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PERIODIC SOLUTIONS TO
NONLINEAR EULER-BERNOULLI BEAM EQUATIONS*

BOCHAO CHENT, YIXIAN GAO%, AND YONG LI$

Abstract. Bending vibrations of thin beams and plates can be described by nonlinear Euler—
Bernoulli beam equation with z-dependent coefficients. In this paper we demonstrate the existence
of families of time-periodic solutions to such a model by virtue of a Lyapunov—-Schmidt reduction
together with a Nash-Moser method. This result holds for all parameters (e,w) in a Cantor set with
asymptotically full measure as e —0.
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1. Introduction
In this article we are concerned with the one-dimensional nonlinear Euler—Bernoulli
beam equation

p(@)ug + (p(2) U ) ww = €f (wt,z,u) +eg(wt,z), x€[0,n],tER (1.1)
with respect to the pinned-pinned boundary conditions
u(t,0) =u(t,m) =gy (t,0) =ugy (t,m) =0, (1.2)

where the coefficients p,p are positive, the parameter € is small enough, the force terms
g(-,2), f(-,z,u) are 2m-periodic, with 9! f(-,-,0)=0,£<2. Clearly, u=0 is not the solu-
tion of Equation (1.1) if g#0.

The above model is used to describe bending vibrations of thin beams and plates
and reflects the relationship between the applied load and the beam’s deflection as well,
see [40]. The curve u(-,x) stands for the deflection of the beam at some position x in
the vertical direction. The coefficients p,p are the density of the beam and the flexural
rigidity, respectively. And the terms f,g are the so-called distributed loads depending
on x, or u, or x,u, or other variables. Moreover, derivatives of the deflection u have
physical significance: u, is the slope of the beam; —pu,, is the bending moment of the
beam and —(pu,, ), is the shear force of the beam.

The free vibrations of non-uniform beams have attracted many investigators since
Bernoulli and Euler derived the governing differential equation in the 18th century.
Many researchers focused on the study of the spectral problems for the following Euler—
Bernoulli operator

Eu=1(pu")" +Vu with V=V (x), (1.3)
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see [1,2,24,35-37] and references therein. In addition, under different boundary con-
ditions, Elishakoff et al. obtained harmonic form solutions, i.e., u(t,z) = (z)sinwt, of
Equation (1.1) with f,g=0 for the first time, recall [20,21]. In [25], under linear bound-
ary feedback control, Guo considered the Riesz basis property and the stability of the
linear one with boundary conditions

{u(t,O) =y (£,0) =gy (t,7) =0,
(P(2)Uge ) (t, ) = pug (t, ),

where 1 >0 is a constant feedback. Despite many studies on the linear model above,
the nonlinear problems are equally interesting and challenging. The main focus of
the present article is to derive periodic solutions of Equation (1.1). To the best of
our knowledge our article establishes the first mathematical analysis for such a model.
There will be two main challenges to face in this work. One is that the forced terms
have only Sobolev regularity. This leads to the fact that the Green functions will exhibit
only a polynomial decay off the diagonal, and not exponential (or subexponential). To
overcome this one, we will exploit the interpolation/tame estimates. The other is the
so-called “small divisors problem” caused by resonance. If we let t —¢/w, then Equation
(1.1) is equivalent to

W2 p(x)uss + (P(T) U ) we = €f (t,2,u) +eg(t, ). (1.4)
In fact, the spectrum of the operator
gwu = WQUtt + %(puwz)ww
has the following form
—wW PN =P+ +ai? +b+0(1/4), 1€Z, j— +oo.

In general, the operator &, cannot map a functional space into itself, but only into a large
one with less regularity. There are two main approaches to deal with the “small divisors
problem”. One is the infinite-dimensional KAM (Kolmogorov—Arnold-Moser) theory
to Hamiltonian PDEs, refer to Kuksin [32], Wayne [39], and recent results [6, 22, 26].
The other more direct bifurcation approach was established by Craig and Wayne [17]
and improved by Bourgain [11,12] based on both a Lyapunov—Schmidt reduction and
a Nash-Moser iteration, and recent results [8-10]. Meanwhile, we need to give the
asymptotic formulae of the eigenvalues for an Euler-Bernoulli beam problem as well.
Actually, the asymptotic property of the eigenvalues for fourth-order operators on the
unit interval are less investigated than for second-order ones, see [13,34].

The existence problem of periodic or quasi-periodic solutions for PDEs has received
considerable attention in the last twenty years. Up to now, there have been a number of
works devoted to such a problem for nonlinear beam equation with constant coefficients.
In [27,33], Mckenna et al. studied the beam equation which models a suspension bridge
and showed that it admits multiple periodic solutions when a parameter exceeds a
certain eigenvalue. Subsequently, many researchers use the infinite KAM theorem to
handle this kind of problem. We refer the readers to [14,23, 38] for the existence and
stability of small-amplitude quasi-periodic solutions of one-dimensional beam equation
with boundary conditions (1.2). For further reference regarding the linearly stable or
unstable small-amplitude quasi-periodic solutions of the d-dimensional nonlinear beam
equation

wye + A2u+mu+ 0, f(x,u) =0, f(z,u) =u* +O(u®), zeTteR,
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we may refer to [19]. Notice that the above proof can be carried out in the analytic
case. For differential one, the readers can also consult [15] for the application of the
Nash—Moser iteration scheme in studying the existence of quasi-periodic solutions of
nonlinear beam equation

gt + A2 u+V(z)u=ef(wt,z,u), rcM,tcR,

where M is any compact Lie group or homogenous manifold with regard to a compact
Lie group. Finally, we will introduce some related results about the wave equation
with variable coefficients. The problem of looking for periodic solutions to such one
was considered by Barbu and Pavel for the first time in [4,5]. Recently, under the gen-
eral boundary conditions, or periodic or anti-periodic boundary conditions, or Dirichlet
boundary conditions, Ji and Li gave a series of results as well, see [28-30]. The above
results have to require that the time period is a rational multiple of the length of the
spatial interval. If it is an irrational multiple of the length of the spatial interval, then
the existence of periodic solutions for the forced vibrations of a nonhomogeneous string
was obtained in [3] and [16] by means of the Nash-Moser iteration.

1.1. Main result. The goal of the present article is to look for periodic solutions,
with the common period 27, to Equation (1.4). To do so, we need to introduce our
notation and assumption more precisely. Let p,p be positive coefficients given by

p(z) =@ 50, p(z)=p(0)efd F2)4 >0 (1.5)

with a(0)+ 8(0) =«a(m)+ S(7) =0. Without loss of generality, we assume the following
normalization

- 1
+Jo (p/p)Tda=1.
Let us introduce both the Liouville substitution
r=y(§) <=E=0(z) with ¢(z):= [§((s)ds, (=(p/p)",
and the unitary Barcilon—Gottlieb transformation

T :L2((0,7),p(z)dx) — L*((0,7),d¢)
u(z) —y(§) = (Tu)(¥(&)) = (¥ (§))u(¥(£)), £<€[07],

where ¢ =p% p¥ >0. From (1.5) and (1.2), [1, Lemma 5.1] has showed that both & (recall
(1.3)) and &', with

E'y =yeeee +2(p1ye)e +p2y,

are unitarily equivalent, that is £ =7 ~'&’T. Remark that p;,ps are seen in (5.4)—(5.5)
of [1]. Therefore we can directly apply [1, cf. Theorem 1.2, Proposition 6.2] to give the
asymptotic formulae of the eigenvalues for the operator £.

For all s> 0, define the following Sobolev spaces H?® of real-valued functions by

HS:= {u :T —>H§((O,7r);R),u(t,x) :Zlezul(m)ei”,ul € Hg((O,ﬂ');(C),
u_l:uZ‘,Hu||s<—|—oo},
where u] is the complex conjugate of uy, [|ul|? :=3",c; w32 (141%) and

Hg((O,W);(C) ::{UEHQ((O,W);C) cu(t,0) =u(t, ) =Upy (t,0) =gy (¢,7) :O}.
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If s>1/2, then H*® CLOO(T;Hg(O,ﬂ')), that is
[ull Lo (m;m2(0,7)) S C(8)|ulls, VueH?. (1.6)
Moreover, one has that for all uy,us € H?,
[uruzlls <C(s)l|ualslluzlls.

