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LONG-TIME ASYMPTOTIC BEHAVIOR FOR

AN EXTENDED MODIFIED KORTEWEG-DE VRIES EQUATION∗

NAN LIU† , BOLING GUO‡ , DENGSHAN WANG§ , AND YUFENG WANG¶

Abstract. We investigate an integrable extended modified Korteweg-de Vries equation on the
line with the initial value belonging to the Schwartz space. By performing the nonlinear steepest
descent analysis of an associated matrix Riemann–Hilbert problem, we obtain the explicit leading-
order asymptotics of the solution of this initial value problem as time t goes to infinity. For a special
case α=0, we present the asymptotic formula of the solution to the extended modified Korteweg-de

Vries equation in region P={(x,t)∈R2|0<x≤Mt
1
5 ,t≥3} in terms of the solution of a fourth order

Painlevé II equation.
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1. Introduction

It is a well-known fact that the modified Korteweg-de Vries (mKdV) equation is
a fundamental completely integrable model in solitary waves theory, and is given in
canonical form as

ut+6σu2ux+uxxx=0, (1.1)

where σ=±1, u=u(x,t) is a real function with evolution variable t and transverse
variable x. This equation gives rise to multiple soliton solutions and multiple singular
soliton solutions for σ=+1 and σ=−1, respectively. Moreover, the mKdV equation
has significant applications in various physical contexts such as the generation of su-
percontinuum in optical fibres, acoustic waves in certain anharmonic lattices, nonlinear
Alfvén waves propagating in plasma and fluid dynamics.

In this paper, we investigate an extended modified Korteweg-de Vries (emKdV)
equation [26], which takes the form

ut+α(6u
2ux+uxxx)+β(30u

4ux+10u3x+40uuxuxx+10u2uxxx+uxxxxx)=0, (1.2)

where α> 0 and β> 0 stand for the third- and fifth-order dispersion coefficients match-
ing with the relevant nonlinear terms, respectively. Moreover, (1.2) also has certain
application for the description of nonlinear internal waves in a fluid stratified by both
density and current [16, 25]. Equation (1.2) is integrable, infinitely many conservation
laws have been constructed based on the Lax pair, meanwhile, periodic and rational
solutions have been also obtained by means of the N -fold Darboux transformation in
a recent paper [26]. The Painlevé test and multi-soliton solutions via the simplified
Hirota direct method for Equation (1.2) have been recently studied in [28]. However, it
is noted that the long-time asymptotics for the emKdV Equation (1.2) on the line were
not analyzed to the best of our knowledge.
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In particular, the purpose of the present paper is to consider the initial-value prob-
lem (IVP) for the emKdV Equation (1.2) on the line by a Riemann–Hilbert (RH) ap-
proach. Assuming that the initial data u(x,0)=u0(x) are smooth and decay sufficiently
fast as |x|→∞, that is, u0(x)∈S(R), one then can show that the solution u(x,t) of the
IVP for (1.2) can be represented in terms of the solution of a 2×2 matrix RH problem
formulated in the complex k-plane with the jump matrices given in terms of two spec-
tral functions a(k), b(k) obtained from the initial value u0(x). Then, this representation
obtained allows us to apply the nonlinear steepest descent method for the associated
RH problem and to obtain a detailed description for the leading term of the asymptotics
of the solution for the Cauchy problem.

The nonlinear steepest descent method was first introduced in 1993 by Deift and
Zhou [10], where they derived the long-time asymptotics for the IVP for the mKdV
Equation (1.1) with σ=−1. It then turned out to be very successful for analyzing
the long-time asymptotics of IVPs for a large range of nonlinear integrable evolution
equations in a rigorous and transparent form. Numerous new significant results about
the asymptotic theory of initial-value and initial-boundary value problems for different
completely integrable nonlinear equations were obtained based on the analysis of the
corresponding RH problems [1–3, 6–8, 11, 15, 17–19,21, 24, 27, 29].

Developing and extending the methods used in [10,22], our goal here is to explore the
long-time asymptotics of the solution u(x,t) for the emKdV Equation (1.2) on the line.
Compared with other integrable equations, the long-time asymptotic analysis for (1.2)
presents some distinctive features. For example, the spectral curve of emKdV Equation
(1.2) is more involved and it possesses four stationary points, which is different from that
of mKdV equation and Hirota equation considered in [10, 19] where the phase function
has only two critical points. We note that in the case of the Camassa–Holm equation
[4, 5], there is a sector − 1

4 +C<c=
x
ℵt < 0 where the corresponding phase function also

has four stationary points. Moreover, in the case of the Degasperis–Procesi equation [6],
depending on the range of x/t, one can also have four stationary points. However, our
main asymptotic analysis still presents many particular pictures different from these
literatures (see Sections 3 and 4). Therefore, the study of the long-time asymptotics
for the IVP for (1.2) on the line is more interesting. Our main results of this paper are
summarized by the following theorems.

Theorem 1.1. Suppose that u0(x) lie in the Schwartz space S(R) and be such that
no discrete spectrum is present. Then, for any positive constant ε> 0, as t→∞, the
solution u(x,t) of the Cauchy problem for emKdV Equation (1.2) on the line satisfies
the following asymptotic formula

u(x,t)=−uas(x,t)√
t

+O

(

lnt

t

)

, t→∞, ξ=
x

t
∈
(

− 9α2

20β
+ε,−ε

)

, (1.3)

where the error term is uniform with respect to x in the given range, and the leading-
order coefficient uas(x,t) is given by

uas(x,t)=

√

ν(k1)

k1(3α−40βk21)
cos

(

16tk31(8βk
2
1−α)

−ν(k1)ln(16tk1(k2−k1)2(3α−40βk21))+φa(ξ)

)

+

√

ν(k2)

k2(40βk22−3α)
cos

(

16tk32(8βk
2
2−α)
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+ν(k2)ln(16tk2(k2−k1)2(40βk22−3α))+φb(ξ)

)

, (1.4)

where

φa(ξ)=−π
4
−argr(k1)+argΓ(iν(k1))+2ν(k1)ln

(

k1+k2
2k1

)

− 1

π

∫ k2

k1

ln

(

1+ |r(s)|2
1+ |r(k1)|2

)(

1

s−k1
− 1

s+k1

)

ds,

φb(ξ)=
π

4
−argr(k2)−argΓ(iν(k2))+2ν(k2)ln

(

2k2
k1+k2

)

− 1

π

∫ k2

k1

ln

(

1+ |r(s)|2
1+ |r(k2)|2

)(

1

s−k2
− 1

s+k2

)

ds,

and k1, k2, ν(k1), ν(k2) are defined by (3.6), (3.7), (3.43) and (3.45), respectively.

Remark 1.1. For ξ <− 9α2

20β , there are no real critical points for the phase function

Φ(k). Thus, it is easy to prove that the solution u(x,t) of emKdV Equation (1.2) is
rapidly decreasing as t→∞. However, for ξ > 0, there are two different real stationary

points ±k0=±
√

3α
40β

(

1+
√

1+ 20βξ
9α2

)

, this implies that it is possible to deform the RH

problem through a series of transformations in exactly the same way as in the similarity
region for the mKdV equation to find the asymptotics (one also can follow the strategy
used in Section 3).

Theorem 1.2. Under the assumptions of Theorem 1.1, the solution u(x,t) of Equation
(4.1), i.e., α=0 in emKdV Equation (1.2), satisfies the following asymptotic formula
as t→∞:

u(x,t)=

(

8

5βt

)
1
5

up

( −x
(20βt)

1
5

)

+O(t−
2
5 ), 0<x≤Mt

1
5 , (1.5)

where the formula holds uniformly with respect to x in the given range for any fixedM> 1
and the function up(y) denotes the solution of the fourth order Painlevé II equation
(A.5).

The organization of this paper is as follows. In Section 2, we show how the solution
of emKdV Equation (1.2) can be expressed in terms of the solution of a 2×2 matrix RH
problem and give an auxiliary theorem which is useful for determining the long-time
asymptotics. In Section 3, we derive the long-time asymptotic behavior of the solution
of the emKdV Equation (1.2) to prove our first main Theorem 1.1 in a physically
interesting region. In Section 4, we present the asymptotic formula of the solution to
a particular case α=0 of emKdV Equation (1.2) in region 0<x≤Mt

1
5 . A few facts

related to the RH problem associated with the fourth order Painlevé II equation are
collected in the Appendix.

2. Preliminaries

2.1. Riemann–Hilbert formalism. The Lax pair of Equation (1.2) is [26]

Ψx=XΨ, X=ikσ3+U,

Ψt=TΨ, T =(−16iβk5+4iαk3)σ3+V,
(2.1)
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(namely, Equation (1.2) is the compatibility condition Xt−Tx+[X,T ]=0 of Equation
(2.1)), where Ψ(x,t;k) is a 2×2 matrix-valued function, k∈C is the spectral parameter
and

σ3=

(

1 0

0 −1

)

, U =

(

0 u

−u 0

)

, V =

(

A B

C −A

)

, (2.2)

A=8iβk3u2− i(6βu4+2αu2+4βuuxx−2βu2x)k,

B=−16βk4u+8iβk3ux+(8βu3+4αu+4βuxx)k
2− i(12βu2ux+2βuxxx+2αux)k

−6βu5−2αu3−10βu2uxx−10βuu2x−βuxxxx−αuxx,
C=−B+16iβk3ux− i(24βu2ux+4αux+4βuxxx)k.

Introducing a new eigenfunction µ(x,t;k) by

µ(x,t;k)=Ψ(x,t;k)e−i[kx+(−16βk5+4αk3)t]σ3 , (2.3)

we obtain the equivalent Lax pair

µx− ik[σ3,µ]=Uµ,

µt+i(16βk5−4αk3)[σ3,µ]=V µ.
(2.4)

We now consider the spectral analysis of the x-part of (2.4). Define two solutions µ1

and µ2 of the x-part of (2.4) by the following Volterra integral equations

µ1(x,t;k)= I+

∫ x

−∞
eik(x−x′)σ̂3 [U(x′,t)µ1(x

′,t;k)]dx′, (2.5)

µ2(x,t;k)= I−
∫ ∞

x

eik(x−x′)σ̂3 [U(x′,t)µ2(x
′,t;k)]dx′, (2.6)

where σ̂3 acts on a 2×2 matrix X by σ̂3X=[σ3,X ], and eσ̂3 =eσ3Xe−σ3 . We denote
by µ(1) and µ(2) the columns of a 2×2 matrix µ=(µ(1) µ(2)). Then it follows from
(2.5)-(2.6) that for all (x,t):

(i) detµj =1, j=1,2.

(ii) µ
(1)
2 and µ

(2)
1 are analytic and bounded in {k∈C|Imk> 0}, and (µ

(1)
2 µ

(2)
1 )→ I

as k→∞.

(iii) µ
(1)
1 and µ

(2)
2 are analytic and bounded in {k∈C|Imk< 0}, and (µ

(1)
1 µ

(2)
2 )→ I

as k→∞.

