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PERIODIC SOLUTIONS TO
NONLINEAR EULER–BERNOULLI BEAM EQUATIONS∗

BOCHAO CHEN† , YIXIAN GAO‡ , AND YONG LI§

Abstract. Bending vibrations of thin beams and plates can be described by nonlinear Euler–
Bernoulli beam equation with x-dependent coefficients. In this paper we demonstrate the existence
of families of time-periodic solutions to such a model by virtue of a Lyapunov–Schmidt reduction
together with a Nash–Moser method. This result holds for all parameters (ε,ω) in a Cantor set with
asymptotically full measure as ε→0.
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1. Introduction
In this article we are concerned with the one-dimensional nonlinear Euler–Bernoulli

beam equation

ρ(x)utt+(p(x)uxx)xx= εf(ωt,x,u)+εg(ωt,x), x∈ [0,π],t∈R (1.1)

with respect to the pinned-pinned boundary conditions

u(t,0) =u(t,π) =uxx(t,0) =uxx(t,π) = 0, (1.2)

where the coefficients ρ,p are positive, the parameter ε is small enough, the force terms
g(·,x),f(·,x,u) are 2π-periodic, with ∂`uf(·, ·,0) = 0,`≤2. Clearly, u= 0 is not the solu-
tion of Equation (1.1) if g 6= 0.

The above model is used to describe bending vibrations of thin beams and plates
and reflects the relationship between the applied load and the beam’s deflection as well,
see [40]. The curve u(·,x) stands for the deflection of the beam at some position x in
the vertical direction. The coefficients ρ,p are the density of the beam and the flexural
rigidity, respectively. And the terms f,g are the so-called distributed loads depending
on x, or u, or x,u, or other variables. Moreover, derivatives of the deflection u have
physical significance: ux is the slope of the beam; −puxx is the bending moment of the
beam and −(puxx)x is the shear force of the beam.

The free vibrations of non-uniform beams have attracted many investigators since
Bernoulli and Euler derived the governing differential equation in the 18th century.
Many researchers focused on the study of the spectral problems for the following Euler–
Bernoulli operator

Eu := 1
ρ (pu′′)′′+V u with V =V (x), (1.3)
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see [1, 2, 24, 35–37] and references therein. In addition, under different boundary con-
ditions, Elishakoff et al. obtained harmonic form solutions, i.e., u(t,x) =ψ(x)sinωt, of
Equation (1.1) with f,g= 0 for the first time, recall [20,21]. In [25], under linear bound-
ary feedback control, Guo considered the Riesz basis property and the stability of the
linear one with boundary conditions{

u(t,0) =ux(t,0) =uxx(t,π) = 0,

(p(x)uxx)x(t,π) =µut(t,π),

where µ≥0 is a constant feedback. Despite many studies on the linear model above,
the nonlinear problems are equally interesting and challenging. The main focus of
the present article is to derive periodic solutions of Equation (1.1). To the best of
our knowledge our article establishes the first mathematical analysis for such a model.
There will be two main challenges to face in this work. One is that the forced terms
have only Sobolev regularity. This leads to the fact that the Green functions will exhibit
only a polynomial decay off the diagonal, and not exponential (or subexponential). To
overcome this one, we will exploit the interpolation/tame estimates. The other is the
so-called “small divisors problem” caused by resonance. If we let t→ t/ω, then Equation
(1.1) is equivalent to

ω2ρ(x)utt+(p(x)uxx)xx= εf(t,x,u)+εg(t,x). (1.4)

In fact, the spectrum of the operator

Eωu :=ω2utt+
1
ρ (puxx)xx

has the following form

−ω2l2 +λj =−ω2l2 +j4 +aj2 +b+O(1/j), l∈Z, j→+∞.

In general, the operator Eω cannot map a functional space into itself, but only into a large
one with less regularity. There are two main approaches to deal with the “small divisors
problem”. One is the infinite-dimensional KAM (Kolmogorov–Arnold–Moser) theory
to Hamiltonian PDEs, refer to Kuksin [32], Wayne [39], and recent results [6, 22, 26].
The other more direct bifurcation approach was established by Craig and Wayne [17]
and improved by Bourgain [11, 12] based on both a Lyapunov–Schmidt reduction and
a Nash–Moser iteration, and recent results [8–10]. Meanwhile, we need to give the
asymptotic formulae of the eigenvalues for an Euler–Bernoulli beam problem as well.
Actually, the asymptotic property of the eigenvalues for fourth-order operators on the
unit interval are less investigated than for second-order ones, see [13,34].

The existence problem of periodic or quasi-periodic solutions for PDEs has received
considerable attention in the last twenty years. Up to now, there have been a number of
works devoted to such a problem for nonlinear beam equation with constant coefficients.
In [27,33], Mckenna et al. studied the beam equation which models a suspension bridge
and showed that it admits multiple periodic solutions when a parameter exceeds a
certain eigenvalue. Subsequently, many researchers use the infinite KAM theorem to
handle this kind of problem. We refer the readers to [14, 23, 38] for the existence and
stability of small-amplitude quasi-periodic solutions of one-dimensional beam equation
with boundary conditions (1.2). For further reference regarding the linearly stable or
unstable small-amplitude quasi-periodic solutions of the d-dimensional nonlinear beam
equation

utt+∆2u+mu+∂uf(x,u) = 0,f(x,u) =u4 +O(u5), x∈Td,t∈R,
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we may refer to [19]. Notice that the above proof can be carried out in the analytic
case. For differential one, the readers can also consult [15] for the application of the
Nash–Moser iteration scheme in studying the existence of quasi-periodic solutions of
nonlinear beam equation

utt+∆2u+V (x)u= εf(ωt,x,u), x∈M ,t∈R,

where M is any compact Lie group or homogenous manifold with regard to a compact
Lie group. Finally, we will introduce some related results about the wave equation
with variable coefficients. The problem of looking for periodic solutions to such one
was considered by Barbu and Pavel for the first time in [4,5]. Recently, under the gen-
eral boundary conditions, or periodic or anti-periodic boundary conditions, or Dirichlet
boundary conditions, Ji and Li gave a series of results as well, see [28–30]. The above
results have to require that the time period is a rational multiple of the length of the
spatial interval. If it is an irrational multiple of the length of the spatial interval, then
the existence of periodic solutions for the forced vibrations of a nonhomogeneous string
was obtained in [3] and [16] by means of the Nash–Moser iteration.

1.1. Main result. The goal of the present article is to look for periodic solutions,
with the common period 2π, to Equation (1.4). To do so, we need to introduce our
notation and assumption more precisely. Let ρ,p be positive coefficients given by

ρ(x) =e4
∫ x
0
α(z)dz>0, p(x) =p(0)e4

∫ x
0
β(z)dz>0 (1.5)

with α(0)+β(0) =α(π)+β(π) = 0. Without loss of generality, we assume the following
normalization

1
π

∫ π
0

(ρ/p)
1
4 dx= 1.

Let us introduce both the Liouville substitution

x=ψ(ξ)⇐⇒ ξ=φ(x) with φ(x) :=
∫ x

0
ζ(s)ds, ζ= (ρ/p)

1
4 ,

and the unitary Barcilon–Gottlieb transformation

T :L2((0,π),ρ(x)dx)−→L2((0,π),dξ)

u(x) 7−→y(ξ) = (T u)(ψ(ξ)) = q(ψ(ξ))u(ψ(ξ)), ξ∈ [0,π],

where q=p
1
8 ρ

3
8 >0. From (1.5) and (1.2), [1, Lemma 5.1] has showed that both E (recall

(1.3)) and E ′, with

E ′y := yξξξξ+2(p1yξ)ξ+p2y,

are unitarily equivalent, that is E=T −1E ′T . Remark that p1,p2 are seen in (5.4)–(5.5)
of [1]. Therefore we can directly apply [1, cf. Theorem 1.2, Proposition 6.2] to give the
asymptotic formulae of the eigenvalues for the operator E .

For all s≥0, define the following Sobolev spaces Hs of real-valued functions by

Hs :=
{
u :T−→H2

p ((0,π);R),u(t,x) =
∑
l∈Zul(x)eilt,ul∈H2

p ((0,π);C),

u−l=u∗l ,‖u‖s<+∞
}
,

where u∗l is the complex conjugate of ul, ‖u‖2s :=
∑
l∈Z‖ul‖2H2(1+ l2s) and

H2
p ((0,π);C) :=

{
u∈H2((0,π);C) :u(t,0) =u(t,π) =uxx(t,0) =uxx(t,π) = 0

}
.
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If s>1/2, then Hs⊂L∞(T;H2
p (0,π)), that is

‖u‖L∞(T;H2
p(0,π))≤C(s)‖u‖s, ∀u∈Hs. (1.6)

Moreover, one has that for all u1,u2∈Hs,

‖u1u2‖s≤C(s)‖u1‖s‖u2‖s.

Throughout this paper, our purpose is to look for solutions to Equation (1.4) in Hs

with respect to (t,x)∈T× [0,π] and f ∈Ck, where

Ck :=
{
f ∈C(T× [0,π]×R;R) : (t,u) 7−→f(t,·,u) is in Ck(T×R;H2(0,π))

}
, k∈N+.

Observe that if f(t,x,u) =
∑
l∈Zfl(x,u)eilt, then f−l=f∗l and u 7−→fl(·,u) belongs to

Ck(R;H2((0,π);C)). Moreover, due to the continuous embedding of H2(0,π) into
C1([0,π];R), it follows that for all f ∈Ck,

∂p
x∂

i
t∂
`
uf ∈C(T× [0,π]×R;R), 0≤p≤1,0≤ i,`≤k.

In addition, we may decompose the space Hs as the direct sum of V and W ∩Hs, where

V :=H2
p (0,π), W :=

{
w=

∑
l 6=0wl(x)eilt∈H0

}
.

Obviously, for every u∈Hs, we can write u=v+w, where v∈V and w∈W ∩Hs. De-
note by ΠV :Hs−→V , ΠW :Hs−→W the corresponding projection operators, respec-
tively. Then, via the Lyapunov–Schmidt reduction, Equation (1.4) is equivalent to the
bifurcation equation (Q) and the range equation (P ), i.e.,{

(pv′′)′′= εΠV F (v+w)+εΠV g (Q),

Lωw= εΠWF (v+w)+εΠW g (P ),
(1.7)

where

Lωw :=ω2ρ(x)wtt+(p(x)wxx)xx, F :u 7−→f(t,x,u). (1.8)

Since f(t,x,u) =f0(x,u)+
∑
l 6=0fl(x,u)eilt, if w= 0, then

ΠV F (v) = ΠV f(t,x,v(x)) =f0(x,v(x)).

Therefore we simplify the (Q)-equation as

(pv′′)′′= εf0(x,v)+εg0(x) as w→0.

This is called the infinite-dimensional “zeroth-order bifurcation equation”, recall [3].
Let us make the following assumption.

Assumption 1.1. There exists a constant ε0∈ (0,1) small enough such that for all
ε∈ [0,ε0], the system {

(p(x)v′′(x))′′= εf0(x,v)+εg0(x),

v(0) =v(π) =v′′(0) =v′′(π) = 0
(1.9)
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admits a nondegenerate solution v̂∈H2
p (0,π), i.e., the linearized equation

(ph′′)′′= εf ′0(v̂)h (1.10)

possesses only the trivial solution h= 0 in H2
p (0,π).

Observe that Equation (1.10) with ε= 0 possesses only the trivial solution h= 0 in
H2
p (0,π). Hence v̂= 0 is the nondegenerate solution of Equation (1.9) with ε= 0. In

view of the implicit function theorem, there exists a constant ε0∈ (0,1) small enough
such that for all ε∈ [0,ε0], Assumption 1.1 is satisfied.