Throughout this paper, our purpose is to look for solutions to Equation (1.4) in H*®
with respect to (¢,2) € T x [0,7] and f €Cy, where

Cr:={feC(T x[0,7] xR;R): (t,u) — f(t,-,u) is in C*(TxR;H*(0,7))}, keN*.
Observe that if f(t,z,u)=>",c, fi(z,u)e"’, then f_;=f’ and ur— fi(-,u) belongs to
C*(R; H?((0,7);C)). Moreover, due to the continuous embedding of H?(0,7) into
CL([0,7];R), it follows that for all f € Cy,

RO fFeC(Tx[0,7] xR;R), 0<p<1,0<il<k.
In addition, we may decompose the space H® as the direct sum of V and WNH?® where
V:=H}0,7), W:= {w =Y owi(x)et e HO}.
Obviously, for every uw € H®, we can write u=v+w, where v€V and we WNH?. De-
note by Ily : H* — V', Il : H® — W the corresponding projection operators, respec-

tively. Then, via the Lyapunov—Schmidt reduction, Equation (1.4) is equivalent to the
bifurcation equation (@) and the range equation (P), i.e.,

(pv//)l/ZSHVF(U+w)+€HVg (Q)7 (1 7)
Low= ey F(v+w) + ey g (P), '
where
Low:=w’p(x)wy + (p(2)Wea)az,  F:ur— f(t,2,u), (1.8)

Since f(t,z,u) :fo(:v,u)qLZ#O fi(z,u)el, if w=0, then
My F (o) =TIy £(t,2,0(2)) = fo(,0(2).
Therefore we simplify the (Q)-equation as
(pv")" =e€fo(x,v)+e€go(x) as w—0.

This is called the infinite-dimensional “zeroth-order bifurcation equation”, recall [3].
Let us make the following assumption.

ASSUMPTION 1.1.  There exists a constant €y € (0,1) small enough such that for all
e€0,e0], the system

(p(2)v" ()" =€fo(x,v) +ego(x),

{U(O) o(m) =v"(0) =" (1) =0 (1.9)
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admits a nondegenerate solution ﬁ€H2(O,ﬂ'), i.e., the linearized equation

(ph")" =€fo(0)h (1.10)
possesses only the trivial solution h=0 in H; (0,7).

Observe that Equation (1.10) with e=0 possesses only the trivial solution h=0 in
H2(0,7). Hence 9=0 is the nondegenerate solution of Equation (1.9) with e=0. In
view of the implicit function theorem, there exists a constant eg € (0,1) small enough
such that for all e €[0,ep], Assumption 1.1 is satisfied.

Moreover, define the set

AW::{(e,w)e(el,EQ)><(7,—|—oo)—<66'y |wz—uj|> Vi=1,- No,wz1},

where dg > 0 shall be fixed in the next theorem, Ny >1 and )\j = ﬂ?, 7 >1 are the eigen-
values of Euler-Bernoulli beam problem

(p(z)y")" =Xp(x)y,
{y(o):y(ﬂ')zy”(()):y”(ﬂ-):0' (1.11)

Let us state our main theorem as follows.

THEOREM 1.1. Let p,p satisfy (1.5), with a,3€ H*(0,7), f be in Cy, with 8 f(-,-,0) =

0,£<2, and t+— g(t,-) belong to C*(T; HQ(O m)). Fiz 7€(1,2),y€(0,1),60€(0,1) and
k=6T+40+2 witho=71(r—1)/(2—7). (1.12)

If Assumption 1.1 holds for some €€ [0,¢eq], for —— Qw < g small enough and k> s+r+3,

then there is some constant K >0 depending on «,B3, f,g,€0,0,7,%0,7,S, a neighborhood
(€1,€2) of €, r€(0,1), a map we CY(A,;WNH?) with

ol <555 <r, llosalls <555, 10w

— yw _’YUJ’

(1.13)

Dlls < 55
and a C? map v(e, ) on (e1,e2) x {w € WNH?:||0||s <r}, with values in V, satisfying
[o(e,@) —v(e,0) |2 < 5S, [|v(e,0) =8l g2 < K e —é], (1.14)
such that for all (e,w) € By C A,
t(e,w) :=v(e,w(e,w)) +w(e,w)eVA(WNH?)
is a solution of Equation (1.4) and satisfies
a(t,-) e H°(0,m)NH}(0,7), VteR.

Moreover, the Lebesgue measures of the set B, and its section B.(e) satisfy

meas(B,(e) N (w',w")) > (1— Kv)(w" —w'), meas(B,NQ)>(1—Kv)meas(2),
where Q:=(€/,¢") x (W' ,w") stands for a rectangle contained in (e1,€2) X (27,400).

1.2. Plan of the paper. The rest of the paper is organized as follows. In Sub-
section 2.1, under Assumption 1.1, we solve the bifurcation equation by the classical
implicit function theorem. Given the non-resonance conditions, the goal of Subsection
2.2 is to solve the range equation including initialization, iteration and measure es-
timates. Section 3 is devoted to investigating invertibility of the linearized operator.
Finally, we list the proof of some related results for the sake of completeness in the
Appendix.
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2. Proof of the main result
The object of this section is to complete the proof of the main result.

2.1. Solutions of the bifurcation equation. We first solve the bifurcation
equation via the classical implicit function theorem.

LEMMA 2.1.  Provided that Assumption 1.1 holds for some é €[0,¢q], there exists a
neighborhood (e1,€2) of €, r€(0,1) and a C* map

vi(er,e2) x {fwe WNH®: |Jw|s <r} — H(0,7), (e,w)—v(e,w),

such that v(e,w) solves the (Q)-equation satisfying v(€,0)=17 and for some constant
C>0,

[v(e,w) —v(€,0)[[ 2 <Cllwlls, [lv(e,0) = 0llg2 <Cle—é]. (2.1)
Proof.  In view of Assumption 1.1, the linearized operator h+—— (ph”)" —€éfl(0)h
0

is invertible on V. Since t+— g(t,-) is in C¥ (T;HQ(O,W)), if f€Cy, with 9% f(-,-,
0, <2, then using Lemma 4.5 yields that

(e,w,v) — (pv")" —elly F(v+w) —elly g

is a C? map. Consequently, by the implicit function theorem, there is a CZ-path
(e,w) —>v(e,w) satisfying (2.1). |

2.2. Solutions of the range equation. In this subsection, we will apply a
Nash—Moser method to solve the range equation, that is

Low=elyF(e,w)+ellyg, Fle,w):=F(v(e,w)+w).

Let W =Wy & Wy, where

Wy = {wEW:szlSmSNwl(x)ei”}, Wi = {w € W:szllDNwl(x)ei”}.
Then corresponding projection operators Py : W — Wiy, Pﬁ W — Wﬁ satisfy

(P1) |Pywl[sso <NV|wlls, YweWNH®Vs,9>0.
(P2) |[Pywls <N |w|sr9, YweWNH Vs,9>0.

Denote by D, F the Fréchet derivative of F with respect to w. If f € Cy,, with 9% f(-,-,0) =
0,£ <2, then for k>s'+3 with s’ >s>1/2, the following (U1)—(U3) hold.

(U1) (Regularity.) F is a C* map and F,D,,F,D2F are bounded on {|w||s <1};

(U2) (Tame.) F:WNH* —HY, D,FelL(WnH";H*) D2FeLlL(WNH*)x
(WNH?®);H®) and Yw,h, he WNH?® with |Jw|s <1,

17 (e,w)lle <C( )1+ [[wller),  [DuwF(e,w)hlls <C(s")([wlls [1Alls +[IAlls),
ID%F (e;w) [, b || <C(s") ([l [l [0l + 1Al [+ [[A]] [l o)

(U3) (Taylor Tame.) Vs<s' <k—3, Vw,he WNH* with |||, <1 and ||h|s <1,

17 (e,w+h) = F(e,w) = D F(e,w) [h][|s < CIR]Z,
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| F(e,;w+h) = F(e,w) = Do Fe,w) [l < C(s")([[wlls |22+ (|2l ]2 ]| o)

Remark that (U1)-(U3) follow from Lemmata 4.4-4.5 and Lemma 2.1. Let us define
the linearized operator £y (e,w,w) as

Ly (e,w,w)h]:=—=Ly,h+ePnIIy D, F(e,w)[h], VheWy, (2.2)
where L, is given by (1.8). Denote by )\j(e,w):u?(e,w),jél\ﬁ the eigenvalues of

Euler—Bernoulli beam problem

{(p(m)y”)“—envf'u,x,v(e,w(t,x))+w<t,m>>y=Ap<x>y, 23)

y(0)=y(m)=y"(0)=y"(7) =0,

where

Aj(e,w) if Aj(e,w)>0.

o) = {i«/—)\j(e,w) if X (e,w) <0, 2.0

For fixed v€(0,1),7 €(1,2), define the set A% (w) by
AR (w)i={(ew) € (er,e2) x (3,+00) s [wl = py (e, w)] > 7,
wl—j|> 2, W:1,2,~~~,N,j21}. (2.5)

Note that the non-resonance conditions in (2.5) are trivially satisfied if \;(e,w) <O0.

LEMMA 2.2.  Let (e,w) € A} (w) for fized v€(0,1),7 € (1,2). There exist K,K(s')>0
such that if

[wlls+o <1, (2.6)

for =55 <6< (see Lemma 5.5) small enough, then Ly (e,w,w) is invertible with

13 (e, w)h|| < L NT-1|B]l,, Vs>1/2,

s T Yw

< BN (bl + follorollbll), Vs >s5>1/2.

s’ — yw

||£X,1(e,w,w)h

Moreover, let the symbol |-] stand for the integer part. We set
Ny :=[e®"| with d=1n Ny, (2.7)
where Ny > 1 will be fixed in Lemma 2.4. Denote by A, the open set
Ag:= {(e,w) € (€1,€2) X (7,400) : |wl — 1| > %7 Vi=1,---,No,j = 1}’ (2.8)
where S\j :ﬁg, j>1 are the eigenvalues of Euler—Bernoulli beam problem (1.11). We

now give the following inductive theorem.