(iv) {µj}21 are continuous up to the real axis.

(v) Symmetry:

µj(x,t; k̄)=µj(x,t;−k)=σ2µj(x,t;k)σ2, (2.7)

where σ2 is the second Pauli matrix,

σ2=

(

0 −i
i 0

)

.

The symmetry relation (2.7) can be proved easily due to the symmetries of the matrix
X :

X(x,t; k̄)=X(x,t;−k)=σ2X(x,t;k)σ2.
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The solutions of the system of differential Equation (2.4) must be related by a
matrix independent of x and t, therefore,

µ1(x,t;k)=µ2(x,t;k)e
i[kx+(−16βk5+4αk3)t]σ̂3s(k), dets(k)=1, k∈R. (2.8)

Evaluation at x→∞,t=0 gives

s(k)= lim
x→∞

e−ikxσ̂3µ1(x,0;k), (2.9)

that is,

s(k)= I+

∫ ∞

−∞
e−ikxσ̂3 [U(x,0)µ1(x,0;k)]dx. (2.10)

Due to the symmetry (2.7), the matrix-valued spectral function s(k) can be defined in
terms of two scalar spectral functions a(k) and b(k) by

s(k)=

(

ā(k) b(k)

−b̄(k) a(k)

)

, (2.11)

where ā(k)=a(k̄) and b̄(k)= b(k̄) indicate the Schwartz conjugates. The spectral func-
tions a(k) and b(k) can be determined by u0(x) through the solution of Equation (2.10).
On the other hand, a(k) is analytic in the half-plane {k∈C|Imk> 0} and continuous
in {k∈C|Imk≥ 0}, and a(k)→1 as k→∞. Furthermore, |a(k)|2+ |b(k)|2=1 for k∈R.
Finally, a(−k)= ā(k), b(−k)= b̄(k).

Assuming u(x,t) to be a solution of Equation (1.2), the analytic properties of
µj(x,t;k) stated above allow us to define a piecewise meromorphic, 2×2 matrix-valued
function M(x,t;k) by

M(x,t;k)=



















(

µ
(1)
2 (x,t;k)

a(k)
µ
(2)
1 (x,t;k)

)

, Imk> 0,

(

µ
(1)
1 (x,t;k)

µ
(2)
2 (x,t;k)

ā(k)

)

, Imk< 0.

(2.12)

Then, for each x∈R and t≥ 0, the boundary values M±(x,t;k) of M as k approaches
R from the sides ±Imk> 0 are related as follows:

M+(x,t;k)=M−(x,t;k)J(x,t;k), k∈R, (2.13)

with

J(x,t;k)=

(

1+ |r(k)|2 r̄(k)e−tΦ(k)

r(k)etΦ(k) 1

)

,

r(k)=
b̄(k)

a(k)
, Φ(k)=2i(−kx

t
+16βk5−4αk3).

(2.14)

In view of the properties of µj(x,t;k) and s(k), M(x,t;k) also satisfies the following
properties:

(i) Behavior at k=∞:

M(x,t;k)→ I as k→∞. (2.15)
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(ii) Symmetry:

M(x,t; k̄)=M(x,t;−k)=σ2M(x,t;k)σ2. (2.16)

(iii) Residue conditions: Let {kj}N1 be the set of zeros of a(k). We assume these zeros
are finite in number, simple and no zero is real, then M(x,t;k) satisfies the following
residue conditions:

Resk=kj
M (1)(x,t;k)= iχje

tΦ(kj)M (2)(x,t;kj),

Resk=k̄j
M (2)(x,t;k)= iχ̄je

−tΦ(k̄j)M (1)(x,t; k̄j).
(2.17)

Theorem 2.1. Let {r(k),{kj ,χj}N1 } be the spectral data determined by u0(x), and
define M(x,t;k) as the solution of the associated RH problem (2.13) with the jump
matrix (2.14), the normalization condition (2.15) and the residue conditions (2.17).
Then, M(x,t;k) exists and is unique. Define u(x,t) in terms of M(x,t;k) by

u(x,t)=−2i lim
k→∞

(kM(x,t;k))12. (2.18)

Then u(x,t) solves the emKdV Equation (1.2). Furthermore, u(x,0)=u0(x).

Proof. In the case when a(k) has no zeros, the existence and uniqueness for
the solution of the above RH problem is a consequence of a ‘vanishing lemma’ for the
associated RH problem with the vanishing condition at infinity M(k)=O(1/k), k→∞
(see [23] since J†(k̄)=J(k)). If a(k) has zeros, the singular RH problem can be mapped
to a regular one following the approach of [14]. Moreover, it follows from standard
arguments using the dressing method [13] that if M solves the above RH problem and
u(x,t) is defined by (2.18), then u(x,t) solves the emKdV Equation (1.2). One observes
that for t=0, the RH problem reduces to that associated with u0(x), which yields
u(x,0)=u0(x), owing to the uniqueness of the solution of the RH problem.

2.2. A model RH problem. After the formulation of the main RH problem,
the main idea of analysis of the long-time behavior is to reduce the original RH problem
to a model RH problem which can be solved exactly. The following theorem turns out
to be suitable for determining asymptotics of a class of RH problems which arise in the
study of long-time asymptotics.

0

Fig. 2.1. The contour X=X1∪X2∪X3∪X4.
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Let X=X1∪X2∪X3∪X4⊂C be the cross defined by

X1= {le iπ
4 |0≤ l<∞}, X2= {le3iπ

4 |0≤ l<∞},
X3= {le− 3iπ

4 |0≤ l<∞}, X4= {le− iπ
4 |0≤ l<∞},

(2.19)

and oriented as in Figure 2.1. Define the function ν :C→ (0,∞) by ν(q)= 1
2π ln(1+ |q|2).

We consider the following RH problems parametrized by q∈C:

{

MX
+ (q,z)=MX

− (q,z)JX(q,z), z∈X,
MX(q,z)→ I, z→∞,

(2.20)

where the jump matrix JX(q,z) is defined by

JX(q,z)=











































































(

1 0

qe
iz2

2 z2iν(q) 1

)

, z∈X1,

(

1 − q̄
1+|q|2 e

− iz2

2 z−2iν(q)

0 1

)

, z∈X2,

(

1 0

− q
1+|q|2 e

iz2

2 z2iν(q) 1

)

, z∈X3,

(

1 q̄e−
iz2

2 z−2iν(q)

0 1

)

, z∈X4.

(2.21)

Then we have the following theorem.

Theorem 2.2. The RH problem (2.20) has a unique solution MX(q,z) for each q∈C.
This solution satisfies

MX(q,z)= I− i

z

(

0 βX(q)

βX(q) 0

)

+O

(

q

z2

)

, z→∞, q∈C, (2.22)

where the error term is uniform with respect to argz∈ [0,2π] and the function βX(q) is
given by

βX(q)=
√

ν(q)ei
(

π
4 −argq−argΓ(iν(q))

)

, q∈C, (2.23)

where Γ(·) denotes the standard Gamma function. Moreover, for each compact subset
D of C,

sup
q∈D

sup
z∈C\X

|MX(q,z)|<∞ (2.24)

and

sup
q∈D

sup
z∈C\X

|MX(q,z)−I|
|q| <∞. (2.25)

Proof. For the proof of this theorem, we refer the readers to [1, 10, 11].
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3. Long-time asymptotics

In this section, we aim to transform the associated original RH problem (2.15) to
a solvable RH problem and then find the explicitly asymptotic formula for the emKdV
Equation (1.2). In the following analysis, we suppose that a(k) 6=0 for {k∈C|Imk≥ 0}
so that no discrete spectrum is present. Namely, we consider the following RH problem

{

M+(x,t;k)=M−(x,t;k)J(x,t;k), k∈R,

M(x,t;k)→ I, k→∞,
(3.1)

where the jump matrix J(x,t;k) is defined by

J(x,t;k)=

(

1+ |r(k)|2 r̄(k)e−tΦ(k)

r(k)etΦ(k) 1

)

,

r(k)=
b̄(k)

a(k)
, Φ(k)=2i(−kξ+16βk5−4αk3), ξ=

x

t
.

(3.2)

In view of the symmetry relation in (2.7), we conclude that

r(−k)= r(k̄), k∈R. (3.3)

Moreover, the relation between the solution u(x,t) of the emKdV Equation (1.2) and
M(x,t;k) is

u(x,t)=−2i lim
k→∞

(kM(x,t;k))12. (3.4)

The jump matrix J defined in (3.2) involves the exponentials e±tΦ, therefore, the
sign structure of the quantity ReΦ(k) plays an important role in the following analysis.
In particular, we suppose

−9α2

20β
<ξ< 0. (3.5)

It follows that there are four different real stationary points located at the points where
∂Φ
∂k =0, namely, at

±k1=±

√

3α

40β

(

1−
√

1+
20βξ

9α2

)

, (3.6)

±k2=±

√

3α

40β

(

1+

√

1+
20βξ

9α2

)

. (3.7)

The signature table for ReΦ(k) is shown in Figure 3.1.
Let ε> 0 be given constant. We restrict our attention here to the physically inter-

esting region ξ∈I=
(

− 9α2

20β +ε,−ε
)

.

3.1. Transformations of the RH problem. One goes from the original RH
problem (3.1) for M to the equivalent RH problem for the new function M (1) defined
by

M (1)(x,t;k)=M(x,t;k)δ−σ3(k), (3.8)
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-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Fig. 3.1. The signature table for ReΦ(k) in the complex k-plane.

where the complex-valued function δ(k) is given by

δ(k)=exp

{

1

2πi

(
∫ −k1

−k2

+

∫ k2

k1

)

ln(1+ |r(s)|2)
s−k ds

}

, k∈C\([−k2,−k1]∪ [k1,k2]). (3.9)

Lemma 3.1. The function δ(k) has the following properties:

(i) δ(k) satisfies the following jump condition across the real axis oriented from −∞
to ∞:

δ+(k)= δ−(k)(1+ |r(k)|2), k∈ (−k2,−k1)∪(k1,k2).

(ii) As k→∞, δ(k) satisfies the asymptotic formula

δ(k)=1+O(k−1), k→∞. (3.10)

(iii) δ(k) and δ−1(k) are bounded and analytic functions of k∈C\([−k2,−k1]∪
[k1,k2]) with continuous boundary values on (−k2,−k1)∪(k1,k2).

(iv) δ(k) obeys the symmetry

δ(k)= δ(k̄)
−1
, k∈C\([−k2,−k1]∪ [k1,k2]).

Then M (1)(x,t;k) satisfies the following RH problem

M
(1)
+ (x,t;k)=M

(1)
− (x,t;k)J (1)(x,t;k), k∈R, (3.11)

with the jump matrix J (1)= δσ3
− Jδ−σ3

+ , namely,

J (1)(x,t;k)=























(

1 r4(k)δ
2(k)e−tΦ(k)

0 1

)(

1 0

r1(k)δ
−2(k)etΦ(k) 1

)

, |k|>k2, |k|<k1,
(

1 0

r3(k)δ
−2
− (k)etΦ(k) 1

)(

1 r2(k)δ
2
+(k)e

−tΦ(k)

0 1

)

, k1< |k|<k2,
(3.12)
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where we define {rj(k)}41 by

r1(k)= r(k), r2(k)=
r̄(k)

1+r(k)r̄(k)
,

r3(k)=
r(k)

1+r(k)r̄(k)
, r4(k)= r̄(k).

