COMMUN. MATH. SCI. (© 2019 International Press
Vol. 17, No. 7, pp. 1795-1839

LINEARIZED ASYMPTOTIC STABILITY OF
RAREFACTION WAVES FOR GAS DYNAMICS IN THERMAL
NONEQUILIBRIUM AND LIFE SPAN OF SOLUTIONS*

TAO LUO' AND HUA ZHONGH

Abstract. For the one-dimensional gas flow in vibrational nonequilibrium, the linearized asymp-
totic stability of rarefaction waves is obtained in this paper with convergence rate, and the life-span of
the solution in terms of the rarefaction wave strength is also given when the initial data are perturba-
tions of a smooth rarefaction wave of the equilibrium of the compressible Euler equations. The main
feature of the problems is that the L?-norm of the perturbations may grow in time.
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1. Introduction
Gas dynamics in vibrational nonequilibrium in 1D is governed by the following
equations in Lagrangian coordinates (see [25,27,34]):

vy — Uy =0,
UtJpr: 9

0
(e+ %), + (up), =0,
Q—q =X,

(1.1)

qr =~

where z€R!, t>0, v, u, p, e, ¢ and Q denote the specific volume, the velocity, the
pressure, the internal energy, vibrational energy and local equilibrium value of ¢, re-
spectively, 7 >0, is local relaxation time. In the non-equilibrium thermal dynamical
process discussed in this paper, it is assumed that the translational and rotational en-
ergy adjust quickly enough to keep in translational and rotational equilibrium, but the
vibrational energy may take a longer time to adjust. In order to describe the process
of translational and rotational motion and vibrational motions, we use e1, T} and s; to
denote the total of the translational and rotational energy of the molecules, the common
temperature and the total entropy of translational and rotational modes, respectively.
Similarly, g, T and sy are introduced to describe the vibrational energy, vibrational tem-
perature and vibrational entropy, respectively. For vibrational nonequilibrium mode,
these two modes obey different thermodynamic laws:

$=81+ 82,
de1 =Tids1 — pdv, (1.2)
dq = T2d82.

In this paper, for the simplicity of presentation, we consider the case that the thermal
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dynamical variables satisfy the following constitutive relations [27]:

6:61+Qa61:%pv:%Th
R
Q=" pv=""T =w(Ty),

s1=R(Inv+ §lney), so= ag—Rlnq, s=51+ 52, (1.3)
q= agiRTQ :UJ(TQ),
X:Q_qa

where «, ay are positive constants, denoting the degrees of the freedom adjusting in-
stantaneously and taking longer to relax, respectively. R>0 is a constant and we take
R=1 for convenience.

It is expected that, if the relaxation time 7 is taken to be so short that ¢= ‘%fpv is
an adequate approximation to the last equation of (1.1), the solution to the vibrational
nonequilibrium system (1.1) should well approximate the corresponding equilibrium
system:

Vg — Uy =0,
Uy +pz =0, (1.4)
(e1+ S pv+ %)+ (up). =0,
which can be obtained by letting T3 =T5 or @ takes the value of ¢ in (1.1). The
equilibrium entropy s is then given by
s=Ilnv+ %lnel + %ln@

a o «
:lnv+§ln61+?fln(?fpv). (1.5)

Noting that e; = §pv, in this case, the equilibrium pressure p as a function of v and the
equilibrium entropy s is given by

p=p(v,s)=Kv 770", (1.6)

where

:1 5
7 +oz+af

(ere)

System (1.4) is strictly hyperbolic with three characteristic speeds:

Ai(v,5)=— K’YU_(W'U@(W;I)S,)\Q:& A3 = va—(vﬂ)e@.

System (1.1) is a hyperbolic system with relaxation, which may induce certain dis-
sipative effects. Extensive study has been made in literature on the global regularity
and long-time behavior for some inhomogeneous quasilinear hyperbolic systems, mainly
due to the dissipative effects induced by the inhomogeneous terms through the strong
coupling with the flux functions. A typical version for such a coupling is the Shizuta-
Kawashima condition, [22]. However, as one of the most important physical systems of
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hyperbolic conservation laws with relaxation, (1.1) does not satisfy those conditions of
coupling, particulary, the Shizuta-Kawashima condition [22], as pointed out in [34]. This
implies that, the dissipation of the relaxation has no effect on some variables for system
(1.1), the relaxation term does not have, on all the equilibrium characteristic directions,
a positive projection on the linear level. Therefore, compared with many dissipative hy-
perbolic systems, the dissipation of (1.1) induced by the relaxation is extremely weak,
too weak to dominate the hyperbolicity. This makes it a challenging task to inves-
tigate the global regularity and long-time and small-relaxation behavior of solutions,
which is important to understand the physical process from thermal non-equilibrium
to equilibrium. In this direction, the global existence and the pointwise behavior of
smooth solutions are obtained in [34] for the initial value problem of (1.1), while the
pointwise behavior of smooth solutions is obtained too for gas flows with several ther-
mal nonequilibrium modes in [35]. For the thermal non-equilibrium gas flow in three
space dimensions, the pointwise estimates for the Green’s functions linearized around a
constant state is given in [36], and the global existence of the smooth irrotational flow
was proved in [7].

It should be noted that all results mentioned above concerning with system (1.1)
concentrate on the global well-posedness for small perturbations around constant equi-
librium states. As one of most important physical models of hyperbolic conservation
laws with relexation, it is important to understand the nonlinear wave propagations
such as shock waves and rarefaction waves, the most important nonlinear waves in gas
dynamics [3]. In this direction, the nonlinear asymptotic stability of shock profile, a
traveling wave solution for (1.1), has been proved in [18]. In this paper we turn our
attention to the asymptotic behavior of the solution to the Cauchy problem for the
system (1.1) being a perturbation around a rarefaction wave. This topic has been one
of the fundamental and important issues in fluid mechanics since rarefaction wave is one
elementary wave of gas dynamics. For instance, the results on the nonlinear asymptotic
stability of rarefaction waves for compressible Navier-Stokes equations for large time or
small viscosity can be found in [4,6,8-12,14,19-21, 30, 31, 31, 38] and general viscous
conservation laws ( [16,29, 33]). The related results for Boltzmann equations can be
found in [15] and [31]. For some model problems of hyperbolic system with relaxation,
the nonlinear asymptotic stability of rarefaction waves as either time goes to infinity
or the relaxation parameter goes to zero has been studied in [5,13,17,26,32,37]. It
should be noted that, in most of these works, the systems discussed are 2 x 2 so that
the equilibrium equation is scalar, except some for the Broadwell model of the discrete
Boltzmann equation which is semilinear. Unlike (1.1), all these systems satisfy the
Shizuta-Kawashima condition.

One may find discussions on the general structure of hyperbolic systems with re-
laxation in [2] including the dissipative structure and entropy.

In this paper, we are interested in the behavior of solutions to the Cauchy problem
of (1.1) for the thermal non-equilibrium gas dynamics, which are perturbations of a
rarefaction wave for the equilibrium system. It is well-known that there are two families
of rarefaction waves for the Euler system (1.4), see [23]. For illustration, we only discuss
the 1-rarefaction wave and assume sy =s_ =35. Actually the case of 3-rarefaction wave
can be dealt with similarly. A centered 1—rarefaction wave of (1.4) connecting two
constant states (v_,u_,s_) and (vy,u4,S4) with

v _
vy >v_>0,8.=5_=§ ur —u_= 7/ A (z,8)dz, pt :Kvivehfl)s
v
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is a self-similar solution in the form (v",u",s")(x/t) to (1.4) given by [23],

)\1(1} 7§):%7 (17)

for A1(v_,5) <% <Ai(vg,5) and

U_,0_,5_), T <A (v_),
(0,5) () =1 | b i<l (19)
(ug,v4,54), 7> A1(v4)
The corresponding pressure is given by
x TN (y—1)s
P =k (v(3) eV (19)

The centered rarefaction wave is only Lipschitz continuous but not smooth, a smooth
rarefaction wave which is time-asymptotically equivalent is constructed as follows (cf.
[20]): For two constants wy >w_, let w!® be the globally defined smooth solution to the
following Cauchy problem for Burgers’ equation:

{wt—i-(“;) =0, r€RLE>0, (1.10)

w(x,0) =wo(z) = ’”*;71”’—&—%%f0“(1 +y?)"2dy, xR,

where € >0 and k is a constant such that Kuf (1+y?)~2dy=1. As in [4,20], the smooth
rarefaction wave (uft,p%,s%)(x,t) for (1.4) is obtained as follows:

stz t)=5,=5_=5,
Ra,148) = A (07,5) = — /Ky (0R) -0

uft(x,t) = ui—l—fv (xt) (=X1(2,3))dz, (1.11)

pf(z,t)=K(v")~ 76(” b3,

wt =M (v+,3), Ao (v,5)>0.

(y—1)s
Pl

As mentioned earlier, the dissipation of (1.1) is very weak. Also, unlike the traveling
wave solution of a shock profile which solves the non-equilibrium system (1.1) exactly,
the rarefaction wave is only a solution of the equilibrium system which does not solve
(3.1), there is a non-integrable-in-time error. This prevents us from obtaining the bounds
on the L? norm of ||(u—uf,p—pf, x,s—s%)||. Therefore, we turn to investigating the
linearized stability of the rarefaction wave first. That is to consider the asymptotic
behavior of solutions to the Cauchy problem for linearized system of (3.1):

(PR+¢)t+5I£1/)mJrﬂgueraozfgéf)*al%UfC*al%X:*72%7
(u R+¢)t+(PR+¢)x=

Xe+ 2L (pPul + pRyp, + gull) = - 2L X
(5R+C)t—

(1.12)

where

(¢7¢7X7<) :(p_pRuu_uR7X7s_sR)a
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a+2 2a+2)(a+ar+1) 2(a+2)
B: ;a0 = ,a1 = .
ala+ar+2)

= 1.13
! ala+ar+2) (1.13)
The basic idea for the linearization is to take u, p, x and s as independent variables,
and view v as a function of p, x and s. Then an implicit function F' was introduced to
linearize v by implicit function theorem (Section 3). The details of this derivation of
the linearization can be found in Section 3. Let

0=|uy —u_|+|vy—v_|.
We then consider the Cauchy problem of (1.12) with the initial data

(0.0, x,¢)(2,0) = (¢0,%0,x0,%0) (), zER. (1.14)

Then we have the following theorem on the linearized stability of the rarefaction wave.

THEOREM 1.1. Let (u*,p®,s%) be the smooth 1-rarefaction wave of the equilibrium
system (1.4) given by (1.11) with e=8"2. For the Cauchy problem of the linearized
system (1.12) and (1.14) with the initial data satisfying (éo,v0,X0,C0) € H(RY), it holds
that, for all t>0,

16,6, Ol o qay < CA+7 (54(2+0)+1), 66 Hllen <, (115)

for some constant C independent of t, provided the wave strength 6 =|uy —u_|+|vy —
v_| is suitably small.