THEOREM 2.1. Let r be given by Lemma 2.1. For =55 <064 (see Lemma 2.6) small

3w —

enough, there exists a sequence of subsets (e,w)€ A, C A1 C---C Ay C Ag, where

Ap={(e,w)€A,_1:(cw)€ A;{,’:(wn_l)},
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and a sequence wy(e,w) € Wy, satisfying
(Sl)nzo [wnlls+o <1, |00wnlls < 5ie and [|Ocwnl[s < £

= 72w yw’
(82),,5, For all 1<k<n, one has |wy—wg—1ls _fij b with %<T,
18, (wi —wr—1)[|s < BEENT and (|0 (wy —wy—1)[ls < BN

(S3)n20 If (e,w) € A,,, then wy(e,w) is a solution of
L,w—€Pn, Iy F(e,w) =0; (Pn,)

(S4),5, If we set Bp:=1+|wk|s4n, Bip:=1+[0wwkllstx and Bj:=1+
|0cw||s4+, then there exist constants K = K (Ny),C; =C;i(d,7,0),i=1,2,3 such that for
all 1<k <n,

By <C1KN[ 17, By <CoRy 'NIT2 7! By <C3K(qw) N 2771,

such that for all (e,w) €Np>oA,, the sequence {wnfwn(e w)}In>0 converges uniformly
in s-norm to a map W=we € C' (On>oA ﬂ{ (6,w):e/w <4y } WﬂHS)

2.2.1. Initialization. First, we need to verity that (S1)g,(S3)o hold.

LEMMA 2.3.  Given (e,w) € Ay, the operator %Lw is invertible with, for K >0,
(3 L)~ s < 520— “lhlls, Vs>0,Yhe Wy,
Proof. Clearly, the eigenvalues of %Lw on Wy, are
—wWP 4N, VIl < N, Vj>1.
For all (e,w) € Ag, we obtain that for all 1<|l| < Np,j>1,
212

_ B B Yw
W = A = ol = psllwl+ 1> =

Then the operator 1L, is invertible on Wy, satisfying the above estimate. Hence we
complete the proof of the lemma. 0

REMARK 2.1. In the proof of Lemma 2.3, we apply an equivalent scalar product (-,-)
on H2(0,7), where ( = [y py"2" + pyzda.

By applying Lemma 2.3, solving (Py,) is equivalent to the fixed point problem
w=Upy(w), where

Uo: Wiy — Wy, w»—>e(%Lw) 1P, Ty F(e,w).
LEMMA 2.4. Let (e,w)€ Ay and r be given in Lemma 2.1. For 'y% §51N&_T§5, the
map Uy is a contraction in

T—1 T
B(0,00) == {w e Wi, :[lwlls <po}, po:= LN with LN <

Proof. Tt follows from Lemma 2.3 and (U1) that for W%JNOT*1 <47 small enough,

eKN T—
6o (w)s< FX 1) pl g [P T F () <SGEING T
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IDuto(w)lo = le(bLo) 3Pu, M DuFlew)l < SENG <4 (29)

Thus the map Uy is a contraction in B(0, pp). |
Denote by wg the unique solution of equation (Py,) in B(0,p0). For 7%JNOTA <&

small enough, by using (P1) and Lemma 2.4, one has
[wolls+o <1, [Jwollstx = He(%LW)_l%PNOHW}"(QWO)”L%H <K. (2.10)

Moreover, let us define

Uy (€,w,w) ::wfe(%Lw)’liPNOHW}"(e,w).

It is obvious that %(e,w,wp)=0. By virtue of formula (2.9), for W%Ngfl <4; small
enough, we obtain that

Dw%(e,w,wo)zld—e(%Lw)*%PNOHWDwf(e,wO)

is invertible. Then the implicit function theorem implies that wo € C*(Ag;Wh,). By
taking the derivatives of %4 (e,w,wp) =0 with respect to w,e, one has

aw’wo :G(Id— Dqu(wo))_law(%Lw)_l%PNOHV[/]:(G,’LU()),
dewo =(1d = Dyylo(w0)) ™ (5 L) ™15 (P Iy F (€, w0) + €P i, Iyw D F (€, w0)).

In addition, taking the derivative of the identity ( %Lw)(%Lw)*lm:m with respect to

w yields that

(L L) o= —(5) () (5L

Then, in view of (2.9), (P1) and Lemma 2.3, we derive

”awwOHsg%; ||8€w0||8§%

Combining these estimates with (P1) gives that for ,Y%Ng_l <07 small enough,
||aww0||5+n§f{771, ||8€w0||5+,,€§f{(’yw)71. (2.11)

Consequently, we have (S1)g,(S3)o.

2.2.2. Iteration. The next thing to suppose is that there have been solutions
wy € Wy, of (Py, ) satisfying (S1)x—(S4) for all k£ <n.

Another step is to seek a solution wy, 1 € Wy, ,, satisfying (S1),41-(S4),+1 of

wa—EPNnJrlHW]:(E,’w):O- (PN7L+1)
According to Equation (Py, ), if we denote
Wpi1=wn+h, heEWn, .,

then

Ly (wp+h)—€Pn, Iy F(e,wn +h) =L,h+ Lyw, —€Pn, . Iy F (€, wy, + h)
=—Ln,,, (e,w,wp)h+ R, (h)+ry,
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where

R, (h):=—€Py, ., (wF(e,wy +h) — Iy F (e, wy,) — w Dy F(€,wn) [h]),
T :=€Pn, w F(e,w,) —€ePp. HW}—(an):_E‘PJ]\_fnPN Iy F(&;wn).

n+1 n+1

Since (e,w)€ A,11 C A, and WL <
holds), using Lemma 2.2 yields that the operator Ly

Ny~ 7 <4, by means of (S1), (i.e., (2.6)
(e,w,wy,) is invertible with

n+1
LR, (o wa)hlls L NI IR, Vs >1/2, (2.12)
132, (e, wa)hllo <EEINTZ (1Al + [wall s sollBlls), Vs’ >5>1/2.  (2.13)

Define a map
Ups1: Wn, o, — Wn,,,, h— E&}LH (e;w,wp)(Rn(h)+75).

Then solving (Py, . ,) is reduced to finding the fixed point of h=U,11(h)
<GB <Ny,

LEMMA 2.5. Let (e,w)€A
then there exists Ko >0 such that the map U, 41 is a contraction in

€
Yw

B(0,pni1)i={heWn, , :[Blls <pni1}, puyri=2N 771 with K2 <r. (2,14
Moreover, the unique fived point hy1(€,w) of the map U, 11 satisfies
[Bnsalls < 25 Ko NT DTNy " By (2.15)
Proof. In view of (P2), (U2)—(U3), it follows that
IRn () [|s<eCIIRIIZ,  llralls<eC(r)Ny " Bn,

where B, is as seen in (S4),. Based on the above estimates and (2.12), we get

eK eK' .
[Ung1(B) s < +11||h||2+—Nn+11N B,
K T K T K
7 Nn+1lpi+1+ Nn+11N B,. (2.16)

Obviously, it can be seen from the fact 7€ (1,2) that o >7—1. Exploring the definition
of pn+1 together with (S4),,, for 73% <5 small enough, one has

eK' T 1 eK' T—1 K a. )p?’H—l
o N+1pn+1<2 o —N; N, "B, < =5 (2.17)

which leads to |[|[Un+1(h)||s <pnt1. Moreover, by taking the derivative of U,11 with
respect to h, we obtain that DyU,+1(h)[t] is equal to
(Hwa]:(E,wn—f—h)—Hwa]:(E,wn))m. (218)

-1
_eENnH (€,w,wn)Pn, .,

~5 < 02 small enough, by virtue of (U1)~(U2) and (S1),, it follows that

12) ¢! ek (101
[Drlr41(h)[ro ]Ils S Nl < N+1Pn+1||m||s < gliwlls. (2.19)
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Hence U,,+1 is a contraction in B(0,p,41)-
Denote by hy41(€,w) the unique fixed point of U, ;. Using (2.14), (2.16)—(2.17)
yields that

1 eK'
Ineals < 3 sl 22 N3 N B

This carries out (2.15). Thus the proof is completed. |

If we set hg =wy, for v?’% < d3 <9 small enough, Lemmata 2.4-2.5 show that

n+1 n+1 n+1

eKo ek,
||wn+1||s+gsz||hi||s+g ZN"Hh Is <ZN”—2N NGNS L
=0

In the following, we will investigate the derivatives of h, 1 with respect to w,e.