(3.13)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Fig. 3.2. The open sets {Ωj}
4
1 in the complex k-plane.

Before processing the next deformation, we first introduce analytic approximations
of {rj(k)}41 following the idea of [22]. We define the open subsets {Ωj}41, as displayed
in Figure 3.2 such that

Ω1∪Ω3={k∈C|ReΦ(k)< 0},
Ω2∪Ω4={k∈C|ReΦ(k)> 0}.

Lemma 3.2. There exist decompositions

rj(k)=

{

rj,a(x,t,k)+rj,r(x,t,k), |k|>k2, |k|<k1, k∈R, j=1,4,

rj,a(x,t,k)+rj,r(x,t,k), k1< |k|<k2, k∈R, j=2,3,
(3.14)

where the functions {rj,a,rj,r}41 have the following properties:

(1) For ξ∈I and each t> 0, rj,a(x,t,k) is defined and continuous for k∈ Ω̄j and
analytic for Ωj, j=1,2,3,4.

(2) The functions r1,a and r4,a satisfy, for ξ∈I, t> 0,

|rj,a(x,t,k)|≤
C

1+ |k|2 e
t
4 |ReΦ(k)|, k∈ Ω̄j∩{k∈C||Rek|>k2}, j=1,4, (3.15)

where the constant C is independent of ξ,k,t.

(3) The L1,L2 and L∞ norms of the functions r1,r(x,t, ·) and r4,r(x,t, ·) on
(−∞,−k2)∪(k2,∞)∪(−k1,k1) are O(t−3/2) as t→∞ uniformly with respect to ξ∈I.
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(4) The L1,L2 and L∞ norms of the functions r2,r(x,t, ·) and r3,r(x,t, ·) on
(−k2,−k1)∪(k1,k2) are O(t

−3/2) as t→∞ uniformly with respect to ξ∈I.
(5) For j=1,2,3,4, the following symmetries hold:

rj,a(x,t,k)= rj,a(x,t,−k̄), rj,r(x,t,k)= rj,r(x,t,−k̄). (3.16)

Proof. We first consider the decomposition of r1(k). Denote Ω1=Ω1
1∪Ω2

1∪Ω3
1,

where Ω1
1, Ω

2
1 and Ω3

1 denote the parts of Ω1 in {k∈C|Rek>k2}, {k∈C|Rek<−k2}
and the remaining part, respectively. We first derive a decomposition of r1(k) in Ω1

1,
and then extend it to Ω2

1 by symmetry. Then, we derive a decomposition of r1(k) in Ω3
1.

Since u0(x)∈S(R), this implies that r1(k)= r(k)∈S(R). Then for n=0,1,2, we have

r
(n)
1 (k)=

dn

dkn

( 6
∑

j=0

r
(j)
1 (k2)

j!
(k−k2)j

)

+O((k−k2)7−n), k→k2, (3.17)

Let

f0(k)=

11
∑

j=5

aj
(k− i)j

, (3.18)

where {aj}115 are complex constants such that

f0(k)=

6
∑

j=0

r
(j)
1 (k2)

j!
(k−k2)j+O((k−k2)7), k→k2. (3.19)

It is easy to verify that (3.19) imposes seven linearly independent conditions on the aj ,
hence the coefficients aj exist and are unique. Letting f = r1−f0, it follows that

(i) f0(k) is a rational function of k∈C with no poles in Ω1
1;

(ii) f0(k) coincides with r1(k) to sixth order at k2, more precisely,

dn

dkn
f(k)=

{

O((k−k2)7−n), k→k2,

O(k−5−n), k→∞,
k∈R, n=0,1,2. (3.20)

The decomposition of r1(k) can be derived as follows. The map k 7→φ=φ(k) defined
by

φ(k)=−iΦ(k)=2(16βk5−4αk3−ξk) (3.21)

is a bijection (k2,∞) 7→ (−128βk52+16αk32,∞) (see Figure 3.3), so we may define a func-
tion F by

F (φ)=







(k− i)3

k−k2
f(k), φ>−128βk52+16αk32,

0, φ≤−128βk52+16αk32.

(3.22)

Then,

F (n)(φ)=

(

1

160β(k2−k22)(k2+k22− 3α
20β )

∂

∂k

)n(
(k− i)3

k−k2
f(k)

)

, φ>−128βk52+16αk32.
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Fig. 3.3. The graph of the function φ(k) defined in (3.21).

By (3.20), F (n)(φ)=O(|φ|−3/5) as |φ|→∞ for n=0,1,2. In particular,

∥

∥

∥

∥

dnF

dφn

∥

∥

∥

∥

L2(R)

<∞, n=0,1,2, (3.23)

that is, F belongs to H2(R). By the Fourier transform F̂ (s) defined by

F̂ (s)=
1

2π

∫

R

F (φ)e−iφsdφ

where

F (φ)=

∫

R

F̂ (s)eiφsds, (3.24)

it follows from Plancherel theorem that ‖s2F̂ (s)‖L2(R)<∞. Equations (3.22) and (3.24)
imply

f(k)=
k−k2
(k− i)3

∫

R

F̂ (s)eiφsds, k>k2. (3.25)

Writing

f(k)= fa(x,t,k)+fr(x,t,k), t> 0, k>k2,

where the functions fa and fr are defined by

fa(x,t,k)=
k−k2
(k− i)3

∫ ∞

− t
4

F̂ (s)esΦ(k)ds, t> 0, k∈Ω1
1,

fr(x,t,k)=
k−k2
(k− i)3

∫ − t
4

−∞
F̂ (s)esΦ(k)ds, t> 0, k>k2,

we infer that fa(x,t, ·) is continuous in Ω̄1
1 and analytic in Ω1

1. Moreover, we can get

|fa(x,t,k)|≤
|k−k2|
|k− i|3 ‖F̂ (s)‖L1(R) sup

s≥− t
4

esReΦ(k)
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≤ C|k−k2|
|k− i|3 e

t
4 |ReΦ(k)|, t> 0, k∈ Ω̄1

1, ξ∈I. (3.26)

Furthermore, we have

|fr(x,t,k)|≤
|k−k2|
|k− i|3

∫ − t
4

−∞
s2|F̂ (s)|s−2ds

≤ C

1+ |k|2 ‖s
2F̂ (s)‖L2(R)

√

∫ − t
4

−∞
s−4ds, (3.27)

≤ C

1+ |k|2 t
−3/2, t> 0, k >k2, ξ∈I.

Hence, the L1,L2 and L∞ norms of fr on (k2,∞) are O(t−3/2). Letting

r1,a(x,t,k)= f0(k)+fa(x,t,k), t> 0, k∈ Ω̄1
1,

r1,r(x,t,k)= fr(x,t,k), t> 0, k >k2.
(3.28)

For k<−k2, we use the symmetry (3.16) to extend this decomposition.
We next derive the decomposition of r1(k) for −k1<k<k1. Following [10, 22], we

split r1(k) into even and odd parts as follows:

r1(k)= r+(k
2)+kr−(k

2), k∈R, (3.29)

where r± : [0,∞)→C are defined by

r+(s)=
r1(

√
s)+r1(−

√
s)

2
, r−(s)=

r1(
√
s)−r1(−

√
s)

2
√
s

, s≥ 0.

We write r1(k) as the following form of Taylor series

r1(k)=

10
∑

j=0

qjk
j+

1

10!

∫ k

0

r
(11)
1 (t)(k− t)10dt, qj =

r
(j)
1 (0)

j!
. (3.30)

It then follows that

r+(s)=

5
∑

j=0

q2js
j+

1

2×10!

∫

√
s

0

(r
(11)
1 (t)−r(11)1 (−t))(

√
s− t)10dt,

r−(s)=
4
∑

j=0

q2j+1s
j+

1

2×10!
√
s

∫

√
s

0

(r
(11)
1 (t)+r

(11)
1 (−t))(

√
s− t)10dt.

(3.31)

Letting {p±j }40 denote the coefficients of the Taylor series representations

r±(k
2)=

4
∑

j=0

p±j (k
2−k21)j+

1

4!

∫ k2

k2
1

r
(5)
± (t)(k2− t)4dt,

we infer that the function f0(k) defined by

f0(k)=

4
∑

j=0

p+j (k
2−k21)j+k

4
∑

j=0

p−j (k
2−k21)j (3.32)
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has the following properties:

(i) f0(k) is a polynomial in k∈C whose coefficients are bounded.

(ii) The difference f(k)= r1(k)−f0(k), which satisfies

dn

dkn
f(k)≤C|k2−k21 |5−n, −k1<k<k1, ξ∈I, n=0,1,2, (3.33)

where C is independent of ξ,k. The decomposition of r1(k) for −k1<k<k1 can now be
derived as follows. Since the function k 7→φ defined in (3.21) is a bijection (−k1,k1)→
(128βk51−16αk31 ,−128βk51+16αk31) (see Figure 3.3), we may define a function F (φ) by

F (φ)=







1

k2−k21
f(k), |φ|<−128βk51+16αk31 ,

0, |φ|≥−128βk51+16αk31 .

(3.34)

Thus, we have

F (n)(φ)=

(

1

160β(k2−k21)(k2+k21− 3α
20β )

∂

∂k

)n
f(k)

k2−k21
, |φ|<−128βk51+16αk31 . (3.35)

Equations (3.33) and (3.35) imply that

∣

∣

∣

∣

dn

dφn
F (φ)

∣

∣

∣

∣

≤C, |φ|<−128βk51+16αk31 , n=0,1,2.

Therefore, F (φ) satisfies (3.23). On the other hand, (3.24) and (3.34) imply

(k2−k21)
∫

R

F̂ (s)esΦ(k)ds=

{

f(k), |k|<k1,
0, |k|≥k1.

(3.36)

Letting

f(k)= fa(x,t,k)+fr(x,t,k), t> 0, |k|k1, ξ∈I,

where the functions fa and fr are defined by

fa(x,t,k)=(k2−k21)
∫ ∞

− t
4

F̂ (s)esΦ(k)ds, t> 0, k∈Ω3
1,

fr(x,t,k)=(k2−k21)
∫ − t

4

−∞
F̂ (s)esΦ(k)ds, t> 0, |k|<k1,

we infer that fa(x,t, ·) is continuous in Ω̄3
1 and analytic in Ω3

1. Moreover, we can get
from (3.26) and (3.27) that

|fa(x,t,k)|≤C|k2−k21 |e
t
4 |ReΦ(k)|, t> 0, k∈ Ω̄3

1, ξ∈I,
|fr(x,t,k)|≤Ct−3/2, t> 0, |k|<k1, ξ∈I.