Moreover, define the set

Aγ :=
{

(ε,ω)∈ (ε1,ε2)×(γ,+∞) :
ε

ω
≤ δ6γ5, |ωl− µ̄j |>

γ

lτ
,∀l= 1,·· · ,N0,∀j≥1

}
,

where δ6>0 shall be fixed in the next theorem, N0>1 and λ̄j = µ̄2
j ,j≥1 are the eigen-

values of Euler–Bernoulli beam problem{
(p(x)y′′)′′=λρ(x)y,

y(0) =y(π) =y′′(0) =y′′(π) = 0.
(1.11)

Let us state our main theorem as follows.

Theorem 1.1. Let p,ρ satisfy (1.5), with α,β∈H4(0,π), f be in Ck, with ∂`uf(·, ·,0) =
0,`≤2, and t 7−→g(t, ·) belong to Ck(T;H2(0,π)). Fix τ ∈ (1,2),γ∈ (0,1),ε0∈ (0,1) and

κ= 6τ+4σ+2 with σ= τ(τ−1)/(2−τ). (1.12)

If Assumption 1.1 holds for some ε̂∈ [0,ε0], for ε
γ5ω ≤ δ6 small enough and k≥s+κ+3,

then there is some constant K>0 depending on α,β,f,g,ε0, v̂,γ,γ0,τ,s, a neighborhood
(ε1,ε2) of ε̂, r∈ (0,1), a map w̃∈C1(Aγ ;W ∩Hs) with

‖w̃‖s≤ Kε
γω <r, ‖∂ωw̃‖s≤

Kε
γ5ω , ‖∂εw̃‖s≤

K
γ5ω , (1.13)

and a C2 map v(ε,w̃) on (ε1,ε2)×{w̃∈W ∩Hs :‖w̃‖s<r}, with values in V , satisfying

‖v(ε,w̃)−v(ε,0)‖H2 ≤ Kε
γω , ‖v(ε,0)− v̂‖H2 ≤K|ε− ε̂|, (1.14)

such that for all (ε,ω)∈Bγ⊂Aγ ,

ũ(ε,ω) :=v(ε,w̃(ε,ω))+ w̃(ε,ω)∈V ⊕(W ∩Hs)

is a solution of Equation (1.4) and satisfies

ũ(t,·)∈H6(0,π)∩H2
p (0,π), ∀t∈R.

Moreover, the Lebesgue measures of the set Bγ and its section Bγ(ε) satisfy

meas(Bγ(ε)∩(ω′,ω′′))≥ (1−Kγ)(ω′′−ω′), meas(Bγ ∩Ω)≥ (1−Kγ)meas(Ω),

where Ω := (ε′,ε′′)×(ω′,ω′′) stands for a rectangle contained in (ε1,ε2)×(2γ,+∞).

1.2. Plan of the paper. The rest of the paper is organized as follows. In Sub-
section 2.1, under Assumption 1.1, we solve the bifurcation equation by the classical
implicit function theorem. Given the non-resonance conditions, the goal of Subsection
2.2 is to solve the range equation including initialization, iteration and measure es-
timates. Section 3 is devoted to investigating invertibility of the linearized operator.
Finally, we list the proof of some related results for the sake of completeness in the
Appendix.
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2. Proof of the main result
The object of this section is to complete the proof of the main result.

2.1. Solutions of the bifurcation equation. We first solve the bifurcation
equation via the classical implicit function theorem.

Lemma 2.1. Provided that Assumption 1.1 holds for some ε̂∈ [0,ε0], there exists a
neighborhood (ε1,ε2) of ε̂, r∈ (0,1) and a C2 map

v : (ε1,ε2)×{w∈W ∩Hs :‖w‖s<r}−→H2
p (0,π), (ε,w) 7−→v(ε,w),

such that v(ε,w) solves the (Q)-equation satisfying v(ε̂,0) = v̂ and for some constant
C>0,

‖v(ε,w)−v(ε,0)‖H2 ≤C‖w‖s, ‖v(ε,0)− v̂‖H2 ≤C|ε− ε̂|. (2.1)

Proof. In view of Assumption 1.1, the linearized operator h 7−→ (ph′′)′′− ε̂f ′0(v̂)h
is invertible on V . Since t 7−→g(t,·) is in Ck

(
T;H2(0,π)

)
, if f ∈Ck, with ∂`uf(·, ·,0) =

0,`≤2, then using Lemma 4.5 yields that

(ε,w,v) 7−→ (pv′′)′′−εΠV F (v+w)−εΠV g

is a C2 map. Consequently, by the implicit function theorem, there is a C2-path
(ε,w) 7−→v(ε,w) satisfying (2.1).

2.2. Solutions of the range equation. In this subsection, we will apply a
Nash–Moser method to solve the range equation, that is

Lωw= εΠWF(ε,w)+εΠW g, F(ε,w) :=F (v(ε,w)+w).

Let W =WN ⊕W⊥N , where

WN :=
{
w∈W :w=

∑
1≤|l|≤Nwl(x)eilt

}
, W⊥N :=

{
w∈W :w=

∑
|l|>Nwl(x)eilt

}
.

Then corresponding projection operators PN :W −→WN , P⊥N :W −→W⊥N satisfy

(P1) ‖PNw‖s+ϑ≤Nϑ‖w‖s, ∀w∈W ∩Hs,∀s,ϑ≥0.

(P2) ‖P⊥Nw‖s≤N−ϑ‖w‖s+ϑ, ∀w∈W ∩Hs+ϑ,∀s,ϑ≥0.

Denote by DwF the Fréchet derivative of F with respect to w. If f ∈Ck, with ∂`uf(·, ·,0) =
0,`≤2, then for k≥s′+3 with s′≥s>1/2, the following (U1)–(U3) hold.

(U1) (Regularity.) F is a C2 map and F ,DwF ,D2
wF are bounded on {‖w‖s≤1};

(U2) (Tame.) F :W ∩Hs′ −→Hs′ , DwF ∈L(W ∩Hs′ ;Hs′), D2
wF ∈L((W ∩Hs′)×

(W ∩Hs′);Hs′) and ∀w,h,h∈W ∩Hs′ with ‖w‖s≤1,

‖F(ε,w)‖s′ ≤C(s′)(1+‖w‖s′), ‖DwF(ε,w)h‖s′≤C(s′)(‖w‖s′‖h‖s+‖h‖s′),
‖D2

wF(ε,w)[h,h]‖s′≤C(s′)(‖w‖s′‖h‖s‖h‖s+‖h‖s′‖h‖s+‖h‖s‖h‖s′);

(U3) (Taylor Tame.) ∀s≤s′≤k−3, ∀w,h∈W ∩Hs′ with ‖w‖s≤1 and ‖h‖s≤1,

‖F(ε,w+h)−F(ε,w)−DwF(ε,w)[h]‖s≤C‖h‖2s,
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‖F(ε,w+h)−F(ε,w)−DwF(ε,w)[h]‖s′ ≤C(s′)(‖w‖s′‖h‖2s+‖h‖s‖h‖s′).

Remark that (U1)–(U3) follow from Lemmata 4.4–4.5 and Lemma 2.1. Let us define
the linearized operator LN (ε,ω,w) as

LN (ε,ω,w)[h] :=−Lωh+εPNΠWDwF(ε,w)[h], ∀h∈WN , (2.2)

where Lω is given by (1.8). Denote by λj(ε,w) =µ2
j (ε,w),j∈N+ the eigenvalues of

Euler–Bernoulli beam problem{
(p(x)y′′)′′−εΠV f

′(t,x,v(ε,w(t,x))+w(t,x))y=λρ(x)y,

y(0) =y(π) =y′′(0) =y′′(π) = 0,
(2.3)

where

µj(ε,w) =

{
i
√
−λj(ε,w) if λj(ε,w)<0,√
λj(ε,w) if λj(ε,w)>0.

(2.4)

For fixed γ∈ (0,1),τ ∈ (1,2), define the set ∆γ,τ
N (w) by

∆γ,τ
N (w) :=

{
(ε,ω)∈ (ε1,ε2)×(γ,+∞) : |ωl−µj(ε,w)|> γ

lτ ,

|ωl−j|> γ
lτ , ∀l= 1,2, ·· · ,N,j≥1

}
. (2.5)

Note that the non-resonance conditions in (2.5) are trivially satisfied if λj(ε,w)<0.

Lemma 2.2. Let (ε,ω)∈∆γ,τ
N (w) for fixed γ∈ (0,1),τ ∈ (1,2). There exist K,K(s′)>0

such that if

‖w‖s+σ≤1, (2.6)

for ε
γ3ω ≤ δ≤

c
L (see Lemma 3.5) small enough, then LN (ε,ω,w) is invertible with∥∥L−1

N (ε,ω,w)h
∥∥
s
≤ K
γωN

τ−1‖h‖s, ∀s>1/2,∥∥L−1
N (ε,ω,w)h

∥∥
s′
≤ K(s′)

γω Nτ−1 (‖h‖s′+‖w‖s′+σ‖h‖s) , ∀s′≥s>1/2.

Moreover, let the symbol b·c stand for the integer part. We set

Nn := bed2nc with d= lnN0, (2.7)

where N0>1 will be fixed in Lemma 2.4. Denote by A0 the open set

A0 :=
{

(ε,ω)∈ (ε1,ε2)×(γ,+∞) : |ωl− µ̄j |>
γ

lτ
, ∀l= 1,·· · ,N0,j≥1

}
, (2.8)

where λ̄j = µ̄2
j ,j≥1 are the eigenvalues of Euler–Bernoulli beam problem (1.11). We

now give the following inductive theorem.

Theorem 2.1. Let r be given by Lemma 2.1. For ε
γ3ω ≤ δ4 (see Lemma 2.6) small

enough, there exists a sequence of subsets (ε,ω)∈An⊆An−1⊆···⊆A1⊆A0, where

An :=
{

(ε,ω)∈An−1 : (ε,ω)∈∆γ,τ
Nn

(wn−1)
}
,
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and a sequence wn(ε,ω)∈WNn satisfying

(S1)n≥0 ‖wn‖s+σ≤1, ‖∂ωwn‖s≤ K1ε
γ2ω and ‖∂εwn‖s≤ K1

γω ;

(S2)n≥1 For all 1≤k≤n, one has ‖wk−wk−1‖s≤ K2ε
γω N

−σ−1
k with K2ε

γω <r,

‖∂ω(wk−wk−1)‖s≤ K3ε
γ2ωN

−1
k and ‖∂ε(wk−wk−1)‖s≤ K3

γωN
−1
k ;

(S3)n≥0 If (ε,ω)∈An, then wn(ε,ω) is a solution of

Lωw−εPNnΠWF(ε,w) = 0; (PNn)

(S4)n≥1 If we set Bk := 1+‖wk‖s+κ, B′k := 1+‖∂ωwk‖s+κ and B′′k := 1+

‖∂εwk‖s+κ, then there exist constants K̄= K̄(N0),Ci=Ci(d,τ,σ),i= 1,2,3 such that for
all 1≤k≤n,

Bk≤C1K̄N
τ−1+σ
k+1 , B′k≤C2K̄γ

−1N3τ+2σ−1
k+1 , B′′k ≤C3K̄(γω)

−1
N3τ+2σ−1
k+1 ,

such that for all (ε,ω)∈∩n≥0An, the sequence {wn=wn(ε,ω)}n≥0 converges uniformly
in s-norm to a map w=w∞∈C1

(
∩n≥0An∩

{
(ε,ω) : ε/ω≤ δ4γ3

}
;W ∩Hs

)
.