LEMMA 2.6. Provided (e,w) € Apt1, if 73% <04<03, then the unique fized point
hng1 € CH(Api1N{(e,w) e/w <8473 }; Wi, ) satisfying that for some constant K3>0,

||8whn+1||s K36Nn_+1v ||aehn+1Hs Kan—Jrl

Proof. Let us define the map %,11 as
Ups1(€,w,h):=—Le,(wn+h) +€ePn, Iy F(e,w, +h).
By Lemma 2.5, it is easy to see that %, +1(€,w,hp11)=0. This shows that

218
CLY L (€w,w, ) (Id =Dyl (hin)). (2.20)

Dh%n+l(€7wahn+l):£N,L+1 (€7wawn+1)
By means of (2.19), the operator Ly, ,, (€,w,wp1) is invertible with

~ @. 12) .
1L, (6;wswni1)|ls < Ad=Dald (hps1)) T LNE (ew,wn)|ls < 2ENTTL (2.21)

Then using the implicit function theorem yields that hy11€ CH(Anr1N{(e,w):€/w<
647%};Wh,, ., ). Hence it can be obtained that

6w,e%n+1 (67(")’ hn+1) + Dh%n—&-l (eaw7 hn+1)aw,ehn+1 =0.
Consequently, combining wy,+1 =w, + 41 with Equation (Py,, ) gives that
8w,ehn+1 - _'C;/viwrl (€7w7wn+1)8w,e%n+l (€7wa hn-i—l)v (222)
where

O U1 (€,w, hpi1) = —2wp(x) (hpi1 )1t + €PN, P,y T Doy F(€,w) Doy,
+€Pn, . (MwDyF(e,wn + hpy1) —HwDy F(e,wy,))Opwy, (2.23)
OcUp 11 (6w hpnt1) :P]LV"PN"H]:(E,wn) +Pn, . (Il F(e,wp + hpyr) —Hw F(e,wy))
—l—ePﬁ"PNnHHW&.F(e,wn)
+€Pn,, . (w0 F (€, wn +hnt1) =y O F (e,wy)). (2.24)



2016 PERIODIC SOLUTIONS TO NONLINEAR BEAM EQUATIONS

According to Lemma 2.1 and Lemma 4.5, we can see
[Ty OcF (€;wn + 1) — Tl OcF (€;w)[|s < C L+ [[Ocwnlls) [ n41 s
and
Tl O F (€, wn)l|s 45 < C(R)[[wnlls4x (14 [|0cwnl]s) + C(R) 1+ [[Ocwn [ s4x),  (2:25)

||HW86]:(5awn +hn+1) _HWae]:(eawn) Hs—&-n < O(’f) Hwn”s-&-n(l + Haewan)”hn+1 Hs
+C (k) 1+ |0cwn || )| nt1 | s+

+C (k) (L4 [ Ocwnllstr) [ hatas- (2.26)
If —5 <04 is small enough, then it follows from (P1), (U1)~(U2) and (S1),, that
(2.15
10w s1(€,0,hns1)||s < K’ Y 'N; N, "B, +eK'N, "B, (2.27)
2.15)
10U 11 (6w, hpi1)||ls < K'NI7{N, "By, +eK'N, "By, (2.28)

where B,,, B}, Bl are given by (S4),,. Based on the above estimates, by means of (2.21)-

(2.22), (1. 12) and (S4)5, we have [|0uhns1ls SEEEN L, [[0chnga s waanl This ends
the proof of the lemma. 0

As a consequence, we complete the proof of (S1);,11-(S3)n+1. Our next task is
devoted to establishing the upper bounds of hy,11,0, chny1 in (s+K)-norm.

LEMMA 2.7. Let (e,w) € Apyr1. If % <44, then the first term in (S4),41 holds.

Proof. First of all, we can claim that for 3 <64 small enough,
Bui1 <(1+N; {T7)B,. (2.29)

Due to (2.7), it is clear that Ner1 §6d2n+2 < Npi2+1<2N, 2. Combining this with
(2.29) shows that

n+1 n4+1
Bun [[0+ Ny <8, T (14140
k=1 k=1

H 1+6_d2 T— 1+U))B d2"+2(‘r 1+0)

+oo
§27—1+a H (1 +€_d2k(T_1+U)>BoN;_T_21+U.
k=1

This together with (2.10) gives the first term in (S4),,41.
Our goal is now to prove (2.29). Observe that

Bn+1 <1+ ||wn||s+n + ||hn+1 Hs-&-m =Bn+ th+1 ||s+r€~ (2-30)

Then we just need to establish the upper bound of ||h,+1]|s+x. It follows from Lemma
2.5 and (U2)—-(U3) that

[rnlls<eC,  [|Rn(hnt1) ||s§60pi+1, [7nlls+x < €C(K)Bn,
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[ R (Pp1) s+ <€C (k) (PZ-HBH +pnt1llhngtllss)-

Hence using the equality hp11 zﬁj_\,}wl (6,w,wp ) (Rp(hpt1)+rn) yields that

(POL218) K nr
[Ans1lls+r < ~w Nyt “Bn+ ~w Npi1 ot Pt lls+r-
For this, owing to (2.17), one has that for Viw < 7§w <4 small enough,
Vst llosn < 22K NTZI7 B, < NIZIH B, (2:31)
Obviously, formula (2.29) follows directly from (2.30)—(2.31). O

—1

Let us study the operator ﬁNnH

(6,w,wp41) (recall (2.20)) in (s+ k)-norm.

LEMMA 2.8. Given (e,w) € A1, for v%w <04 small enough, there is Ky >0 such that
for allvoe Wy

n+17
||‘C17\7i+1 (vaawn+1)ml|s+f€ < %N;{Ill ||m||s+i<a + %N21;2(||wn||8+n+0 + th+1 l|stx) HmHs

Proof. Let £(hpy1):=Id—DpUps1(hni1)) " ro. Observe that

(2.19)
L(hn+1) =0 +Dplhns1(hp1)L(hnt1),  [1E(hnt1)lls < 2[w][s.
In view of (2.18), (2.13) and (U2), we can get

”Dhun-i-l(hn-&-l)Hs-‘m < iNg-le(Hwn”s—&-m-&-o”hn-&-l Hs + th+1 ||s+r€)~

= Jw

It follows from (2.19) that

||£(hn+1)”s+figllmus+n+ 25,}: N;I-ll(HwanJrnJrUthJrl||s+ ||hn+1”s+f-ﬂ)HmHs

+%”£(hn+1)”s+n-

Thus it can be seen that for 7% < vgw <44 small enough,

4 —
Hs(hn-i-l)”s-i-n < 2||m||s+ﬁ + 45,15 Nv‘zr-s-ll(‘lwnlls-&-m-&-cf”hn-&-l ||s + ||hn+1 Hs-i-N)”mHs-

As a consequence, using (2.12)—(2.13) can give the conclusion of the lemma. |
LEMMA 2.9. For (e,w) € A,41 and 73% <44, the last two terms in (S4),41 hold.
Proof. We first claim that for ,y%w <4 small enough,

Bl S+ NGB+ K N8, Bl < (4N DB+ SNT7B,. (2.32)

Our next purpose is to study the upper bound of Bj, ;. Let oy :=7—1, ag:=27+0,
ag:=7—1+40. The first formula in (2.32) leads to

Bl <81+8, Si=By[I}H A+N), So=31E1 o,

_ K’ prae
where Sy 1 = TNn+1Bn and

K’ k o1 «
Spu=K (1‘[].:2 (1 +Nn+17(j72))> N2\ oy Buprk, 2<k<n+l.
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An argument similar to the one used in the proof of the upper bound on B, 1 shows
that

S <C(d,1,0)ByNyLs.
On the other hand, according to the first term in (S4),, it follows that
821 < KT”Boe(‘)‘ff‘)@)d?wr1 < CTiBoNgfzr%.

In addition, one has

n+1 n+1
n+2 n+3—k n+2—k n+2—k
§ :SQ,k SKH'Y_lBO 2 :eald(Z -2 )eang ea3d2
k=2 k=2
n+1
< K//,y—lBoeocld2"+2 § e(—a1+a2+a3)d2"+37k
k=2
", ,—1 as+asz)d2nt? /o —1 as+a
< K"~ 71 Byeloztas) <Oy 'ByNgztes.

Hence, because of (2.10)—(2.11), we can get the upper bound of B;,, ;. The upper bound
of B}, can be proved by the method analogous to that used above.
It remains to verify (2.32). It is straightforward that

B;L-’rl S 1 + Haw’wn”erH + Hawhn+1||s+m B;{+1 S 1+ ||aewn||s+n+ ||aehn+1||s+n- (233)

Then we just investigate the upper bounds of O, cfint+1 in (s+k)-norm. Due to formula
(2.22) and Lemma 2.8, we can obtain

Haw,ehn—i-l Hs—!—n S%N;-T-ll ||aw,e%n+1(€7wvhn+1)|‘s+n

+ %N51€2(||wn”s+n+a + ||hn+1 Hs+n) ||aw,e%n+1(6awvhn+l)”s-

Moreover, applying (U1)—(U2),(S1),, and (2.31) gives that for <44 small enough,

€
Pw

(2.23)
Haw%nJrl (eawvhn+1) ||s+l<a < C/(H)WNZIIUFUBH +€C/(K)B:w

(2.24)—(2.26)
10260 )loin S CRINTTEH Byt eC! () BL.
On the other hand, due to (2.27)—(2.28), (1.12) and (S4),, it follows that
”aw%nJrl(evathrl)||s§€cl'7_17 Haf%n+1(e,w,hn+1)||5§0/.