Unlike the estimates for perturbation of rarefaction waves for other models, for
instance, cf. [19,29], where the L? of the perturbations are bounded in time. The
interesting feature for the thermal non-equilibrium system (1.1) is that the L? norm
of the perturbation (¢,1,x) actually grows in time at the rate of (In(1 —&—t))% (Section
3.2). Whereas the L? norm of the first derivatives of the perturbation, (¢u,vs,Xz),
are found to decay at the rate bounded by (1+1%)~ % (In(1+1))z (Section 3.3). Hence
by Sobolev’s inequality, we find the decay of the perturbation in L°° is bounded by
(1+t)~Y16(In(141))*/? on the linear level.

We now turn to the original nonlinear problem (1.1). We consider the Cauchy
problem of (1.1) with the initial data

(Uauap7Q)(x70) = (U07 Uo, panO)(x)a $6R17 (116)
satisfying

v<wo(x) <0, p<po(x)<p

h
IN
S
o

8
~—
IN
=

8

m

A
\‘l—‘

for some positive constants v, v, p, p, q, .
The initial data of x and s are given through (1.3), i. e.,

x(@,0) = Q(x,0) — go(w) = (Fpovo — o) (2) =t xo ), =R,

5(2,0) =51 (2,0) + s2(x,0) =: 59 (), z €R',
with

OéfR

5 Ingo(z).

s1(z,0)= (lnvoJr%ln(%povo)) (), s2(z,0)=
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The second result in this paper is concerned with the life-span of smooth solutions
in terms of the rarefaction wave strength 0 for the nonlinear problem with the initial
data being a small perturbation of a rarefaction wave:

THEOREM 1.2. Suppose the constant states (vy,ut,pt,s+) are connected by a centered
1-rarefaction wave (v",u”,p",s") defined by (1.7) and (1.9). Let (vf u® p® s¥) be the
smooth 1-rarefaction wave (v%,upf s%) given by (1.11) with e=6%. Then there
exist positive constants 6o and §1 such that, if

[1(vo —vg',p0 = P§s o — U, X0s 50 — 8) |72 mr) <07,
and
d=:|vy —v_|+|ug —u_| <oy,

then the initial value problem (1.1) and (1.16) admits a unique solution in the time
interval [0, 0o0~>/?] satisfying

(v—vu—uf p—pft x,s—s%)eC((0,T1); HY(RY))NC((0,T1); H*(R!));
(u=u™)y,(p—p™)2) € L2((0,T1); H'(RY)), x € L*((0,T1); H*(R))

and the following estimate

||(’U—'URap_pRau_uRvaS_g)('vt”|?—12(R1)

§C||(v—vR,p—pR,u—uR,X,s—5)(',0)||%12(R1) +C0In(1+67%/2), 0<t<Ty  (1.17)

holds if Ty < 806 3/2 for some constant C' >0 independent of t.

This theorem gives the life span of the solution for the original nonlinear problem
in terms of the strength of the rarefaction wave, d, in the of O(6=3/2), for the initial
data being small perturbations of a smooth rarefaction wave.

REMARK 1.1. When the strength of the rarefaction wave § =0, Theorem 1.2 shows
that the life span of the solution becomes infinite, reducing to the case when the initial
data are small perturbations of a constant equilibrium state as studied in [34]. However,
for a non-trivial rarefaction wave strength § >0, it is not clear whether a global-in-time
solution would be possible for small perturbations. It seems that this problem may not
be handled by the L2-method and the relative-entropy argument used in this paper.
This is due to the following reason: the rarefaction wave of the equilibrium system (1.4)
does not solve the non-equilibrium system (1.1), an error term of the form pfuf /v
appears. On the linear level, this error may induce a growth of the L2-norm of the
perturbation in time at the rate of (In(1+¢))2 and the slow decay of the L2-norm for
the first derivatives at the order of (14¢)~%(In(14t))2 due to the slow decay of the
L?morm of uff of the order of (14¢)~1/2? whose square is not integrable in [0,00) for
time. This difficulty is overcome for other models, for instance, cf. [19,29], satisfying the
classical Shizuta-Kawashima dissipation condition by using strong dissipations. As men-
tioned earlier, the non-equilibrium system (1.1) fails to satisfy the Shizuta-Kawashima
dissipation condition so that the dissipation induced by the relaxation is too weak to
control the time-growth of the L?-norm of the perturbation. In order to investigate the
global existence problem, it seems the more accurate pointwise estimates are needed by
investigating the Green’s function of the linearized system around a rarefaction wave.
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However, this would be extremely challenging as few results are available in the analy-
sis of Green functions for systems linearized around a rarefaction wave, for dissipative
hyperbolic systems or viscous conservation laws.

The rest of this paper is organized as follows. In Section 2, we give a lemma on the
properties of smooth rarefaction waves which can be found in [19,20]. In Section 3, we
first give the details of the linearization of the original nonlinear problem around the
smooth rarefaction wave and prove Theorem 1.1, the linearized stability. Section 4 is
dedicated to certify Theorem 1.2 of the life span of the original nonlinear problem. We
first use the entropy relative to the smooth rarefaction wave to obtain the basic energy.
Second, in order to get the higher-order energy, we take the equivalent form (3.1) instead
of (1.1). We then establish L?-estimates for the first and second derivatives.

Throughout this paper, we use the following notations:
R':= (—OO,—i—OO), R™:= (—O0,0), RT:= (07+OO)7 H : || = || : HL2(R1) || ) HLOo = H : ||L°°(R1)'

We also use [ to denote ffooo unless otherwise stated. Moreover, C' will be used as a
generic constant independent of time ¢.

2. A lemma on the smooth rarefaction wave
LEMMA 2.1.  The smooth solution (v®,uft p® s%) constructed in (1.11) for e=6"/?
has the following properties:
(1) vEE=ult>0 for each (z,t) eR* xR ;
2) For any p with 1 <p<+4o0, there exists a constant C), >0 depending only on p such
( y b g only
that

(ol ull DI Lo (r1) < Cpmin{§3/2 =1/ 51/ (144) =1 H1/P},

||(UR uR R )HLP(RI)SCpmin{62—1/2p751/8—1/8p(1+t)—5/4+1/4p};

xrx? a:m’pzw
(8) There exists a positive constant C such that
1wl 02|l e (rr) < O3 (v ull Py | Loe )
||(fo:c7u§xx’p§xx)|‘L‘X’(Rl) < OCSH(”E7“§7P§)||L"°(R1)7
and
|(off uit,pi) < Cl(vit,ugf,p)-
(4) There exists a positive constant C' such that
(07 =0 P = R — )| ety < Comind 8,641 +£) /3 (In(2-+ )+ [1nd]) ).

The proof of this lemma can be found in [20] (see also [4]).
3. Proof of Theorem 1.1

3.1. Linearization. In this subsection, we derive the linearized system. By
(1.2) and (1.3), we can see that the original system (1.1) is equivalent to

pt"‘ﬂ%um:_ 2x

Tov?

ut+p. =0, 3.1)
+ .

Xt+%puw:_%%a

g = X0 2

;=

Tpvg ~ aytTiT>"
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We may take p,u,x,s as basic unknowns. Also, we observe that

i+ (1+ 22 ) Bruf =,
R R __
w P =0, (3.2)
X" =0,
sf=35
Set
(¢71/}5X7<):(p_pRau_uR7X)S_SR)' (33)

Now, we linearize the system (3.1) around (pf,u®,0,s%=35). We first rewrite the first
equation in (3.1) as

a+2) (pR+ 2
(pR+¢)t+( )(p ¢)(UR+T,ZJ)E:*7X
@ v TQU
For the term
pi+o
T.vus) =2 W),
using the Taylor’s formula to obtain
R R R
pT r, 1 g p p R R 2 2 R\2
f(pav7uiv) - ﬁum + ﬁuz ¢+ ﬁwm - (UR)2 Uy (U—’U )+O(¢ ad)xa<v_v ) )a

where o(¢?,12, (v—v1)?) is the higher order of (¢,1,,v—v%).

If one regards v as an implicit function of other three variables (p,y,s), the implicit
function theorem can be considered to estimate the term v —v*. For this purpose, given
F by

F::F(Uaanv )
«
=s—(=In(= pv)+lnv+ fln( - Pv—x))
2 2 2
0, (3.4)
then we have
E@Zl,
Fv:_aiu_a f)%p 0, f 1l
: v o X;zé or small x,
F :_g_(Tfi)%
p 2p OLTfpv—)(7
Fo_or 1 (3.5)
X2 Hpu—x’
'Uszf%a
o=,
F.
Uy —ﬁ-
Hence
atayp) off 2 2
U*URifMi ’UR§+ l+0(¢2aX27C2)

(a+ar+2)pt"  atar+2 (a+ay+2)pt
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by the Taylor’s formula with higher order o(¢?,x2,(?), and finally

R R
PR, g P
f(pavvuz)*IURum+URum¢)+UR¢1
B pft (= atay f + 2 oRC+ 2 L)
(B2 (a4ap+2) pf a+oy+2 (a+ayp+2)pt

+O(¢)27 3}7X2’C2)‘
We can also obtain

2x 2x
rav  TavR

+o(¢*,x*,¢%).
Combining above expansions, the linearization of the first equation of (3.1) has the form

a+2ph a+2p r o 2(@+2)(atap+1)ull

" +¢)t+7 RV T o oR'E T alatar+2) vR(ZS
2(a+2) pf p 2(a+2) uff 2
alatap+2) v "7 ala+ar+2) (UR)QXi Tavlt

if we drop the higher-order term. Similarly, for the second equation of (3.1), it is easy
to see

()i + (" +¢)e =
and for the third equation of (3.1), we have
o a+ofx
Xt+ff(pRU§+PR¢m+¢U§):*Tf;'

Since (s®+(¢), =

the last equation of (3.1) has the following linearized equation

(5 +()¢=0

Due to the above linearization process, it is easy to get the linearized system (1.12).
By means of (3.2) and (1.12), the linearized system takes the form

‘rp'u ’

R 2 R
¢t+ﬁ%&¢x a(uigf)vRu +a0vR¢ al,URU’ C a1(:f€)2X Tiz,(Ra
=0,
wt +¢m . n wtos (36)
XH‘ L(pfuli+p Yo+ ouy)=——51%,
G=0

where f8,a9,a; are given by (1.13).
Here we first give some estimates for ¢ and ¢, in L? norm by a simple observation
which will be used in the following sections.

LEMMA 3.1.  Suppose that the assumption in Theorem 1.1 holds. Then there exists a
constant C' >0 independent of time such that

(¢, Ca) P (¢ // (€2,¢3) (x,t)dzdt' < C, (3.7)
¢l Lo 1) < C.

Proof. Since vf*=uf, the desired results can be obtained by a simple calculation. O
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3.2. The estimate for ||(¢,v,X)|z2(r1)-
LEMMA 3.2. Under the assumptions in Theorem 1.1, there exists a constant C >0
independent of time such that, for t >0,

(520, %) // (uB¢? + x?)(x,t)dxdt' < Coln(1+1t)+C.