It follows from

r1,a(x,t,k)= f0(k)+fa(x,t,k), r1,r(x,t,k)= fr(x,t,k)
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that one gets a decomposition of r1(k) for |k|<k1 with the properties listed in the
statement of the lemma. Thus, we find a decomposition of r1(k) for |k|>k2 and |k|<k1
with the properties listed in the statement of the lemma. The decomposition of the
function r3(k) can be obtained by a similar procedure as the decomposition of r1(k) for
|k|<k1.

Finally, the decompositions of r2(k) and r4(k) can be obtained from r3(k) and r1(k)
by Schwartz conjugation.

Fig. 3.4. The oriented contour Σ and the open sets {Dj}
6
1 in the complex k-plane.

The purpose of the next transformation is to deform the contour so that the jump
matrix involves the exponential factor e−tΦ on the parts of the contour where ReΦ is
positive and the factor etΦ on the parts where ReΦ is negative. More precisely, we put

M (2)(x,t;k)=M (1)(x,t;k)G(k), (3.37)

where

G(k)=















































































(

1 0

−r1,aδ−2etΦ 1

)

, k∈D1,

(

1 −r2,aδ2e−tΦ

0 1

)

, k∈D2,

(

1 0

r3,aδ
−2etΦ 1

)

, k∈D3,

(

1 r4,aδ
2e−tΦ

0 1

)

, k∈D4,

I, k∈D5∪D6.

(3.38)

Then the matrix M (2)(x,t;k) satisfies the following RH problem

M
(2)
+ (x,t;k)=M

(2)
− (x,t;k)J (2)(x,t;k), k∈Σ, (3.39)
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with the jump matrix J (2)=G−1
− (k)J (1)G+(k) is given by

J
(2)
1 =

(

1 0

r1,aδ
−2etΦ 1

)

, J
(2)
2 =

(

1 −r2,aδ2e−tΦ

0 1

)

,

J
(2)
3 =

(

1 0
−r3,aδ−2etΦ 1

)

, J
(2)
4 =

(

1 r4,aδ
2e−tΦ

0 1

)

, (3.40)

J
(2)
5 =

(

1 r4,rδ
2e−tΦ

0 1

)(

1 0

r1,rδ
−2etΦ 1

)

, J
(2)
6 =

(

1 0

r3,rδ
−2
− etΦ 1

)(

1 r2,rδ
2
+e

−tΦ

0 1

)

,

with J
(2)
i denoting the restriction of J (2) to the contour Σ labeled by i in Figure 3.4. It

is easy to see that the jump matrix J (2) decays to identity matrix I as t→∞ everywhere
except near the critical points ±k1 and ±k2. This implies that we only need to con-
sider a neighborhood of the critical points ±k1 and ±k2 when we study the long-time
asymptotics of M (2)(x,t;k) in terms of the corresponding RH problem.

3.2. Local models near the critical points ±k1 and ±k2. We introduce the
following scaling operators

S−k2 : k 7→
z

4
√

t(40βk32−3αk2)
−k2,

S−k1 : k 7→
z

4
√

t(3αk1−40βk31)
−k1,

Sk1 : k 7→
z

4
√

t(3αk1−40βk31)
+k1,

Sk2 : k 7→
z

4
√

t(40βk32−3αk2)
+k2.

(3.41)

Integrating by parts in formula (3.9) yields,

δ(k)=

(

k−k2
k−k1

)−iν(k1)(k+k1
k+k2

)−iν(k1)

eχ1(k)

=

(

k−k2
k−k1

)−iν(k2)(k+k1
k+k2

)−iν(k2)

eχ2(k), (3.42)

where

ν(k1)=
1

2π
ln(1+ |r(k1)|2)> 0, (3.43)

χ1(k)=
1

2πi

∫ k2

k1

ln

(

1+ |r(s)|2
1+ |r(k1)|2

)(

1

s−k −
1

s+k

)

ds, (3.44)

ν(k2)=
1

2π
ln(1+ |r(k2)|2)> 0, (3.45)

χ2(k)=
1

2πi

∫ k2

k1

ln

(

1+ |r(s)|2
1+ |r(k2)|2

)(

1

s−k −
1

s+k

)

ds. (3.46)

Hence, we have

S−k2(δ(k)e
− tΦ(k)

2 )= δ0−k2
(z)δ1−k2

(z),
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S−k1(δ(k)e
− tΦ(k)

2 )= δ0−k1
(z)δ1−k1

(z),

Sk1(δ(k)e
− tΦ(k)

2 )= δ0k1
(z)δ1k1

(z),

Sk2(δ(k)e
− tΦ(k)

2 )= δ0k2
(z)δ1k2

(z),

with

δ0−k2
(z)=

(

16tk2(k2−k1)2(40βk22−3α)

)− iν(k2)
2
(

2k2
k1+k2

)−iν(k2)

eχ2(−k2)

e−8ik3
2t(8βk

2
2−α), (3.47)

δ1−k2
(z)=(−z)iν(k2)e(χ2(z/

√
16tk2(40βk2

2−3α)−k2)−χ2(−k2))

×
(−z/

√

16tk2(40βk22−3α)−k1+k2
k2−k1

)−iν(k2)

×
(

k2+k1

−z/
√

16tk2(40βk22−3α)+k1+k2

)−iν(k2)

×
(−z/

√

16tk2(40βk22−3α)+2k2
2k2

)−iν(k2)

×exp

(

iz2

4

[

1− (40βk22−α)z
4
√
t(40βk32−3αk2)3/2

+
5βz2

4tk2(40βk22−3α)2

− βz3

16t3/2(40βk32−3αk2)5/2

])

, (3.48)

δ0−k1
(z)=

(

16tk1(k2−k1)2(3α−40βk21)

)

iν(k1)
2
(

k1+k2
2k1

)−iν(k1)

eχ1(−k1)

e−8ik3
1t(8βk

2
1−α), (3.49)

δ1−k1
(z)=z−iν(k1)e(χ1(z/

√
16tk1(3α−40βk2

1)−k1)−χ1(−k1))

×
(

k2−k1
z/
√

16tk1(3α−40βk21)−k1+k2

)−iν(k1)

×
(−z/

√

16tk1(3α−40βk21)+k1+k2
k1+k2

)−iν(k1)

×
(

2k1

−z/
√

16tk1(3α−40βk21)+2k1

)−iν(k1)

×exp

(

− iz2

4

[

1+
(40βk21−α)z

4
√
t(3αk1−40βk31)

3/2
− 5βz2

4tk1(3α−40βk21)
2

+
βz3

16t3/2(3αk1−40βk31)
5/2

])

, (3.50)

δ0k1
(z)=

(

16tk1(k2−k1)2(3α−40βk21)

)− iν(k1)
2
(

k1+k2
2k1

)iν(k1)

eχ1(k1)

e8ik
3
1t(8βk

2
1−α), (3.51)

δ1k1
(z)=(−z)iν(k1)e(χ1(z/

√
16tk1(3α−40βk2

1)+k1)−χ1(k1))
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×
(−z/

√

16tk1(3α−40βk21)−k1+k2
k2−k1

)−iν(k1)

×
(

k1+k2

z/
√

16tk1(3α−40βk21)+k1+k2

)−iν(k1)

×
(

z/
√

16tk1(3α−40βk21)+2k1
2k1

)−iν(k1)

×exp

(

iz2

4

[

1− (40βk21−α)z
4
√
t(3αk1−40βk31)

3/2
− 5βz2

4tk1(3α−40βk21)
2

− βz3

16t3/2(3αk1−40βk31)
5/2

])

, (3.52)

δ0k2
(z)=

(

16tk2(k2−k1)2(40βk22−3α)

)

iν(k2)
2
(

2k2
k1+k2

)iν(k2)

eχ2(k2)

e8ik
3
2t(8βk

2
2−α), (3.53)

δ1k2
(z)=z−iν(k2)e(χ2(z/

√
16tk2(40βk2

2−3α)+k2)−χ2(k2))

×
(

k2−k1
z/
√

16tk2(40βk22−3α)−k1+k2

)−iν(k2)

×
(

2k2

z/
√

16tk2(40βk22−3α)+2k2

)−iν(k2)

×
(

z/
√

16tk2(40βk22−3α)+k1+k2
k1+k2

)−iν(k2)

×exp

(

− iz2

4

[

1+
(40βk22−α)z

4
√
t(40βk32−3αk2)3/2

+
5βz2

4tk2(40βk22−3α)2

+
βz3

16t3/2(40βk32−3αk2)5/2

])

. (3.54)

For j=1,2, let Dε(±kj) denote the open disk of radius ε centered at ±kj for a small
ε> 0. Now we define

˜̃M(x,t;z)=M (2)(x,t;k)(δ0−k2
)σ3(z), k∈Dε(−k2)\Σ,

ˇ̌M(x,t;z)=M (2)(x,t;k)(δ0−k1
)σ3(z), k∈Dε(−k1)\Σ,

M̌(x,t;z)=M (2)(x,t;k)(δ0k1
)σ3(z), k∈Dε(k1)\Σ,

M̃(x,t;z)=M (2)(x,t;k)(δ0k2
)σ3(z), k∈Dε(k2)\Σ.

Then ˇ̌M , M̌ , ˜̃M and M̃ are the sectionally analytic functions of z which satisfy

˜̃M+(x,t;z)=
˜̃M−(x,t;z)

˜̃J(x,t;z), k∈X ε
−k2

,

ˇ̌M+(x,t;z)=
ˇ̌M−(x,t;z)

ˇ̌J(x,t;z), k∈X ε
−k1

,

M̌+(x,t;z)=M̌−(x,t;z)J̌(x,t;z), k∈X ε
k1
,

M̃+(x,t;z)=M̃−(x,t;z)J̃(x,t;z), k∈X ε
k2
,
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where X±kj
=X±kj denote the cross X defined by (2.19) centered at ±kj and X ε

±kj
=

X±kj
∩Dε(±kj) for j=1,2. Moreover, the corresponding jump matrices are given by

˜̃
J(x,t;z)=























(

1 r2,a(δ
1
−k2

)2

0 1

)

, k∈ (X ε
−k2

)1,

(

1 0

−r1,a(δ
1
−k2

)−2 1

)

, k∈ (X ε
−k2

)2,

(

1 −r4,a(δ
1
−k2

)2

0 1

)

, k∈ (X ε
−k2

)3,

(

1 0

r3,a(δ
1
−k2

)−2 1

)

, k∈ (X ε
−k2

)4,

(3.55)

ˇ̌
J(x,t;z)=























(

1 0

r1,a(δ
1
−k1

)−2 1

)

, k∈ (X ε
−k1

)1,

(

1 −r2,a(δ
1
−k1

)2

0 1

)

, k∈ (X ε
−k1

)2,

(

1 0

−r3,a(δ
1
−k1

)−2 1

)

, k∈ (X ε
−k1

)3,

(

1 r4,a(δ
1
−k1

)2

0 1

)

, k∈ (X ε
−k1

)4,

(3.56)

J̌(x,t;z)=























(

1 r2,a(δ
1
k1
)2

0 1

)

, k∈ (X ε
k1
)1,

(

1 0

−r1,a(δ1k1
)−2 1

)

, k∈ (X ε
k1
)2,

(

1 −r4,a(δ1k1
)2

0 1

)

, k∈ (X ε
k1
)3,

(

1 0

r3,a(δ
1
k1
)−2 1

)

, k∈ (X ε
k1
)4,

(3.57)

and

J̃(x,t;z)=























(

1 0

r1,a(δ
1
k2
)−2 1

)

, k∈ (X ε
k2
)1,

(

1 −r2,a(δ1k2
)2

0 1

)

, k∈ (X ε
k2
)2,

(

1 0

−r3,a(δ1k2
)−2 1

)

, k∈ (X ε
k2
)3,

(

1 r4,a(δ
1
k2
)2

0 1

)

, k∈ (X ε
k2
)4.

