it holds p € L*([0,T],LP)NL>([0,T],L}). We now show that p satisfies (2.5). Indeed for
¢ €C? denote

Fo= [ or-9e- [ [ o *(pls) V) ds
/ /de Ko(z—y)(Ve(x) = Vi(y))p(s,dz)p(s,dy) ds.
Since p. solves (3.34), it holds for any ¢ >0
-7:5(,05775) =0,
where F. is the same functional as F with K replaced with K. So that for any ¢ €[0,T)
[F(p, ) < [F(pst) = Fnlp )|+ Fnpst) = Flpe ) + | Fy(pest) = Felpe,t)]-
But note that for n>e>0
| Ke(2) = Ky ()] < Degpayzylo]' =7 <] 7.

We deduce that for any o€ L' ([0,T];LP#), by (2.2), it holds
¢
[Fnle.t) = Felot)| Sn/ / | —y| ™" 0s(dz)es(dy) ds
0

t t
S S
<5, [ el o ds <SS, [ el ds.

So that

t t
[F ol <nCaiy, . ( / lplles ds+ sup / ||pg||mds)+|fn<p,t>—fn<ps,t>|.
0 0<e<1Jo

Letting first € go to 0 makes the second term in the r.h.s. vanish, since for fixed >0,
F, is a smooth function on L*([0,T];LP#) and p. goes weakly to p as e goes to 0, then
letting 7 go to 0 yields F(p,t) =0, and p is a solution to the (FKS) equation in the sense
of Definition 2.1.

Step 3. Uniqueness of the limiting point. We now show that there exists
at most one such solution. Let p, p€ L'([0,T],LP)N L>([0,T],L}) for some p>ps and
T >0 be two solutions to the (FKS) equation with initial condition p'®. We argue by a
coupling argument. Define

t
Xt::XO—)\/ K(X;—y)p(dy)ds+Z;
]Rd

t
VimXo-A [ [ KO- gy ds 27,
]Rd



2080 FRACTIONAL KELLER-SEGEL EQUATION

Due to the L? regularity of p and p and Lemma 3.2, K*p and K *p are Lipschitz if
p>ps and log-Lipschitz if p=pg. But p(t):=L(X;) solves the linear PDE

Oep=1(p)+Adiv((K*p)p),
for the initial condition w(0)=M; 1pin. By uniqueness of solution to this linear

PDE with Lipschitz or log-Lipschitz coefficient, £(X;) =M, *p(t) (respectively L(Y;)=
My 'j(t)). Denoting Z, = X, — Y5, and m, = L(X,Y;) yields

zip =2 [ [ 70 () - KO- )y

Introducing X i.i.d. from X (respectively Y i.i.d. from Y;) and taking the expectation
yields

E[|Z|?] <2A/OtE[|ZS||K(XS—X5)—K(YS—12)I] ds
C Jo Ulollee +115]l o +2)E [| Z:]?] ds, if p>pg
=\ ol +17lms + 227 (14 2R ) s e
where we used Lemma 3.2. By Gronwall’s inequality, we get
vte[0,T],E[|Z:|*] =0, i.e. Vt€[0,T],p(t) =p(2),

which yields the desired results. ]

4. Proof of Theorem 2.3
We first study the local and asymptotic space behaviour of the fractional Laplacian
of some basic functions.

LEMMA 4.1.  Let ¢ € C° be such that [,,o=1. Then for any B>«
|1(12]%)| < C () =), (4.1)

Proof.  Let ¢g:=|z|°¢ and R>0 be such that supp(y) C Bg. Then, for any
x € B%, we obtain

B ©aly)dy M Mo
Tleo)(@) ‘/BR [yl Te © <<|x|+R>d+a’ (] —R>d+a> ' 4.2)

Now, assume x € B, for a given r > R. Then we write the fractional Laplacian as

I(‘Pﬁ):/ ha.s(y)dy,
Rd
where
$p\y)—¢plT
ha,p(y) = ﬁizwai ) when a € (0,1)

s () = ep(y) —wp(x) —(y—x)-Vs(z)

7yl when a €[1,2).
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Then since ¢z € W5 we obtain that h, s(y) <C|z—y| =P~ which, since 8> a,
implies that h, g € Ll .. Moreover, when |y|>r, then

Cpre
has(y) < e € LY(BY).
(TR
Therefore, hq g € L' uniformly in x € B,.. Hence I(pg) € L*°(B,), which, combined with
(4.2), leads to the expected result. a

LEMMA 4.2,  Let p€Cg° be such that fRdgo:l and 1p, <@ <1p,.. Then for any
ke (0,a)

| 1(|2]*¢°)| < C ()", (4.3)

where p°=1—¢.