Proof.  For convenience, we rewrite (3.6) by considering a combination of the first
and the third equations in (3.6) to obtain

R 2a ul ul 2
v _ f R x R z X
Iﬁ@ =—[t¢, — alatay) e —aop—RqS—l—aluz C+a PEEX T TapF>

Bt =—Bbx, (3.8)
(56— 22\ =a Yyl + aruliC+ sty +bo 2,

where we define

_ 2(atap+1)  2(a+2)(atar+1l) | a2 _ atasp+l
a2 = atay T alatas+2) +77 az= atay !
s — 2(a+2) _ (a+2)(a+ar+2) b — ator+2
4~ alatar+2) ajlatay) > 07 ey

v

Multiplying the equations in (3.8) by ¢, ¥ and as(¢— :f"‘% X), respectively, where

QOéf

—>0.
alatar+2)

as =

then one can obtain

R R R 2
o () g+ o { o g b e HOED

20t 20t 2 ot pR" ayp aay  TpRoR
ul
a+2
=—B(o¢), +G7UR¢C+G8 R¢X va 5( R)Uf
Qfv
) ul ug
—aias CX+@97X ) (3.9)
pf(vf)?
where
ag =—as+ag+asas —az0as
Catar+l 2(a+2)(atar+l)  2ap(atar+l)
a+af ala+ar+2) alataf)(a+ar+2)
Zag(at2)(atas+l)  2ap(at2)
a?(a+ayp+2)? a?(a+ayp+2)
(a+2)(a2+2afc+3aaf+a) 0
= > s
a?(a+ar+2)
2(a+2)%(a+ay)
a7 =01+ 105 = a?(a+ap+2)?’
a+2 a+2
ag =a1 +aqas — a20as +2asas
af
2(a+2) 22ap(a+2) 2(a+2) +2(a+2)2(a+af+1)

Calatar+2)  o2(at+ar+2)?  alatay) a?(a+ap+2)?
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2 (at2)(atap+1) | 2% (at2)(atar+1)  2(a+2)?
alatap)(at+ar+2)  alat+ap)(at+ar+2) o?(a+ap+2)’

(a+2) <a+2>2
azas
af

a9 = — 0405

~ 2(@+2)? 22(a+2)? 2(a+2)*(atas+1)
Caag(atar) a(atar+2)?  aap(atag)(atapt2)’

Thanks to the positivity of ag, we integrate (3.9) over R x [0,¢], which yields the fol-
lowing inequality

J[CXISING // ul¢? +X?) (.t )dwdt!

<c / / (a8 ¢+ [l x| + [ul ol + [l + ) (o, )ddt + (| (6.6, 2)] 2(0).
(3.10)

Now we deal with the terms on the right hand of (3.10). Due to (3.1), Young’s inequality
implies that

t t t
C/ /|uf¢>(|(x7t’)d:pdt'§é/ /u§¢2(x,t’)dxdt’+c/ /u§g2(x,t')dxdt’
0 0 0
t
g%/ /uf¢2(x,t’)dxdt’+c. (3.11)
0

Similarly, one can get

t t t
C/ /|u§¢x\(x,t’)dxdt’gca/ /ufd)z(x,t’)dxdt'—k%/ /X2(x,t’)dxdt', (3.12)
0 0 0
t t t
c / / luB¢x|(2,t)dadt < C / / ulC?(x,t)dxdt' +C6 / / X2 (") dxdt’
0 0 0

t
SCé/ /Xz(x,t’)dacdt'—i—C, (3.13)
0
¢
C/ /|uRX [(z,t) dmdt’SC’é/ /XQ(x,t’)dxdt’, (3.14)
0
¢ ¢ 1t
C’/ /|u§x|(agt’)dmdt’§0/ /|uf\2(x,t’)dxdt'+f/ /Xg(x,t’)dxdt'
0
< Coln(1+t) + / / () dzdt’ (3.15)

by Young’s inequality, (3.7) and Lemma 2.1. Therefore, based on (3.10)-(3.15), we have
the desired estimate

[[(#,%,x) / / (uBe? +x?) (2, )dadt’ <Coln(1+t)+C (3.16)

if ¢ is small enough, which finishes the proof. ]
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3.3. The estimate for ||(¢s, Vs, Xa)||L2®?)- To control the upper bound for
[|(¢,%,X)|| Lo (1), We shall need to obtain the decay rate for ||(¢z,%s, Xe)||2®r) - First,
we show it is indeed bounded.

LEMMA 3.3.  Assume that the conditions in Theorem 1.1 hold. Then there exists a
constant C' >0 independent of time such that

(6o, xa)I12(2 // (62.02) (@) + X2 (') dedt! < C.

Proof. First, we take a derivative with respect to z and replace the third equation
in (3.6) by a combination of the first and the third ones, then we have

R 9 R R R Wl
== (i)~ () oo (o), oo (et )

2 X
“ralpR)e

wzt = ¢zra

R b
(0 6+ 00— a10Xe)s =y (P ul)s — as(uf)e T a1 (PFUICH )t 2xa (317)

where
_a+2
a/l() — aaif
Testing the equations of (3.17) by (;5:1;, 11z and ( Ro+vB¢, —aio0xs), respec-

tively, where

(a+2)(atos+2)

a1l = 2a; )

a straightforward calculation gives

19 ,\ 10 19
2315( ¢)+28t<11 Rlp) 281&(

¢ ( Z) (§¢+’UR¢$_G/10X$)2

(U§¢+ ’UR¢I - alOXw)2>

+ (a5 +a12) ¢ +a13

R
aioby

(0
PRt

RRRd)x R RR

=—an (ISR%?%) +7W (a5+a12)u3 ¢¢x+a12? )fb%

Ufmx¢x quﬂa¢x u X(bw u;p Uz (wa
+ (a1 +a10) ( (072 + Wiz (vR) ) —amW
a1 +aio

+ B Rl Co, +pult o+ ulCubs) - s p ulolCo,
(% (’U )

b 1 2 g vy o+ plug vyt
(). o)+ o s

ug i’ tufvlog, N pRulvlo¢+pRull vieC+ptulvled,
“ (0F)? “ (vF)?

R(,,R R R
+a1< R ) R (v;) ¢X)+a5a10““¢"2‘7v;;? PaXa

(vf)? GOk
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_na 10 a14
MR TR ) '
where
(a+2)(a+ar+1)
aig2 = )
Qg
(a+2)(a+ar+1)(a+ar+2)
a13 =asai11 = B )
af(atay)
e a —aa?. = 2@+2)”
14 =Q10Q10 = a5 10_aaf(a+af+2)'

Second, we integrate above equality (3.18) over R! and find that

/ ¢2d +f—/a pl%a/JQd:r—kld/l(ngb—kde) —a )de
2dt odt | MR T o | Rz e v (10X
Uz 2 ult R R 2
+/(a5+a12)v—R¢wdaj+/a13 w dx +/( R)s (vwdH—v ¢I—alox$) dx
’LLR a10b0 2
* [ogiagdans [ e
<C / ([usfof dul+ 0l b+ |ulf vl G| + [pFul oG]+ |ulf, du |+ [ufl $0Co

+ lugfo %cl+|ufx¢rx|+luR¢TxT|+lu 2 b x|+ U x| + v dx|+ | (v) 2 x|
+pgug ol o+ lug, ol ol + [ughur 62|+ Ipgugi o Col + [ugh v oC| + [ug v ¢Ca |

+ [ulf ol ox |+ [uf vl dxa |+ [ul ()2 ox| + [P ut x|+ [ul, Xa

+pFul x4 el X €l + [l X Co |+ [l X X |+ [uivE X2 x| da. (3.19)

As for the terms on the right hand of (3.19) invoking u%, or v, we invoke Lemma 2.1,
which in conjunction with Young’s inequality implies that

c/|u§;¢¢m|dzg051/8(1+t)*5/4/¢2dx+051/2/u§¢§dx
§051/2/u§¢>§dx+059/8(1+t)*5/4ln(1+t)+051/8(1+t)*5/4. (3.20)
The same idea can be used for the estimates of C [ |uf ¢x,|dz and C [ |uE, x,x|dz, and
C’/|uf’m¢zddm§061/8(1+t)_5/4/g“2dm+051/2/uf’qﬁidm
g051/2/uf¢§dw+cal/8(1+t)—5/4. (3.21)
Similarly,
C/|ufx¢xx|dx§051/2/u§¢idx+051/8(1+t)_5/4/X2d9c

gc(sl/?/u§¢§da;+059/8(1+t)—5/41n(1+t)+C51/8(1+t)—5/4, (3.22)
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¢ [ofoxide <Coo(140) 4 [ (6 +x7)do
<C&B(141)"n(14t)+CY/3(141)75/4,

¢ [uttololde < €8 51405/ [ ot [lullof) e
<COBA+1) " n(1+)+ O3 +) /4 4058 (1+1) /4,

C/‘ua:w w¢ |dx<061/8(1—|—t 5/4/|UR¢ |d$

<COYE(141) Y n(14-1)+CYE (1 4-1)~%/4,

Cfiu UR¢<ldz<0/Iu v%ﬂdzw/\u 0 da
< OB 4+)" " n(146) +C8Y3(1+1) /1,

C/|um m¢x|dx<c/|ufz of 2|dx+0/|um NI
<COB(1+4) " In(1 )+ OB (1+4) 74,

b
/|umxr|dx<0/|um|2dx+/ (10 0) 2d

g/ 1000 20 1 o518 (14 4) =0,
87(vh)?