(3.58)

For the jump matrix J̃(x,t;z), define

q= r(k2),

then for any fixed z∈X , we have k(z)→k2 as t→∞. Hence,

r1,a(k)→ q, r2,a(k)→
q̄

1+ |q|2 , δ1k2
→ e−

iz2

4 z−iν(q).

This implies that the jump matrix J̃ tends to the matrix JX defined in (2.21) for
large t. In other words, the jumps of M (2) for k near k2 approach those of the function
MX(δ0k2

)−σ3 as t→∞. Therefore, we can approximateM (2) in the neighborhoodDε(k2)
of k2 by

M (k2)(x,t;k)= (δ0k2
)σ3MX(q,z)(δ0k2

)−σ3 , (3.59)

where MX(q,z) is given by (2.22). On the other hand, according to the symmetry
property (3.3), one can deduce that

˜̃J(x,t;z)→JX(q,−z̄), as t→∞.

Thus, by uniqueness of the RH problem, we can approximateM (2) in the neighborhood
Dε(−k2) of −k2 by

M (−k2)(x,t;k)= (δ0−k2
)σ3MX(q,−z̄)(δ0−k2

)−σ3 . (3.60)
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For the case of J̌(x,t;z), as t→∞, we find

r1,a(k)→ r(k1), r2,a(k)→
r(k1)

1+ |r(k1)|2
, δ1k1

→ e
iz2

4 (−z)iν(k1).

This implies as t→∞ that

J̌(x,t;z)→JY (p,z)=











































































(

1 p̄
1+|p|2 e

iz2

2 (−z)2iν(p)

0 1

)

, z∈X1,

(

1 0

−pe− iz2

2 (−z)−2iν(p) 1

)

, z∈X2,

(

1 −p̄e iz2

2 (−z)2iν(p)

0 1

)

, z∈X3,

(

1 0

p
1+|p|2 e

− iz2

2 (−z)−2iν(p) 1

)

, z∈X4,

if we set

p= r(k1).

It is easy to verify that

JY (p,z)=JX(p̄,−z̄),

which in turn implies that

MY (p,z)=MX(p̄,−z̄), (3.61)

where MY (p,z) is the unique solution of the following RH problem

{

MY
+ (p,z)=MY

− (p,z)JY (p,z), for almost every z∈X,
MY (p,z)→ I, as z→∞.

Therefore, we find that

MY (p,z)= I− i

z

(

0 βY (p)

βY (p) 0

)

+O

(

p

z2

)

,

where

βY (p)=
√

ν(p)e−i(π
4 +argp+argΓ(−iν(p))).

As a consequence, we can approximate M (2)(x,t;k) in the neighborhood Dε(k1) of k1
by

M (k1)(x,t;k)= (δ0k1
)σ3MY (p,z)(δ0k1

)−σ3 . (3.62)

Using (3.3) again, we can use

M (−k1)(x,t;k)= (δ0−k1
)σ3MY (p,−z̄)(δ0−k1

)−σ3 (3.63)
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to approximate M (2)(x,t;k) in the neighborhood Dε(−k1) of −k1.
Lemma 3.3. For each t> 0, ξ∈I and j=1,2, the functions M (±kj)(x,t;k) defined in
(3.62), (3.63), (3.59) and (3.60) are analytic functions of k∈Dε(±kj)\X ε

±kj
. Further-

more,

|M (±kj)(x,t;k)−I|≤C, t> 3, ξ∈I, k∈Dε(±kj)\X ε
±kj

, j=1,2. (3.64)

Across X ε
±kj

, M (±kj)(x,t;k) satisfies the jump condition M
(±kj)
+ =M

(±kj)
− J (±kj), where

the jump matrix J (±kj) satisfies the following estimates for 1≤n≤∞:

‖J (2)−J (±kj)‖Ln(X ε
±kj

)≤Ct−
1
2− 1

2n lnt, t> 3, ξ∈I, j=1,2, (3.65)

where C> 0 is a constant independent of t,ξ,k. Moreover, as t→∞,

‖(M (±kj))−1(x,t;k)−I‖L∞(∂Dε(±kj))=O(t
−1/2), (3.66)

and

1

2πi

∫

∂Dε(k1)

((M (k1))−1(x,t;k)−I)dk=−
(δ0k1

)σ̂3MY
1 (ξ)

4
√

tk1(3α−40βk21)
+O(t−1), (3.67)

1

2πi

∫

∂Dε(−k1)

((M (−k1))−1(x,t;k)−I)dk=
(δ0−k1

)σ̂3MY
1 (ξ)

4
√

tk1(3α−40βk21)
+O(t−1), (3.68)

1

2πi

∫

∂Dε(k2)

((M (k2))−1(x,t;k)−I)dk=−
(δ0k2

)σ̂3MX
1 (ξ)

4
√

tk2(40βk22−3α)
+O(t−1), (3.69)

1

2πi

∫

∂Dε(−k2)

((M (−k2))−1(x,t;k)−I)dk=
(δ0−k2

)σ̂3MX
1 (ξ)

4
√

tk2(40βk22−3α)
+O(t−1), (3.70)

where MX
1 (ξ) and MY

1 (ξ) are given by

MX
1 (ξ)=−i

(

0 βX(q)

βX(q) 0

)

, MY
1 (ξ)=−i

(

0 βY (p)

βY (p) 0

)

. (3.71)

Proof. We just consider the proof for the function M (k2)(x,t;k), the others ac-
cordingly follow.

The analyticity of M (k2) is obvious. Since |δ0k2
(z)|=1, thus, the estimate (3.64) for

M (k2) follows from the definition of M (k2) in (3.59) and the estimate (3.25). On the
other hand, we have

J (2)−J (k2)=(δ0k2
)σ̂3(J̃−JX), k∈X ε

k2
.

However, proceeding according to a similar calculation as in the Lemma 3.35 in [10]
(also see [9, 29]), we have

‖J̃−JX‖L∞((X ε
k2

)1)≤C|e
iγ
2 z2 |t−1/2 lnt, 0<γ<

1

2
, t> 3, ξ∈I, (3.72)

for k∈ (X ε
k2
)1, that is, z=4

√

tk2(40βk22−3α)se
iπ
4 , 0≤ s≤ ε. Thus,

‖J̃−JX‖L1((X ε
k2

)1)≤Ct−1 lnt, t> 3, ξ∈I. (3.73)



1898 ASYMPTOTIC BEHAVIOR FOR AN EMKDV EQUATION

By the general inequality ‖f‖Ln ≤‖f‖1−1/n
L∞ ‖f‖1/nL1 , we find

‖J̃−JX‖Ln((X ε
k2

)1)≤Ct−1/2−1/2n lnt, t> 3, ξ∈I. (3.74)

The norms on (X ε
k2
)j , j=2,3,4, are estimated in a similar way. Therefore, (3.65) follows.

If k∈∂Dε(k2), the variable z=4
√

tk2(40βk22−3α)(k−k2) tends to infinity as t→
∞. It follows from (2.22) that

MX(q,z)= I+
MX

1 (ξ)

4
√

tk2(40βk22−3α)(k−k2)
+O

(

q

t

)

, t→∞, k∈∂Dε(k2),

where MX
1 (ξ) is defined by (3.71). Since

M (k2)(x,t;k)= (δ0k2
)σ̂3MX(q,z),

thus we have

(M (k2))−1(x,t;k)−I=−
(δ0k2

)σ̂3MX
1 (ξ)

4
√

tk2(40βk22−3α)(k−k2)
+O

(

q

t

)

, t→∞, k∈∂Dε(k2).

(3.75)
The estimate (3.66) immediately follows from (3.75) and |MX

1 |≤C. By Cauchy’s for-
mula and (3.75), we derive (3.69).

3.3. The final step. We now begin to establish the explicit long-time asymp-
totic formula for the emKdV Equation (1.2) on the line. Define the approximate solution
M (app)(x,t;k) by

M (app)=



































M (−k2), k∈Dε(−k2),
M (−k1), k∈Dε(−k1),
M (k1), k∈Dε(k1),

M (k2), k∈Dε(k2),

I, elsewhere.

(3.76)

Let M̂(x,t;k) be

M̂ =M (2)(M (app))−1, (3.77)

then M̂(x,t;k) satisfies the following RH problem

M̂+(x,t;k)= M̂−(x,t;k)Ĵ(x,t;k), k∈ Σ̂, (3.78)

where the jump contour Σ̂=Σ∪∂Dε(−k2)∪∂Dε(−k1)∪∂Dε(k1)∪∂Dε(k2) is depicted
in Figure 3.5, and the jump matrix Ĵ(x,t;k) is given by

Ĵ=















M
(app)
− J (2)(M

(app)
+ )−1, k∈ Σ̂∩(Dε(−k2)∪Dε(−k1)∪Dε(k1)∪Dε(k2)),

(M (app))−1, k∈ (∂Dε(−k2)∪∂Dε(−k1)∪∂Dε(k1)∪∂Dε(k2)),

J (2), k∈ Σ̂\(Dε(−k2)∪Dε(−k1)∪Dε(k1)∪Dε(k2)).

(3.79)
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Fig. 3.5. The contour Σ̂.

For convenience, we rewrite Σ̂ as follows:

Σ̂= Σ̂1∪Σ̂2∪Σ̂3∪Σ̂4,

where

Σ̂1=

4
⋃

1

Σj \(Dε(−k2)∪Dε(−k1)∪Dε(k1)∪Dε(k2)), Σ̂2=

6
⋃

5

Σj ,

Σ̂3=∂Dε(−k2)∪∂Dε(−k1)∪∂Dε(k1)∪∂Dε(k2),

Σ̂4=X ε
−k2

∪X ε
−k1

∪X ε
k1
∪X ε

k2
.

and {Σj}61 denoting the restriction of Σ to the contour labeled by j in Figure 3.4. Then

we have the following lemma if we let ŵ= Ĵ−I.
Lemma 3.4. For 1≤n≤∞, t> 3 and ξ∈I, the following estimates hold:

‖ŵ‖Ln(Σ̂1)
≤Ce−ct, (3.80)

‖ŵ‖Ln(Σ̂2)
≤Ct−3/2, (3.81)

‖ŵ‖Ln(Σ̂3)
≤Ct−1/2, (3.82)

‖ŵ‖Ln(Σ̂4)
≤Ct− 1

2− 1
2n lnt. (3.83)

Proof. For k∈Ω1∩{k∈C|Rek>k2}∩Σ̂1, we have −|ReΦ(k)|≤−cε2. Since ŵ only
has a nonzero r1,aδ

−2etΦ in (21) entry, hence, for t≥ 1, by (3.15), we get

|ŵ21|= |r1,aδ−2etΦ|≤ C

1+ |k|2 e
− 3t

4 |ReΦ|≤Ce−cε2t.