2.2.1. Initialization. First, we need to verity that (S1)0,(S3)0 hold.

Lemma 2.3. Given (ε,ω)∈A0, the operator 1
ρLω is invertible with, for K̃ >0,

‖( 1
ρLω)−1h‖s≤ K̃Nτ−1

0

γω ‖h‖s, ∀s≥0,∀h∈WN0 .

Proof. Clearly, the eigenvalues of 1
ρLω on WN0 are

−ω2l2 + λ̄j , ∀1≤|l|≤N0,∀j≥1.

For all (ε,ω)∈A0, we obtain that for all 1≤|l|≤N0,j≥1,

|ω2l2− λ̄j |= |ωl− µ̄j ||ωl+ µ̄j |>
γω

lτ−1
.

Then the operator 1
ρLω is invertible on WN0

satisfying the above estimate. Hence we
complete the proof of the lemma.

Remark 2.1. In the proof of Lemma 2.3, we apply an equivalent scalar product (·,·)
on H2

p (0,π), where (y,z) :=
∫ π

0
py′′z′′+ρyzdx.

By applying Lemma 2.3, solving (PN0
) is equivalent to the fixed point problem

w=U0(w), where

U0 :WN0 −→WN0 , w 7−→ ε
(

1
ρLω

)−1
1
ρPN0ΠWF(ε,w).

Lemma 2.4. Let (ε,ω)∈A0 and r be given in Lemma 2.1. For ε
γω ≤ δ1N

1−τ
0 ≤ δ, the

map U0 is a contraction in

B(0,ρ0) :={w∈WN0 :‖w‖s≤ρ0} , ρ0 :=
εK1N

τ−1
0

γω with
εK1N

τ
0

γω <r.

Proof. It follows from Lemma 2.3 and (U1) that for ε
γωN

τ−1
0 ≤ δ1 small enough,

‖U0(w)‖s≤ εK̃N
τ−1
0

γω ‖1/ρ‖H2 ‖PN0
ΠWF(ε,w)‖s≤

ε
γωK1N

τ−1
0 ,
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‖DwU0(w)‖s=‖ε( 1
ρLω)−1 1

ρPN0ΠWDwF(ε,w)‖s≤ ε
γωK1N

τ−1
0 ≤ 1

2 . (2.9)

Thus the map U0 is a contraction in B(0,ρ0).

Denote by w0 the unique solution of equation (PN0
) in B(0,ρ0). For ε

γωN
τ−1
0 ≤ δ1

small enough, by using (P1) and Lemma 2.4, one has

‖w0‖s+σ≤1, ‖w0‖s+κ=‖ε( 1
ρLω)−1 1

ρPN0ΠWF(ε,w0)‖s+κ≤ K̄. (2.10)

Moreover, let us define

U0(ε,ω,w) :=w−ε( 1
ρLω)−1 1

ρPN0ΠWF(ε,w).

It is obvious that U0(ε,ω,w0) = 0. By virtue of formula (2.9), for ε
γωN

τ−1
0 ≤ δ1 small

enough, we obtain that

DwU0(ε,ω,w0) = Id−ε( 1
ρLω)−1 1

ρPN0ΠWDwF(ε,w0)

is invertible. Then the implicit function theorem implies that w0∈C1(A0;WN0
). By

taking the derivatives of U0(ε,ω,w0) = 0 with respect to ω,ε, one has

∂ωw0 =ε(Id−DwU0(w0))−1∂ω( 1
ρLω)−1 1

ρPN0
ΠWF(ε,w0),

∂εw0 =(Id−DwU0(w0))−1( 1
ρLω)−1 1

ρ (PN0ΠWF(ε,w0)+εPN0ΠW∂εF(ε,w0)).

In addition, taking the derivative of the identity ( 1
ρLω)( 1

ρLω)−1w=w with respect to
ω yields that

∂ω( 1
ρLω)−1w=−( 1

ρLω)−1( 2ω
ρ ∂tt)(

1
ρLω)−1w.

Then, in view of (2.9), (P1) and Lemma 2.3, we derive

‖∂ωw0‖s≤ K1ε
γ2ω , ‖∂εw0‖s≤ K1

γω .

Combining these estimates with (P1) gives that for ε
γωN

τ−1
0 ≤ δ1 small enough,

‖∂ωw0‖s+κ≤K̄γ−1, ‖∂εw0‖s+κ≤K̄(γω)−1. (2.11)

Consequently, we have (S1)0,(S3)0.

2.2.2. Iteration. The next thing to suppose is that there have been solutions
wk ∈WNk of (PNk) satisfying (S1)k–(S4)k for all k≤n.

Another step is to seek a solution wn+1∈WNn+1 satisfying (S1)n+1–(S4)n+1 of

Lωw−εPNn+1
ΠWF(ε,w) = 0. (PNn+1

)

According to Equation (PNn), if we denote

wn+1 =wn+h, h∈WNn+1
,

then

Lω(wn+h)−εPNn+1ΠWF(ε,wn+h) =Lωh+Lωwn−εPNn+1ΠWF(ε,wn+h)

=−LNn+1(ε,ω,wn)h+Rn(h)+rn,
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where

Rn(h) :=−εPNn+1(ΠWF(ε,wn+h)−ΠWF(ε,wn)−ΠWDwF(ε,wn)[h]),

rn := εPNnΠWF(ε,wn)−εPNn+1ΠWF(ε,wn) =−εP⊥NnPNn+1ΠWF(ε,wn).

Since (ε,ω)∈An+1⊆An and ε
γω ≤

ε
γ3ω ≤ δ1N

1−τ
0 ≤ δ, by means of (S1)n (i.e., (2.6)

holds), using Lemma 2.2 yields that the operator LNn+1
(ε,ω,wn) is invertible with

‖L−1
Nn+1

(ε,ω,wn)h‖s≤ K
γωN

τ−1
n+1‖h‖s, ∀s>1/2, (2.12)

‖L−1
Nn+1

(ε,ω,wn)h‖s′ ≤K(s′)
γω Nτ−1

n+1 (‖h‖s′+‖wn‖s′+σ‖h‖s), ∀s′≥s>1/2. (2.13)

Define a map

Un+1 :WNn+1 −→WNn+1 , h 7−→L−1
Nn+1

(ε,ω,wn)(Rn(h)+rn).

Then solving (PNn+1
) is reduced to finding the fixed point of h=Un+1(h).

Lemma 2.5. Let (ε,ω)∈An+1 and r be as seen in Lemma 2.1. If ε
γ3ω ≤ δ2≤ δ1N

1−τ
0 ,

then there exists K2>0 such that the map Un+1 is a contraction in

B(0,ρn+1) :=
{
h∈WNn+1 :‖h‖s≤ρn+1

}
, ρn+1 := εK2

γω N
−σ−1
n+1 with εK2

γω <r. (2.14)

Moreover, the unique fixed point hn+1(ε,ω) of the map Un+1 satisfies

‖hn+1‖s≤ ε
γωK2N

τ−1
n+1N

−κ
n Bn. (2.15)

Proof. In view of (P2), (U2)–(U3), it follows that

‖Rn(h)‖s≤εC‖h‖2s, ‖rn‖s≤εC(κ)N−κn Bn,

where Bn is as seen in (S4)n. Based on the above estimates and (2.12), we get

‖Un+1(h)‖s≤
εK ′

γω
Nτ−1
n+1‖h‖2s+

εK ′

γω
Nτ−1
n+1N

−κ
n Bn

≤εK
′

γω
Nτ−1
n+1ρ

2
n+1 +

εK ′

γω
Nτ−1
n+1N

−κ
n Bn. (2.16)

Obviously, it can be seen from the fact τ ∈ (1,2) that σ>τ−1. Exploring the definition
of ρn+1 together with (S4)n, for ε

γ3ω ≤ δ2 small enough, one has

εK ′

γω
Nτ−1
n+1ρn+1≤

1

2
,

εK ′

γω
Nτ−1
n+1N

−κ
n Bn

(1.12)

≤ ρn+1

2
, (2.17)

which leads to ‖Un+1(h)‖s≤ρn+1. Moreover, by taking the derivative of Un+1 with
respect to h, we obtain that DhUn+1(h)[w] is equal to

−εL−1
Nn+1

(ε,ω,wn)PNn+1
(ΠWDwF(ε,wn+h)−ΠWDwF(ε,wn))w. (2.18)

For ε
γ3ω ≤ δ2 small enough, by virtue of (U1)–(U2) and (S1)n, it follows that

‖DhUn+1(h)[w]‖s
(2.12)

≤ εK ′

γω
Nτ−1
n+1‖h‖s‖w‖s≤

εK ′

γω
Nτ−1
n+1ρn+1‖w‖s

(2.17)

≤ 1

2
‖w‖s. (2.19)
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Hence Un+1 is a contraction in B(0,ρn+1).
Denote by hn+1(ε,ω) the unique fixed point of Un+1. Using (2.14), (2.16)–(2.17)

yields that

‖hn+1‖s≤
1

2
‖hn+1‖s+

εK ′

γω
Nτ−1
n+1N

−κ
n Bn.

This carries out (2.15). Thus the proof is completed.

If we set h0 =w0, for ε
γ3ω ≤ δ3≤ δ2 small enough, Lemmata 2.4–2.5 show that

‖wn+1‖s+σ≤
n+1∑
i=0

‖hi‖s+σ
(P1)

≤
n+1∑
i=0

Nσ
i ‖hi‖s≤

n+1∑
i=1

Nσ
i

εK2

γω
N−σ−1
i +Nσ

0

εK1

γω
Nτ−1

0 ≤1.

In the following, we will investigate the derivatives of hn+1 with respect to ω,ε.

Lemma 2.6. Provided (ε,ω)∈An+1, if ε
γ3ω ≤ δ4≤ δ3, then the unique fixed point

hn+1∈C1(An+1∩{(ε,ω) : ε/ω≤ δ4γ3};WNn+1
) satisfying that for some constant K3>0,

‖∂ωhn+1‖s≤ K3ε
γ2ωN

−1
n+1, ‖∂εhn+1‖s≤ K3

γωN
−1
n+1.

Proof. Let us define the map Un+1 as

Un+1(ε,ω,h) :=−Lω(wn+h)+εPNn+1
ΠWF(ε,wn+h).

By Lemma 2.5, it is easy to see that Un+1(ε,ω,hn+1) = 0. This shows that

DhUn+1(ε,ω,hn+1)=LNn+1(ε,ω,wn+1)
(2.18)

= LNn+1(ε,ω,wn)(Id−DhU(hn+1)). (2.20)

By means of (2.19), the operator LNn+1
(ε,ω,wn+1) is invertible with

‖L−1
Nn+1

(ε,ω,wn+1)‖s≤‖(Id−DhU(hn+1))−1L−1
Nn+1

(ε,ω,wn)‖s
(2.12)

≤ 2K
γωN

τ−1
n+1 . (2.21)

Then using the implicit function theorem yields that hn+1∈C1(An+1∩{(ε,ω) : ε/ω≤
δ4γ

3};WNn+1
). Hence it can be obtained that

∂ω,εUn+1(ε,ω,hn+1)+DhUn+1(ε,ω,hn+1)∂ω,εhn+1 = 0.