¢ [l xadlar < [l a0 [ diaa

<CH/? /ufxidx—l—C’csl/g(l +1)75/4,

Next, we deal with the rest terms on the right side of (3.19), which include pZ,

vE. We begin with

R
C/|u ¢z|dx<0/|u vB)?|dz+ 28 /“—gqﬁdm
v

as z 2 -2
< U—Rq&xderC’d(lth) ,

and
C/\u ¢¢z|dx<0/|uR r 2|dw+C/|uR B2 |da

<O(1+t)72 /qﬁ d:c+0§/uf¢§dx

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

ult and

(3.30)
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S06/uf¢idz+06(l+t)721n(1+t)+C’(1+t)*2 (3.31)

due to Lemma 2.1 and Young’s inequality. Moreover, [|ufvE¢,x|dz, [|ufvEex,|dx
and [|uffvByx,|dz can be estimated like (3.31). Furthermore,

C/|p§§ §¢x(|dac<0/|pR R¢2|dx+C/|pR Re2\de
gCé/uff(bzdx—i-C(l—i—t)_ (3.32)

and the same bound for [|ufvf¢,(|dx and [|pFulx,(|dz can be also obtained. As
for other terms,

b
c / X dz < C / 2 + / s

b
SCé/uf(bidm—l—/83(12;)2)(:%(137, (3.33)

c / (R 2xlda < C / WP 262 4 ) da
<OS(1+8)2n(1+t)+C(1+1)72, (3.34)

¢ [pfulvfiolde<C [[uliofda+c [ 1pfiof s
<OS(14+t)2n(1+t)+C(1+1t) 2 +O(1+t)*2/\u§|2dx

<CO(1+8)n(1+t) +C(1+t) "2+ C5(1+1) 3, (3.35)

¢ [pfutvtogli<c [ultoPdoC [ ptoficias
<O§(1+8)2n(1+t)+C(1+t)~2 +C(1+t)—4/<2dx

<OS(1+t)2n(1+t)+C(1+1) "2, (3.36)

C’/|ufvf¢§c|dw§0/|vf¢|2dx+0/|uf§x|2dx
SC5(1+t)’21n(1+t)+C(1+t)’2+C(1+t)’2/§§da¢

<CO(1+1)2n(14+t)+C(1+1) 72, (3.37)

C/|u ¢X|dx<0/|u )2(¢% +x*)dx
<CO(1+8)Bn(1+t)+C(1+1t) 73, (3.38)
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/|px Uy Xx|dx§0/(pf)2uf‘d:z+0/ug‘xidz

<CO(14+1)2+C5 / 2z, (3.39)

R R\2 2 aipbo o
C’/|ur mem|d:c§0/(uz) Czdx+/87(vR)2XId$

b
§C(1+t)—2+/8f(12R°)2X§dx. (3.40)

After estimating the right hand terms in (3.19) except for [|uf¢,(;|dx, then we have
the following inequality

d [, d d 1
+ ﬁ¢2dx+ pR d + 5 (R¢+UR¢ —a )2d$
’UR x (’UR)3 z T 10X1
ul? b

10%0 2
[ s +/ ()

SC/\uf‘qbzqm|d3:+05(1+t)_5/4ln(1+t)+C’51/8(1+t)_5/4+0(1+t)_2 (3.41)

(WEp+vR¢, —aiox.) dx

if 6 is small enough. Since Lemma 3.1 warrants the bound on the time evolution of
|I¢z ||, then

/qﬁidx—l—/zbidx—i—/

/ / (¢ +43) (x,t")dedt’ +/ / (v +0v"¢s —ar0xe)? (w,t')dzdt’

/ /u X(z t')dxdt’—F/ /xi(m,t’)dmdt’

<C§/ T4+ (1 4+t + (1 +t/) =/ 4at’ +C/ /m%mg\(x t')dzdt' +C

_8//R¢ xtdxdt+C//RC2xtda;dt+C

§§/ /ufgbi(x,t’)dxdt/—i—C (3.42)
0

)2 (U§¢+UR¢JC - alOXﬂc)zdz

holds by integrating (3.41) over [0,¢]. Therefore we have the following inequalities

H¢x||2(t)+||wx||2(t)+/ (0 + 070, —aroxa)?(t)de < C. (3.43)

1
(vft)?
Observing

/(v§)2¢2da; <Co(1+t)7t /¢>2dx

<C(1+t)2n(14+t)+Co(1+1)~!
<C
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holds, and

/(v§¢+vR¢I)2dx§2/(vf¢)2d9€+2/(vR¢z)2dm,

<C
due to (3.43), hence we find that
/ X2(t)dz < C.
Summing up above inequalities, the desired results are obtained. 0

We next show the decay of ||(¢x, %, Xz ) (t)||? respect to time based on our previous
estimates.

LEMMA 3.4. Under the same assumptions in Theorem 1.1, there exists a constant
C >0 independent of time such that

(o, Vo, Xa) |2 (£) SCO(L+8) 4 n(1+8) +C(1+8) /4,

Proof. We first estimate fgf( 2 2)dxds. Applying 9, to the third equation in
(3.6) and multiplying it by a%wm we obtain

= T + Uy P X — — B Px + -
v ay (pr X)t aspftoft ua e ay ((pR¢ X TR T R

R, ul¢y, a+taj
" _
plt TagpR

Integrating the above inequality over R x [0,¢], we have
t
| [t iandr <clioeial P+ 0)1P)
t
+C / / (buxa (.t )dzdt + Cln(1+1)
0

t
SC’/ /|¢xxx|(x,t’)dxdt’+C(5ln(1+t)+C. (3.44)
0

The following inequalities

C//%thdxdt<c//%2xt dxdt+C// (z,t")dzdt’

<C8ln(1+t)+C, (3.45)

C//ngbmxmt dxdt<C//qu2xtd:cdt+// (z,t")dzxdt’

<Csln(1+t)+C,

// B (z,t da:dt’<0// 2(z,t")dxdt’ + //watdxdt

gg/ /¢§(m,t’)da:dt’+061n(1+t),
0
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C//R(;S@/szt dxdt<C//R¢2xt dxdt+C//Rz/J2:ctdxdt

<Coln(l+t)+C (3.46)
and
C//wmxfctd:ﬂdt<0// (2, t)dxdt' + = //wzwt Ydzdt'
gg/ /wg(x,t’)dxdt’+05ln(1+t)+C (3.47)
0

hold by Lemma 2.1, Lemma 3.2, Lemma 3.3 and Cauchy’s inequality. Similarly, we
apply 0, to the second equation in (3.6) and test it by ¢, to obtain

204)0

20V, 9 Ry
ala+ay) vl Yo Vo ’

R
= <¢ww>t+(¢tw>x+ﬁ%wi+

2
—pTulicy, — (1) U Ya X+~ XU

Integrating above equality over R' x [0,¢] to get
t
| [ 2tz <citenil 26 +11en )] F0)

t
+C/ /wi(x,t')d:cdt/JrC’(;ln(lth)
0
<Céln(1+t)+C, (3.48)

since
t t t
c/ /mf;&xq(az,t’)dxdt’gc/ /u§g2(z,t’)dxdt’+c/ /u§¢§(x,t’)dxdt’
0 0 0
<C

exists, then
. t
C/ /wi(x,t/)dxdt/§0/ /|q§wxw|(m,t’)d$dt/+C(5m<1—H)+C
0 0
: t
S%/ /¢i(z,t’)dzdt’+0/ /Xi(x7t/)dxdt'+05l”(1”)+C
0 0

1 t
< g/ /¢§(m,t’)d:cdt’+cazn(1 +t)+C,
0

where we also have used the estimates (3.44)-(3.47), Lemmas 2.1, 3.1, 3.2, 3.3 and
Cauchy’s inequality. At the same time, we can see

t
/ / P37 (a,t)dadt’ <Coln(14+t)+C (3.49)
0

holds by (3.44) and (3.48).



TAO LUO AND HUA ZHONG 1813

Second, we show ||(¢g, %, xz)(t)|| actually decays in time. For this purpose, we
introduce E; as follows

~ [+ e R e ) e (350)

Therefore we have
t t
/((1+t/)E1)t,dt/:/ (1+t/)E1t/+E1dt/
0 0
t
gc/ A+t A4+t + V31 +¢) VA (1) "V ar
0
t t
+C / (1+¢) / (P oo (2, dadt + / Bt (3.51)
0 0
due to (3.41). The second term on the right side of (3.51)
t
| Jast)lulo,clt)dodt
0
t t
g/ (1+t')/(u§)1/2¢§(x,t')dxdt’+/ (1+t')/(uf)?’/?gg(x,t')dxdt’

0 0

t t

C(1+t)1/2/ /¢§(x,t')dxdt’+c/ (1+t’)—1/2/g§(x,t’)dxdt/
0 0
<C5A+t)Y2n(14+t)+C(1+1)/? (3.52)

would hold because of (3.7) and (3.48). Moreover, we can estimate the third term as

t t R
p 1
/0 Eldt':/ /¢i+—Rwi+ ( mop (vEp+vfe, —aloxm)Q) (x,t")dxdt’

<C/ / (2 +2+ (vEd)? +X2) (z,t')dzdt!
<Coln(1+t)+C. (3.53)

Based on above inequalities (3.51)-(3.53), the following estimate
Ey<Co(14t)" Y4 n(1+t)+C(A+t)~ V4

hold, and finally
J@ 28 < O30 n(1-44) + O

Together with above estimates, we have finished the proof of Lemma 3.4. ]

Proof. (Proof of Theorem 1.1.) The following inequality follows from Lemmas
3.2 and 3.4 and Sobolev’s inequality,

106,907 ey < CIH (&8, ) (D5 P X )|
< O(COn(L+t)+C)2(Co(1+6) " In(1+0) +C(1+1)" /T2
<CSA+8) " VBln(1+t)+C(1+1)"1/3
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that is,
106,900 g1y SC2(141) " 0 (In(144)) 2+ C(141) =1
<COV2(1+4) YO In(1+t)+C(141)71/16,

which tends to zero as time approaches to infinity. Combining with Lemma 2.1, the
desired results are obtained. |

4. Proof of Theorem 1.2
This section is devoted to studying the life span of the solution to the nonlinear
system (1.1). We may decompose (v,p,u,X,s) as

(U,p,U,X,S)(.’I},t) = (()0+UR7¢1 +pR7¢1 +uR7X7gl +§>

Here we set
NQ(T): sup H(U7URap7pR7u7uR7X7sf§)||§{2(R1)a (41)
0<t<T
in particular
N2(O) = ||(v0 *”Ué%,po 7])(1)%77.1,0 7u(})%,XOaSO - §)||%{2(R1)~ (42)

In order to prove Theorem 1.2, it suffices to prove the following proposition.

PROPOSITION 4.1. Assume that the smooth 1-rarefaction wave (UR,uR,pR7sR) 18
given by (1.11) with e=6? and let (v,u,p,q) be a solution of the initial value problem
(1.1) and (1.16) in the time interval t€[0,T]. Then there exist positive constants oy
and C, independent of T', such that if

N(T)<61, <6, and T < %5*3/2, (4.3)
then

N?(T)<CN?(0)+C5In(14673/2). (4.4)

4.1. The estimate for ||(v,¢1,91,x,C1)||L2®?)-
LEMMA 4.1. Assume that the conditions in Proposition 4.1 hold. Then there exists a
constant C' >0 independent of T such that

t
161,80, COIP (1) +/ /XQ(xﬂf’)dxdt’ < N%(0)+C (8ln(1+1) +6**TN(T)?).
0

Proof. Let

wy = (v,u, B,q)T, wi = (v uf ER ¢F)T

where E=e¢;+q+ % Therefore, we can rewrite (1.1) as
wig+ f(wi)z =7(wr)
with
fwr) = (=u,p,pu,0)",r(w) =(0,0,0,%)".
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Let
Dy, wh) = —s(wy) + 5(wf) + V() (w) — ). (4.5)
A simple calculation yields
T <¢1§/}11%> R ; (o1 + o X
pftolt )  pR(vf)? at+ayr a+toay

R ofor
G R o

R X
, +
ne (w1, w7") p—

by (3.1) and

Then we have
t t
/n(t)dx+/ /)@(%t’)dl‘dt’S/’?(O)dx-i-C’/ /(|ufap¢1|+|uf¢l|+|pz S191]|
0 0
+ 0B gy |+ [ufx|) (2, ) dadt .