Proof. The proof is a straightforward adaptation of [4, Remark 4.2] for k>1
and [24, Proposition 2.2] for k< 1. O
We are now ready to prove the finite time blow-up.

Proof. (Proof of Theorem 2.3.) Let p € C°(R) even and nonincreasing be such
that [,o=1and 1p, <p<1p,, fora given re(0,1/2) and p°=1—¢. We define

m(@) = (|z]) x|’ + o (|z)|z*.

Assuming the existence of p € L°°((0,T),L,1€) to the (FKS) equation, we get

d (Vm(z ( ) (x—y)
— = =T, -\
(4.4)
e Estimate of ;. By the inequalities (4.1) and (4.3), we get
I(m) <C{z)F . (4.5)

Hence, for some constant C7 >0, the following inequality holds

Il SC <I>k_ap§01M0.
Rd

e Estimate of I,.
o Step one: case 1<k <a < f3. In this case, by convexity we have for any (z,y) € R? x R?

(Vm(z) = Vm(y))- (z—y)=g(z,y) —h(z,y)z-y>0

with m/(|z|) =Vm(z)- 77 and

g(@,y)=m/(|z])]z]+m/(ly])|y]
h(w,y)=m’(Jz) ][~ +m/(jy )]yl

Since |z —y|? <2°(|z|® +|y|?), we obtain

e [ et
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e e ey
> J[ o= [ i e

Next since

//de % |§\3f|;|/ﬂ) (df”)f’(dy):/Rd <Admp(dx)> p(dy),

by Fubini’s theorem, and since for any y € R? the map z— W is odd and p is
even, we get

T,> / /]R 3 2mfc(j';’f)'ymp(cla;)p(dy). (4.6)

We remark that if (z,y) € B2,

glzy) B

20(|2|?+]yl?) 28
If (z,y) € (B5,)?,

g(wy) k(= +ly") _ k(@2r)"F
25(|2lP +1yl?)  20(|=(P +[yl?) — 28 (Jlly[)P—*

If (z,y) € B, x BS,.,

g(xy)  _ Blal’+kl* _ klyl*
20(|2P +1yl?)  25(|=1P +1y|?) — 2°(r+ )

Moreover, when z € Bs,\ B,
m(Je)) x| = @' (J]) (|2 = [ *F1) + Bo(|z]) 2|7 + ke (|2]) ] *.
Remarking that we can take ¢ decreasing and r <1/2, which implies that |z| <1 and
m/(|z])|z] > Be(je)) |z)” + ket (J]) |z |* > k),

it allows us to do the same kind of estimates for the remaining (z,5) € R?? and obtain

9(7,y) k=8, \k—8
(|27 + [y]P) >C(x)" "(y) . (4.7)

Combining (4.5), (4.6) and (4.7), we obtain

% (/dem> <Cl/ —CQA//RM )"~ p(dz)p(dy)

Sclefa_CQAMkfﬁy (48)

where My, szdp<x>k. We define

Y::M0+/ pm:/ p(1+m).
R4 R4
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Remarking that
1
5 (1+m) < (@) <282(14+m),

we obtain that Y can always be compared to M; up to a constant depending on k.
Therefore, Holder’s inequality yields
5oaiE Foy1-k
Mo <My’ M, " <CM, ;Y 5.

Thus, using the fact that Mjy_, < My because k —a <0 and the conservation of the total
mass My, we obtain

%gClMO—CéAMO%YQ(I_%).