Consequently, combining wn+1 =wn+hn+1 with Equation (PNn) gives that

∂ω,εhn+1 =−L−1
Nn+1

(ε,ω,wn+1)∂ω,εUn+1(ε,ω,hn+1), (2.22)

where

∂ωUn+1(ε,ω,hn+1) =−2ωρ(x)(hn+1)tt+εP⊥NnPNn+1
ΠWDwF(ε,wn)∂ωwn

+εPNn+1
(ΠWDwF(ε,wn+hn+1)−ΠWDwF(ε,wn))∂ωwn, (2.23)

∂εUn+1(ε,ω,hn+1) =P⊥NnPNn+1
F(ε,wn)+PNn+1

(ΠWF(ε,wn+hn+1)−ΠWF(ε,wn))

+εP⊥NnPNn+1ΠW∂εF(ε,wn)

+εPNn+1(ΠW∂εF(ε,wn+hn+1)−ΠW∂εF(ε,wn)). (2.24)
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According to Lemma 2.1 and Lemma 4.5, we can see

‖ΠW∂εF(ε,wn+hn+1)−ΠW∂εF(ε,wn)‖s≤C(1+‖∂εwn‖s)‖hn+1‖s

and

‖ΠW∂εF(ε,wn)‖s+κ≤C(κ)‖wn‖s+κ(1+‖∂εwn‖s)+C(κ)(1+‖∂εwn‖s+κ), (2.25)

‖ΠW∂εF(ε,wn+hn+1)−ΠW∂εF(ε,wn)‖s+κ≤C(κ)‖wn‖s+κ(1+‖∂εwn‖s)‖hn+1‖s
+C(κ)(1+‖∂εwn‖s)‖hn+1‖s+κ
+C(κ)(1+‖∂εwn‖s+κ)‖hn+1‖s. (2.26)

If ε
γ3ω ≤ δ4 is small enough, then it follows from (P1), (U1)–(U2) and (S1)n that

‖∂ωUn+1(ε,ω,hn+1)‖s
(2.15)

≤ εK ′γ−1Nτ+1
n+1N

−κ
n Bn+εK ′N−κn B′n, (2.27)

‖∂εUn+1(ε,ω,hn+1)‖s
(2.15)

≤ K ′Nτ−1
n+1N

−κ
n Bn+εK ′N−κn B′′n, (2.28)

where Bn,B
′
n,B

′′
n are given by (S4)n. Based on the above estimates, by means of (2.21)–

(2.22), (1.12) and (S4)n, we have ‖∂ωhn+1‖s≤K3ε
γ2ωN

−1
n+1, ‖∂εhn+1‖s≤K3

γωN
−1
n+1. This ends

the proof of the lemma.

As a consequence, we complete the proof of (S1)n+1–(S3)n+1. Our next task is
devoted to establishing the upper bounds of hn+1,∂ω,εhn+1 in (s+κ)-norm.

Lemma 2.7. Let (ε,ω)∈An+1. If ε
γ3ω ≤ δ4, then the first term in (S4)n+1 holds.

Proof. First of all, we can claim that for ε
γ3ω ≤ δ4 small enough,

Bn+1≤ (1+Nτ−1+σ
n+1 )Bn. (2.29)

Due to (2.7), it is clear that N2
n+1≤ed2n+2

<Nn+2 +1≤2Nn+2. Combining this with
(2.29) shows that

Bn+1≤B0

n+1∏
k=1

(1+Nτ−1+σ
k )≤B0

n+1∏
k=1

(1+ed2k(τ−1+σ))

≤
+∞∏
k=1

(1+e−d2k(τ−1+σ))B0e
d2n+2(τ−1+σ)

≤2τ−1+σ
+∞∏
k=1

(1+e−d2k(τ−1+σ))B0N
τ−1+σ
n+2 .

This together with (2.10) gives the first term in (S4)n+1.
Our goal is now to prove (2.29). Observe that

Bn+1≤1+‖wn‖s+κ+‖hn+1‖s+κ=Bn+‖hn+1‖s+κ. (2.30)

Then we just need to establish the upper bound of ‖hn+1‖s+κ. It follows from Lemma
2.5 and (U2)–(U3) that

‖rn‖s≤εC, ‖Rn(hn+1)‖s≤εCρ2
n+1, ‖rn‖s+κ≤ εC(κ)Bn,
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‖Rn(hn+1)‖s+κ≤εC(κ)(ρ2
n+1Bn+ρn+1‖hn+1‖s+κ).

Hence using the equality hn+1 =L−1
Nn+1

(ε,ω,wn)(Rn(hn+1)+rn) yields that

‖hn+1‖s+κ
(P1),(2.13)

≤ εK′

γω N
τ−1+σ
n+1 Bn+ εK′

γω N
τ−1
n+1ρn+1‖hn+1‖s+κ.

For this, owing to (2.17), one has that for ε
γω ≤

ε
γ3ω ≤ δ4 small enough,

‖hn+1‖s+κ≤ 2εK′

γω Nτ−1+σ
n+1 Bn≤Nτ−1+σ

n+1 Bn. (2.31)

Obviously, formula (2.29) follows directly from (2.30)–(2.31).

Let us study the operator L−1
Nn+1

(ε,ω,wn+1) (recall (2.20)) in (s+κ)-norm.

Lemma 2.8. Given (ε,ω)∈An+1, for ε
γ3ω ≤ δ4 small enough, there is K4>0 such that

for all w∈WNn+1
,

‖L−1
Nn+1

(ε,ω,wn+1)w‖s+κ≤ K4

γωN
τ−1
n+1‖w‖s+κ+ K4

γωN
2τ−2
n+1 (‖wn‖s+κ+σ+‖hn+1‖s+κ)‖w‖s.

Proof. Let L(hn+1) := (Id−DhUn+1(hn+1))−1w. Observe that

L(hn+1) =w+DhUn+1(hn+1)L(hn+1), ‖L(hn+1)‖s
(2.19)

≤ 2‖w‖s.

In view of (2.18), (2.13) and (U2), we can get

‖DhUn+1(hn+1)‖s+κ≤ εK′

γω N
τ−1
n+1 (‖wn‖s+κ+σ‖hn+1‖s+‖hn+1‖s+κ).

It follows from (2.19) that

‖L(hn+1)‖s+κ≤‖w‖s+κ+ 2εK′

γω Nτ−1
n+1 (‖wn‖s+κ+σ‖hn+1‖s+‖hn+1‖s+κ)‖w‖s

+ 1
2‖L(hn+1)‖s+κ.

Thus it can be seen that for ε
γω ≤

ε
γ3ω ≤ δ4 small enough,

‖L(hn+1)‖s+κ≤2‖w‖s+κ+ 4εK′

γω Nτ−1
n+1 (‖wn‖s+κ+σ‖hn+1‖s+‖hn+1‖s+κ)‖w‖s.

As a consequence, using (2.12)–(2.13) can give the conclusion of the lemma.

Lemma 2.9. For (ε,ω)∈An+1 and ε
γ3ω ≤ δ4, the last two terms in (S4)n+1 hold.

Proof. We first claim that for ε
γ3ω ≤ δ4 small enough,

B′n+1≤ (1+Nτ−1
n+1 )B′n+ K′

γ N
2τ+σ
n+1 Bn, B′′n+1≤ (1+Nτ−1

n+1 )B′′n+ K′

γωN
2τ+σ
n+1 Bn. (2.32)

Our next purpose is to study the upper bound of B′n+1. Let α1 := τ−1, α2 := 2τ+σ,
α3 := τ−1+σ. The first formula in (2.32) leads to

B′n+1≤S1 +S2, S1 =B′0
∏n+1
k=1 (1+Nα1

k ) , S2 =
∑n+1
k=1 S2,k,

where S2,1 = K′

γ N
α2
n+1Bn and

S2,k = K′

γ

(∏k
j=2

(
1+Nα1

n+1−(j−2)

))
Nα2

n+1−(k−1)Bn+1−k, 2≤k≤n+1.



2018 PERIODIC SOLUTIONS TO NONLINEAR BEAM EQUATIONS

An argument similar to the one used in the proof of the upper bound on Bn+1 shows
that

S1≤C(d,τ,σ)B′0N
α1
n+2.

On the other hand, according to the first term in (S4)n, it follows that

S2,1≤ K′′

γ B0e
(α2+α3)d2n+1 ≤ C′1

γ B0N
α2+α3
n+2 .

In addition, one has

n+1∑
k=2

S2,k≤K ′′γ−1B0

n+1∑
k=2

eα1d(2n+2−2n+3−k)eα2d2n+2−k
eα3d2n+2−k

≤K ′′γ−1B0e
α1d2n+2

n+1∑
k=2

e(−α1+α2+α3)d2n+3−k

≤K ′′γ−1B0e
(α2+α3)d2n+2

≤C ′1γ−1B0N
α2+α3
n+2 .

Hence, because of (2.10)–(2.11), we can get the upper bound of B′n+1. The upper bound
of B′′n+1 can be proved by the method analogous to that used above.

It remains to verify (2.32). It is straightforward that

B′n+1≤1+‖∂ωwn‖s+κ+‖∂ωhn+1‖s+κ, B′′n+1≤1+‖∂εwn‖s+κ+‖∂εhn+1‖s+κ. (2.33)

Then we just investigate the upper bounds of ∂ω,εhn+1 in (s+κ)-norm. Due to formula
(2.22) and Lemma 2.8, we can obtain

‖∂ω,εhn+1‖s+κ≤K4

γωN
τ−1
n+1‖∂ω,εUn+1(ε,ω,hn+1)‖s+κ

+ K4

γωN
2τ−2
n+1 (‖wn‖s+κ+σ+‖hn+1‖s+κ)‖∂ω,εUn+1(ε,ω,hn+1)‖s.

Moreover, applying (U1)–(U2),(S1)n and (2.31) gives that for ε
γ3ω ≤ δ4 small enough,

‖∂ωUn+1(ε,ω,hn+1)‖s+κ
(2.23)

≤ C ′(κ)ωNτ+1+σ
n+1 Bn+εC ′(κ)B′n,

‖∂εUn+1(ε,ω,hn+1)‖s+κ
(2.24)–(2.26)

≤ C ′(κ)Nτ−1+σ
n+1 Bn+εC ′(κ)B′′n.

On the other hand, due to (2.27)–(2.28), (1.12) and (S4)n, it follows that

‖∂ωUn+1(ε,ω,hn+1)‖s≤εC ′γ−1, ‖∂εUn+1(ε,ω,hn+1)‖s≤C ′.

The combination of the above estimates establishes that for ε
γ3ω ≤ δ4 small enough,

‖∂ωhn+1‖s+κ≤ K′

γ N
2τ+σ
n+1 Bn+ εK′

γω N
τ−1
n+1B

′
n,

‖∂εhn+1‖s+κ≤ K′

γωN
2τ+σ
n+1 Bn+ εK′

γω N
τ−1
n+1B

′′
n.

Hence combining these with (2.33) shows that (2.32) holds. The proof of the lemma is
now completed.
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2.2.3. Whitney extension. Finally, we need to look for a set of parameters
ε,ω unrelated to the iteration step n. Let us define

Ân :=
{

(ε,ω)∈An : dist((ε,ω),∂An)> γ0γ
4

Nτ+1
n

}
,

Ãn :=
{

(ε,ω)∈An : dist((ε,ω),∂An)> 2γ0γ
4

Nτ+1
n

}
⊂ Ân. (2.34)

Note that γ0 will be given in Lemma 2.10. Exploiting the characteristic function of the
set Ân, there exists a C∞ cut-off function ϕn :A0−→ [0,1] satisfying

0≤ϕn(ε,ω)≤1, supp(ϕn)⊆An, ϕn(ε,ω) = 1 if (ε,ω)∈ Ãn, |∂ω,εϕn|≤C Nτ+1
n

γ0γ4 . (2.35)

Then, for (ε,ω)∈A0, we can define

h̃n(ε,ω) :=

{
ϕn(ε,ω)hn(ε,ω) if (ω,ε)∈An,
0 if (ω,ε) /∈An.