Now we deal with the term on the right hand of the above inequality. Thanks to Lemma
2.1, Young’s inequality implies that

¢ t
C/ /\uf@d)ﬂ(m,t’)dazdt’SC/ /uf(@Z—&—dﬁ)(Jc,t')dwdt’
0 0

t
<ON(T)? / |’
0

<C&PTN(T)2 (4.7)

Moreover, one can use the same idea to estimate [) [|uf¢?|,[) [|pP¢1¢:| and
fgf|vf¢11/11\. As for the last term, we have

C//|u x| (¢’ dxdt<C// 2(,t)dadt + < // (z,t")dxdt!

<Coln(1+t)+ / / (x,t')dxdt’. (4.8)
Hence, combining the above inequalities together, one obtains the following estimate:

||(%¢1ﬂ/’1aX)|2(t)+/0t/x2(:r,t/)d$dt’

<Il(es01, 00, ) IP(0) +C (1 +6) + N(T)?6*/2T), (4.9)
where we have used the fact that s(w) is strictly concave, which implies that

cr|wy —wff P << cow —wff?
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By the

1816
for some positive constants cl and ¢y provided w; is in a neighborhood of wi*.

fourth equation of (3.1) and s® =35, the following inequality holds

G0 < aIPO) +CN(T) [ [ wtyduar
. (4.10)

<[|G]I*(0)+CN(T) (5ln(1 +1)+N(T) 53/2T>
]

Putting (4.9) and (4.10) together, we complete the proof of Lemma 4.1
In order to obtain the estimates on derivatives, we will take the equivalent form
(3.1) to (1.1) in the following proof. We take a difference between systems (3.1) and

(3.2), to get
b1+ B (Brul+ B gy + Sull+ S, ) -y Bpufi=— 2
Y1+ P12 =0, (4.11)
Xt + 2L (PRult + pRiprg + rul + gripry) = — L X,
2x?

Clt = a_fTTlTQ :
4.2. The estimate for ||(¢1., Y12, Xz, C12)|| 2R
LEMMA 4.2. Assume that the conditions in Proposition 4.1 hold. Then there exists a
constant C' >0 independent of T such that, for 0<t<T

(1o rasxes o) 122 / / 2 b2 )t dd!

<0(N2( )+ 8ln(1+1t)+ 6 EN*(T) +63/2TN(T)? + N(T) )

Proof. Differentiate (4.11) with respect to z to get

R

b10 =5 (212 ) —B(pU§) —ﬂ(d)lugf") +7( 55

v x v x v x v
wlxt:_(blxarv

- Uy R b 2 (1 Byah,
((bu—awx—) =ﬁ2pu1+v(pRUf‘> +0Xx_<> X+a1 ;m @

v/t v (% . T aT \v x v

(4.12)

2x
Clxt =
OéfTTlTQ z
Multiplying the first to fourth equations by ¢1,, 5%¢1z, as (<Z51z —a1of) and (q,, re-

spectively, we have
Xz )2
2D Bt m 0 (622) + 22 (pr—annXe) 102 4 o g,
U 2a
+(L15 wlz+a14 §XI+ 1(; 2
v Tow
R, R R
P Uy p U Uz
:—ﬂ(wlzwu) —/3( ) b10 =B G161
v P v v
3 7 Vgl P1a
PYie ﬁxdflx +asp? 02¢1

1 2 /1
—ﬂ<> U§¢1¢1m—<> XP1z — 15— 5
v), ar\v/, v aTv
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2 (1 ufl D1zV1eXe  A50100D
—as () XP1z + 5010 —5 PraXe + 5010 ——5 —— — ——=——Vy Uz Xz
AT v z v v v
R, R 2
pru Xz | 2asa10 (1 1z X
—vyasaig ( R ) A " () XXz — G503, o
v . v aTv v z v

+ 2 C 2XXI X2le X2T21
Y\TNT, tTPT, TI2Th

15
_6(§¢1xw1w)z+ZKi7 (4.13)
i=1

where

(a+1)(a+2)
a15:Ta

and B as, as, aig, a14 and a5 are defined in Section 3. Now we estimate K;, 1<i<15
one by one by invoking Lemma 2.1 and Young’s inequality. For K7,

K, <C (‘p§u§9@¢lx| + ‘u§1@¢1x| + |ufvx@¢1w| + |uf¢x¢1x‘ + \vaf¢¢1x|)
<C (\p§U§¢¢1m| + \Ufm90¢1x| + |U§U§§0¢1m‘ + ‘ufwz(blﬂ + |u§¢z‘p¢lz|) . (4'14)

t
C / / IpEuliopr,|(x,t)dzdt’

0
¢ t

<C [l [ tydndt +C [l [ 6k (ot ydzar
0 0

t
gc&vm?/ (1403

0
<CSN(T)2. (4.15)

Since

Similarly, C fot [|uBvEppi,| can be controlled by the same procedure as (4.15). More-

over, one can obtain
t
¢ / / [ull oz |(z,t")dzdt

<C/W¢mm/¢+ﬁﬁWﬂWW

SC(Sl/SN(T)z/ (1+t)—5/4dt/
0

< CHYEN(T)2. (4.16)

t
c / / ulopra|(z,t)dadt’
0
t
SC/ ||Uf||Loc/ 2(x,t")dzdt’ +C/ / "dawdt
0

<CHN(T)T+C5 / / 62 (.t dzdt', (4.17)
0
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and
¢ ¢
C/ /|uf”gomgo¢1x|(x7t’)dwdt'SCN(T)/ ||U§||Loo/(@2+(i)%z)(x,t/)dmdtl
0 0
< C&2N(T)T. (4.18)

Combine (4.15) and (4.18) together to get

t t
c / / K1 (2, )dadt’ < C(8Y3N(T)2 +6%2N(T)2T) +C5 / / 62, (2,8 )dadt!, (4.19)
0 0

due the smallness of § and N(T). For K, one can take the same approach as (4.16) to

get
t t
C/ /Kg(x,t’)d:cdt’gC/ /|ufz¢1¢1z|(x7t’)dmdt’
0 0
< CSYEN(T)2. (4.20)
For K3, we have
K3 < Clufva¢r¢12] < C (JubvEdidra| + [ulordradnl), (4.21)

where Cf(ff |ufvE ¢ p1,| can be estimated in the same way as (4.15) and by (4.17), w
have

C/ /|u Cath12:01|(z,t")dzdt' <CN(T / /|u Outrs|(z,t")dzdt
<C82N(T)*T+CSN(T) / / 2, (.t ) dzdt' . (4.22)
0

Therefore, one can get

‘ o dxdt! 2 3/2 z, dt!
O/O /Kg( A dadt < C(SN(T)* 462N (T)?T)+CSN(T //qs t')d d(t |
4.23

For K4 and Kg, they can be controlled by

C(K4,Ks) < Clogdrax| < C ([vEdrax|+ | 0adrax]) - (4.24)

Then the following inequalities are achieved

t
/ /(K4,K8)(£177t/)dIdt/
0
<CSN(T 16// (z,t')dzdt' + CN(T //qblz—i—x (z,t')dzdt,  (4.25)

by

t t 1t
C/ /|v§c/)1zx|(sc,t’)dmdt’§0/ \ufﬁm/(b%z(nﬁ,t')dxdt’—&—ﬁ/ /Xz(ac,t’)dxdt'
0 0 0
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<CSN(T) /(1+t) 4/3dt+16// (z,t")dzdt’

<CSN(T 16/ / (z,t")dzdt’, (4.26)

and

t t
/ ! 2 2 ’ /. 427
C/o /\gozd)lxxKx,t )Ydzdt SCN(T)/O /(¢1m+X )(z,t")dxdt (4.27)

For K5, we have

/ /K5 (z,t")dzdt! <C/ /W;M\ x,t")dzdt' <CN(T / /%w x,t)dxdt’. (4.28)

Similarly, the following estimate holds for Kg

t t t
/ ! 2 / / 2 / /. 429
C’/O /Kg(x,t )dadt gc/o /\wlwx\(a:,t)dxdt gCN(T)/O /%C(x,t )dadt'. (4.29)

While for K7, one has

Since C’fgf|u§<pm¢1m| and C’fgf|vf¢1z¢1m| could be estimated similar to (4.17), and
the following two inequalities

C’/ /|u Bb12|(,t)dxdt’ <C/ / 0202 Y(,t')dxdt’
g05ln(1+t)+06/0 /qbfw(x,t’)dmdt’, (4.31)
and

C/ /|<p1¢1z1/11x| (x,t")dxdt' <CN(T / / o) () dzdt. (4.32)

Hence,
t
c / / K7(m,t’)dxdt’gC’(éln(1+t)+63/2TN(T)2)
0

C(6+N(T // o0 (.t ) dadt. (4.33)

One can give a similar estimate as (4.26) for Ky,

C’/ /Kga:t Ydzdt! <C/ /\u d1oXz| (2, )dzdt

aio Xa:
< .
CON(T 16a7_/ / (z,t")dzdt'. (4.34)
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For K¢, we have

t t
C/O /Klo(m,t )dxdt SC’/O /|¢1z$1mxm|(x,t)dxdt
t
<CN(T 2 ) (e, tdxdt . 4.35
< <>/0/<¢x+x><x>x (4.35)

For K71, we can use the same idea as K7 to have the following estimate

t
O/ /Kll(x,t’)dxdt’gC (6ln(1+t)+53/2TN(T)2)
0

t
+C(5+N(T)) / / (X2 +42,) (x,t")dxdt’. (4.36)
0
For K15, we have
K12 <O (Ipgfug Xa |+ [ugh Xa| +ug vz xal) - (4.37)

Due to the estimates

C/ /|u (P2 B\ |(,t ) dxdt’ <C’// pB vt )2xi)(x,t’)dxdt’

gC&ln(1+t)+C5/ /Xi(x,t’)dxdt’, (4.38)
0

C/ /\umxw |(z,t")dzdt <C<5// 2(2,t")dxdt' + 10 // "dzdt
16at

< 1 4.
Coln(1+t)+ 16047'A / "dzdt', (4.39)
one has
c / / Kia(z,t)dzdt' < Cln(14t)+ (CS+ 1210 / / Ndwdt'.  (4.40)
T

For K3, we have

¢ ¢
C/ /Klg(x,t’)dxdtlg/ /(\vfxmx|+|gpzxzx|)(x,t')da:dt’
0 0

§0(5+N(T))/0 /(X§+x2)(az,t’)dzdt’. (4.41)

For K4, one has

t t
C / / Koa (.t )dadt! < / / 1o 2| (2, ¢/ dadt’
0 0

t
<CN(T) / / X2 (2, t")dadt’. (4.42)
0
K15 can be bounded by

Because
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Ty=pv, To—T1 = —O%X,

then
Tie| SO+ i+ P |+ @a )y [Towl < C(PEI+ 05 41612 |+ 92| +Ix])
hold, which implies
|T1| <C(6+N(T)), |Tox| <C(6+N(T)) (4.44)

by virtue of Lemma 2.1 and Sobolev’s inequality. For Ki5, we have

t t
c / / Kys(a,t)dadt < / / (CraeX| | (Thas T ) Cro X)) ) dard!
0 0

T)/t/(xi-l-XQ)(x,t’)dmdt’
+C(6+N(T // (x,t")dxdt’