The combination of the above estimates establishes that for 736

<4 small enough,

w —

’

K' Ar27+0 € T—1 1/
Hawhn+1||s+1€§ TNn+1 Bn+ ~w Nn+1Bn7

K' anr27+0o eK' art—11n
||aehn+1||s+n§WNn+1 Bn+ Yw Nn+1 Bn

Hence combining these with (2.33) shows that (2.32) holds. The proof of the lemma is
now completed. ]
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2.2.3. Whitney extension. Finally, we need to look for a set of parameters
€,w unrelated to the iteration step n. Let us define
4
NT+1 } )

A= {(e,w) € A, :dist((e,w), 0 A, ) > 200 } C A,. (2.34)

Nyt

An::{(e,w)eAn:dist(( w),04,) >

Note that v9 will be given in Lemma 2.10. Exploiting the characteristic function of the
set A,, there exists a C° cut-off function ¢, : Ag —> [0, 1] satisfying

0<pn(e,w) <1, supp(pn) CA,, wnle,w)=11if (e,w) Gfln, |0us.e P gCN”T‘Zl. (2.35)

Yoy

Then, for (e,w) € Ag, we can define

~ ) on(ew)hn(6,w) if (wye) €Ay,
hn(G;w).{O " (w,6)¢An.

It is clear that
hn € C'(AoN{(e,w) 1 e/w <647°}; Wh,).-

According to Theorem 2.1, Lemma 2.4 and (2.35), it follows that

IRolls < SENG™,  Dholls < SRS, 0o, < S5

’YW’

10hinls < GWN L 0chnlls < C9O N1 vpeNt,

Yw T'noo

)

s < G N1

where % <r. Obviously, the function w, =", _, hy, is an extension of w,, and if (e,w) €
A, N{(e,w):€/w <8473}, then 1w, (€,w)=wy(e,w). Hence we can obtain

W=10o0 € CH(AgN{(e,w):€/w <5473 }; WNH?)

satisfying

o), < e <r, (a0, < KQ0, o), < Kho, (2.36)

) 50

Moreover, using (2.15), (1.12) and (S4),, yields that for all ne€ Nt

”w wn” <7 Z e (‘rthrJrQ)ulQ’c CE (r+a+2)d2"<ﬁN—T+§+2' (237)
w

— n+1
w W
k>n+1 7 v

Denote by \j(e,w)=p3(e,w),j € NT the eigenvalues of Euler-Bernoulli beam problem

(py")" —elly f'(v(e,w) +w )y Apy,
y(0)=y(m) =y"(0)=y" (m) =

Let us define the set B, as

B,YZ:{(G,(U)G(El,GQ)X(27,+OO)'£<(56’)/5 |wl—ﬂ]|>?—?,Vl:1 -+ No,Vj>1,
|wl — 5| > 22 Jwl — pj (e, )| > 22 VI >1,¥5 >1}. (2.38)
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LEMMA 2.10. For

55 < 7§w <5 <d4 small enough, there is some vy >0 such that

5
B,CA,CA,, VYneN.

In order to prove Lemma 2.10, let us introduce the following fact.

LEMMA 2.11. For all (e,w),(€,@) € (e1,e2) x {WNH?*: ||w||s<r}, the eigenvalues
Aj(e,w) of (2.3) satisfy that for some constant v >0,

1N (e,w) = Aj(€w)| <v(le—e + ||lw—wl|s), FeNT. (2.39)

Proof. Let 1;(g) denote the eigenfunctions with respect to the eigenvalues \;(g),
where

g():=—elly f'(t,-,v(e,w(t,-)) +w(t,-)) € Hg(O,ﬂ') c c*([o,7];R).

Since the coefficients in problem (2.3) satisfy the assumptions of [31, Theorem 4.4], it
follows that

DgA;(g)[h] =~ [5 (¢;(g))*hdz.
Notice that [ (¢;(g+0(g—g)))?pdz=1 (sce (3.6)). Then applying Lemma 4.5 and
Lemma 2.1 yields that
_ 1 pm _ _
Mi(8) = (@) =|fo Jir (V(g+0(g—g))) (g — g)dado|
< s . 5 _ 2 _ =
< max |fg (4(s-+0(g—8)))*(g —g)da]
<l (g~ 8)/pl o= 0.m) i |7 (0 (5 0(8—8))* el
<Cl(g—8)/pllmz(0,m <v(le—el+|w—mwls).
This ends the proof. ]
Observe that the non-degeneracy of o =v(¢é,0) means that X\;(€,0)7#0. Then it
follows from Lemma 2.11 that

vo:=inf{|\;(e,w)|: j>1,e€[er,€2],||w|s <r}>0.

If necessary, here we may take that |e; —e€1| and r are smaller than the ones in Lemma
2.1. Moreover, for the sake of brevity, we denote

u?,n(e,w) =Ajn(6w) = \;(e,wn(€,w)), ﬁ?(e,w) = S\j(e,w) =\ (e,w(e,w)).

We are now turning to the proof of Lemma 2.10.

Proof. (Proof of Lemma 2.10.)  Clearly, the definition of A, (recall (2.34))
shows that A, C A,,,Vn€N. Our next goal is to verify

(F1): If 755 <05 is small enough, then there exists 7o >0 such that for all (e,w) €
B,

B((e,w), 25 )C A,, VYneN.

) NTTLJrl
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This implies that for all n €N, if (¢,w) € B.,, then (€,w) can belong to A,,. Let us check
the fact (F1) by induction.

For all (¢,w) € B((e,w), 2]\731? ), when we take 79 <1, it can be seen that
0

2v0v2 27v0v*
2y 2v0v S0 M0

T ONTUTI TNy Ny T

81— fiy| 2 ol — iy — ] 1>

This gives rise to (€,w) € Ap.

If we assume that B((e,w),?\?ﬂj)gAn, then (e,w)€ A,. As a result, it can be

obtained that w,,(€,w) =w, (e,w).
It remains to show that the fact (F1) holds at (n+1)-th step. For all (€,w)€
B((E,W), ?VT+1 ) lf ’YO 7 then

297" v, v 20ty
> T 1<I<N, ...
ZT Nfﬁl =T +N;+1 NI, 27 1sisNon

@12 ol — |~ ] > L

Moreover, it follows from (2.39), (S1),, and (2.37) that

1150 (€,0) — fij(€,w)| =

v
<——(|e—€|+||wn(€,0) —w(e,w)||s
\/%\ |+ [|wn (€,0) = w(e,w)||s)
v v
S——|€e— €|+ —||wnp(6,Ww) —wy(€,w)||s
e el ln(6@) - wn(e)]
v
+ —||wn(€,w) —wy,(6,w)]||s + Wn(€,w) —w(€e,w)||s
\%H (6,w) —wn(e,w)]| ([ (€,w) — W(e,w)]]

v 2%11 + 2K1 27011 Ce 1
e a 2)/2 |-
40 Nn+1 1w Nn+ 7w Ny(w,tjl(r+ i

Using (1.12) gives that %""2 >T1+ % Since w >+, for vy, ,y%w small enough, one has

= - ~ Y
|:uj,n(€7w) _Nj(€aw)| < o

Consequently, for all (€,&0) € B((e,w), 2;21? ), we can obtain that for 7y, “/%w small enough,
n+1
|6l = pjn (€,0)| = |wl — f1 (e,w)| — |w = @[l = 1,0 (€,0) — i (€,w)]

2y 2y07* v oY
> P > L =1 Ny.
Im N7H 2T it

We have thus proved the lemma. 0

Let Q:=(¢,€”) x (w',w”) denote a rectangle contained in (e1,€2) X (27y,4+00) and set

vy =inf{|pj11(6,w) — pj(e,w)| 5> 1,e € [er, €], |w|ls <r} >0, (2.40)
voi=inf{|p;t1(e,w) —pj(ew)]:j =1, (e,w) € By}

The proof of the fact v; >0 will be given later. Moreover, without loss of generality, we
assume that w” —w’ >1.
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LEMMA 212, For fized €€ (¢',e"), if -5 <06 <05 small enough, then the measure
estimate on B (€) satisfies that for some constant Q >0,

meas(B, () N (w',w")) > (1- 9Qy)(w" —w'), (2.41)
where B, (e):={w: (e,w) € By}. Furthermore,
meas(B,NQ) > (1— Qvy)meas() = (1— Q) (w" —w') (" —¢).