In a similar way, the other estimates on Σ̂1 hold. This proves (3.80). Since the matrix ŵ
on Σ̂2 only involves the small remainders rj,r for j=1, · · · ,4, by Lemma 3.2, the estimate
(3.81) follows. The inequality (3.82) is a consequence of (3.66), (3.76) and (3.79). For
k∈X ε

±kj
, we find

ŵ=M
(±kj)
− (J (2)−J (±kj))(M

(±kj)
+ )−1, j=1,2.

Therefore, it follows from (3.64) and (3.65) that the estimate (3.83) holds.

The estimates in Lemma 3.4 imply that

‖ŵ‖(L1∩L2)(Σ̂)≤Ct−1/2,

‖ŵ‖L∞(Σ̂)≤Ct−1/2 lnt,
t> 3, ξ∈I. (3.84)
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Let Ĉ denote the Cauchy operator associated with Σ̂:

(Ĉf)(k)=

∫

Σ̂

f(ζ)

ζ−k
dζ

2πi
, k∈C\ Σ̂, f ∈L2(Σ̂).

We denote the boundary values of Ĉf from the left and right sides of Σ̂ by Ĉ+f and Ĉ−f ,
respectively. Define the operator Ĉŵ: L

2(Σ̂)+L∞(Σ̂)→L2(Σ̂) by Ĉŵf = Ĉ−(fŵ), that
is, Ĉŵ is defined by Ĉŵ(f)= Ĉ+(fŵ−)+ Ĉ−(fŵ+) where we have chosen, for simplicity,
ŵ+= ŵ and ŵ−=0. Then, by (3.84), we find

‖Ĉŵ‖B(L2(Σ̂))≤C‖ŵ‖L∞(Σ̂)≤Ct−1/2 lnt, (3.85)

where B(L2(Σ̂)) denotes the Banach space of bounded linear operators L2(Σ̂)→L2(Σ̂).
Therefore, there exists a T > 0 such that I− Ĉŵ ∈B(L2(Σ̂)) is invertible for all ξ∈I,
t>T . Following this, we may define the 2×2 matrix-valued function µ̂(x,t;k) whenever
t>T by

µ̂= I+ Ĉŵµ̂. (3.86)

Then

M̂(x,t;k)= I+
1

2πi

∫

Σ̂

(µ̂ŵ)(x,t;ζ)

ζ−k dζ, k∈C\ Σ̂ (3.87)

is the unique solution of the RH problem (3.78) for t>T . Moreover, using the Neumann
series (see [22]), the function µ̂(x,t;k) satisfies

‖µ̂(x,t; ·)−I‖L2(Σ̂)=O(t
−1/2), t→∞, ξ∈I. (3.88)

It follows from (3.87) that

lim
k→∞

k(M̂(x,t;k)−I)=− 1

2πi

∫

Σ̂

(µ̂ŵ)(x,t;k)dk. (3.89)

Using (3.80) and (3.88), we have
∫

Σ̂1

(µ̂ŵ)(x,t;k)dk=

∫

Σ̂1

ŵ(x,t;k)dk+

∫

Σ̂1

(µ̂(x,t;k)−I)ŵ(x,t;k)dk

≤‖ŵ‖L1(Σ̂1)
+‖µ̂−I‖L2(Σ̂1)

‖ŵ‖L2(Σ̂1)

≤Ce−ct, t→∞.

By (3.81) and (3.88), the contribution from Σ̂2 to the right-hand side of (3.89) is

O(‖ŵ‖L1(Σ̂2)
+‖µ̂−I‖L2(Σ̂2)

‖ŵ‖L2(Σ̂2)
)=O(t−3/2), t→∞.

Similarly, by (3.83) and (3.88), the contribution from Σ̂4 to the right-hand side of (3.89)
is

O(‖ŵ‖L1(Σ̂4)
+‖µ̂−I‖L2(Σ̂4)

‖ŵ‖L2(Σ̂4)
)=O(t−1 lnt), t→∞.

Finally, by (3.67)-(3.70), (3.82) and (3.88), we can get

− 1

2πi

∫

Σ̂3

(µ̂ŵ)(x,t;k)dk
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=− 1

2πi

∫

Σ̂3

ŵ(x,t;k)dk− 1

2πi

∫

Σ̂3

(µ̂(x,t;k)−I)ŵ(x,t;k)dk

=− 1

2πi

∫

∂Dε(k1)

(

(M (k1))−1(x,t;k)−I
)

dk− 1

2πi

∫

∂Dε(−k1)

(

(M (−k1))−1(x,t;k)−I
)

dk

− 1

2πi

∫

∂Dε(k2)

(

(M (k2))−1(x,t;k)−I
)

dk− 1

2πi

∫

∂Dε(−k2)

(

(M (−k2))−1(x,t;k)−I
)

dk

+O(‖µ̂−I‖L2(Σ̂3)
‖ŵ‖L2(Σ̂3)

)

=
(δ0k1

)σ̂3MY
1 (ξ)

4
√

tk1(3α−40βk21)
−

(δ0−k1
)σ̂3MY

1 (ξ)

4
√

tk1(3α−40βk21)

+
(δ0k2

)σ̂3MX
1 (ξ)

4
√

tk2(40βk22−3α)
−

(δ0−k2
)σ̂3MX

1 (ξ)

4
√

tk2(40βk22−3α)
+O(t−1), t→∞.

Thus, we obtain the following important relation

lim
k→∞

k(M̂(x,t;k)−I)=
(δ0k1

)σ̂3MY
1 (ξ)

4
√

tk1(3α−40βk21)
−

(δ0−k1
)σ̂3MY

1 (ξ)

4
√

tk1(3α−40βk21)

+
(δ0k2

)σ̂3MX
1 (ξ)

4
√

tk2(40βk22−3α)
−

(δ0−k2
)σ̂3MX

1 (ξ)

4
√

tk2(40βk22−3α)
+O(t−1 lnt), t→∞.

(3.90)

Taking into account that (3.4), (3.8), (3.37) and (3.77), for sufficiently large k∈C\ Σ̂,
we get

u(x,t)=−2i lim
k→∞

(kM(x,t;k))12

=−2i lim
k→∞

k(M̂(x,t;k)−I)12

=−
(

βY (p)(δ0k1
)2+βY (p)(δ0−k1

)2

2
√

tk1(3α−40βk21)
+
βX(q)(δ0k2

)2+βX(q)(δ0−k2
)2

2
√

tk2(40βk22−3α)

)

+O

(

lnt

t

)

.

Using

δ0−k1
= δ0k1

, δ0−k2
= δ0k2

(3.91)

as χj(−kj)=−χj(kj)=χj(kj), j=1,2, and collecting the above computations, we ob-
tain our main results as stated in the Theorem 1.1.

4. Asymptotics for a special case α=0
In this section, we consider the long-time asymptotics to the solutions for a partic-

ular case, namely, α=0 of emKdV Equation (1.2),

ut+β(30u
4ux+10u3x+40uuxuxx+10u2uxxx+uxxxxx)=0. (4.1)

As we all know, the Hirota equation can be reduced to the complex-valued mKdV
equation under the Galilean transformation. Thus, if we rewrite Equation (1.2) as a
complex-valued form

ut+α(6|u|2ux+uxxx)+β[30|u|4ux+10(u|ux|2+ |u|2uxx)x+uxxxxx]=0, (4.2)

similarly, the Galilean transformation can reduce (4.2) into a complex-valued form of
(4.1), however, where we take u to be a real-valued function. In fact, the fifth order
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KdV equation indeed can be excluded from the third derivative term, (see [12]), where
its prolongation structure was considered.

As in Section 2, under the condition that a(k) 6=0 for {k∈C|Imk≥ 0}, the corre-
sponding RH problem associated with (4.1) is

{

N+(x,t;k)=N−(x,t;k)v(x,t;k), k∈R,

N(x,t;k)→ I, k→∞,
(4.3)

where the jump matrix v(x,t;k) is defined by

v(x,t;k)=

(

1+ |r(k)|2 r̄(k)e−tθ(k)

r(k)etθ(k) 1

)

,

r(k)=
b̄(k)

a(k)
, θ(k)=2i(16βk5−kξ), ξ= x

t
.

(4.4)

Also we have

r(−k)= r(k̄), k∈R. (4.5)

Moreover, the relation between the solution u(x,t) of the Equation (4.1) and N(x,t;k)
is

u(x,t)=−2i lim
k→∞

(kN(x,t;k))12. (4.6)

For this case, there are two real and pure imaginary critical points of θ(k) located at
the points ±k0 and ±ik0, where

k0=
4

√

ξ

80β
. (4.7)

Our aim in this section is to find the asymptotics of solution u(x,t) to the Equation

(4.1) in region 0<x≤Mt
1
5 , where M> 1 is a constant. We see that as t→∞, the

critical points ±k0 approach 0 at least as fast as t−
1
5 , i.e., k0≤

(

M
80β

)
1
4 t−

1
5 . We will

show that the asymptotics of the solution u(x,t) in this region is given in terms of the
solution of a fourth order Painlevé II equation.

Let Γ⊂C denote the contour Γ=R∪Γ1∪Γ2, where

Γ1= {k0+ le
πi
6 |l≥ 0}∪{−k0+ le

5πi
6 |l≥ 0},

Γ2= {k0+ le−
πi
6 |l≥ 0}∪{−k0+ le−

5πi
6 |l≥ 0},

(4.8)

and we orient Γ to the right. Let V and V∗ denote the triangular domains shown in
Figure 4.1.

Denote

P= {(x,t)∈R
2|0<x≤Mt

1
5 ,t≥ 3}.

By Lemma 3.2, we also have the following analytic approximation lemma for r(k).

Lemma 4.1. There exists a decomposition

r(k)= ra(x,t,k)+rr(x,t,k), k∈ (−∞,−k0)∪(k0,∞), (4.9)
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Fig. 4.1. The oriented contour Γ and the sets V and V∗.

where the functions ra and rr satisfy the following properties:

(i) For (x,t)∈P, ra(x,t,k) is defined and continuous for k∈V̄ and analytic for V.
(ii) The function ra satisfies

|ra(x,t,k)|≤
C

1+ |k|2 e
t
4 |Reθ(k)|, k∈V̄ , (4.10)

and

|ra(x,t,k)−r(k0)|≤C|k−k0|e
t
4 |Reθ(k)|, k∈V̄ . (4.11)

(iii) The L1,L2 and L∞ norms of the function rr(x,t, ·) on (−∞,−k0)∪(k0,∞) are
O(t−3/2) as t→∞ uniformly with respect to (x,t)∈P.