It is clear that

h̃n∈C1(A0∩{(ε,ω) : ε/ω≤ δ4γ3};WNn).

According to Theorem 2.1, Lemma 2.4 and (2.35), it follows that

‖h̃0‖s≤ C̃ε
γωN

−1
0 , ‖∂ωh̃0‖s≤ C̃(γ0)ε

γ5ω , ‖∂εh̃0‖s≤ C̃(γ0)
γ5ω ,

‖h̃n‖s≤ C̃ε
γωN

−σ−1
n , ‖∂ωh̃n‖s≤ C̃(γ0)ε

γ5ω N−1
n , ‖∂εh̃n‖s≤ C̃(γ0)

γ5ω N−1
n , ∀n∈N+,

where C̃ε
γω <r. Obviously, the function w̃n=

∑n
k=0 h̃k is an extension of wn and if (ε,ω)∈

Ãn∩{(ε,ω) : ε/ω≤ δ4γ3}, then w̃n(ε,ω) =wn(ε,ω). Hence we can obtain

w̃= w̃∞∈C1(A0∩{(ε,ω) : ε/ω≤ δ4γ3};W ∩Hs)

satisfying

‖w̃‖s≤ Kε
γω <r, ‖∂ωw̃‖s≤

K(γ0)ε
γ5ω , ‖∂εw̃‖s≤ K(γ0)

γ5ω . (2.36)

Moreover, using (2.15), (1.12) and (S4)n yields that for all n∈N+,

‖w̃− w̃n‖s≤
C̃ε

γω

∑
k≥n+1

e−(τ+σ+2)d2k ≤ C̃ε
γω

e−(τ+σ+2)d2n ≤ C̃ε
γω

N
− τ+σ+2

2
n+1 . (2.37)

Denote by λj(ε,w̃) =µ2
j (ε,w̃),j∈N+ the eigenvalues of Euler–Bernoulli beam problem{

(py′′)′′−εΠV f
′(v(ε,w̃)+ w̃)y=λρy,

y(0) =y(π) =y′′(0) =y′′(π) = 0.

Let us define the set Bγ as

Bγ :=
{

(ε,ω)∈ (ε1,ε2)×(2γ,+∞) : εω ≤ δ6γ
5, |ωl− µ̄j |> 2γ

lτ ,∀l= 1, ·· · ,N0,∀j≥1,

|ωl−j|> 2γ
lτ , |ωl−µj(ε,w̃)|> 2γ

lτ ,∀l≥1,∀j≥1
}
. (2.38)
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Lemma 2.10. For ε
γ2ω ≤

ε
γ3ω ≤ δ5≤ δ4 small enough, there is some γ0>0 such that

Bγ⊆ Ãn⊂An, ∀n∈N.

In order to prove Lemma 2.10, let us introduce the following fact.

Lemma 2.11. For all (ε,w),(ε̄,w̄)∈ (ε1,ε2)×{W ∩Hs :‖w‖s<r}, the eigenvalues
λj(ε,w) of (2.3) satisfy that for some constant ν >0,

|λj(ε,w)−λj(ε̄,w̄)|≤ν(|ε− ε̄|+‖w− w̄‖s), j∈N+. (2.39)

Proof. Let ψj(g) denote the eigenfunctions with respect to the eigenvalues λj(g),
where

g(·) :=−εΠV f
′(t, ·,v(ε,w(t,·))+w(t,·))∈H2

p (0,π)⊂C1([0,π];R).

Since the coefficients in problem (2.3) satisfy the assumptions of [31, Theorem 4.4], it
follows that

Dgλj(g)[h] =−
∫ π

0
(ψj(g))2hdx.

Notice that
∫ π

0
(ψj(g+v(ḡ−g)))2ρdx= 1 (see (3.6)). Then applying Lemma 4.5 and

Lemma 2.1 yields that

|λj(g)−λj(ḡ)|=
∣∣∣∫ 1

0

∫ π
0

(ψj(g+v(ḡ−g)))2(g− ḡ)dxdv
∣∣∣

≤ max
v∈[0,1]

∣∣∫ π
0

(ψj(g+v(ḡ−g)))2(g− ḡ)dx
∣∣

≤‖(g− ḡ)/ρ‖L∞(0,π) max
v∈[0,1]

∣∣∫ π
0

(ψj(g+v(ḡ−g)))2ρdx
∣∣

≤C‖(g− ḡ)/ρ‖H2(0,π)≤ν(|ε− ε̄|+‖w− w̄‖s).

This ends the proof.

Observe that the non-degeneracy of v̂=v(ε̂,0) means that λj(ε̂,0) 6= 0. Then it
follows from Lemma 2.11 that

ν0 := inf {|λj(ε,ω)| : j≥1,ε∈ [ε1,ε2],‖w‖s≤ r}>0.

If necessary, here we may take that |ε2−ε1| and r are smaller than the ones in Lemma
2.1. Moreover, for the sake of brevity, we denote

µ2
j,n(ε,ω) =λj,n(ε,ω) :=λj(ε,wn(ε,ω)), µ̃2

j (ε,ω) = λ̃j(ε,ω) :=λj(ε,w̃(ε,ω)).

We are now turning to the proof of Lemma 2.10.

Proof. (Proof of Lemma 2.10.) Clearly, the definition of Ãn (recall (2.34))
shows that Ãn⊂An,∀n∈N. Our next goal is to verify

(F1): If ε
γ2ω ≤ δ5 is small enough, then there exists γ0>0 such that for all (ε,ω)∈

Bγ ,

B((ε,ω), 2γ0γ
4

Nτ+1
n

)⊆An, ∀n∈N.
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This implies that for all n∈N, if (ε,ω)∈Bγ , then (ε,ω) can belong to Ãn. Let us check
the fact (F1) by induction.

For all (ε̄, ω̄)∈B((ε,ω), 2γ0γ
4

Nτ+1
0

), when we take γ0≤ 1
2 , it can be seen that

|ω̄l− µ̄j |≥ |ωl− µ̄j |−|ω− ω̄|l>
2γ

lτ
− 2γ0γ

4

Nτ+1
0

l≥ γ

lτ
+

γ

Nτ
0

− 2γ0γ
4

Nτ
0

≥ γ

lτ
, l= 1, ·· · ,N0.

This gives rise to (ε̄, ω̄)∈A0.

If we assume that B((ε,ω), 2γ0γ
4

Nτ+1
n

)⊆An, then (ε,ω)∈ Ãn. As a result, it can be

obtained that w̃n(ε,ω) =wn(ε,ω).
It remains to show that the fact (F1) holds at (n+1)-th step. For all (ε̄, ω̄)∈

B((ε,ω), 2γ0γ
4

Nτ+1
n+1

), if γ0≤ 1
2 , then

|ω̄l−j|≥ |ωl−j|−|ω− ω̄|l> 2γ

lτ
− 2γ0γ

4

Nτ+1
Nn+1

l≥ γ

lτ
+

γ

Nτ
n+1

− 2γ0γ
4

Nτ
n+1

≥ γ

lτ
, 1≤ l≤Nn+1.

Moreover, it follows from (2.39), (S1)n and (2.37) that

|µj,n(ε̄, ω̄)− µ̃j(ε,ω)|= |λj,n(ε̄, ω̄)− λ̃j(ε,ω)|
|µj,n(ε̄, ω̄)|+ |µ̃j(ε,ω)|

≤ 1
√
ν0
|λj,n(ε̄, ω̄)− λ̃j(ε,ω)|

≤ ν
√
ν0

(|ε̄−ε|+‖wn(ε̄, ω̄)− w̃(ε,ω)‖s)

≤ ν
√
ν0
|ε̄−ε|+ ν

√
ν0
‖wn(ε̄, ω̄)−wn(ε̄,ω)‖s

+
ν
√
ν0
‖wn(ε̄,ω)−wn(ε,ω)‖s+

ν
√
ν0
‖w̃n(ε,ω)− w̃(ε,ω)‖s

≤ ν
√
ν0

(
2γ0γ

4

Nτ+1
n+1

+ 2K1

γ2ω
2γ0γ

4

Nτ+1
n+1

+ C̃ε
γω

1

N
(τ+σ+2)/2
n+1

)
.

Using (1.12) gives that τ+σ+2
2 ≥ τ+ 1

2 . Since ω>γ, for γ0,
ε
γ2ω small enough, one has

|µj,n(ε̄, ω̄)− µ̃j(ε,ω)|≤ γ

2lτ
.

Consequently, for all (ε̄, ω̄)∈B((ε,ω), 2γ0γ
4

Nτ+1
n+1

), we can obtain that for γ0,
ε
γ2ω small enough,

|ω̄l−µj,n(ε̄, ω̄)|≥ |ωl− µ̃j(ε,ω)|−|ω− ω̄|l−|µj,n(ε̄, ω̄)− µ̃j(ε,ω)|

>
2γ

lτ
− 2γ0γ

4

Nτ+1
n+1

l− γ

2lτ
≥ γ

lτ
, l= 1, ·· · ,Nn+1.

We have thus proved the lemma.

Let Ω := (ε′,ε′′)×(ω′,ω′′) denote a rectangle contained in (ε1,ε2)×(2γ,+∞) and set

ν1 :=inf {|µj+1(ε,ω)−µj(ε,ω)| : j≥1,ε∈ [ε1,ε2],‖w‖s≤ r}>0, (2.40)

ν2 :=inf {|µj+1(ε,ω)−µj(ε,ω)| : j≥1,(ε,ω)∈Bγ}.

The proof of the fact ν1>0 will be given later. Moreover, without loss of generality, we
assume that ω′′−ω′≥1.
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Lemma 2.12. For fixed ε∈ (ε′,ε′′), if ε
γ5ω ≤ δ6≤ δ5 small enough, then the measure

estimate on Bγ(ε) satisfies that for some constant Q>0,

meas(Bγ(ε)∩(ω′,ω′′))≥ (1−Qγ)(ω′′−ω′), (2.41)

where Bγ(ε) :={ω : (ε,ω)∈Bγ}. Furthermore,

meas(Bγ ∩Ω)≥ (1−Qγ)meas(Ω) = (1−Qγ)(ω′′−ω′)(ε′′−ε′).

Proof. Denote by (Bγ(ε))c the complementary set of Bγ(ε). By the definition of
Bγ (recall (2.38)), it is evident that

(Bγ(ε))c⊆R1(ε)∪R2∪R3,

where

R1(ε) =
⋃

l≥1,j≥1

R1
l,j(ε), R1

l,j(ε) :=

{
ω∈ (ω′,ω′′) : |ωl− µ̃j(ε,ω)|≤ 2γ

lτ

}
,

R2 =
⋃

l≥1,j≥1

R2
l,j , R2

l,j :=

{
ω∈ (ω′,ω′′) : |ωl− µ̄j |≤

2γ

lτ

}
,

R3 =
⋃

l≥1,j≥1

R3
l,j , R3

l,j :=

{
ω∈ (ω′,ω′′) : |ωl−j|≤ 2γ

lτ

}
.

We first consider the Lebesgue measure of the set R1(ε). Since Bγ⊆ Ãn (see Lemma

2.10), one has w̃(ε,ω) =w(ε,ω). Then λ̃j(ε,ω) =λj(ε,ω) on Bγ . Hence formula (2.36)
implies that ν2≥ν1>0. Using (2.39), (2.36) and the definition of ν0 yields that

|µ̃j(ε,ω1)− µ̃j(ε,ω2)|= |λ̃j(ε,ω1)− λ̃j(ε,ω2)|
|µ̃j(ε,ω1)|+ |µ̃j(ε,ω2)|

≤ 1
√
ν0
|λ̃j(ε,ω1)− λ̃j(ε,ω2)|

≤ ν
√
ν0
‖w̃(ε,ω1)− w̃(ε,ω2)‖s≤

ενK(γ0)
√
ν0γ5ω

|ω1−ω2|.