Proof. Denote by (By(€))¢ the complementary set of B, (e). By the definition of
B, (recall (2.38)), it is evident that

(B,(€)* SR () URPUR?,

where

- 27y
U %0 (0= {we W wilol-slew < 32},

>1,j>1

2y
U K7, fﬁ%::{we( )|wl—u]|< },
1>1,j>1

2
U R, R ::{we(w’,w”):|wl—j|<lj}.
1>1,5>1

We first consider the Lebesgue measure of the set /(¢). Since B, C A,, (see Lemma
2.10), one has w(e,w)=w(e,w). Then \;(e,w)=A\;(e,w) on B,. Hence formula (2.36)
implies that v5 > vy >0. Using (2.39), (2.36) and the definition of v yields that

_ lew) Aj(ew)| _ 1

sereon) = figlewa)| = ifewn I i) < Jrlew) = dilew)|

ev K (’70)
< R ) —wal.
||w(e wy) —W(e,wa)||s < Jrow lwy — ws
This gives rise to |9,/ (e,w)| < ;5903 If we set a(w) :=wl — fi; (e,w), for == <dg small

enough, then
Ova(w)=1—0,f;(e,w)>1/2.

Combining this with the definition of %] ;(e) gives that

- 8
|y < laten —atea)| _ 8y
meas(R5(€) < fanat)] =

If R} () #0, then we also have that for fixed I,

2
Wil— l—j <pj(e,w)<w"l+

il
I

Moreover, it follows that fj < Vil(l(w” -+ %) +1, where fj denotes the number of ;.
Therefore,

meas(R (e)) <% AL (Vl (U(w" —w )+;Lj)+1)
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<Y R QMW — W) < QW —w').

An argument similar to the one used above can establish the upper bounds of meas(R?)
and meas(R?). Thus formula (2.41) follows.
In addition, it can be seen that

meas(B,NQ) = f:, meas(B,(e) N (w',w"))de > (1 — Qvy)meas(Q).

Thus the proof is completed. ]
Theorem 1.1 follows from Lemma 2.1, Lemma 2.12 and Theorem 2.1.

Proof. (Proof of Theorem 1.1.) By means of Theorem 2.1 and the steps of
Whitney extension, the function @(e,w), with @ € C*(A,;WNH?®), can solve the range
equation (P) in (1.7). For —5- <de small enough, according to the fact ||| <r (recall
(2.36)), Lemma 2.1 presents that v(e,w) solves the bifurcation equation (Q) in (1.7).
As a consequence, it follows that

ii(e,w) =v(e,w(€,w)) +b(e,w) € HA(0,m) & (WNH?)

is a solution of Equation (1.4). Meanwhile, formulae (1.13)—(1.14) can be obtained by
(2.1) and (2.36).

In addition, since the function @ solves —(p(2)Uzs)zz = €f (t,2,u) —w?p(x)us, we
obtain

_(pal-L).L.L EHQ(O,W), VteR.

Due to (1.5), if a,8€ H*(0,7), then p,p€ H?(0,7). Hence it can be seen that a(t,-) €
H(0,m)NHZ2(0,7) CC5[0,7] for all teR . 0

3. Invertibility of linearized operator

The object of this section is to show the invertibility of the linearized operator
Ln(e,w,w) (recall (2.2)). More precisely, we will complete the proof of Lemma 2.2. We
rewrite Ly (€,w,w) as

Ly (e,w,w)[h]=L1(e,w,w)[h]+ La(e,w)[h], YheWy,
where

£1(e,w,w)[h]:=—Lyh+eP Iy f/(t,2,0(e,w,w) +w)h,
Lo(e,w)[h]:=ePnUw f'(t,z,v(e,w) +w)Dyv(e,w)[h].

Let b(t,z):= f'(t,x,v(e,w,w(t,x)) +w(t,z)). I [|[w|s+o <1, then it follows from (4.11)
and Lemma 2.1 that

[blls < [blls+o <C, Vs>1/2, (3.1)
bl <C(s) A+ wllsr), Vs'=5>1/2.

By decomposing b(t,z) =3, o5 bk ()€ h(t,2) =32, o<y lu(@)e™, we can write the
operator £1(e,w,w) as

£1(e,w,w)[h]= Z (w?2phi— (p(hy)")") € + €PN I1y, Z br_1hel*
1<l|<N kEZ1<|I|<N
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=p&1,p[h] = pLixplh],
where by (z) =y f'(t,x,v(e,w)+w) and

1 b :
Liplhl= > <w2lzhlp(ph§’)”+e[?hl) el

1<|UI<N

€ i
Linp[h]=—= E b hye*t.
P W< ik

By virtue of [1, cf. Theorem 1.2, Proposition 6.2], we first give the asymptotic formulae
of the eigenvalues for problem (2.3).

LEmMMA 3.1. Let Cz(p/p)%, Denote by Aj(e,w) and ¢;(e,w) the eigenvalues and the
eigenfunctions of problem (2.3), respectively. One has

A(e,w) < Aa(e,w) <--- < Aj(e,w) < -, (3.3)

with Aj(e,w) — 400 as j— 400, and for all €€ (e1,e2), we {WNH?: ||w|s<r},

) =3+ 2%+ (ew) - gy(e) + A as josroc, (3.4
Note that
vo=0(m) —0(0)+ 1 O’T D da,
o1(e;w) = A(m) = A0) + L [T T(@)¢(0)dz+ 5 — L [T~ Ty £ (v(e,w) +w) ()¢ () da,
oj(e;w) =1 [ ( p(w)nm <e,w>+w><x><<x>+—%Mzg;g;"@))cos(zjfo 2)dz) da,

(3.5)
where

3
A=3 (T =2y — (X == )n-x+ (X —n=)ax — (an_)z — %)
r

=gex (=) =12 =20 = &5 ((04) —20)%,
_ 5a’+5B8°46 5 2482
— 2@ T @ 2 « 2 ZO,

x=25L p=nin_, ni=Fxa

Moreover, the eigenfunctions (e, w) form an orthogonal basis of L?(0,7) with the scalar
product

(y,2) 12 := [y pyzda. (3.6)
For ©>0 large enough, define a scalar product (-,-)e . on H2(0,7) by
(1:2)eqw = fy py" 2" — elly f'(v(e,w,w) +w)yz + Opyzda
satisfying that for all y € Hz (0,7),

Lillyllz2 < Yllew < Lollyll g2, L1,L2>0. (3.7)
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In addition, the eigenfunctions 1;(e,w) are an orthogonal basis of H7(0,m) with respect
to the scalar product (-,-)e.w as well, and for y:2j>1g}jwj(e,w),

IlZ2 =351 (03)% 19l =221 (As(e;w) +©)(55)%, (3.8)

where A;(e,w)+0O>0.

Proof.  Let us verify formulae (3.7)—(3.8). By using the Poincaré inequality, we
get |yl 22 0,m) S Clly" | L2 (0,x) if y € HZ(0,7). Hence it can be obtained that (3.7) holds.
Moreover, observe that

(p1/};/(67w))/, - GHVf/(t,.T,’U(C,U)) + w)% (C,U)) + @P% (va) = (/\j (6,’UJ) + @)/H/JJ (an)'
Multiplying the above equality by 1/ (e,w) and integrating by parts yield that
(5,95 ) e = 05,51 (Aj(€;w) +©).

Therefore we arrive at (3.8). d
According to (3.7)~(3.8), it can be seen that for w=73",~; ;> W;9; (e,w)el’,
Liwli< Y (ylew)+0) (i) (1+1%) < L3, (3.9)
[1|>1,5>1

This means that we have sought the equivalent norm of the s-norm restricted to W N H?.
Moreover, it follows from Lemma 3.1 that

1 b .
wl2hy — ;(ph;/)” tehy =Y (w12 = \j(ew))hu jibj (e, w).

Jj=1

This means that £, p is a diagonal operator on Wy . Let us define the operator

[Ciplth= Y WP Nj(ew)| Py (e w)e, Vhe Wy
1<[IIEN,j>1

For all 1<|l|<N, j>1, if w?l*>— \;(e,w) #0, then its inverse operator is

1 A .
|217D|7%h:= Z —hy b (e,w)el.

1<lii<N g2 (WP = A (e w)]
Hence we can rewrite Ly (e,w,w) as
L (ew,w)=pl€1,p]2 (11,077 L1,0]€10| 72 — Ri— R2)|€1p]2,
where
Ry = |£1,D|_%£1,ND|£1,D|_%7 Ry = _|£1,D|_% (%32) ‘SI,D|_%' (3.10)
Note that for all h € Wy,

(€1

_%21,D|£1,D|_%)h: Z sign(w?1? — \j(e,w))hy 1, (e,w)e™™.
I<[I|EN,j>1
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Then it is invertible with, for all s >0,

(3.9)
I(1€1,p72 €1p|€10l72) Rl < LA, (3.11)

Therefore £y (€,w,w) may be reduced to
L(ew,w)=p|€1p|?(|£1,0]"7 £1,p|€1,p|?)(Id=R)|1 p|?, (3.12)
where R=TR1+ R, with

Ri= (|£1,D|_%£1,D|£1,D|_%)_1R17 Ro= (|£1,D|_%£1,D 21,D|_%)_1R2~

In order to investigate the invertibility of Id —R, we need to impose some non-
resonance conditions. For fixed 7€ (1,2), we assume

\MZ—uj(e,w)\>llT, VI<I<N, Vj>1. (3.13)

Then it follows from the definition of y;(e,w) (recall (2.4)) that

W .
w212 =\ (e,w)| = |wl — pj (e,w)||wl + pj (e,w)| > = VI<I<N,Vj>1l. (3.14)
Moreover, we set
wl:=m>i?|w212—Aj(e,w)|:|w212—Aj*(e,w)\, V1<|I|<N. (3.15)
iz

It is evident that w;=w_;,1 <I<N.