(iv) The following symmetries hold:

ra(x,t,k)= ra(x,t,−k̄), rr(x,t,k)= rr(x,t,−k̄). (4.12)

The first transform is as follows:

N (1)(x,t;k)=N(x,t;k)×



































(

1 0

−ra(x,t,k)etθ(k) 1

)

, k∈V ,
(

1 ra(x,t,k̄)e
−tθ(k)

0 1

)

, k∈V∗,

I, elsewhere.

(4.13)

Then we obtain the RH problem

N
(1)
+ (x,t;k)=N

(1)
− (x,t;k)v(1)(x,t,k) (4.14)
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on the contour Γ depicted in Figure 4.1. The jump matrix v(1)(x,t,k) is given by

v
(1)
1 =

(

1 0

rae
tθ 1

)

, v
(1)
2 =

(

1 r̄ae
−tθ

0 1

)

,

v
(1)
3 =

(

1 r̄e−tθ

0 1

)(

1 0

retθ 1

)

, v
(1)
4 =

(

1 r̄re
−tθ

0 1

)(

1 0

rre
tθ 1

)

,

where v
(1)
i denotes the restriction of v(1) to the contour labeled by i in Figure 4.1.

Let us introduce the new variables y and z by

y=
−x

(20βt)
1
5

, z=(20βt)
1
5 k, (4.15)

such that

tθ(k)=2i

(

4

5
z5+yz

)

. (4.16)

We now have −C≤ y< 0. Fix ε> 0 and let Dε(0)= {k∈C||k|<ε} denote the open disk
of radius ε centered at the origin. Let Γε=(Γ∩Dε(0))\((−∞,−k0)∪(k0,∞)). Let Z

denote the contour defined in (B.1) with z0=(20βt)
1
5 k0= 4

√−y/
√
2. The map k 7→ z

maps Γε onto Z∩{z∈C||z|< (20βt)
1
5 ε}. We write Γε=∪3

j=1Γ
ε
j , where Γε

j denotes the

inverse image of Zj∩{z∈C||z|< (20βt)
1
5 ε} under this map, see Figure 4.2. For large t

Fig. 4.2. The oriented contour Γ̂ and Γε.

and fixed z, the jump matrices {v(1)j }41 tend to the matrix vZ defined in (B.3) if we set

s= r(0). Thus we expect that N (1) approaches the solution N0(x,t,k) defined by

N0(x,t;k) :=NZ(s,y,z,z0) (4.17)

for large t, where NZ(s,y,z,z0) is the solution of the model RH problem for (B.2) with
z0= 4

√−y/
√
2. Moreover, if (x,t)∈P , then (y,t,z0)∈P, where P is the parameter subset

defined in (B.4). Thus, Lemma B.1 ensures that N0 is well-defined by (4.17).

Lemma 4.2. For each (x,t)∈P, the function N0(x,t;k) defined in (4.17) is an analytic
function of k∈Dε(0)\Γε such that

|N0(x,t;k)|≤C, (x,t)∈P , k∈Dε(0)\Γε. (4.18)
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Across Γε, N0 obeys the jump condition N0
+=N0

−v
0, where the jump matrix v0 satisfies,

for 1≤n≤∞,

‖v(1)−v0‖Ln(Γε)≤Ct−
1
5 (1+

1
n
), (x,t)∈P . (4.19)

Furthermore, as t→∞, we have

‖N0(x,t;k)−1−I‖L∞(∂Dε(0))=O(t
− 1

5 ), (4.20)

and

1

2πi

∫

∂Dε(0)

(N0(x,t;k)−1−I)dk=− iN0
1 (y)

(20βt)
1
5

, (4.21)

where

N0
1 (y)=

(

−2
∫ y

∞u2p(y
′)dy′ up(y)

up(y) 2
∫ y

∞u2p(y
′)dy′

)

. (4.22)

Proof. The analyticity and boundedness of N0 are a consequence of Lemma B.1.
Moreover,

v(1)−v0=







































(

0 0
(ra(x,t,k)−r(0))etθ 0

)

, k∈Γε
1,

(

0 (ra(x,t,k̄)−r(0))e−tθ

0 0

)

, k∈Γε
2,

(

|r(k)|2−|r(0)|2 (r(k)−r(0))e−tθ

(r(k)−r(0))etθ 0

)

, k∈Γε
3.

(4.23)

For k=k0+ le
πi
6 , 0≤ l≤ ε, we obtain

Reθ(k)=−16βl2(l3+5
√
3k0l

2+20k20l+10
√
3k30)≤−16β|k−k0|5.

On the other hand, if |k−k0|≥k0, then |k−k0|≥ |k|/2, and hence

e−12βt|k−k0|5 ≤ e−
3
8βt|k|

5

.

If |k−k0|<k0, then |k|≤Ct− 1
5 , and so

e−12βt|k−k0|5 ≤ 1≤Ce− 3
8βt|k|

5

.

Thus, for k=k0+ le
πi
6 , 0≤ l≤ ε, we find

e−
3
4 t|Reθ|≤ e−12βt|k−k0|5 ≤Ce− 3

8βt|k|
5 ≤Ce− 3

160 |z|
5

. (4.24)

As a consequence, we have

|v(1)−v0|≤C|ra(x,t,k)−r(k0)|etReθ+C|r(k0)−r(0)|etReθ

≤C|k−k0|e−
3
4 t|Reθ|+Ck0e

−t|Reθ|≤C|zt−1
5 |e− 3

160 |z|
5

.
(4.25)

A similar computation shows that (4.25) also holds for k=−k0+ le
5πi
6 , 0≤ l≤ ε. Con-

sequently, writing l= |z|,

‖v(1)−v0‖L∞(Γε
1)
≤Ct− 1

5 , (4.26)
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and

‖v(1)−v0‖L1(Γε
1)
≤C

∫ ∞

0

lt−
1
5 e−

3
160 l

5 dl

t
1
5

≤Ct− 2
5 . (4.27)

Using the general inequality ‖f‖Ln ≤‖f‖1−1/n
L∞ ‖f‖1/nL1 , (4.19) holds for k∈Γε

1. Similar
estimates applying to Γε

j , j=2,3 show that (4.19) holds.

The variable z=(20βt)
1
5 k satisfies |z|=(20βt)

1
5 ε if |k|= ε. Thus, equation (B.5)

yields

N0(x,t;k)= I+
iN0

1 (y)

(20βt)
1
5 k

+O(t−
2
5 ), k∈∂Dε(0), t→∞. (4.28)

Thus, (4.20) and (4.21) follow from (4.28) and Cauchy’s formula.

Let Γ̂=Γ∪∂Dε(0) and assume that the boundary of Dε(0) is oriented counterclock-
wise, see Figure 4.2. Define N̂(x,t;k) by

N̂(x,t;k)=

{

N (1)(x,t;k)N0(x,t;k)−1, k∈Dε(0),

N (1)(x,t;k), k∈C\Dε(0),
(4.29)

then N̂(x,t;k) satisfies the following RH problem

N̂+(x,t;k)= N̂−(x,t;k)v̂(x,t;k), k∈ Γ̂, (4.30)

where the jump contour Γ̂=Γε∪∂Dε(0)∪(R\ [−k0,k0])∪ Γ̂′, Γ̂′=Γ\(R∪Dε(0)) is de-
picted in Figure 4.2, and the jump matrix v̂(x,t;k) is given by

v̂=











N0
−v

(1)(N0
+)

−1, k∈ Γ̂∩Dε(0),

(N0)−1, k∈∂Dε(0),

v(1), k∈ Γ̂\Dε(0).

(4.31)

Lemma 4.3. Let ω̂= v̂−I. For each 1≤n≤∞, the following estimates hold:

‖ω̂‖Ln(∂Dε(0))≤Ct−
1
5 , (4.32)

‖ω̂‖Ln(Γε)≤Ct−
1
5 (1+

1
n
), (4.33)

‖ω̂‖Ln(R\[−k0,k0])≤Ct−
3
2 , (4.34)

‖ω̂‖Ln(Γ̂′)≤Ce−ct. (4.35)

Proof. The estimate (4.32) follows from (4.20). For k∈Γε, we have

ω̂=N0
−(v

(1)−v0)(N0
+)

−1,

as a consequence, (4.18) and (4.19) imply (4.33). On R\ [−k0,k0], the jump matrix ω̂
only involves the small remainder rr, so the estimate (4.34) holds as a consequence of
Lemma 4.1 and (4.18). Finally, (4.35) follows from e−t|Reθ|≤Ce−ct uniformly on Γ̂′.

As the discussion in Subsection 3.3, the estimates in Lemma 4.3 show that the RH
problem (4.30) for N̂ has a unique solution given by

N̂(x,t;k)= I+
1

2πi

∫

Γ̂

(µ̂ω̂)(x,t;s)
ds

s−k , (4.36)
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where µ̂= I+(I− Ĉŵ)
−1ĈŵI, and Ĉŵf = Ĉ−(fŵ), Ĉ denotes the Cauchy operator as-

sociated with Γ̂. Moreover, the function µ̂(x,t;k) satisfies

‖µ̂(x,t; ·)−I‖L2(Σ̂)=O(t
− 1

5 ), t→∞, (x,t)∈P . (4.37)

It follows from (4.36) that

lim
k→∞

k(N̂(x,t;k)−I)=− 1

2πi

∫

Γ̂

(µ̂ω̂)(x,t;k)dk. (4.38)

By (4.21), (4.32) and (4.37), we can get

− 1

2πi

∫

∂Dε(0)

(µ̂ω̂)(x,t;k)dk

=− 1

2πi

∫

∂Dε(0)

ω̂(x,t;k)dk− 1

2πi

∫

∂Dε(0)

(µ̂(x,t;k)−I)ω̂(x,t;k)dk

=− 1

2πi

∫

∂Dε(0)

(

(N0)−1(x,t;k)−I
)

dk+O(‖µ̂−I‖L2(∂Dε(0))‖ŵ‖L2(∂Dε(0)))

=
iN0

1 (y)

(20βt)
1
5

+O(t−
2
5 ), t→∞.

Using (4.33) and (4.37), we have

∫

Γε

(µ̂ω̂)(x,t;k)dk=

∫

Γε

ω̂(x,t;k)dk+

∫

Γε

(µ̂(x,t;k)−I)ω̂(x,t;k)dk

≤‖ω̂‖L1(Γε)+‖µ̂−I‖L2(Γε)‖ω̂‖L2(Γε)

≤Ct− 2
5 , t→∞.