This gives rise to |∂ωµ̃j(ε,ω)|≤ ενK(γ0)√
ν0γ5ω . If we set a(ω) :=ωl− µ̃j(ε,ω), for ε

γ5ω ≤ δ6 small

enough, then

∂ωa(ω) = l−∂ωµ̃j(ε,ω)≥ l/2.

Combining this with the definition of R1
l,j(ε) gives that

meas(R1
l,j(ε))≤

|a(ω1)−a(ω2)|
inf|∂ωa(ω)|

≤ 8γ

lτ+1
.

If R1
l,j(ε) 6=∅, then we also have that for fixed l,

ω′l− 2γ

lτ
≤ µ̃j(ε,ω)≤ω′′l+ 2γ

lτ
.

Moreover, it follows that ]j≤ 1
ν1

(l(ω′′−ω′)+ 4γ
lτ )+1, where ]j denotes the number of j.

Therefore,

meas(R1(ε))≤
∑+∞
l=1

8γ
lτ+1

(
1
ν1

(l(ω′′−ω′)+ 4γ
lτ )+1

)
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≤
∑+∞
l=1

8γ
lτ+1Q′′l(ω′′−ω′)≤Q′γ(ω′′−ω′).

An argument similar to the one used above can establish the upper bounds of meas(R2)
and meas(R3). Thus formula (2.41) follows.

In addition, it can be seen that

meas(Bγ ∩Ω) =
∫ ε′′
ε′

meas(Bγ(ε)∩(ω′,ω′′))dε≥ (1−Qγ)meas(Ω).

Thus the proof is completed.

Theorem 1.1 follows from Lemma 2.1, Lemma 2.12 and Theorem 2.1.

Proof. (Proof of Theorem 1.1.) By means of Theorem 2.1 and the steps of
Whitney extension, the function w̃(ε,ω), with w̃∈C1(Aγ ;W ∩Hs), can solve the range
equation (P ) in (1.7). For ε

γ5ω ≤ δ6 small enough, according to the fact ‖w̃‖s<r (recall

(2.36)), Lemma 2.1 presents that v(ε,w̃) solves the bifurcation equation (Q) in (1.7).
As a consequence, it follows that

ũ(ε,ω) =v(ε,w̃(ε,ω))+ w̃(ε,ω)∈H2
p (0,π)⊕(W ∩Hs)

is a solution of Equation (1.4). Meanwhile, formulae (1.13)–(1.14) can be obtained by
(2.1) and (2.36).

In addition, since the function ũ solves −(p(x)uxx)xx= εf(t,x,u)−ω2ρ(x)utt, we
obtain

−(pũxx)xx∈H2(0,π), ∀t∈R.

Due to (1.5), if α,β∈H4(0,π), then ρ,p∈H5(0,π). Hence it can be seen that ũ(t,·)∈
H6(0,π)∩H2

p (0,π)⊂C5[0,π] for all t∈R .

3. Invertibility of linearized operator
The object of this section is to show the invertibility of the linearized operator

LN (ε,ω,w) (recall (2.2)). More precisely, we will complete the proof of Lemma 2.2. We
rewrite LN (ε,ω,w) as

LN (ε,ω,w)[h] =L1(ε,ω,w)[h]+L2(ε,w)[h], ∀h∈WN ,

where

L1(ε,ω,w)[h] :=−Lωh+εPNΠW f
′(t,x,v(ε,ω,w)+w)h,

L2(ε,w)[h] := εPNΠW f
′(t,x,v(ε,w)+w)Dwv(ε,w)[h].

Let b(t,x) :=f ′(t,x,v(ε,ω,w(t,x))+w(t,x)). If ‖w‖s+σ≤1, then it follows from (4.11)
and Lemma 2.1 that

‖b‖s≤‖b‖s+σ≤C, ∀s>1/2, (3.1)

‖b‖s′ ≤C(s′)(1+‖w‖s′), ∀s′≥s>1/2. (3.2)

By decomposing b(t,x) =
∑
k∈Z bk(x)eikt,h(t,x) =

∑
1≤|l|≤N hl(x)eilt, we can write the

operator L1(ε,ω,w) as

L1(ε,ω,w)[h] =
∑

1≤|l|≤N

(
ω2l2ρhl−(p(hl)

′′)′′
)
eilt+εPNΠW

∑
k∈Z,1≤|l|≤N

bk−lhle
ikt
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=ρL1,D[h]−ρL1,ND[h],

where b0(x) = ΠV f
′(t,x,v(ε,w)+w) and

L1,D[h] =
∑

1≤|l|≤N

(
ω2l2hl−

1

ρ
(ph′′l )′′+ε

b0
ρ
hl

)
eilt,

L1,ND[h] =− ε
ρ

∑
1≤|l|,|k|≤N,l 6=k

bk−lhle
ikt.

By virtue of [1, cf. Theorem 1.2, Proposition 6.2], we first give the asymptotic formulae
of the eigenvalues for problem (2.3).

Lemma 3.1. Let ζ= (ρ/p)
1
4 . Denote by λj(ε,w) and ψj(ε,w) the eigenvalues and the

eigenfunctions of problem (2.3), respectively. One has

λ1(ε,w)<λ2(ε,w)< ·· ·<λj(ε,w)< ·· · , (3.3)

with λj(ε,w)→+∞ as j→+∞, and for all ε∈ (ε1,ε2), w∈{W ∩Hs :‖w‖s<r},

λj(ε,w) = j4 +2j2υ0 +υ1(ε,w)−%j(ε,w)+
o(1)

j
as j→+∞. (3.4)

Note that

υ0 =d(π)−d(0)+ 1
π

∫ π
0

x(x)
ζ(x)dx,

υ1(ε,w) = Λ(π)−Λ(0)+ 1
π

∫ π
0

Γ(x)ζ(x)dx+
υ2
0

2 −
1
π

∫ π
0

ε
ρ(x)ΠV f

′(v(ε,w)+w)(x)ζ(x)dx,

%j(ε,w) = 1
π

∫ π
0

(
− ε
ρ(x)ΠV f

′(v(ε,w)+w)(x)ζ(x)+ αxxx(x)−βxxx(x)
4ζ3(x)

)
cos
(
2j
∫ x

0
ζ(z)dz

)
dx,

(3.5)

where

Λ = 1
ζ3

(
2χ3

3 −
η3−
2 −2ηη+−(χ−η−)η−χ+(χ−η−)xχ−(αη−)x− (η−)xx

4

)
,

Γ = 1
8ζ4 ((η−)x−η2

−−2x)2− 1
ζ4 ((η+)x−2η)2,

d= 3α+5β
2ζ , x= 5α2+5β2+6αβ

4 ≥ α2+β2

2 ≥0,

χ= α+3β
2 , η=η+η−, η±=β±α.

Moreover, the eigenfunctions ψj(ε,w) form an orthogonal basis of L2(0,π) with the scalar
product

(y,z)L2
ρ

:=
∫ π

0
ρyzdx. (3.6)

For Θ>0 large enough, define a scalar product (·, ·)ε,w on H2
p (0,π) by

(y,z)ε,w :=
∫ π

0
py′′z′′−εΠV f

′(v(ε,ω,w)+w)yz+Θρyzdx

satisfying that for all y∈H2
p (0,π),

L1‖y‖H2 ≤‖y‖ε,w≤L2‖y‖H2 , L1,L2>0. (3.7)
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In addition, the eigenfunctions ψj(ε,w) are an orthogonal basis of H2
p (0,π) with respect

to the scalar product (·, ·)ε,w as well, and for y=
∑
j≥1 ŷjψj(ε,w),

‖y‖2L2
ρ

=
∑
j≥1(ŷj)

2, ‖y‖2ε,w =
∑
j≥1(λj(ε,w)+Θ)(ŷj)

2, (3.8)

where λj(ε,w)+Θ>0.

Proof. Let us verify formulae (3.7)–(3.8). By using the Poincaré inequality, we
get ‖y′‖L2(0,π)≤C‖y′′‖L2(0,π) if y∈H2

p (0,π). Hence it can be obtained that (3.7) holds.
Moreover, observe that

(pψ′′j (ε,w))′′−εΠV f
′(t,x,v(ε,w)+w)ψj(ε,w)+Θρψj(ε,w) = (λj(ε,w)+Θ)ρψj(ε,w).

Multiplying the above equality by ψj′(ε,w) and integrating by parts yield that

(ψj ,ψj′)ε,w = δj,j′(λj(ε,w)+Θ).

Therefore we arrive at (3.8).

According to (3.7)–(3.8), it can be seen that for w=
∑
|l|≥1,j≥1 ŵl,jψj(ε,w)eilt,

L2
1‖w‖2s≤

∑
|l|≥1,j≥1

(λj(ε,w)+Θ)(ŵl,j)
2(1+ l2s)≤L2

2‖w‖2s. (3.9)

This means that we have sought the equivalent norm of the s-norm restricted to W ∩Hs.
Moreover, it follows from Lemma 3.1 that

ω2l2hl−
1

ρ
(ph′′l )′′+ε

b0
ρ
hl=

∑
j≥1

(ω2l2−λj(ε,w))ĥl,jψj(ε,w).

This means that L1,D is a diagonal operator on WN . Let us define the operator

|L1,D|
1
2h=

∑
1≤|l|≤N,j≥1

|ω2l2−λj(ε,w)| 12 ĥl,jψj(ε,w)eilt, ∀h∈WN .

For all 1≤|l|≤N, j≥1, if ω2l2−λj(ε,w) 6= 0, then its inverse operator is

|L1,D|−
1
2h :=

∑
1≤|l|≤N,j≥1

1

|ω2l2−λj(ε,w)| 12
ĥl,jψj(ε,w)eilt.

Hence we can rewrite LN (ε,ω,w) as

LN (ε,ω,w) =ρ|L1,D|
1
2 (|L1,D|−

1
2L1,D|L1,D|−

1
2 −R1−R2)|L1,D|

1
2 ,

where

R1 = |L1,D|−
1
2L1,ND|L1,D|−

1
2 , R2 =−|L1,D|−

1
2

(
1
ρL2

)
|L1,D|−

1
2 . (3.10)

Note that for all h∈WN ,

(|L1,D|−
1
2L1,D|L1,D|−

1
2 )h=

∑
1≤|l|≤N,j≥1

sign(ω2l2−λj(ε,w))ĥl,jψj(ε,w)eilt.
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Then it is invertible with, for all s≥0,

‖(|L1,D|−
1
2L1,D|L1,D|−

1
2 )−1h‖s

(3.9)

≤ L2

L1
‖h‖s. (3.11)

Therefore LN (ε,ω,w) may be reduced to

LN (ε,ω,w) =ρ|L1,D|
1
2 (|L1,D|−

1
2L1,D|L1,D|−

1
2 )(Id−R)|L1,D|

1
2 , (3.12)

where R=R1 +R2 with

R1 = (|L1,D|−
1
2L1,D|L1,D|−

1
2 )−1R1, R2 = (|L1,D|−

1
2L1,D|L1,D|−

1
2 )−1R2.