LEMMA 3.2.  Provided (3.13), the operator |£1 p =% s invertible with, for allh e Wy,

_ 1
ll€unl™2hlls < 2B (|l s, Vs>0, (3.16)
I1€1,p] 2hlls < 2L2 N7 ||h|ls, Vs>0. (3.17)

VAwLy

Proof.  Since [I|T7Y(1+12%) <2(1+|l|?$771) for 1 >1, using (3.9), (3.14)—(3.15)
yields that

1 1 )\(6 w)+@ A
h 2<7 I\ h s 2 1 128
ool tnipsgy Y MGy )
1<JI|EN,j>1
2 7 s+T—
<20 T lew) + O+
T N

212

<
~wL?

2L2NT—1
AI2, ros < =g

hl?.
ST YwL? l|Rlls

Thus the proof is completed. |

In addition, for fixed 7€ (1,2), we also assume
\wzfj\>%, VI<I<NVj>1. (3.18)

Under the non-resonance conditions (3.13) and (3.18), we have
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(F2):  Let 7€(1,2),y€(0,1). If w>~, then there is L >0 such that
WiW Zi276w2|l—k:|72".

Based on the above fact, we give the following lemma.
LEMMA 3.3.  Given (3.13) and (3.18), if ||w||s+0 <1, then there exists L >0 such that
for all 8 >s>1/2,

IRl (I2lls +llwllsr o lllls), VR eWn. (3.19)

s—2'yw

Proof. By formula (3.10) and the definitions of 21,ND7|£1,D|7%7 it can be seen
that

1 hy i -
Rih=1&:1p| 521,ND Z =L i (e,w)e’
L<pifem o VWP =X (e w)]
-3 illj br—1 ikt
=—¢|L1p| 2 Z : bi(e,w)e
1<1],|k| <N |w212_)‘j(6vw)| p
1#£k,j>1
hu br—1 et
’ (e, w)e™.
uzw:w Vw22 =X (e,w) /w12 = Aj(e,w)] P
This carries out
u br—1
1h)k:—€ »J wj(€7w)'
DN e W N e W T
1£k,j>1

Combining this with (3.7)—(3.8) yields that

el
[(Rab)illme <=2 >

1
ok—1/pll g2 11 || 22
Du ) S VO

6L2 .
SW o Mokt/pll gz k=1 1l 2 (3:20)
VOB <Nk
If we denote
T(z):= Zl<|l| \k\<N|| H 2k =] bl g €™

p(z )-:Zlez||%||H2|l|a e, q(x) 1:Z1§|l\gz\r thHH?eilt,
then Y=P x(pq). Moreover, by (3.2), we deduce that for all s'>s>1/2,
Iplls <C'(s)(1+[wlls+0),  llalls =Rl

Thus it follows from (3.20) and (4.2) that for ||w||s+e <1,

LyC(s
IR1hllor < 2 HTHsu;iLL (Iplls llalls +1Ipllslalls)
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L C// ’
<L2CE) ([|wlly o 1Rl + 12]l).

Consequently, by the above estimate together with (3.11), we obtain (3.19). |
LEMMA 3.4.  Given (3.13), if |w]|s+0 <1, then for all ' >s>1/2,

Rah|l [hlls +llwllstollblls),  VheWn. (3.21)

<L
Proof. Lemma 2.1 shows that
D, 0(e,w)[|€1,0| " h] € H2(0,7).
Moreover, it can be seen from the fact 7€ (1,2) that o >7—1. Thus, by virtue of

(3.1)7(3.2), it follows that

|Roblls < ;Q%ﬁn1nHzwmaaaDwv<au»nsLDr-%mny+;;

(4.2)
< SLL L] O (s ) (1]l or+

1 _1
Fhllo o + 8]l eso €00 bl zos)

(3.16) 2 L2C" (s
< 22 (fwllro 12l + (12,

Consequently, we can infer (3.21) because of the above estimate and (3.11). O

LEMMA 3.5.  Provided (3.13) and (3.18), if ||w||s+o <1, for ;ai <c small enough,
then (Id—R) is invertible with, for all ' >s>1/2,

|(1d=R)""Ally <2([Ally + [l solll),  VheWy. (3.22)

Proof. 1t follows from Lemmata 3.3-3.4 that for ;gfd < ¢ small enough,
IRAls < 555 1IRlls < 5l1Rls.

Then, according to the Neumann series, the operator (Id —R) is invertible. In order to
prove (3.22), we claim

(F3):  If ||w||ls+o <1, then for €NT,

IR Al < (

=55) (Ihlls + Clwll s o lIblls),  VheWn. (3.23)

Then applying the fact (F3) gives that for 72% < ¢ small enough,

11 =R) = Allsr =l (Id+ 3 e 72e)hlls/ <Ilhlls + X ger IR Allsr
<lIhlls + Zeeree G Il +Ellwllsro 1]l )
<2[Alls +2[[wlls 4ol ls-

It remains to show that the fact (F3) holds by a recursive argument. For {=1,
owing to (3.19) and (3.21), it follows that

(IRl +llwlls+olI2]5)

Suppose that formula (3.23) holds at ¢-step, with £€ Nt £>2. Let us check that (3.23)
holds at (£41)-step. Based on the assumption at ¢-step, we can get

IRl

S_WW

IR h]ls = |RY(RA)|s < (52

S (IRAs + w50 I RA]s)
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<() (s hlly + (55 + 4 ) llolrsolInls )
<Y (Il + €+ Dllwllvsoll2l).

Thus we complete the proof of the lemma. 0

As a result, Lemma 2.1 follows from (3.11)—(3.12), (3.17) and (3.22).
Now, we will give the proof of the fact (F2). It is clear that p,{ € H(0,m) because
of o, € H*(0,). If we denote

E(e,w) =~y f'(v(e,w) +w)( + %’
then Z(e,w) € H(0,7). Hence integrating by parts yields that
|Qj(€’w>|:’% oﬂE(Qw)( )005(2]f0 dz)da:‘<w7
where p;(e,w) is defined in (3.5). For © >0 large enough, it follows from (3.4) that

/\j(e,w):j4+2j2v0+vl(e,w)+@, [r(e,w)| <O, as j— +oo. (3.24)
By Taylor expansion and (3.24), there is Jy > max{2|vg|,1} >0 large enough such that
i (e,w) = (5% +vo)| < 520 Vi > Jo. (3.25)

In addition, from (3.3) and the definition of j*, if w?I% — X j, 11 (€,w) >0, then j* > Jo+ 1.
Thus there exists J; :=J;(Jg) >0 such that for every [ > J; /w,

7> O0Vwl. (3.26)
Proof. (Proof of (F2).) Let l,k>1 with I#k. Denote
wi =W =N (e, w)],  wi =Wk =N ()], s=(2—7)/7€(0,1).

Then we consider the following two cases.
Case 1: 2|k —1|> (max{k,l})°. It follows from (3.14) that

wf o bw? (1w)?
(kl)™1 = (max{k,l})2(r—1) = 22(r=1)/s|k —[|2(r=1)/s"

wWiwg >

Case 2: 0< 2|k —1| < (max{k,l})°. Clearly, either k>1 or I >k follows. By the fact
€(0,1), in the first case 20 >k and in the latter 2k >, namely, k/2 << 2k.