//xg;—i—x )(z,t')dadt, (4.45)

where we have used the smallness of 6 and N (7).
Putting the estimates for fo [ Ki(z,t")dzdt’, 1 <i<15 together, we arrive at

(G100 xes i) 22 / [ (@ 2n2) +8) o ot
§N2(O)+C(§ln(1+t)+61/8N2( )+63/2TN(T)2)
+C(5+N(T)) / / (62, 402 ) () dwdt, (4.46)
0

by Lemma 4.1 and the smallness of § and N(T'). Therefore, we are only left with
fo [(¢3,,931,) to estimate. After a simple calculation, 1%, can be expressed as

[ 1 % a 1 R
wfl - ?f (#ﬁux) + i ¢1.LX_ 7 (<pR¢1J3X) _|_p9c ¢13cX _ ¢1xXx)

apRolt Yo (pF)? DR

Py, — ufgr. 1Yl atag

=X
ph pR Tagph T

For f(ff|u§¢1xx|(x,t’)dxdt’ and fgﬂpfgblmx\(z,t’)dzdt’, we can take the same idea as
(4.26) to have

C’/ /|u P1ex|(z,t)dxdt’ <CSN(T 16/ / (x,t')dxdt’, (4.47)

and

//Ipx¢1xxl(xt>dxdt’<C5N 16// (z,t")dxdt’. (4.48)

Moreover, one can obtain

C/ /|u 1| (z,t ) dadt’ <COln(1+t) + / /wlz (z,t")dzdt’, (4.49)
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C/ /|u V1001 (z,)dxdt’ </ ||uR||Lm/¢1 x,t)drdt + — //wu z,t')dxdt'

gccsz\z(T)2+E / / Vi, (x,t")dzdt', (4.50)
0

C/ /|¢11/)1z| x,t)dxdt' <CN(T / /¢1x x,t')dzdt’ (4.51)

nd
t t 1 t
c / / 1o (2,8 )dadt < C / / )t + o / / V2 () ddt. (4.52)
0 0 0

Combine (4.49)-(4.52) and Lemma 4.1 together to obtain
t
/ /w%z(az,t')d:vdt’ <C(N(0)2+N(T)2+6In(1+t)+0N(T)? +8%2TN(T)?)
0

t
+C /0 / lbraxa| (') dadt. (4.53)

A straightforward computation gives

R
Bh=— (rsto )+ (Grein)a-t BB, + 8T, 4 B2 R,

¢1 R R 2
+6 1/)1m 'Y R ;,;1/11z+7X¢1a:

Then

//qs (z,t")dxdt' <C(N(0)2+N(T)240in(1+1t)+N(T)? +63/*TN(T)?)

-I-C’/ /1/}11, z,t')dzdt

<O(N(0)*+ N(T)*+68ln(141t)+ON(T)*+ 82T N(T)?)
+C/ /szt Ydzdt+ = //qﬁlzxt Ydxdt’

<C(N(0)2 4+ N(T)?+68ln(1+t)+ 65N (T)? +6%*TN(T)?)
+C(6+N(T / / W2, (x,t)dxdt' (4.54)

holds, where we have used the inequalities (4.46), (4.48)-(4.52). On the other hand, we
have

t
//z/)fw(x,t’)d:cdt’SC(N(O)2+N(T)2+6ln(1+t)+51/8N(T)2+63/2TN(T)2)
0
(4.55)
by inequalities (4.46), (4.53) and (4.54). It is easy to see that

/t/(ﬁx,wﬂ)(m,t’)dwdt’ <C(N(0)2+N(T)2+6In(1+t)+8YEN(T)2 +632TN(T)?)
0
(4.56)
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from (4.54) and (4.55). Then we obtain

(@restbre. X Cr) P // 2 022 (o) ddt
<C(N2(0)+0ln(1+)+6SN*(T) + 8*/°TN(T)* + N(T)?) (4.57)

where we have used the smallness of 6 and N(T'). Therefore, the desired estimate is
obtained. d

4.3. The estimate for ||(¢122,V 100, Xex,Clae)||L2R1)-
LEMMA 4.3. Assume that the conditions in Proposition 4.1 hold. Then there ezists a
constant C' >0 independent of T such that

(G120 Y1z Xaws s |22 / [ @ttt ity
gc(N2(0)+5zn(1+t)+51/8N2(T)+53/2TN(T) +N(T) )

for 0<t<T.
Proof. Differentiate (4.11) with respect to z to get

(i) o(2) () n(E) ),

wlzxt:_(blmxwa
pu, 1 pt 2
((blxac—al()x:m) :_B[( 3:) _(puzc)xx] +7(Ru§> _7(l>
v t v TT v v o aT \V/ zx

ajp(la+a ul +
+MXM+G1OJ07;/)MXW,
aTv v
2x2
ot = | ——r . 4.58
Cl ¢ <OZf’TT1T2)$I ( )

Multiplying the first to fourth equations by ¢4z, 5 V1zz, A5 (¢1m —a1o X”) and (144,
respectively, we have

28t¢1m 281& (5 1/’135@) Ea@)lm alOXZm>2+§&C1zz+ﬂ DT
uF

pu z 2 Uy 2 2a10
+ais UT"/)lx:c + 0’14FX9090 +

X
Tav2

=—p (%d)lxxl/}lx;c)I -8 (B> D1zaVize — B (%) V12 Prox — QﬂLﬁc¢lx¢1x1

Vg wa:ac
+267uf¢1w¢lzw ﬁ ¢1¢1ww +26 2 xm¢1¢1ww +B ( ) u§¢l¢lwx
R, R R
Uy, u T
v - T
p X p 1
—ais jdﬁxmwlz - ﬁ 02 ql)fm - GSﬁ |:(um> - (pum)mm:| ¢>1m
v v Tx v

2a5 (1 das (1 ©
-2 (> X¢1xm -= <> Xxd)lmm +a5a10 "/}1 ¢1zxan:
. art \v/, v?

aT v
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R, R
—7as5a10 I3 —
v v -

1
+a5a105 [(iul’) _7(puz):m:

v v
2asa19 (1 dasarg (1 P1aXas
+— () XXzz+ - XaXzx — GSG%O 3
aTU v po aTU v - v
2 2(Xa +XXaa) < 1 ) 1 2
+ Clza [ +4 XXz + X
afT ! T1T2 T1T2 z Tl T2 poo
21
otz
— —QPlzazWVi1za Rl 4.59
8(Forins), + 2 (4.59)

In order to get the estimate for |[(d124,%1200) XazsCae)||L2®1), We firstly deal with the
right-hand side terms in sequence. For R;, one have

Rl S C <|pf¢1wwwlxw| + |v§¢lwxw1ww| + |¢lw¢lwwwlww| + ‘@x(blwzwl:va - (460)
It is easy to get the following inequality by Lemma 2.1 and Young’s inequality
C/ /I (PF ) Proatieel (z,t)dodt’ < 06/ / (2,0 30 ) (x,t Vdxdt' . (4.61)
And
t t
0 0
Hence
t t
C/ /Rl(x,t’)dscdt'§C’(5+N(T))/ /(qﬁerwfm)(x,t’)dxdt’. (4.63)
0 0

Rs5 can have a bound as

Ry <O(|pf@1¢1xa'¢)lx| + |'UR¢1321¢/)1$¢1$$| + |pR Rwa(blam | + |‘Pz¢1x'¢lx¢1xw|
+ |Um¢1m7ﬁ1a:\ + ISDzmqslzmwlm‘ + ‘( ) ¢1mxwlz| + |<pm¢1zzw1m‘

For Rs, one can obtain

O/ /R2 (z,t")dzdt! <CSYEN(T)? +CN(T // (740 +Vipw +01,) (2, )dzdt,
(4.65)

where the smallness of § and N(7T') and the following estimates have been used,

t t

C /0 / PE 0 d1o0tra| (2t )dudt <CSN(T) /O / (2. + 03 ) (z,t ) dxdt',  (4.66)
t t

c /0 / (0B 10122 (2, )dadt! < CEN(T) /O / (62, + 02 ) (@, )dadt!,  (4.67)

O [ [10Eattiormind @ yirde <0 [ N@EaNE [t 2 vt
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t
gcam:m?/ (1+4)~4/3a¢’
0

< CON(T)?, (4.68)

t t
c / / (0% 02 )1t (2, )t < C / 8 ) / (2 T 02 (2,8’
0 0

t
<CN(T)25"/ / (14/)-5/2ay’
0

<COVEN(T)?, (4.69)

c / t / (Dros)putbradroel (' dadt < CN(T)? / t / (62 +02,) (o) dud,

(4.70)
¢ / [ Wraratreal ot i
v [ [tstw i +onm [ [ trant
S / Vialte [ Gha(o )izt +ON (T / / B (. ) dadt
<ON(T / [+ 0+ )t ot (4.71)

/ / |07 0 V12| (2,8 )dadt’ <CN(T / / ¢F () ddt’. (4.72)

For Rj3, one can obtain

t t
C/ /Rg(ar,t’)d:vdt’SC/ /|u§c";q>mq>m|(gc,t')dacdt’gc(sl/gN(T)2 (4.73)
0 0

by the same way as (4.69). For Ry, we have

t t
C/ /R4(x,t')dxdt’§0/ /(|ufvf¢1m¢1z\+\uf’LPz(f)lmd)lm|)($at/)d$dt/
0 0
t
<CSN(T)?+CON(T) / / (¢2 0+ 02, (x,t ) dxdt!,  (4.74)
0

which follows the same methods as (4.67) and (4.68), respectively. fOtng, can have an

upper bound as

t t
C / / Rs(x,t')dzdt’ <C / / (|ult  d1oedr|(z,t))dadl!
0 0
t t
<Cs / [ / &3 (o) dudt! +C5 / / 2 (ot dadt!
0 0

t
<CSN(T)*+Cs / / 2 (x,t ) dxdt'. (4.75)
0
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Since the following inequality for Rg exists

R < C(|vFull 910001+ |00l dran i),

C/ /|’UI qul“d)l (z,t")dzdt!

t
SC/m@mm/ﬁwwmwﬂw//@ﬁmmwmw
0 0
t
<OSN(T)*+Cés? / / $1 4 (2, ) dzdt’
0

and

t
C/ /|<Pmufx¢1z@¢1‘($,tl)d$dt,

<CN(T / ||um|\Loo/apm(x t")dxdt'+ CN(T / /¢1m a,t")dzdt’

gcaN(T)3/ (1+¢")"*3 4+ CN(T //d)lm (z,t')dxdt'

0

<CSN(T)*+CN(T //¢1m x,t')dxdt’,

which implies

C/ /R6 (z,t)dzdt' <CSN(T)* +C(§+N(T / /qblm (x,t')dxdt’.