In order to investigate the invertibility of Id−R, we need to impose some non-
resonance conditions. For fixed τ ∈ (1,2), we assume

|ωl−µj(ε,w)|> γ

lτ
, ∀1≤ l≤N, ∀j≥1. (3.13)

Then it follows from the definition of µj(ε,w) (recall (2.4)) that

|ω2l2−λj(ε,w)|= |ωl−µj(ε,w)||ωl+µj(ε,w)|> γω

lτ−1
, ∀1≤ l≤N, ∀j≥1. (3.14)

Moreover, we set

ωl := min
j≥1
|ω2l2−λj(ε,w)|= |ω2l2−λj∗(ε,w)|, ∀1≤|l|≤N. (3.15)

It is evident that ωl=ω−l,1≤ l≤N .

Lemma 3.2. Provided (3.13), the operator |L1,D|−
1
2 is invertible with, for all h∈WN ,

‖|L1,D|−
1
2h‖s≤

√
2L2√
γωL1

‖h‖s+ τ−1
2
, ∀s≥0, (3.16)

‖|L1,D|−
1
2h‖s≤

√
2L2√
γωL1

N
τ−1
2 ‖h‖s, ∀s≥0. (3.17)

Proof. Since |l|τ−1(1+ l2s)<2(1+ |l|2s+τ−1) for l≥1, using (3.9), (3.14)–(3.15)
yields that

‖|L1,D|−
1
2h‖2s≤

1

L2
1

∑
1≤|l|≤N,j≥1

λj(ε,w)+Θ

ωl
(ĥl,j)

2(1+ l2s)

≤ 2

γωL2
1

∑
1≤|l|≤N,j≥1

(λj(ε,w)+Θ)(ĥ±l,j)
2(1+ |l|2s+τ−1)

≤ 2L2
2

γωL2
1

‖h‖2
s+ τ−1

2

≤ 2L2
2N

τ−1

γωL2
1

‖h‖2s.

Thus the proof is completed.

In addition, for fixed τ ∈ (1,2), we also assume

|ωl−j|> γ

lτ
, ∀1≤ l≤N,∀j≥1. (3.18)

Under the non-resonance conditions (3.13) and (3.18), we have
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(F2): Let τ ∈ (1,2),γ∈ (0,1). If ω>γ, then there is L̃>0 such that

ωlωk≥ L̃2γ6ω2|l−k|−2σ.

Based on the above fact, we give the following lemma.

Lemma 3.3. Given (3.13) and (3.18), if ‖w‖s+σ≤1, then there exists L>0 such that
for all s′≥s>1/2,

‖R1h‖s′ ≤
εL

2γ3ω (‖h‖s′+‖w‖s′+σ‖h‖s) , ∀h∈WN . (3.19)

Proof. By formula (3.10) and the definitions of L1,ND, |L1,D|−
1
2 , it can be seen

that

R1h= |L1,D|−
1
2L1,ND

 ∑
1≤|l|≤N,j≥1

ĥl,j√
|ω2l2−λj(ε,w)|

ψj(ε,w)eilt



=−ε|L1,D|−
1
2

 ∑
1≤|l|,|k|≤N
l 6=k,j≥1

ĥl,j√
|ω2l2−λj(ε,w)|

bk−l
ρ
ψj(ε,w)eikt


=−ε

∑
1≤|l|,|k|≤N
l 6=k,j≥1

ĥl,j√
|ω2k2−λj(ε,w)|

√
|ω2l2−λj(ε,w)|

bk−l
ρ
ψj(ε,w)eikt.

This carries out

(R1h)k =−ε
∑

1≤|l|≤N
l 6=k,j≥1

ĥl,j√
|ω2k2−λj(ε,w)|

√
|ω2l2−λj(ε,w)|

bk−l
ρ
ψj(ε,w).

Combining this with (3.7)–(3.8) yields that

‖(R1h)k‖H2 ≤εL2

L1

∑
1≤|l|≤N,l 6=k

1
√
ωlωk

‖bk−l/ρ‖H2 ‖hl‖H2

≤ εL2

γ3ωL̃L1

∑
1≤|l|≤N,l 6=k

‖bk−l/ρ‖H2 |k− l|σ‖hl‖H2 . (3.20)

If we denote

Υ(x) :=
∑

1≤|l|,|k|≤N ‖
bk−l
ρ ‖H2 |k− l|σ‖hl‖H2eikt,

p(x) :=
∑
l∈Z‖

bl
ρ ‖H2 |l|σeilt, q(x) :=

∑
1≤|l|≤N ‖hl‖H2eilt,

then Υ = PN (pq). Moreover, by (3.2), we deduce that for all s′≥s>1/2,

‖p‖s′≤C ′(s′)(1+‖w‖s′+σ), ‖q‖s′ =‖h‖s′ .

Thus it follows from (3.20) and (4.2) that for ‖w‖s+σ≤1,

‖R1h‖s′ ≤ εL2

γ3ωL̃L1
‖Υ‖s′ ≤ εL2C(s′)

γ3ωL̃L1
(‖p‖s′‖q‖s+‖p‖s‖q‖s′)
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≤ εL2C
′′(s′)

γ3ωL̃L1
(‖w‖s′+σ‖h‖s+‖h‖s′).

Consequently, by the above estimate together with (3.11), we obtain (3.19).

Lemma 3.4. Given (3.13), if ‖w‖s+σ≤1, then for all s′≥s>1/2,

‖R2h‖s′ ≤
εL

2γω (‖h‖s′+‖w‖s′+σ‖h‖s) , ∀h∈WN . (3.21)

Proof. Lemma 2.1 shows that

Dwv(ε,w)[|L1,D|−
1
2h]∈H2

p (0,π).

Moreover, it can be seen from the fact τ ∈ (1,2) that σ>τ−1. Thus, by virtue of
(3.1)–(3.2), it follows that

‖R2h‖s′
(3.16)

≤ ε
√

2L2√
γωL1

‖ 1
ρ‖H2‖b(t,x)Dwv(ε,w)[|L1,D|−

1
2h]‖s′+ τ−1

2

(4.2)

≤ ε
√

2L2√
γωL1

‖ 1
ρ‖H2C ′(s′)(‖b‖s′+σ‖|L1,D|−

1
2h‖s− τ−1

2
+‖b‖s+σ‖|L1,D|−

1
2h‖s− τ−1

2
)

(3.16)

≤ 2εL2
2C
′′(s′)

γωL2
1

(‖w‖s′+σ‖h‖s+‖h‖s′).

Consequently, we can infer (3.21) because of the above estimate and (3.11).

Lemma 3.5. Provided (3.13) and (3.18), if ‖w‖s+σ≤1, for εL
γ3ω ≤ c small enough,

then (Id−R) is invertible with, for all s′≥s>1/2,

‖(Id−R)−1h‖s′ ≤2(‖h‖s′+‖w‖s′+σ‖h‖s), ∀h∈WN . (3.22)

Proof. It follows from Lemmata 3.3–3.4 that for εL
γ3ω ≤ c small enough,

‖Rh‖s≤ εL
γ3ω‖h‖s≤

1
2‖h‖s.

Then, according to the Neumann series, the operator (Id−R) is invertible. In order to
prove (3.22), we claim

(F3): If ‖w‖s+σ≤1, then for `∈N+,

‖R`h‖s′ ≤ ( εL
γ3ω )`(‖h‖s′+`‖w‖s′+σ‖h‖s), ∀h∈WN . (3.23)

Then applying the fact (F3) gives that for εL
γ3ω ≤ c small enough,

‖(Id−R)−1h‖s′ =‖(Id+
∑
`∈N+R`)h‖s′ ≤‖h‖s′+

∑
`∈N+ ‖R`h‖s′

≤‖h‖s′+
∑
`∈N+( εL

γ3ω )`(‖h‖s′+`‖w‖s′+σ‖h‖s)

≤2‖h‖s′+2‖w‖s′+σ‖h‖s.

It remains to show that the fact (F3) holds by a recursive argument. For `= 1,
owing to (3.19) and (3.21), it follows that

‖Rh‖s′ ≤
εL
γ3ω (‖h‖s′+‖w‖s′+σ‖h‖s) .

Suppose that formula (3.23) holds at `-step, with `∈N+,`≥2. Let us check that (3.23)
holds at (`+1)-step. Based on the assumption at `-step, we can get

‖R`+1h‖s′ =‖R`(Rh)‖s′≤( εL
γ3ω )`(‖Rh‖s′+`‖w‖s′+σ‖Rh‖s)
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≤( εL
γ3ω )`

(
εL
γ3ω‖h‖s′+

(
εL`
γ3ω + εL

γ3ω

)
‖w‖s′+σ‖h‖s

)
≤( εL

γ3ω )`+1(‖h‖s′+(`+1)‖w‖s′+σ‖h‖s).

Thus we complete the proof of the lemma.

As a result, Lemma 2.1 follows from (3.11)–(3.12), (3.17) and (3.22).
Now, we will give the proof of the fact (F2). It is clear that ρ,ζ ∈H5(0,π) because

of α,β∈H4(0,π). If we denote

Ξ(ε,w) :=− ε
ρΠV f

′(v(ε,w)+w)ζ+ αxxx−βxxx
4ζ3 ,

then Ξ(ε,w)∈H1(0,π). Hence integrating by parts yields that

|%j(ε,w)|=
∣∣ 1
π

∫ π
0

Ξ(ε,w)(x)cos
(
2j
∫ x

0
ζ(z)dz

)
dx
∣∣≤ C‖Ξ/ζ‖H1

j ,

where %j(ε,w) is defined in (3.5). For Θ>0 large enough, it follows from (3.4) that

λj(ε,w) = j4 +2j2υ0 +υ1(ε,w)+ r(ε,w)
j , |r(ε,w)|≤Θ, as j→+∞. (3.24)

By Taylor expansion and (3.24), there is J0>max{2|υ0|,1}>0 large enough such that∣∣µj(ε,w)−(j2 +υ0)
∣∣≤ Θ

j2 , ∀j >J0. (3.25)

In addition, from (3.3) and the definition of j∗, if ω2l2−λJ0+1(ε,w)>0, then j∗≥J0 +1.
Thus there exists J1 :=J1(J0)>0 such that for every l>J1/ω,

j∗≥Θ0

√
ωl. (3.26)

Proof. (Proof of (F2).) Let l,k≥1 with l 6=k. Denote

ωl= |ω2l2−λj∗(ε,w)|, ωk = |ω2k2−λi∗(ε,w)|, ς= (2−τ)/τ ∈ (0,1).

Then we consider the following two cases.

Case 1: 2|k− l|> (max{k,l})ς . It follows from (3.14) that

ωlωk≥
(γω)2

(kl)τ−1
≥ (γω)2

(max{k,l})2(τ−1)
≥ (γω)2

22(τ−1)/ς |k− l|2(τ−1)/ς
.

Case 2: 0<2|k− l|≤ (max{k,l})ς . Clearly, either k>l or l>k follows. By the fact
ς ∈ (0,1), in the first case 2l>k and in the latter 2k>l, namely, k/2<l<2k.

(i) If λj∗(ε,w)<0,λi∗(ε,w)<0, then ωl≥ω2l2,ωk≥ω2k2, which leads to

ωlωk≥ω4≥γ2ω2.

(ii) If either λj∗(ε,w)<0 or λi∗(ε,w)<0, then in the first case

ωlωk
(3.14)

≥ ω2l2
γω

kτ−1
≥21−τγω3≥21−τγ2ω2

and in the latter

ωlωk
(3.14)

≥ γω

lτ−1
ω2k2≥21−τγω3≥21−τγ2ω2.
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(iii) Let us study the case λj∗(ε,w)>0,λi∗(ε,w)>0. Let

k? := max

{
2J1
ω ,
(

6Θ
Θ2

0γω

) 1
1−ςτ

}
.