(i) If Xj«(€,w) <0, (€,w) <0, then w; >w?(?,wy, > w?k?, which leads to
wiwg > w? > 72w2.
(ii) If either Aj«(€,w) <0 or A« (e,w) <0, then in the first case

(3.14) 22 W 7w

wlwk 2 w 21 T’Y(JJ >21 T 2 2

and in the latter

(3.19)

Wi > F‘ﬁkz > 2177%03 > 217772(#2.
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(iii) Let us study the case \j«(e,w) >0, (e,w) > 0. Let

1
I 2J1 60 I=er
k*.—max{w ,(@ng) }

Suppose that max{k,l} =k > k.. According to (3.18), (3.25)—(3.26), it follows that

~y S) © _27v © S)
— L= — — L* > — — >0
|(WZ e (6,11))) (Wk Hi (6,11)))‘ = |l_k|7 (],k)g (’L*)2 = kst @gwl @(Q)Wk

Y v Y 30 1( Yo, )
> L — > (L4 L),
Z ok ke ket O2wk 2 ket T ler

This shows that either |wk—p-(e,w)|> 5= or |wl—pj(e,w)|>5=. The same

conclusion is reached if max{k,l}=1>k,. For brevity, we just consider the case
|wk — p- (e,w)| > 5. Observe that

Wi = W22 = A (6, w)| = wh — i (€, w)] [k + - (e,w)] > BRI,
This arrives at

Tw YW 1—gT (760)2 2—T—gT (,-Yw)z
R RE k ST _
OJ[LUk_ ™1 92 - 97 97
if we take ¢=(2—7)/7.
On the other hand, we consider the case max{j,k} <k,. Since w >+, we can obtain
that for k, = 2%,

(w)? (yw)? (yw)? A2
(jk)7*1 =z (k»*>2(7'—1) - (2J1/w)2(T—1) 2 (2]1)2(7'—1) .

wjwg >

1
For k, = (@%L) "7 it can be seen that
0

WyWg >

2
(yw)? > (yw)? — 202 Ofw > O 6 2
(kl)T—l (k*)2(r—1) (
In addition, note that w;=w_;,wx =w_k. The remainder of the lemma may be
proved in the similar way as above. Thus the proof of (F2) is now completed. d
Finally, let us complete the proof of formula (2.40).
Proof. (Proof of formula (2.40).) In view of (3.25), it follows that
inf (e w) - (e w)
j>max{Jy,202}
>1—|uji(e,w) = ((7+1) +vo)| = s (e,w) = (72 +vo)| 21— 23 >

(SIS

uniformly in € € [e1,€2], w € B(0,7). In the proof of Lemma 2.11, one has |\;(g) — A, (g)| <
Cll(g—8)/pllm2(0,x), where g€ H?(0,7) C L>(0,7). Then it can be seen from (3.3) that

for 1<j5< maX{JO,QG)% }, the following

2 eI o )Iuj+1(e,w) — pj(e,w)|

can be attained. Thus we complete the proof. ]
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Appendix. In this appendix, we will supplement some Lemmata used in the proof
of Theorem 1.1.
LEMMA 4.1 ( Moser—Nirenberg). Let s’ >0 and s> % One has that for all uy,us €
H NH*,

lurus || < C(s") (lua || oo (1, 12 0,m)) w2 llsr + 1w s 1wz || oo (7,122 (0,m))) (4.1)
<) (lunllslluzlls + [l lls luzlls) - 4.2

LEMMA 4.2 (Logarithmic convexity). Let0<a'<a<b<b' satisfya+b=a’'+b’. One
has that for all uq,us € H,

ot [lall sz [ < Olfwr ar [z 1 + (1= 0) [ualar [unllirs 0= 2=

In particular, for u e Hbl, we have

[ellallullo < fleflaflelfo- (4.3)

LEMMA 4.3. Let € :={f€C([0,7] x R;R) :ur— f(-,u) is in C*(R;H?(0,7))}. If we
denote U= |ul| = (0,x), then for f €€y, the composition operator u(x)— f(x,u(x)) is
in C(H?(0,7); H*(0,7)) with

1 ()| 72 < C (maxuer-v,oy £ ()l 72 + maxue v,y 10uf ¢ u) |2 llullz2)

Remark that the above ones may be found in [7, cf. Lemmata 2.1-2.3].

LEMMA 4.4. Let feCy with k>1. For all $>1/2, Qgs’gkz—l, the composition
operator u(t,x) — f(t,z,u(t,z)) belongs to C(H*NH® ;H* ), where

H* .= {u:T— H?((0,7);R),u(t,x) =3, cqwi(x)e’ ,u € H*((0,7);C),

u_y=uj, |lulls < +oo}.
Moreover, one has
I1f oz, w)lls <O, fJulls) (14 [|ulls)- (4.4)
Proof. If s'=¢€N with £<k—1, by induction, then we derive that
1tz u)le <O Julls)(L+ lulle), YueH NHY, (4.5)
and that
f(t,xuy)— f(t,z,u)  as u, —uin HSNH". (4.6)

We first verify the fact (4.5). For £=0 (k=1), in view of (1.6) and Lemma 4.3, it follows
that

172l < Comaas]| £ (1,0t 0. < ' (U masslfut, Va2 0,)
<C"(1+lulls) =:C([lulls)- (4.7)
A similar argument as above can yield that for k> 2,

10 f (&2 w)llo < Clllulls),  max[duf (-, ult;)lla20,m < Clllulls). (4.8)
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Suppose that (4.5) holds at f-step, with £€NT. Let us check that it also holds at
(£+1)-step, with £+1<k—1. Since 9;f,0,f €Cix_1, the assumption at ¢-step shows
that

10 f (£, u)lle <C ull$) (T llulle),  10uf (8 2,u)lle <CE [[ulls) A+ [ulle). (4.9)
If we set a(t,x):= f(t,z,u(t,x)), it is clear that d;a(t,x) =3,y ila;(x)e’". Therefore,
la(t,2)1741 = Yiez lailzre +iez P llilarl3re < (lallo+ 1 Bealle)”.
This leads to
1z, u)llerr < [1F (2, w)llo+100f (62, w) o+ 10 f (82, u) Dpull - (4.10)
Hence, because of (4.8), we obtain that for £=1,
1£ @2 w)lls <1 @z, w)llo +10ef (8,2, uw) o + Cmax||0uf (£, - ult, )l rr2(0,m) 1Orullo
< 2C(Jlulls) + C"(llulls)l[ully < C(L, fJulls) (1+[ull),
where C'(1,||u||s) :=max{2C(||u||s),C’(||ul|s)}. Observe that
$1<1<814+1<2 and s1<s1+1<€<l+1,£>2,
where s; € (1/2,min(1,s)). Combining this with (4.3) gives that
[ullellwlls, rr<llullerallulls, <llullerallels.
For this, according to (4.7)—(4.10), (4.1), it follows that

1f (2, u)llera <C([ulls) + O ulls) (1 +[lulle) + CON0uf (t 2, w) el O]l Lo (212 0.m))
FCONOuf (2, u) || Loo (512 0,m)) 1wl 41
<C([[ulls) +C @ [[ulls) (1 +[lulle) +COCE [[ull ) 1+ l[ulle) [ulls, +1
+COClulls)lulles
SCMUAL, [Jufl) (L lullerr)-
Our next task is to check the fact (4.6). By virtue of (1.6), one has

Igl&q;(”un(t,-)—u(t,-)||Hz(0),r)—>O as u, —u in HSNH".
€

Then using the continuity property in Lemma 4.3 and the compactness of T yields that
||f(t,il?,’ll,n) - f(twrau)”O S Cl?ea%”f(tv ',Un(t, )) - f(ta '7u(t7 .))HHQ(O,‘IT) —0

if u, —u in HSNHC. If we assume that (4.6) holds at /-step, then it follows from the
inequality (4.10) that it also holds at (¢4 1)-step, with £+1<k—1.

If s’ is not an integer, then we shall adopt a similar procedure as in the proof of
Lemma A.1 in [18]. |

LEMMA 4.5. Let 0<s' <k—3 with k>3. If f €Cy,, with 0’ f(-,-,0)=0,£<2, then the
map

F:HNHY — HY CH, u— f(t,z,u).
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is C% with respect to u and for all he HSNH¥,
DF (u)[h] = 0uf(t,x,u)h, D?*F(u)[h,h]=02f(t,z,u)h?.
Moreover, one has

10w f (tz,u) | <O, lull) L+ [lullo), 1057tz u)lls SO Jull) A+ [lulle).  (4.11)

Proof.  Observe that 0, f,02f are in Cx_1,Ck—2. Then it follows from Lemma 4.4
that the maps ur— 9, f(t,z,u), u— 02 f(t,r,u) are continuous and that the estimates
in (4.11) are satisfied.

It remains to see that F is C? with respect to u. From the continuity property of
ur— 0y, f (t,x,u), we obtain

I f(t,z,u+h)— f(t,z,u) —0uf(t,x,u)h|s = ||hf01(8uf(t,x,u+nh) — Oy f(t,z,u))do]|s
SC(SI)Hh”max{s,s’} nrél[%)i] ||8uf(t,x,u+nh) 78uf(tax7u)‘|max{s,s’} :O(Hh”max{s,s’})-

For this, it can be seen that D, F(u)[h] =8, f(t,z,u)h for he H*NH* and that ur——s
D, F(u) is continuous. In addition,

auf(t,x,"u‘i’bh)hfauf(t’x,u)hfagf(t,xvu)hQ
—h2 [1(O2 f(t,,u-+0h) — 2 f (1,2, u))do.

Proceeding using a similar procedure as above yields that F' is twice differentiable with
respect to u and that u+—— D2 F(u) is continuous. 0
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