By Assumption (2.9) for the appropriate C*,

2(£-1)
Co A M,

Then for any t >0, % <0 and

_CQ—E 28 _q

Y20 (1) <y2(E-1(0) AM*

1

and

% < —eAMF Y2(-F),

By Gronwall’s inequality, we deduce

Y(t)< (Y(O)Zf—l —eX (% - )M?t) o

Since Y is positive and the above inequality goes to 0 in finite time, we deduce that the
solution ceases to be well defined in L' in a finite time T* verifying

kY (0)% 1 k Y (0)% -1

T < 55 = 5
A2B— k)M, 2B cpany — 0 y2ED(0) M,

)

which proves the result.
o Step two: Case 0<k<a<1<p. We use the symmetry between = and y to rewrite

I>C // +// +// || >r +// lz|>r
e M e

lyl<r ly|>r

(Vm(z) —Vm(y))-(z—y) p(dz)p(dy)

|z —yl?
=L +I5+ I3+ 1.
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e Estimate of ZJ.  For |z|<r, we have m(x)=|z|?. Hence by strict convexity
(since 8>1), we expand the inner product similarly as in the beginning of step one to
obtain, with the same arguments

I%://MST g(x,y)—h(%y) (:L'y) p(dx)p(dy)

|z —yl?

ly|<r

g(z,y)—h(z,y)x-y
Z//ac|<r 25(‘x|ﬁ+|y|5) p(dz)p(dy)

zfﬁ(/&.p) |

e Estimate of Z2.  We may choose the linking function ¢ in the definition of m
smooth enough so that for |z| > it holds |[Vm(x)| <C|z|*~!. And since k—1<0 and
1—-8<0, we have

) (V) ~Vm(y)- (=)

- [ oo P pldz)p(dy)
lz—y|>r/2

Z_C . irk:—l_’_ k—1 r— 1-8 dz d
//wl'y;;:ﬁ(' ) el pla)o(ay)

2
>—28Crk=h (/ p) ,

e Estimate of Z3. Similar considerations yield

(Vm(z)—Vm(y)) (z—
A= [f e R et
|z—y|>r/2

> 20710 (rF P 41) (/gp) </Brp>.

e Estimate of Z3. When |z —y|<r/2 and |z| >r, remark that it holds

|z]

T
|z < |z —y|+y| §7+|y| <*+|y|

3|\
2

yl <lz—yl+l|z[ <5 +| | <

which implies that r <|z| <2|y| <3|z|. Therefore, we can write

n- [ ., IO e,

— B
lomyi<r/2 2=y

e // ior |l2F 22— y* 2y Jo — 41 p(d)p(dy).
lz—y|<r/2
ly|>r/2
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Then, since |V|z|*~2| = |k —2||2[¥~% and 2|z —y| < |z|, we obtain

2|2 — |y 2y < [ (J2* 72 = y*72) 2|+ | [y (z —y)|
<Cyla|lz—y| sup |2[FP+|y/F 2|z —y|
21>l /2

<CpprtPlr— y|” 7,

from which we get

2
13> —Cp P (/ p> .

Defining Y:fRd pm and using the fact that

Y= p<Cp,Y and/ p:MO—f/7
Be B,

and gathering the previous estimates yields the existence of positive constants Cs, Cs,
depending on S, k and r such that

~\ 2 ~ ~ - -
> ; (Mo —Y) — Cypr*PY? = C2Prk=PY2 — C2P 71 (rF P 1) Y (Mo fY)

> G (MO 03}72) .

Coming back to (4.4) and using the fact that ?SCm’TY yields the existence of a
constant C4 such that

dy
= SCMo+ Q/\ (CaY?—M§).

In particular, as long as Y2 < (2C4) "1 Mg and CoAM, >8C; it holds

Y
(ilt _ClMO_@)\MQ <—-C1Myp<O. (49)

In particular, if Y (0)? <(2C,;) "' Mg then Y remains decreasing for all times and for all
t>0, Y(0)2<(2C5)" 1MO. By using again (4.9), this implies

Y (£) <Y(0) — Oy Mot,

which becomes negative in finite time and leads again to a contradiction. The fact that
the condition (2.10) is sufficient comes from the fact that there exists a constant C'>0

such that
Y= / m<C/ x)|z|*dz,

since k < . ]
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