Suppose that max{k,l}=k>k?. According to (3.18), (3.25)–(3.26), it follows that

|(ωl−µj∗(ε,w))−(ωk−µi∗(ε,w))|≥ γ

|l−k|τ
− Θ

(j∗)2
− Θ

(i∗)2
≥ 2τγ

kςτ
− Θ

Θ2
0ωl
− Θ

Θ2
0ωk

≥ γ

2kςτ
+

γ

kςτ
+

γ

2kςτ
− 3Θ

Θ2
0ωk
≥ 1

2

( γ

kςτ
+

γ

lςτ

)
.

This shows that either |ωk−µi∗(ε,w)|≥ γ
2kςτ or |ωl−µj∗(ε,w)|≥ γ

2lςτ . The same
conclusion is reached if max{k,l}= l>k?. For brevity, we just consider the case
|ωk−µi∗(ε,w)|≥ γ

2kςτ . Observe that

ωk = |ω2k2−λi∗(ε,w)|= |ωk−µi∗(ε,w)||ωk+µi∗(ε,w)|≥ γω
2 k

1−ςτ .

This arrives at

ωlωk≥
γω

lτ−1

γω

2
k1−ςτ ≥ (γω)2

2τ
k2−τ−ςτ =

(γω)2

2τ

if we take ς= (2−τ)/τ .
On the other hand, we consider the case max{j,k}≤k?. Since ω>γ, we can obtain

that for k?= 2J1
ω ,

ωjωk≥
(γω)2

(jk)τ−1
≥ (γω)2

(k?)2(τ−1)
=

(γω)2

(2J1/ω)2(τ−1)
≥ γ4ω2

(2J1)2(τ−1)
.

For k?=
(

6Θ
Θ2

0γω

) 1
1−ςτ

, it can be seen that

ωlωk≥
(γω)2

(kl)τ−1
≥ (γω)2

(k?)2(τ−1)
=γ2ω2

(
Θ2

0γω

6Θ

)2

≥ Θ4
0

(6Θ)2
γ6ω2.

In addition, note that ωl=ω−l,ωk =ω−k. The remainder of the lemma may be
proved in the similar way as above. Thus the proof of (F2) is now completed.

Finally, let us complete the proof of formula (2.40).

Proof. (Proof of formula (2.40).) In view of (3.25), it follows that

inf
j>max{J0,2Θ

1
2 }
|µj+1(ε,w)−µj(ε,w)|

≥1−|µj+1(ε,w)−((j+1)2 +υ0)|−|µj(ε,w)−(j2 +υ0)|≥1− 2Θ
j2 >

1
2

uniformly in ε∈ [ε1,ε2], w∈B(0,r). In the proof of Lemma 2.11, one has |λj(g)−λj(ḡ)|≤
C‖(g− ḡ)/ρ‖H2(0,π), where g∈H2(0,π)⊂L∞(0,π). Then it can be seen from (3.3) that

for 1≤ j≤max{J0,2Θ
1
2 }, the following

Ξj := min
ε∈[ε1,ε2],w∈B(0,r)

|µj+1(ε,w)−µj(ε,w)|

can be attained. Thus we complete the proof.
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Appendix. In this appendix, we will supplement some Lemmata used in the proof
of Theorem 1.1.

Lemma 4.1 ( Moser–Nirenberg). Let s′≥0 and s> 1
2 . One has that for all u1,u2∈

Hs′ ∩Hs,

‖u1u2‖s′ ≤C(s′)
(
‖u1‖L∞(T,H2(0,π))‖u2‖s′+‖u1‖s′‖u2‖L∞(T,H2(0,π))

)
(4.1)

≤C(s′)(‖u1‖s‖u2‖s′+‖u1‖s′‖u2‖s) . (4.2)

Lemma 4.2 (Logarithmic convexity). Let 0≤a′≤a≤b≤b′ satisfy a+b = a′+b′. One
has that for all u1,u2∈Hb′ ,

‖u1‖a‖u2‖b≤θ‖u1‖a′‖u2‖b′+(1−θ)‖u2‖a′‖u1‖b′ , θ= b′−a
b′−a′ .

In particular, for u∈Hb′ , we have

‖u‖a‖u‖b≤‖u‖a′‖u‖b′ . (4.3)

Lemma 4.3. Let Ck :=
{
f ∈C([0,π]×R;R) :u 7−→f(·,u) is in Ck(R;H2(0,π))

}
. If we

denote U =‖u‖L∞(0,π), then for f ∈C1, the composition operator u(x) 7−→f(x,u(x)) is
in C(H2(0,π);H2(0,π)) with

‖f(x,u)‖H2 ≤C
(
maxu∈[−U,U ]‖f(·,u)‖H2 +maxu∈[−U,U ]‖∂uf(·,u)‖H2‖u‖H2

)
.

Remark that the above ones may be found in [7, cf. Lemmata 2.1–2.3].

Lemma 4.4. Let f ∈Ck with k≥1. For all s>1/2, 0≤s′≤k−1, the composition
operator u(t,x) 7−→f(t,x,u(t,x)) belongs to C(Hs∩Hs′ ;H̃s′), where

H̃s :=
{
u :T−→H2((0,π);R),u(t,x) =

∑
l∈Zul(x)eilt,ul∈H2((0,π);C),

u−l=u∗l ,‖u‖s<+∞
}
.

Moreover, one has

‖f(t,x,u)‖s′ ≤C(s′,‖u‖s)(1+‖u‖s′). (4.4)

Proof. If s′= `∈N with `≤k−1, by induction, then we derive that

‖f(t,x,u)‖`≤C(`,‖u‖s)(1+‖u‖`), ∀u∈Hs∩H`, (4.5)

and that

f(t,x,un)→f(t,x,u) as un→u in Hs∩H`. (4.6)

We first verify the fact (4.5). For `= 0 (k= 1), in view of (1.6) and Lemma 4.3, it follows
that

‖f(t,x,u)‖0≤Cmax
t∈T
‖f(t, ·,u(t,·))‖H2(0,π)≤C ′(1+max

t∈T
‖u(t,·)‖H2(0,π))

≤C ′′(1+‖u‖s) =:C(‖u‖s). (4.7)

A similar argument as above can yield that for k≥2,

‖∂tf(t,x,u)‖0≤C(‖u‖s), max
t∈T
‖∂uf(t,·,u(t,·))‖H2(0,π)≤C(‖u‖s). (4.8)
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Suppose that (4.5) holds at `-step, with `∈N+. Let us check that it also holds at
(`+1)-step, with `+1≤k−1. Since ∂tf,∂uf ∈Ck−1, the assumption at `-step shows
that

‖∂tf(t,x,u)‖`≤C(`,‖u‖s)(1+‖u‖`), ‖∂uf(t,x,u)‖`≤C(`,‖u‖s)(1+‖u‖`). (4.9)

If we set a(t,x) :=f(t,x,u(t,x)), it is clear that ∂ta(t,x) =
∑
l∈Z ilal(x)eilt. Therefore,

‖a(t,x)‖2`+1 =
∑
l∈Z‖al‖2H2 +

∑
l∈Z l

2`‖ilal‖2H2 ≤ (‖a‖0 +‖∂ta‖`)2
.

This leads to

‖f(t,x,u)‖`+1≤‖f(t,x,u)‖0 +‖∂tf(t,x,u)‖`+‖∂uf(t,x,u)∂tu‖`. (4.10)

Hence, because of (4.8), we obtain that for `= 1,

‖f(t,x,u)‖1≤‖f(t,x,u)‖0 +‖∂tf(t,x,u)‖0 +Cmax
t∈T
‖∂uf(t,·,u(t,·))‖H2(0,π)‖∂tu‖0

≤ 2C(‖u‖s)+C ′(‖u‖s)‖u‖1≤C(1,‖u‖s)(1+‖u‖1),

where C(1,‖u‖s) := max{2C(‖u‖s),C ′(‖u‖s)}. Observe that

s1<1<s1 +1<2 and s1<s1 +1<`<`+1,`≥2,

where s1∈ (1/2,min(1,s)). Combining this with (4.3) gives that

‖u‖`‖u‖s1+1≤‖u‖`+1‖u‖s1 ≤‖u‖`+1‖u‖s.

For this, according to (4.7)–(4.10), (4.1), it follows that

‖f(t,x,u)‖`+1≤C(‖u‖s)+C(`,‖u‖s)(1+‖u‖`)+C(`)‖∂uf(t,x,u)‖`‖∂tu‖L∞(T;H2(0,π))

+C(`)‖∂uf(t,x,u)‖L∞(T;H2(0,π))‖u‖`+1

≤C(‖u‖s)+C(`,‖u‖s)(1+‖u‖`)+C(`)C(`,‖u‖s)(1+‖u‖`)‖u‖s1+1

+C(`)C(‖u‖s)‖u‖`+1

≤C(`+1,‖u‖s)(1+‖u‖`+1).

Our next task is to check the fact (4.6). By virtue of (1.6), one has

max
t∈T
‖un(t,·)−u(t,·)‖H2(0,π)→0 as un→u in Hs∩H0.

Then using the continuity property in Lemma 4.3 and the compactness of T yields that

‖f(t,x,un)−f(t,x,u)‖0≤Cmax
t∈T
‖f(t,·,un(t,·))−f(t, ·,u(t,·))‖H2(0,π)→0

if un→u in Hs∩H0. If we assume that (4.6) holds at `-step, then it follows from the
inequality (4.10) that it also holds at (`+1)-step, with `+1≤k−1.

If s′ is not an integer, then we shall adopt a similar procedure as in the proof of
Lemma A.1 in [18].

Lemma 4.5. Let 0≤s′≤k−3 with k≥3. If f ∈Ck, with ∂`uf(·,·,0) = 0,`≤2, then the
map

F :Hs∩Hs′ −→Hs′ ⊂ H̃s′ , u 7−→f(t,x,u).



B. CHEN, Y. GAO, AND Y. LI 2033

is C2 with respect to u and for all h∈Hs∩Hs′ ,

DF (u)[h] =∂uf(t,x,u)h, D2F (u)[h,h] =∂2
uf(t,x,u)h2.

Moreover, one has

‖∂uf(t,x,u)‖s′ ≤C(s′,‖u‖s)(1+‖u‖s′), ‖∂2
uf(t,x,u)‖s′ ≤C(s′,‖u‖s)(1+‖u‖s′). (4.11)

Proof. Observe that ∂uf,∂
2
uf are in Ck−1,Ck−2. Then it follows from Lemma 4.4

that the maps u 7−→∂uf(t,x,u), u 7−→∂2
uf(t,x,u) are continuous and that the estimates

in (4.11) are satisfied.
It remains to see that F is C2 with respect to u. From the continuity property of

u 7−→∂uf(t,x,u), we obtain

‖f(t,x,u+h)−f(t,x,u)−∂uf(t,x,u)h‖s′ =‖h
∫ 1

0
(∂uf(t,x,u+vh)−∂uf(t,x,u))dv‖s′

≤C(s′)‖h‖max{s,s′} max
v∈[0,1]

‖∂uf(t,x,u+vh)−∂uf(t,x,u)‖max{s,s′}=o(‖h‖max{s,s′}).

For this, it can be seen that DuF (u)[h] =∂uf(t,x,u)h for h∈Hs∩Hs′ and that u 7−→
DuF (u) is continuous. In addition,

∂uf(t,x,u+vh)h−∂uf(t,x,u)h−∂2
uf(t,x,u)h2

=h2
∫ 1

0
(∂2
uf(t,x,u+vh)−∂2

uf(t,x,u))dv.

Proceeding using a similar procedure as above yields that F is twice differentiable with
respect to u and that u 7−→D2

uF (u) is continuous.
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