A calculation gives us

Ry < C(|uBvl d10001|+ [ 0redro0t1 |+ [uZ (0E)2 100 |+ [uF 02 druatn]),

and

/ /|ur VB 100t |(2,t))dadt < CSN(T)? +052/ /gbm (x,t')dxdt’,

which follows from (4.77), and
t
C/ /|u§@ww¢1ww¢1|(m7t/)dl‘dt/
<CN(T / IIuRlle/%m(x t"Ydzdt' + CN(T / /¢1M 2.t )dudt

<CSN(T)*+CN(T //c{)lm (x,t')dzdt’,

/ /|u gblmgbl\(z t )dzdt
t
gﬁ/mm%/&uwmw+w//ﬁmmwww
0 0

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)
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<C8N(T)*+C6 / / $3 e (2t ) dadl’, (4.83)

t
C{/ /Wufwi¢mm¢1ﬂx¢qudy
0
¢ t
SCN(T)Z/ e H%”/ Gi(.t)dvdt'+ ON (T)Q/ / 82 (2t )drdt!
0 0

<CSN(T)*+CN(T //¢1m (x,t")dzdt'. (4.84)

Combining (4.81)-(4.84) together, one can obtain

C/ /R7 a,t)dzdt <CSN(T)*+C(5+ N(T //¢>1M Ndzdt!, (4.85)

by using the smallness of ¢ and N(T). For Rg, one has

Rg <C(|pk,ull $1o00] + [Pl $100 0 + PRl praape| + PEuTVE G122
+ [Pl o 0P1an |+ U OrePras| + UL Ped10a] + UE Q2 D10s]
+ [0 o dran| + (Ul 0P1a0 ] + UL VE OP12w |+ (UL Prdr2np]
+ [uF (V) D100l + [uF 02 P1oap] + |Uh PazPrae @l + [US VR D120
+ [V P draatpl). (4.86)

fo f|p§w f¢1ww30‘ foflpz za:(blﬂcx‘p| fo f|uww x90¢1:m| and f0f|uac :m¢1ww90‘ can be
controlled using the same method as the following

t
C [ [ Whatrmel et izt
0
t t
<05 [kl [ 6ot dodt +C6 [ [ 6 (o t)dud
0 0
t
<CSN(T)*+C$ / / B30 (2t dadt’. (4.87)
0
At the same time, we have
t
C’/ /|(pf,vf)ufgblmgox|(x,t')d:cdt’§C5N(T)2 (4.88)
0
by the same idea as (4.68), which also induces
t
¢ [ [ 1ok ot ulbrenipla ) duat

<CN(T //Ipx,z Bt pipn| (2, ) ddt!
<CON(T (4.89)

Using the similar steps to (4.83), one can get

C//mmm Ul G1aatpl (.t )dadt’ < CE”N( +w//@mxtmm(mm
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t
¢ [ [ttt it

<CN(T / HuR||Loo/gow(x t")dzxdt'+ CN(T / /(blm (x,t")dzdt’

Since

<CSN(T)*+CN(T / / 02, (x,t")dzdt’

establishes, which also implies
t
<CN(T / /|u 12002 (0,1 ) dzdt!

<OSN(T)*+CN(T //gi)lm (z,t")dzdt’ .

One has
t
C / / [ult d1oepe|(x,t')dzdt’ < CHY/EN(T)?
0

by the similar idea as (4.69), which tells us

C’/ /|um¢1mgamgo\(x t")dxdt' <CN(T / /|um¢1mgom|(x t")dxdt’
<CSYEN(T)2.

The following inequality holds
t t
c / / B 10| (@, dedt <C / / (62, + 2| (ot !
0 0
t
<c / [ / (630 20 (ot )t

<C&*TN(T)2+C6 / / G (0, )dadl’,

which implies
t
<CN(T / /Iu O1azPre| (2, ) drdt’

<C&?TN(T)>+CSN(T / / $2,,(x,t")dzdt'.

The only rest term of R7 can be controlled by

t t
C / / [ul, dreee|(z,t)dzdt’ <CSN(T)*+C6 / / ¢2 (2, t))dxdt’,
0 0

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)
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due to the similar step as (4.75). Summing up from (4.87) to (4.97)
t
C’/ /Rg(x,t')dxdt’
0
C(6YEN(T)2 +6%/*TN(T)*) +C(64+ N(T / /qsm z,t")dzdt . (4.98)

For Ry, it is clear to see

Ry <C ([0 XP100] + |P2aXPraa | + | (V)2 XP1ea] + 02X P1aa | + V5 X2 Doz + |02 XaP1aal)-

(4.99)
Since we have the following inequalities
t t
C/ /\vfzxqblm|(m,t')dxdt’SC(S/ /(XQ—i-qS%m)(m,t’)d:vdt’, (4.100)
0 0
t
¢ / [larxtrealat)dodr
<o [t [t tranat +on () [ [ oo
<CN(T) / (O 42+ 62, ) () dadt, (4.101)
c / 108X 01l yar < 5 / Joe+ @) et )dode, (4102

t t
c / / |02 X brae| (2.t )dzdt’ < CN(T) / / O+, ) (@t )dadt!, (4.103)
0 0
t t
C/ /\vfxrzj)lm“x,t/)dxdt’§C’§/ /(X§+¢§m)(x,t/)dxdt', (4.104)
0 0

C/ /|gpmxz¢1m| (x,t)dxdt' <CN(T / / (X2 +¢2,,) (x,t))dzdt, (4.105)

then

C /0 ' / Ro(x,t')dzdt’ < C(5+ N(T)) /0 / (42462 )@, )dedt. (4.106)

It is a straightforward computation for Ry and Ry; to get

C /0 t / Ruo(a,#)dadt' < C /0 t / 1at2, |(z, ¢ dxdt’
T) /0 t / / Y2 (x,t)dzdt (4.107)
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t t
C’/ /Rn(z,t’)dzdt’SC’/ /|X1/1fm\(z,t’)d:rdt'
0 0
t
<CN(T) / / / P2 (x,t)dzdt. (4.108)
0

Ri2 <C(|[uf 0nedrae| + [ulvl dr00] + 1205 Or0a| + V12000 P1aa|
+1(vz )2 S D1ae] (V) V100100 + 03010 P10 |+ [UL 0% Dre|
+pFul ol d1ae |+ [PF100E Praal + [USVE GrePrae |+ [VE Lot 12P12a]
+0apEul b 100] + @aP 10 O100 | + |00 D12UE Graw| +P2d1oV12P120]
+ v Srze| + [05 Vor Orae | + |0ty Srae| + |0rtroedrezl)- (4.109)

Then we have
C/ /|uz VB d10e|(z,t)dadt

<0/ / 2(x,t")dzdt +C/ / B2 o (x,t)dadt’

<Céln(1+t)+Cs / / B3, (x, ) dadt’ (4.110)
0

C/ /\u )? G1ae | (2,1 ) dadt’
<C/ / Azt dxdt! +C/ / R () dadl

<Caln(1+t)+05/ /qsm (z,t")dzdt', (4.111)

and

Next, we estimate Cfotleg, where

where Cf0f|um, vE¢1..| and Cf0f|px Bulgi.e| can be controlled by the similar
method to (4.110) and (4.111), respectively.

Then based on above equalities (4.110)-(4.111) with the inequalities (4.61), (4.62),
(4.66)-(4.71), (4.74), (4.88), (4.91), (4.93), (4.95), one can obtain

t
C’/ /ng(x,t’)dxdt <C(8In(141)+6YEN(T)? +6%>TN(T)?)
0

t
C(6+N(T)) / / (G203 By + 02 () drdt
(4.112)

For Ri3, it is easy to see

which implies

C/O /ng(:c,t’)d:zdtSC(J—&—N(T))/O /(X2+X§+¢§M)(x,t’)dxdt' (4.114)
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by inequalities (4.100)-(4.103). For R14, we have
t ¢
C/ /R14(x7t’)dxdt§0/ /(|vfxm¢1m|+|<pmxm¢1m|)(x,t')dxdt
0

C(6+N(T //xx+¢1m (z,t")dxdt’ (4.115)
0

which comes from (4.104) and (4.105). It is obvious that
t t
0 0
t
Co+ND) [ [0d et )dade (1120
0

holds for R;5. Here we can use the same method as C’fnglz to deal with Cfotleﬁ
(we only need to use x,. to replace ¢, ), then we can get

t
C/ /Rw(a:,t’)dxdt <C(8ln(14t)+6YEN(T)? +8%2TN(T)?)
0

t
L O+ N(T) / / (Bt 02+ ) (a8 ).

(4.117)

After a simple calculation, one obtains that

Ry7 SO(|I’§§E“§XM| + |p§' ;Zcxm| + |p§U§URXm| + |U§;mxm\
and

t
C’/ /|p§zufxm|(x,t’)dxdt’
<c / [ BRI o dnat + € / [t ot
<C8In(1+t)+C6 / / X2, (2, dzdtl’, (4.119)
0

where C’fo JIpEul xual, Cfo [1uB vBy4z| and C’fo JvE uBy ;.| can be controlled by
the same method as (4.119). Moreover, we have

C/ /\ (P, v ulv x| (2,1 ) dadt!

t
<C$ / / (uBol)2(x,t)dxdt' +C6 / / X2, (z,t ) dxdt
0 0

t
<Céln(1+t)+Cs / / X2, (2.t )dadtl’, (4.120)
0

C/ /|Uszm| z,t")dzdt <C§2/ / (2, t")dxdt' + / /Xm (x,t')dxdt’
16aT
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<CO83In(1+t)+ 16 / /Xm (z,t')dxdt’. (4.121)
T

Then for Ry7, the above inequalities give

c/ /R17 w,t)dadt <CSln(1+1)+ 06+1210? //X” (z,t)dadt'.  (4.122)
T

For C [ [ Rus, we follow the way to handle C f; [ Rz to get

t t
0/ /ng(x,t’)dzdt §0(5+N(T))/ /(x2+xi+xim)(x,t/)dxdt’. (4.123)
0 0
It is obvious to obtain

t t
c / / Ruo(e,t')dzdt < C / / (0% X Xeo| + |0 Xo Yoo ) (@8t
0 0

<C(5+N(T)) /O t / (02 22, ) (@, )dwdt!, (4.124)

t t
C/ /R20($,t/)d$dt§0/ /|¢11X§x|)($7t/)d$dt
0 0
t
T)/ /Xix(x,t’)da:dt’. (4.125)
0

In order to estimate Cfnggl(x,t’)dxdt, we are first to analysis Rap,

Rot = —C(i2z z 4 z )
2! afT @ |: T, + i), X n),, X

which implies

and

where we have used Young’s inequality and (4.44). Since

Tize| < O[] + [z |+ 102+ [@aal + 1(05) 2+ (032 + |61, + [#2)),

SC(Ip |+ 0|+ [Xaal + D122 | + |0ral + ()2 + (v + |67, +1£3])
hold, then

[Tyee|]? <C(67? + N(T)?),

(4.127)
| Thaa| > <C (572 + N(T)?),

due to Lemma 2.1 and (4.1). Obviously

¢
C/ /|§1mx2|(x7t’)dxdt’
0
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C /t 2 / 2 ’ / /t/ 2 / ’
< oo vzt )dzdt’ + CN(T x,t")dxdt