By (3.34) and (3.37), the contribution from R\ [−k0,k0] to the right-hand side of (4.38)

is O(t−
3
2 ), and similarly, by (3.35) and (3.37), the contribution from Γ̂′ to the right-hand

side of (4.38) is O(e−ct), as t→∞. Thus, we obtain the following important relation

lim
k→∞

k(M̂(x,t;k)−I)= iN0
1 (y)

(20βt)
1
5

+O(t−
2
5 ), t→∞. (4.39)

Recalling the definition of N0
1 (y) in (4.22) and the relation (4.6), we obtain our another

main result stated in the Theorem 1.2.

Remark 4.1. We did not directly consider the asymptotic behavior of the solution to
Equation (1.2) in region P because there is no suitable scale transformation to eliminate
t from the coefficients of k3 and k5 terms of the phase function Φ(k) given by (3.2) at
the same time.
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Fig. A.1. The oriented contour Y .

Appendix A. Fourth order Painlevé II RH problem. Let Y denote the
contour Y =Y1∪Y2 oriented as in Figure A.1, where

Y1= {leπi
6 |l≥ 0}∪{le5πi

6 |l≥ 0}, Y2= {le−πi
6 |l≥ 0}∪{le− 5πi

6 |l≥ 0}.

Lemma A.1 (Fourth order Painlevé II RH problem). Let s∈C be a complex number.
Then the following RH problems parametrized by y∈R,s∈C:

{

NY
+ (y,z)=NY

− (y,z)vY (y,z), z∈Y,
NY (y,z)→ I, z→∞,

(A.1)

where the jump matrix vY (y,z) is defined by

vY (y,z)=



















(

1 0

se2i(
4
5 z

5+yz) 1

)

, z∈Y1,
(

1 s̄e−2i( 4
5 z

5+yz)

0 1

)

, z∈Y2.
(A.2)

has a unique solution NY (y,z) for each y∈R. Moreover, there exists smooth functions
{NY

j (y)}4 of y∈R with decay as y→∞ such that

NY (y,z)= I+
4
∑

j=1

NY
j (y)

zj
+O(z−5), z→∞, (A.3)

uniformly for y in compact subsets of R and for argz∈ [0,2π]. The leading coefficient
NY

1 is given by

NY
1 (y)= i

(

−2
∫ y

∞u2p(y
′)dy′ up(y)

up(y) 2
∫ y

∞u2p(y
′)dy′

)

, (A.4)

where the real-valued function up(y) satisfies the following fourth order Painlevé II equa-
tion (see [20])

u
′′′′

p (y)+40u2p(y)u
′′

p (y)+40up(y)u
′2
p (y)+96u5p(y)+4yup(y)=0. (A.5)
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Proof. The jump matrix vY admits the symmetries

vY (y,z)= (vY )†(y,z̄)= vY (y,−z̄). (A.6)

We infer from the first of these symmetries that the RH problem for NY (y,z) admits
a vanishing lemma, as a consequence, there exists a unique solution NY (y,z) which
admits an expansion of the form (A.3). Assume that

(NY )−1(y,z)= I+

4
∑

j=1

ϕj(y)

zj
+O(z−5), (A.7)

a direct calculation shows that

ϕ1=−NY
1 , ϕ2=(NY

1 )2−NY
2 , ϕ3=N

Y
1 N

Y
2 +NY

2 N
Y
1 −(NY

1 )3−NY
3 , (A.8)

ϕ4=(NY
1 )4+NY

1 N
Y
3 +NY

3 N
Y
1 −(NY

1 )2NY
2 −NY

1 N
Y
2 N

Y
1 −NY

2 (NY
1 )2+(NY

2 )2−NY
4 .

Let φ(y,z)=NY (y,z)e−i( 4
5 z

5+yz)σ3 . Then the function Y(y,z) defined by

Y=φyφ
−1=(NY

y − izNY σ3)(N
Y )−1 (A.9)

is an entire function of z, hence according to (A.3), (A.7) and (A.8), we have

Y(y,z)=−izσ3+i[σ3,N
Y
1 ]. (A.10)

Thus, we find

NY
y − izNY σ3=YNY . (A.11)

Substituting the expansion (A.3) into (A.11) and collecting terms with O(z−n), one can
get

NY
1y+i[σ3,N

Y
2 ]= i[σ3,N

Y
1 ]NY

1 ,

NY
2y+i[σ3,N

Y
3 ]= i[σ3,N

Y
1 ]NY

2 ,

NY
3y+i[σ3,N

Y
4 ]= i[σ3,N

Y
1 ]NY

3 .

(A.12)

Accordingly, since

Z=φzφ
−1=

(

NY
z − i(4z4+y)NY σ3

)

(NY )−1 (A.13)

is entire, and thus we get

Z=Z0+Z1z+Z2z
2+Z3z

3+Z4z
4. (A.14)

Substituting the expansion (A.3) and (A.7) into (A.13), it follows from (A.8) and (A.12)
that

Z4=−4iσ3, Z3=4i[σ3,N
Y
1 ], Z2=−4NY

1y, Z1=−4NY
2y+4NY

1yN
Y
1 ,

Z0=−4NY
3y−4NY

1y(N
Y
1 )2+4NY

1yN
Y
2 +4NY

2yN
Y
1 − iyσ3.

(A.15)
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We have shown that φ obeys the Lax pair equations

{

φy =Yφ,
φz =Zφ, (A.16)

where Y and Z are given by (A.10) and (A.14), respectively.
The symmetries (A.6) of the jump matrix vY (y,z) implies that NY (y,z) satisfies

the symmetries

NY (y,z)= (NY )†(y,z̄)−1=σ2N
Y (y,−z)σ2. (A.17)

In particular, the coefficients NY
1 (y), NY

2 (y) and NY
3 (y) satisfy

NY
1 =−(NY

1 )†=−σ2NY
1 σ2,

NY
2 =σ2N

Y
2 σ2, N

Y
3 =−σ2NY

3 σ2.
(A.18)

Therefore, we can write

NY
1 (y)=

(

ψ1(y) ψ2(y)
ψ2(y) −ψ1(y)

)

,

NY
2 (y)=

(

f1(y) f2(y)
−f2(y) f1(y)

)

,

NY
3 (y)=

(

g1(y) g2(y)
g2(y) −g1(y)

)

,

(A.19)

where {ψj(y),fj(y),gj(y)}21 are complex-valued functions and ψ1(y),ψ2(y)∈ iR. Then
the compatibility condition

Yz−Zy+YZ−ZY=0 (A.20)

of the Lax pair (A.16) can then be rewritten as

−iσ3−Z0y+i[σ3,N
Y
1 ]Z0− iZ0[σ3,N

Y
1 ]=0, (A.21)

since one can directly calculate that the coefficients of z,z2,z3 and z4 in (A.20) vanish
identically. On the other hand, substituting (A.19) into (A.12), we find































ψ′
1=2iψ2

2 ,

ψ′
2+2if2=−2iψ1ψ2,

f ′
1=−2iψ2f2,

f ′
2+2ig2=2iψ2f1,

g′1=2iψ2g2.

(A.22)

Substituting (A.19) into (A.21) and using above relations, it follows from (12)-entry of
(A.21) that

ψ′′′′
2 −40ψ2

2ψ
′′
2 −40ψ2ψ

′2
2 +96ψ5

2+4yψ2=0, (A.23)

however, the (11)-entry of (A.21) vanishes identically. If we set ψ2(y)= iup(y), then
up(y) satisfies the fourth order Painlevé II equation (A.5). The lemma follows.
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Fig. B.1. The oriented contour Z.

Appendix B. Model RH problem for sector P. Given a number z0≥ 0, let Z
denote the contour Z=Z1∪Z1∪Z3, where the line segments

Z1= {z0+ le
πi
6 |l≥ 0}∪{−z0+ le

5πi
6 |l≥ 0},

Z2= {z0+ le−
πi
6 |l≥ 0}∪{−z0+ le−

5πi
6 |l≥ 0},

Z3= {l|−z0≤ l≤ z0}
(B.1)

are oriented as in Figure B.1. It turns out that the long-time asymptotics in the sector
P is related to the solution NZ of the following family of RH problems parametrized
by y< 0,s∈C,z0≥ 0:

{

NZ
+ (s,y,z,z0)=N

Z
−(s,y,z,z0)v

Z(s,y,z,z0), z∈Z,
NZ(s,y,z,z0)→ I, z→∞,

(B.2)

where the jump matrix vZ(s,y,z,z0) is defined by

vZ(s,y,z,z0)=







































(

1 0

se2i(
4
5 z

5+yz) 1

)

, z∈Z1,

(

1 s̄e−2i( 4
5 z

5+yz)

0 1

)

, z∈Z2,

(

1 s̄e−2i( 4
5 z

5+yz)

0 1

)(

1 0

se2i(
4
5 z

5+yz) 1

)

, z∈Z3.

(B.3)

Lemma B.1 (Model RH problem for sector P). Define the parameter subset

P= {(y,t,z0)∈R
3|−C1≤ y< 0,t≥ 3, 4

√−y/
√
2≤ z0≤C2}, (B.4)

where C1,C2> 0 are constants. Then for (y,t,z0)∈P, the RH problem (B.2) has a unique
solution NZ(s,y,z,z0) which satisfies

NZ(s,y,z,z0)= I+
i

z

(

−2
∫ y

∞u2p(y
′)dy′ up(y)

up(y) 2
∫ y

∞u2p(y
′)dy′

)

+O

(

1

z2

)

, z→∞, (B.5)

where up(y) denotes the solution of the fourth order Painlevé II equation (A.5) and
NZ(s,y,z,z0) is uniformly bounded for z∈C\Z. Furthermore, NZ obeys the symmetries

NZ(s,y,z,z0)= (NZ)†(s,y,z̄,z0)
−1=σ2N

Z(s,y,−z,z0)σ2. (B.6)
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Proof. Note that

Re

(

2i

(

4

5
z5+yz

))

≤ l2
(

− 4

5
l3−4

√
3z0l

2−16z20l−8
√
3z30

)

for all z= z0+ le
πi
6 and z=−z0+ le

5πi
6 with l≥ 0,z0≥ 0 and −4z40 ≤ y< 0. Thus, we have

|e2i( 4
5 z

5+yz)|≤Ce−|z±z0|2( 4
5 |z±z0|3+4

√
3z0|z±z0|2+16z2

0 |z±z0|+8
√
3z3

0), z∈Z1.

Analogous estimates hold for z∈Z2. However, |e±2i( 4
5 z

5+yz)|=1 for z∈Z3, this shows
that vZ → I exponentially fast as z→∞.

The jump matrix vZ obeys the same symmetries (A.6) as vY . In particular, vZ

is Hermitian and positive definite on Z∩R and satisfies vZ(s,y,z,z0)= (vZ)†(s,y,z,z0)
on Z \R. This implies the existence of a vanishing lemma from which we deduce the
unique existence of the solution NZ . The symmetries (B.6) follow from the symmetries
of vZ . Moreover, the RH problem (B.2) for NZ(s,y,z,z0) can be transformed into the
RH problem (A.1) for NY (y,z) up to a trivial contour deformation. Thus (B.5) follows
from (A.3) and (A.4).
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