T)/0 /(x +x2)(z,t")dzdt’, (4.128)

t
¢ [ i)z
0
t
< 200 2 / ’ Xl$

<CN*(T / /XI x,t')dxdt! +( +CN2 / /X” Ndzdt',  (4.129)

t
0

t
< 200 2 t/ d dt/ alo //X:E:E d dt
<0 [l [ Gralentdadt + 552 :
<ON*(T // 2 dxdt+16 //X”d dt’, (4.130)
T

t
C/ /‘(Tlmc;TQIz)Clzmxz‘(x,tl)d{ﬂdt/
0

and

t t
<0 [ Il [T o) @t ot +C [Nl [ Galot)izar
<C(6"? 4+ N(T //X +x3) (2, dadt, (4.131)

where we have used the facts (4.127). Therefore we have

CAt/Rgl(a:,t’)dxdtSC(6+N(T))/0t/(x2+x§)(:r,t’)dxdt’

F (-2 L oN ))/t/xf?” (z,t')dzdt’ (4.132)
16aT o) v ’ ’

Combining the estimates for fot [ Ri(x,t')dzdt’, 1<i<21, the following inequality is
obtained

||(¢1xx7¢1xx7Xxx;<lxz H / / szd)zauxuu)"')(;u) (xat/)dajdtl

gc(N2(0)+6ln(1+t)+51/8N2( )+63/2TN(T)2+N(T)3>
oo N ) [ @i, (4.133)
0

where we also invoke the results of Lemmas 4.1 and 4.2. Therefore, only fg (9300 0%00)
is left for us to estimate. Here, one can use the same idea as in Subsection 4.2 to estimate
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[3 [ ($300s¥30s). A simple calculation yields

o __ o (1
'(/)la;a: - Oéf (pR 'L/Jla:a:Xw) . + o p UR Uy '(/Jla::EX:v
o 1 p (blxa:Xa: ¢1:vawz
- ¢1szz> + z -
af (( i . )7 plt
(p Uy ) (¢1u§)z ((blwlx)a: Oé+0£f Dy wlxwlxz
/(/) lxx — R 1 _Twlzz ¢1zz Xz — - R
p p p
« 1 « 1
S - (RwlzxXI) - <R¢1mmX$) +C(|Uf¢1mXx| + |sz¢lz:c|
af p t af p x
+ |p§¢1er| + |P§U§¢1m| + |u§rd)1zz| + |u§¢lzw1xm| + |u§z¢1wlzz|
The following inequalities are set up,
t t
C / / [P po X | (2, ) dadt <C§ / / (V1w +X2) (2, )ddt, (4.134)
0 0

t t t
c / / IDE braa Xl (. )ddt’ <C / PR3 / &2, (0,8 )dadt' +C / / (b’
0 0 0

t
gcaN(T)2+C/ /xi(az,t’)dmdt’, (4.135)
0

t t
C [ [ whutonal(wtydzar <C [ [ (Pl ultvd) oty dd
0 0

t
gcaln(1+t)+()5/ /y;fm(:c,t’)dxdt’, (4.136)
0

C/ /|um1/)1m| x,t")dxdt’ <C’/ / (x,t)dxdt’ +—/ /d)lm (x,t")dxdt’

<Coln(1+1t)+ / /wlm x,t")dxdt', (4.137)

c / / (0P 1 | (' )dwdt! <CN(T / / P 1| (2, ) dadlt

<CON(T)In(1+t)+CN(T / /wlm x,t')dxdt’,
(4.138)

t t
c /0 / [uBp1 100 | (2,8 ) dadt <C§ /O / (2, 4+, )z, t)dxdt (4.139)
/ / |P10¥12001| (2, ) dadt’ <CN(T / / o2 ) (@t dzdt (4.140)

C / / (6102, (2.4 )dadt! <CN(T / / V2 (3.t dwdt, (4.141)
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¢ ¢ 1t
C/ /\sz1m|(x,t’)dscdt'§0/ /Xi(x,t’)dxdt’—i—ﬁ/ /wfm(m,t’)dxdt’, (4.142)
0 0 0

cf t [t rtneslaydzar <5 | t [t e, @)
which induce that
/0 t [ thentat o
gc(N2(0)+5zn(1+t)+51/8N2(T)+53/2TN(T)2+N(T)3)
—l—C/ /|¢1me|($ t)dxdt' +C(6+N(T / /¢1m "dzdt', (4.144)

by Lemma 4.2, (4.133) and the smallness of § and N(T'). For ¢3,,, one has
pR pR
19cac (d)lw:cwlx)t + (d’lxt"/}lx)w +ﬁ <'¢)1:c> 1;[}13356 +ﬂ <qu) wlacar
R
+ﬂ <¢1 ¢1x> wlxa: +6 (¢1 R) ¢1a:ac -7 <§Ruf> wlxw

2
tra T ( ) Y1z
- (¢1$$¢1m)t + (¢1wtw1w) + C(|p wlwwlww| + |1/)11a:| + |’UR'¢1:E¢1$I|

+ [ 02t10V1aa]| + IPEUE Y120 |+ Ui 100] + [VEUS Y100+ |02l P10
FP1eV10 V100 | + 1019700+ V5 019010100 | + [P d112Y 100

| P12UE V120 |+ | Prul V12| + | O1uSvE V10| + [P1ul e 10a]

+ X V10| + [0 X 10|+ [P2XP102])-

We also have the following estimates

t t
C/] /\vf%wlml(z,t’)dwdt’SCcS/O /(wfx+wfxx)($,t’)dxdt’, (4.145)

(

t t
C/O /|g0x¢1x1/)1m|(:c,t')dxdt’gCN(T)/O /(wforwfm)(x,t')dzdt', (4.146)

C/ /|vw uBpy o | (2, t) ) dadt! <C§/ / V2?2 )(x,t)dxdt
<C6ln(1+t)+Cs / / Y2, (x,t)dxdt', (4.147)
0
and

t
C/ /|u§(pmw1ww|($;t/)dl‘dt/
0
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t
RN\2 2 2
<c / / (R)22 2, (o, )’
0

t t
<c / a2 / 2 (') dudt + C / / 2 (et )dwdt
0 0

t
<CSN*(T)+C / / Y1, (@, t)dzdt', (4.148)
0
which implies
C / / (0B 311010 (2, ) dadt! <CN (T / / R 10| (2, ) dadt

<CSN(T) / [+t anar, @.119)
0

t t
C/O /|¢1@xwlzwlxm‘(x7t/)dxdt/ SCN(T)/O /|<Pm¢1z1/11m\(33,f/)d$dt/

t
<on(@) [ [ Whvta) it (@150

/ /|¢1U Bproe| (2, t))dadt!

<CN(T / /|vz uB e | (z,t) ) dadt!

<CéN(T // 2+ 7., (@, ) dzdt!
0

<CEN(T)In(1+t)+CON(T //wm, ., t)dxdt, (4.151)

§C<5N3( )+CN(T / /z/)m (z,t)dzdt', (4.152)

respectively. Moreover, one can obtain

¢ ¢
C/ /|vf’xwlm|(x,t’)dxdt’§05/ /()(2—|—¢EM)(ac,t')d;zcdt’7 (4.153)
0 0

and

t t
/ / 2 2 / /. 4154
c / / (0o XUraal (@, )dzdt <CN(T) / / O3 + 02, () dadt (4.154)

Putting (4.136)-(4.154) together, then one has

t
/ / o .t dwdt! <O (N?(0) 4 8ln(1+1) +5"SN*(T) +6*TN(T)* + N(T)*)
0

t
+C / / i (x,t)dzdt
0
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<C (N2(0)+0ln(1+)+ 8" SNY(T) + 6/ *TN(T)?+ N(T)?)

t
+C/ /|¢1mxm\(m,t’)dzdt'. (4.155)
0

The term Cfotf |12 Xaz| (2, )dxdt’ can have an upper bound as

t t 1t
C/ /\¢1mxm|(a:,t’)dxdt’§0/ /xiw(x,t’)dmdt’—kﬁ/ /d)%m(a:,t’)dmdt',
0 0 0

(4.156)
which, with (4.144) and (4.155), implies
t
| [ @ttt vzt
0
<C (N2(0)+6zn(1+t)+51/8N2(T)+53/2TN(T)2+N(T)3) (4.157)

by the smallness of 6 and N (7). Combining with (4.133), we finished our proof. d

4.4. The estimate for ||(vz,0z2)||L2®?)-
LEMMA 4.4. Assume that the conditions in Proposition 4.1 hold. Then there exists a
constant C' >0 independent of T' such that

(e |2(0) < C (N2(0) + 672 4+ 8YSNA(T) + 6ln(1 + ) + 52 TN(T) + N(T)? ),

for 0<t<T.

Proof.  'We follow the idea of [1], and it is easy to see v=uv(p,X,s) by virtue of (3.4)
and (3.5). Hence, one has

lvg| <C

<C

|Vaa| <C

<C

|+ X |+ 152])

P+ [Xa |+ D12l +[Cral),

Paa| + [ Xoo| 1Szl + |Pal® + [Xa | +152]%)

P3|+ [Xaa |+ [Crael + [PE1 + [Xa|* + 012 +[C12[?)-

~ o~ ~~

Here invoking the results of Lemmas 2.1, 4.2 and 4.3, the following inequalities are
established,

lleall? < CUPEP + 1117 + lIxal? + 16121 + 112 1?)
< C(N?(0)+68°/2+6Y N?(T) +6ln(1+t)+ 8/ >°TN(T)>+ N (T)?),
lpzal* < Ol * +lvgal? + 1 Xaal? +[1C1ze 2 + Xl + @102+ 10l ?)
<C(N2(0)+872 4 6YEN2(T) +6In(1+1) + 6> >TN(T)?+ N(T)?).  (4.158)
Therefore, the desired estimates are obtained if 6 and N(T') are small enough. a0

Proof. (Proof of Theorem 1.2.) The following inequality follows from Lemmas
4.1-4.4:

NX(T)<C (N?(O) +65/2 1 §YBN2(T) +6ln(1+T) + 6%/ 2T N(T)? +N(T)3) :
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that is,
NX(T)<C (N2(o) +65/2 1 5ln(1+T) +63/2TN(T)2) (4.159)

by using the smallness of § and N(T). If

2

C&*PTN(T)? < NT(T) (4.160)

ie.,
T< Lg-3 (4.161)

= 8C ‘ '
In this case,

Coln(1+T) < Coin(1+ %5*3/2), (4.162)

and

1

52 < O8in(1+—5"3/2
< Céin( +SC ),

for small . This finishes the proof of proposition if § <§;. Consequently, Theorem 1.2
has been proved. 0
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